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Free locally convex spaces and L-retracts

Rodrigo Hidalgo Linares, Oleg Okunev

Abstract. We study the relation of L-equivalence defined between Tychonoff
spaces, that is, we study the topological isomorphisms of their respective free
locally convex spaces. We introduce the concept of an L-retract in a Tychonoff
space in terms of the existence of a special kind of simultaneous extensions of
continuous functions, explore the relation of this concept with the Dugundji ex-
tension theorem, and find some conditions that allow us to identify L-retracts in
various classes of topological spaces. As applications, we present a method for
constructing examples of L-equivalent mappings and L-equivalent spaces and in
particular, we show that the properties of being an open mapping or a perfect
mapping are not L-invariant.
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1. Basic properties of free locally convex spaces

In what follows, every topological space is assumed to be Tychonoff, that is,

T1 and completely regular. Likewise, all topological vector spaces are assumed

to be Hausdorff and are over R. The weak topological dual of a locally convex

space E will be denoted by E′. We say that E is weak if E is topologically

isomorphic to (E′)′ (equivalently, the topology of E is projective with respect

to E′).

The free locally convex space (in the Markov sense) over a topological spaceX is

a pair (δX , L(X)) formed by a continuous injection δX : X → L(X) and a locally

convex space L(X) such that L(X) is the linear span of δX(X) and for every

continuous function f : X → E to a locally convex space E, there exists a unique

continuous linear mapping f# : L(X) → E such that f = f# ◦ δX .

Similarly to M. I. Graev, we define the free locally convex space in the Graev

sense over the topological space with a distinguished point (X, x0) as a pair

(δX , GL(X, x0)) formed by a continuous injection δX : X → GL(X, x0) with

δX(x0) = 0 and a locally convex space GL(X, x0) such that GL(X, x0) is the

linear span of δX(X) and for every continuous function f : X → E to a locally
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convex space E such that f(x0) = 0, there exists a unique continuous linear

mapping f# : GL(X, x0) → E such that f = f# ◦ δX .

The mapping δX is known as the Dirac embedding, and for each x ∈ X ,

δX(x) = δx is a linear functional that assigns to each f ∈ RX its value at x, that

is, δx(f) = f(x). In this sense, we can view the set L(X) (GL(X, x0)) as the set

of finite linear combinations λ1δx1
+ · · ·+ λnδxn

, with n ∈ N, λi ∈ R and xi ∈ X

(xi ∈ X \ {x0}). The following facts are well known, see [8].

Theorem 1.1. Let X be a topological space and x0, x1 ∈ X two different points.

Then:

(1) The spaces L(X) and GL(X, x0) always exist and are unique up to a to-

pological isomorphism.

(2) δX(X) is a Hamel base for L(X), and δX(X \ {x0}) is a Hamel base for

GL(X, x0).

(3) The topologies of L(X) and GL(X, x0) are Hausdorff and make the Dirac

embedding a topological embedding, so that X is embedded in L(X) and

GL(X, x0) as closed subspace.

(4) For any x0, x1 ∈ X , the spaces GL(X, x0) and GL(X, x1) are topologic-

ally isomorphic.

To simplify notation, we will assume that X is a subset of L(X). The next

statement is immediate from the definition.

Corollary 1.2. A linear mapping f : L(X) → E to a locally convex space E is

continuous if and only if the restriction f |X is continuous.

Corollary 1.3. Let X and Y be topological spaces, x0 a point of X , and X⊕Y

their topological sum. Then GL(X ⊕ Y, x0) = GL(X, x0)⊕ L(Y ).

Let us show a more explicit relationship between L(X) and GL(X, x0). Con-

sider the function eX : X → R such that eX(x) = 1 for all x ∈ X , and let

(eX)# : L(X) → R be the unique linear mapping that extends eX . Denote the

kernel of (eX)# by L0(X). Observe that

L0(X) =

{ n
∑

i=1

λiδxi
: n ∈ N, λi ∈ R, xi ∈ X, 1 ≤ i ≤ n,

n
∑

i=1

λi = 0

}

.

We will say that a topological isomorphism ϕ : L(X) → L(Y ) is special if the

composition (eY )# ◦ ϕ : L(X) → R is constant on X .

As shown in [13], if there exists a topological isomorphism between L(X)

and L(Y ), then there exists always a special topological isomorphism between

them. Furthermore, we can deduce the following statements.
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Lemma 1.4. For each nonzero continuous linear functional ψ : L(X) → R there

exists a linear topological isomorphism u : L(X) → L(X) such that ψ ◦

u(X) = {1}.

Proof: Let x0 ∈ X be such that ψ(x0) = λ 6= 0. We define the mappings

u0 : X → L(X) and v0 : X → L(X) as u0(x) = x− (1/λ)(ψ(x)−1)x0 and v0(x) =

x + (ψ(x) − 1)x0. It is clear that u0 and v0 are continuous and ψ(u0(x)) = 1

for each x ∈ X . Let u and v be the linear mappings that extend to u0 and v0,

respectively. Then u is the required linear homeomorphism and v is its inverse

mapping. �

Theorem 1.5. Given a topological isomorphism ψ : L(X) → L(Y ), there exists

always a topological isomorphism ϕ : L(X) → L(Y ) such that (eY )#◦ϕ = (eX)#.

Proof: Applying Lemma 1.4 to the nonzero continuous linear functional

(eY )# ◦ψ, we get a topological isomorphism u : L(X) → L(X) such that ϕ = ψ◦u

is special and (eY )# ◦ ϕ = (eX)#. �

Corollary 1.6. Let x0 be a point of X . The spaces L0(X) and GL(X, x0) are

topologically isomorphic.

The last corollary demonstrates the fact that the free locally convex space,

in the sense of Graev, is independent (up to a topological isomorphism) of the

choice of the distinguished point. Henceforth, we will refer to this space simply

as GL(X).

Corollary 1.7. Let X and Y be topological spaces. The spaces L(X) and L(Y )

are topologically isomorphic if and only if GL(X) and GL(Y ) are topologically

isomorphic.

Proof: If L(X) and L(Y ) are topologically isomorphic, then Theorem 1.5 im-

plies the existence of a topological isomorphism ϕ : L(X) → L(Y ) such that

(eY )# ◦ ϕ = (eX)#. It follows that ϕ|L0(X) : L0(X) → L0(Y ) is a topological

isomorphism, which establishes the topological isomorphism between GL(X) and

GL(Y ). On the other hand, if the spaces GL(X) and GL(Y ) are topologically iso-

morphic, then L(X) = GL(X)⊕R and L(Y ) = GL(Y )⊕R are also topologically

isomorphic. �

Given the close relationship between the spaces L(X) and GL(X) we can define

the L-equivalence relation as follows: the spaces X and Y are called L-equivalent

(X
L
∼ Y ) if their free locally convex spaces L(X) and L(Y ) are topologically

isomorphic. Furthermore, following [12] we can extend this relation to continuous

mappings between topological spaces. We say that two continuous mappings

f : X → Y and g : Z → T are L-equivalent (f
L
∼ g) if there exists topological
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isomorphisms ϕ : L(X) → L(Z) and ψ : L(Y ) → L(T ) such that ψ ◦ f# = g# ◦ϕ.

Clearly, these are equivalence relations.

Likewise, any topological property of spaces or mappings that is preserved by

the L-equivalence relation will be called L-invariant. It is worth noting that the

L-equivalence between the identity mappings idX : X → X and idY : Y → Y is

equivalent to the L-equivalence between the spaces X and Y .

In a similar order of ideas, we can define the free weak topological vector space

Lp(X) over the topological space X as a pair (δX , Lp(X)) formed by a continuous

injection δX : X → Lp(X) and a weak topological vector space Lp(X) such that

for every continuous function f : X → E to a weak topological vector space E,

there exists a unique continuous linear mapping f# : Lp(X) → E such that f =

f# ◦ δX , see [2]. In addition, Theorem 1.1, as well as all subsequent statements,

remain valid for the space Lp(X).

Naturally, this leads us to establish the concept of spaces and functions Lp-

equivalent, and the notion of Lp-invariant properties. It should be noted that the

concept of Lp-equivalence relation is often linked to the functor Cp, in which case

we say that two spaces X and Y are l-equivalent if their spaces of continuous real

functions Cp(X) and Cp(Y ) are topologically isomorphic, see [2]. This should not

worry us, since the spaces Cp(X) and Lp(X) are in duality, so Cp(X) is topo-

logically isomorphic to Cp(Y ) if and only if Lp(X) is topologically isomorphic to

Lp(Y ). Therefore, following the notation already established, the Lp-equivalence

relation is the same as the l-equivalent relation, and the properties that are Lp-

invariant are l-invariant.

Finally, we will briefly describe the relation between the topologies of the spaces

L(X) and Lp(X). First, from the definitions of these objects, it is easy to see

that the identity (idX)# : L(X) → Lp(X) is a continuous linear mapping, there-

fore, the underlying sets of the spaces L(X) and Lp(X) are identical, and it is

also clear that the topology of Lp(X) is the ∗-weak topology of L(X). Second,

there exists a relatively simple way to describe its topology: since the spaces

L(X) and C(X) are in algebraic duality, and any locally convex topology over

a space E is the topology of uniform convergence on the equicontinuous sets of

its topological dual E′, the topology of L(X) is the topology of uniform conver-

gence on the equicontinuous pointwise bounded sets of C(X), see [7]. Similarly,

since the topology of Lp(X) is weak, and we can embed Lp(X) in Cp(Cp(X)),

whose topology is also weak, we conclude that the topology of Lp(X) is inherited

from Cp(Cp(X)). Thus, a local neighborhood base of zero in L(X) (Lp(X)) is the

family of sets of the form

V [0, F, ε] = {α ∈ L(X) : |α(f)| = |f#(α)| < ε},
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where F ⊂ C(X) is an equicontinuous pointwise bounded set (respectively, a finite

set) and ε > 0.

2. L-retracts

As mentioned at the beginning, we will see what useful properties l-embedded

sets have, and then we will try to find similar properties in the context of free

locally convex spaces.

We start with a definition, let X be a topological space and Y a subspace

of X . An extender is a mapping φ : C(Y ) → C(X) such that φ(f)|Y = f for

every f ∈ C(Y ). An extender may be linear or not, but what really matters to

us is its continuity. If there exists a continuous (linear and continuous) extender

φ : Cp(Y ) → Cp(X), we will say that Y is t-embedded (l-embedded) in X .

A basic fact about t-embedded sets is that they are always closed. Clearly,

every l-embedded set is also t-embedded, and it is easy to verify that X is always

l-embedded in Lp(X). The following statement is also easy to prove.

Proposition 2.1. Let Y be a subset of X . The following statements are equiv-

alent:

(1) Y is l-embedded in X .

(2) There exists a continuous linear retraction r : Lp(X) → Lp(Y ).

(3) There exists a continuous function f : X → Lp(Y ) such that f |Y = δY .

(4) Every continuous function from Y to a weak topological vector space E

extends to a continuous function from X to E.

It is generally not true that if Y is a subspace of X , then the subspace L(Y,X)

of L(X) spanned by Y is L(Y ), even if Y is closed. Therefore, if Y is a subspace

of X such that L(Y,X) coincides with L(Y ), we will say that Y is L-embedded

in X .

If Y is a subspace of X , Y is P -embedded in X if every continuous pseudo-

metric on Y can be extended to a continuous pseudometric on X . The concept

of a P -embedded set has several characterizations; the one given by K. Yamazaki

[17, Theorem 3.1] is the one used in the proof of the following statement.

Proposition 2.2. Let Y be a subset of X . The following statements are equiv-

alent:

(1) Y is L-embedded in X .

(2) Any equicontinuous pointwise bounded subset of C(Y ) can be extended

to an equicontinuous pointwise bounded subset of C(X).

(3) Y is P -embedded in X .
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Taking into account that the concept of an L-embedded set is related to si-

multaneous extension of equicontinuous pointwise bounded sets, we can ask, of

course, what relationship exists between the notions of an l-embedded set and an

L-embedded set.

Example 2.3. An L-embedded set need not be l-embedded.

Consider the space X = ω1+1 with the order topology, and let Y be the dense

subspace ω1. Recall that Y is a pseudocompact non-compact space, and that X

is the Stone–Čech compactification of Y . Since the square of Y is pseudocompact

and X2 is the Stone–Čech compactification of Y 2, Y is P -embedded in X , that

is, Y is L-embedded in X . Considering that Y is not a closed set in X , Y is not

l-embedded.

Example 2.4. An l-embedded set need not be L-embedded.

Let Y be an uncountable discrete space, and let X = Lp(Y ). Then Y is l-

embedded in X , and X has the Souslin property. By [9, Theorem 1.2], Y cannot

be P -embedded in X , and hence Y is not L-embedded.

As we have observed, the l-embedded sets and free locally convex space do not

have a direct relationship; this is another reason to study L-retracts, as they pos-

sess all the desirable qualities of both l-embedded and L-embedded sets. Specifi-

cally, if Y is L-embedded in X and the subspace L(Y ) of L(X), spanned by Y ,

is a linear retract of L(X), then Y is an L-retract of X . As we will see, this

combinations of concepts improves their properties.

Proposition 2.5. Every L retract is an L-embedded and l-embedded set. In

particular, every L-retract is a closed set.

We still do not know if the reverse of the previous propositions holds, that is,

in which cases the L-embedded and l-embedded set are an L-retract. We only

can guarantee the following.

Theorem 2.6. Let Y be a subspace of X . Then Y is an L-retract of X if and

only if there exists a continuous linear extender φ : Cp(Y ) → Cp(X) such that

if B ⊂ C(Y ) is an equicontinuous pointwise bounded set, then φ(B) also is an

equicontinuous pointwise bounded set.

Proof: Suppose that Y is an L-retract of X . Then there exists a continu-

ous linear retraction r : L(X) → L(Y ). Define φ : Cp(Y ) → Cp(X) by φ(f) =

(f# ◦ r)|X , where f# : L(Y ) → R is the linear extension of the function f to

L(Y ). Consequently φ is a continuous linear extender.

Let B ⊂ C(Y ) be an equicontinuous pointwise bounded set; let us verify that

the set φ(B) = {f# ◦ r : f ∈ B} is equicontinuous and pointwise bounded set
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in C(X). By the definition of equicontinuity in a topological vector space, see [14],

just note that given an ε > 0, the set

⋂

f∈B

(f# ◦ r)−1(−ε, ε) = r−1

(

⋂

f∈B

f−1
# (−ε, ε)

)

is a neighborhood of zero. Thus, φ(B) is an equicontinuous pointwise bounded

subset of C(X).

It only remains to prove that if such a continuous linear extender exists, then Y

is an L-retract of X . Define q : X → L(Y ) by q(x) = δx ◦ φ, and let r : L(X) →

L(Y ) be the linear extension of q. Note that q(x) is a continuous linear function

on Cp(Y ), so q(x) ∈ Lp(Y ); therefore q(x) also is an element of L(Y ), that is,

q is well-defined.

Moreover, the restriction r|Y coincides with the Dirac embedding of Y in L(Y ),

implying that r is a retraction. To prove the continuity of q, consider U =

U [0, A, ε] as a neighborhood of zero in L(Y ), where A ⊂ C(Y ) is an equicontinuous

pointwise bounded set and ε > 0. Since φ(A) is an equicontinuous pointwise

bounded subset of C(X), the set V = V [0, φ(A), ε] is a neighborhood of zero

in L(X) and r(V ) ⊂ U . As r is linear and continuous, we conclude that r◦δX = q

is also continuous, and hence Y is an L-retract of X . �

If φ : Cp(Y ) → Cp(X) is a continuous linear mapping such that for every

equicontinuous pointwise bounded set A in C(Y ) the image φ(A) is an equicontin-

uous pointwise bounded set in C(X), we will say that φ preserves equicontinuous

pointwise bounded sets.

Corollary 2.7. The spaces X and Y are L-equivalent if and only if there exists

a topological isomorphism φ : Cp(Y ) → Cp(X) such that both φ and φ−1 preserve

equicontinuous pointwise bounded sets.

Proof: First let us suppose that X and Y are L-equivalent, that is, there exists

a topological isomorphism ψ : L(X) → L(Y ). Consider the mapping φ : Cp(X) →

Cp(Y ) defined by the rule φ(f) = f# ◦ ψ−1 ◦ δY . It is clear that φ is continuous,

linear and has the inverse topological isomorphism φ−1(g) = g# ◦ ψ ◦ δX . It

remains to show that given ε > 0 and an equicontinuous pointwise bounded set

A ⊂ C(X) the set

⋂

f∈A

(f# ◦ ψ−1)−1(−ε, ε) = ψ

(

⋂

f∈A

f−1
# (−ε, ε)

)

is a neighborhood of zero, but this is straightforward.

Conversely, if there exists a topological isomorphism φ : Cp(Y ) → Cp(X) such

that both φ and φ−1 preserve equicontinuous pointwise bounded sets, we can
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consider the map ψ : L(X) → L(Y ) defined by ψ(α) = α ◦ φ−1. Recall that

α◦φ−1 is a continuous linear function on Cp(Y ), so α◦φ−1 is in L(Y ). Of course,

ψ has an inverse topological isomorphism given by ψ−1(β) = β ◦φ. Since both φ

and φ−1 preserve equicontinuous pointwise bounded sets, both ψ and ψ−1 are

continuous. �

We say that a set A in a space X is bounded if every real continuous function

on X is bounded on A. Recall that a function f : X → R is b-continuous if for

every bounded set A in X there exists a continuous function g : X → R such that

g|A = f |A. A space X is called a bf -space if every b-continuous real function is

continuous. The class of bf -spaces contains all k-spaces.

Cb(X) is the space C(X) endowed with the topology of uniform convergence

on the bounded sets of X . If X is a bf -space, then a set B ⊂ Cb(X) is compact

if and only if B is closed, equicontinuous and pointwise bounded, see [16].

Corollary 2.8. Let X and Y be two bf -spaces that are l-equivalent. Then X

and Y are L-equivalent.

Proof: Let ϕ : Cp(X) → Cp(Y ) be a topological isomorphism. According to [1]

we can see that ϕ : Cb(X) → Cb(Y ) is also a topological isomorphism. Now, let

us take a set A ⊂ Cp(X) which is equicontinuous and pointwise bounded. Since

X is a bf -space we have that [A]b, the closure of A in Cb(X) is compact. Hence

ϕ(A) ⊂ ϕ([A]b) is equicontinuous and pointwise bounded. But [A]b = [A]p, the

closure in Cp(X), that is, ϕ preserves equicontinuous pointwise bounded sets. �

Example 2.9. It is known that if X is an uncountable discrete space, then the

spaces Lp(X) and Lp(X) ⊕ X are l-equivalent and they are not L-equivalent,

that is, there does not exist a topological isomorphism between Cp(Lp(X)) and

Cp(Lp(X)⊕X) that preserves equicontinuous pointwise bounded sets.

Returning to the consequences of Theorem 2.6, we have the following state-

ment.

Corollary 2.10. The following assertions are equivalent:

(1) Y is an L-retract of X .

(2) There exists a continuous linear retraction r : L(X) → L(Y ).

(3) There exists a continuous linear extender ϕ : Cp(Y ) → Cp(X) such that

ϕ preserves equicontinuous pointwise bounded sets.

(4) Every continuous function from Y to a locally convex space E extends

to a continuous function from X to E.

From this proposition it follows immediately that, in the same way that X is

l-embedded in Lp(X) (X is an l-retract of Lp(X)), X is an L-retract of L(X).

Also, note that in view of Example 2.4, X is not always an L-retract of Lp(X).
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Now it is the time to apply our results. First, we can apply the Dugundji

theorem to obtain the following.

Theorem 2.11. Let X be a metric space. The following statements are equiva-

lent:

(1) Y is a closed subset of X ;

(2) Y is an L-retract of X ;

(3) Y is l-embedded in X .

Proof: Let Y be a closed subset of a metric space X and δY : Y → L(Y ) the

Dirac embedding of Y in L(Y ). Applying the Dugundji extension theorem we get

a continuous function f : X → L(Y ) such that f |Y = δY , then Y is an L-retract

of X . The other implications are clear. �

The Dugundji extension theorem has been subject to various generalizations,

specifically, C.R. Borges generalized it to stratifiable spaces, and I. S. Stares did

the same for the decreasing (G) spaces (a decreasing (G) space is a T1 topological

space with a countable decreasing local base that satisfies the (G) condition of [5]).

On the other hand, note that each stratifiable space is a decreasing (G) space, and

each decreasing (G) space is hereditarily paracompact, so we could ask if for the

hereditarily paracompact spaces it is true that every closed set is an L-retract.

However, the answer is “no”.

Example 2.12. There exists a hereditarily paracompact space X and a closed

subset Y such that Y is not an L-retract of X .

Let X be the Michael line, see [6, Example 5.1.32], and let E = Ck(P ), where

P is the set of irrational numbers equipped with the topology inherited from the

Euclidean metric. Consider the subset Y of X consisting of all rational numbers

with the subspace topology. In this context, Y is a closed and P -embedded

set, but [15] indicates that the continuous function f : Y → Ck(P ) defined by

f(x)(p) = 1/(x− p), x ∈ Y and p ∈ P , cannot be continuously extended to the

space X . That is, Y is not an L-retract of X .

The previous example shows that, in general, we must impose stronger condi-

tions on the subset Y to make sure that Y be an L-retract of X . For instance,

we will see that some of them need metrizability as an additional condition.

A set A ⊂ X is called strongly discrete if there exists a discrete family {Ua :

a ∈ A} of disjoint open sets in X such that a ∈ Ua for every a ∈ A. Taking into

account the final observation of [11] we easily get the following.

Corollary 2.13. Let Y be a subspace of X . Then:

(1) If X is paracompact and Y is closed and metrizable, then Y is an L-

retract of X .
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(2) If X is normal and Y is closed, metrizable and separable, then Y is an

L-retract of X .

(3) If X is Tychonoff and Y is compact and metrizable, then Y is an L-re-

tract of X .

(4) If X is Tychonoff and Y is strongly discrete, then Y is an L-retract of X .

Proof: The first three statements are obvious. In [3] it was shown that if Y

is a strongly discrete subspace, then Y is l-embedded in X . We will present the

original proof, emphasizing the preservation of equicontinuous pointwise bounded

sets by the defined extender. Let U = {Uy : y ∈ Y } be a discrete family of disjoint

open sets in X such that y ∈ Uy for every y ∈ Y , also, for every y ∈ Y let hy ∈

C(X) be a function such that hy(X) ⊂ [0, 1], hy(y) = 1 and hy(X \Uy) ⊂ {0}. As

the family U is discrete, the function
∑

y∈Y hy is defined on X and is continuous.

Therefore, we can define a linear extender ϕ : Cp(Y ) → Cp(X) by the rule ϕ(f) =
∑

y∈Y f(y) · hy. Since at every point of Y only finitely many functions hy are

distinct from 0, ϕ is continuous.

Let F ⊂ Cp(Y ) be an equicontinuous and pointwise bounded family of func-

tions. We will verify that ϕ(F) = {ϕ(f) : f ∈ F} is equicontinuous and pointwise

bounded. For each y ∈ Y let My ∈ R be such that {f(y) : f ∈ F} ⊂ [−My,My].

Given ε > 0 and x ∈ X , if x has a neighborhood disjoint from
⋃

U , we have

ϕ(f)(x) = 0 for every f ∈ Cp(Y ). Otherwise, there exists a neighborhood U of x

such that U ∩ Uy 6= ∅ for a unique y ∈ Y . Put V = h−1
y (hy(x) − ε/My, hy(x) +

ε/My) and W = U ∩ V . Then W is an open neighborhood of x, and for each

z ∈W and f ∈ F we have

|ϕ(f)(x) − ϕ(f)(z)| = |f(y)(hy(x) − hy(z)| ≤My|hy(x) − hy(z)| < My ·
ε

My

= ε,

that is, ϕ(F) is an equicontinuous set that clearly is pointwise bounded. �

Note that although in the class of metric spaces the L-retracts and the l-

embedded sets are equivalent, in general, in the generalizations of the Dugundji

extension theorem, we cannot change the condition that Y is an L-retract and

replace it with the weaker condition that Y is an l-embedded set.

Example 2.14. In Corollary 2.13, it is important to note that the conditions

of “being a strongly discrete set” or “being a compact and metrizable subspace”

cannot be weakened to “being a discrete set” or “being a compact subspace”,

respectively.

Consider the discrete space Y of cardinality ω1 and let X = Lp(Y ). Although

Y is an l-embedded set, the function δY : Y → L(Y ) does not have a continuous

extension to X . If it had, then Y would be an L-retract of X .
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Even, if both X and Y are compact spaces, it does not necessarily imply that

Y is an L-retract of X . For example, let X = βN and Y = βN \ N. In this case,

Y is not t-embedded in X , which implies that there exists no continuous mapping

ϕ : Cp(Y ) → Cp(X), see [3].

3. A method for constructing examples of L-equivalent spaces

Now we will concentrate on finding a method that generates examples of L-

equivalence spaces. The method described by O. Okunev in [12, Theorem 2.4]

already generates examples of L-equivalent spaces, however, the notion of a re-

tract used in this method is quite restrictive, and as we see, every retract is an

L-retract. Thus, we will show that the notion of an L-retract is sufficient to

modify the method for L-equivalence.

Let K1 and K2 be two L-retracts of a space X , we will say that K1 and K2

are parallel if there exists continuous linear retractions r1 : L(X) → L(K1) and

r2 : L(X) → L(K2) such that r1 ◦ r2 = r1 and r2 ◦ r1 = r2.

Proposition 3.1. The sets K1 and K2 are parallel L-retracts of X if and only

if there exists a continuous linear retraction r1 : L(X) → L(K1) such that the

restriction r1|L(K2) is a topological isomorphism from L(K2) onto L(K1). In

particular, K1 and K2 are L-equivalent.

Proof: SupposeK1 andK2 are parallel L-retracts of X . Let r1 : L(X) → L(K1)

and r2 : L(X) → L(K2) be continuous linear retractions such that r1 ◦ r2 = r1
and r2 ◦ r1 = r2. Then i = r1|L(K2) is a topological isomorphism of L(K2) onto

L(K1) with the inverse j = r2|L(K1).

Conversely, suppose there exists a continuous linear retraction r1 : L(X) →

L(K1) such that the restriction r1|L(K2) is a topological isomorphism from L(K2)

onto L(K1), let j = i−1 and put r2 = j ◦ r1. Then r2 is a continuous linear

retraction from L(X) to L(K2), r1 ◦ r2 = r1 and r2 ◦ r1 = r2. �

Recall that a continuous mapping p : X → Y is called R-quotient if p(X) = Y

and whenever f is a real function on Y such that the composition f ◦p : X → R is

continuous, f is continuous, see [10]. The following statement is Proposition 1.10

in [12].

Proposition 3.2. If p : X → Y is an R-quotient mapping, Z is a completely

regular space and f : Y → Z is a function such that the composition f ◦ p is

continuous, then f is continuous.

Proposition 3.3. A mapping p : X → Y is R-quotient if and only if its extension

p# : L(X) → L(Y ) is open.
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Proof: Suppose that p# is open and let f : Y → R be a function such that f ◦ p

is continuous. Let p# : L(X) → L(Y ) and f# : L(Y ) → R be the continuous

linear extensions of f and p. Then f# ◦ p# = (f ◦ p)# is continuous, and since p#
is open, f# is continuous. Thus, f = f# ◦ δY is continuous.

Conversely, if p is R-quotient, then the subspace H = ker p# is closed by

continuity. Let L = L(X)/H be the quotient space. This space L is locally

convex and Hausdorff, hence Tychonoff. Furthermore, there exists a continuous

bijection i : L → L(Y ) such that p# = i ◦ π, where π : L(X) → L is the natural

projection. We now verify that the mapping j = i−1 : L(Y ) → L is continuous.

To do this, we only need to show that the restriction f = j|Y is continuous. Since

f ◦ p = (j ◦ p#)|X = π|X , we have that f ◦ p is continuous. Since p is R-quotient,

it follows that f is also continuous. Thus, j is continuous, and therefore i is

a topological isomorphism. As π is open, it follows that p# is open. �

There exists a simple characterization of L-equivalence of R-quotient map-

pings.

Proposition 3.4. Two R-quotient mappings f : X → Y and g : Z → T are L-

equivalent if and only if there exists a topological isomorphism i : L(X) → L(Z)

such that i(ker f#) = ker g#.

Proof: If f and g are L-equivalent, then there exist topological isomorphisms

i : L(X) → L(Z) and j : L(Y ) → L(T ) such that j ◦ f# = g# ◦ i. Let A = ker f#
and B = ker g#. Then {0} = j ◦ f#(A) = g# ◦ i(A) = g#(i(A)), that is, i(A) ⊂

ker g#. Since g# = j ◦ f# ◦ i−1, it follows that {0} = g#(B) = j ◦ f# ◦ i−1(B).

Considering that j is bijective we have that f# ◦ i−1(B) = {0}, we can conclude

that i−1(B) ⊂ A, and this is enough to establish the equality.

Conversely, suppose that there exists a topological isomorphism i : L(X) →

L(Z) such that i(ker f#) = ker g#. Then there exists an (algebraic) isomorphism

j : L(Y ) = L(X)/ ker f# → L(T ) = L(Z) ker g# such that j ◦ f# = g# ◦ i.

Since g# and i are continuous, and f# is open, j is continuous. Similarly,

j−1 ◦ g# = f# ◦ i−1, f# and i−1 are continuous, and g# is open, so j−1 is

continuous. Therefore, we can conclude that i and j are topological isomorphisms,

as required in the definition of L-equivalent mapping. �

We will now define the R-quotient spaces. Let p : X → Y be a mapping of the

topological space X onto a set Y . Then there exists a unique completely regular

topology on the set Y that makes p an R-quotient mapping. This topology can be

described as the weakest topology with respect to which all real functions on Y ,

whose composition with p is continuous, are continuous. This topology is called

the R-quotient topology, and Y endowed with this topology is the R-quotient space
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with respect to the mapping p, or simply the R-quotient space if the mapping p

is clear from the context. In this situation we say that p is the natural mapping.

Now, if X is a space and K is a closed subset in X , let us denote X/K =

(X \K) ∪ {K}, and let p(x) = x for x ∈ X \K, and p(x) = K for each x ∈ K.

Therefore, there exists only one completely regular topology on X/K that makes

it the R-quotient space with respect to p. It is shown in [12] that this space is

Tychonoff. Also note that p|(X \K) : X \K → X/K \ p(K) is a homeomorphism

[12, Corollary 1.7].

With all of this, we can establish our method.

Theorem 3.5. If K1 and K2 are parallel L-retracts of X , then the R-quotient

mappings p1 : X → X/K1 and p2 : X → X/K2 are L-equivalent. In particular,

the spaces X/K1 and X/K2 are L-equivalent.

Proof: Suppose that r1 : L(X) → L(K1) and r2 : L(X) → L(K2) are parallel

L-retractions. We define a mapping i : L(X) → L(X) by the rule i(α) = r1(α) +

r2(α) − α for all α ∈ L(X). Clearly, i is a continuous linear mapping such that

i ◦ i(α) = α, that is, i is its own inverse, so i is a topological isomorphism.

Let us put s2 = r2|L(K1), then s2 is a topological isomorphism and satisfies

s2 ◦ r1 = r2 ◦ i. It follows that i(L(K1)) = L(K2) and i(ker r1) = ker r2. It is also

evident that ker(pi)# = L0(Ki) = ker(eKi
)#, i = 1, 2.

As K1 and K2 are L-equivalent, there exists a special topological isomorphism

k : L(K1) → L(K2) such that (eK2
)# ◦ k = (eK1

)#. Let g = k × j, where

j = i| ker r1, and α ∈ L(X). The mappings ηi : L(X) → L(Ki) × ker ri, i = 1, 2,

defined by ηi(α) = (ri(α), α − ri(α)) are topological isomorphisms with inverses

ξi : L(Ki)× ker ri → L(X), where ξi(α, β) = α+ β, i = 1, 2.

Defining a mapping ψ by

ψ(α) = ξ2 ◦ g ◦ η1(α) = ξ2 ◦ g(r1(α), α − r1(α))

= ξ2
(

k(r1(α)), j(α − r1(α))
)

= k(r1(α)) + j(α)− j(r1(α)),

we obtain a topological isomorphism such that ψ(L0(K1)) = L0(K2). Thus, by

Proposition 3.4, p1 is L-equivalent to p2. �

We denote X+ the space X ⊕ {a} where a /∈ X .

Corollary 3.6. Let X be a topological space and K ⊂ X be an L-retract of X .

Then the spaces X+ and X/K ⊕K are L-equivalent.

Proof: Let K ′ be a homeomorphic copy of K that is disjoint from X , let

ϕ : K → K ′ be a homeomorphism and r : L(X) → L(K) be an L-retraction.

Recall that if Z = X ⊕ K ′, then L(Z) is topologically isomorphic to L(X) ⊕

L(K ′). Define r1 : L(Z) → L(K) and r2 : L(Z) → L(K ′) as follows: r1|L(X) = r,
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r1|L(K ′) = ϕ−1
# , r2|L(X) = ϕ# ◦ r and r2|L(K ′) = idL(K′). Then we have

(r1 ◦ r1)|L(X) = r1 ◦ r = r = r1|L(X) and (r1 ◦ r1)|L(K
′) = r1 ◦ ϕ

−1
# = ϕ−1

# =

r1|L(K ′) (because r1|L(K) is the identity), so r1 is a retraction. Similarly r2 is

also a retraction.

Moreover, it can be shown that (r1 ◦ r2)|L(X) = r1 ◦ ϕ# ◦ r = ϕ−1
# ◦ ϕ# ◦ r =

r1|L(X) and (r1 ◦ r2)|L(K ′) = r1|L(K ′). Therefore r1 ◦ r2 = r1. Similarly, we can

show that r2 ◦ r1 = r2, which implies that r1 and r2 are parallel L-retracts. By

Theorem 3.5, the spaces Z/K and Z/K ′ are L-equivalent. It is also evident that

Z/K is homeomorphic to X/K ⊕K and Z/K ′ is homeomorphic to X+. �

Note that in the proof of Theorem 3.5 the fact that the L-retracts are parallel

served to guarantee the existence of a pair of topological isomorphisms s2 and i

such that s2 ◦ r1 = r2 ◦ i. Therefore, in the case that two sets K1 and K2

are L-retracts of X and there exist topological isomorphisms i : L(X) → L(X),

j : L(K1) → L(K2) and continuous linear retractions r1 : L(X) → L(K1) and

r2 : L(X) → L(K2) such that j ◦ r1 = r2 ◦ i we will say that these sets are

equivalent L-retracts.

Proposition 3.7. Let r : L(X) → L(K) be a continuous linear retraction, where

K ⊂ X . Then L(X) is topologically isomorphic to GL(X/K) × L(K) and

GL(X/K) is topologically isomorphic to ker r.

Proof: We will write L ∼= E if the topological linear spaces L and E are topo-

logically isomorphic. The first part of the proof follows from Theorem 3.5, Corol-

laries 1.7 and 1.3, and the following chain of topological isomorphisms

L(X) ∼= GL(X+) ∼= GL(X/K ⊕K) ∼= GL(X/K)⊕ L(K).

The second part of the proof is due to the observation that if r : L(X) → L(K)

is a continuous linear retraction, then L(X) ∼= L(K)× ker r. Thus

L(K)× ker r ∼= L(K)⊕GL(X/K) ∼= L(K)×GL(X/K).

To conclude the proof, we note that the natural mapping p : X → X/K ⊂

GL(X/K) is R-quotient. Therefore, the linear continuous extension p# : L(X) →

GL(X/K) is open and onto. Moreover, we can easily see that ker p# = L(K),

which implies that L(X)/L(K) ∼= GL(X/K). On the other hand, consider the

continuous linear mapping ψ : L(X) → ker r given by ψ(α) = α − r(α). This

mapping is open, its kernel is L(K) and L(X)/L(K) ∼= ker r. Hence, we can

conclude that GL(X/K) ∼= ker r. �

In a way, if we have an L-retraction r : L(X) → L(K), we can obtain enough

information about L(X) since, as a corollary of the previous proposition, we can
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see that L(X) is topologically isomorphic to ker p# ⊕ ker r ⊕ R, where p# is the

linear continuous extension of the natural mapping p.

Proposition 3.8. Let K1 and K2 be two L-retracts of X . If the natural map-

pings p1 : X → X/K1 and p2 : X → X/K2 are L-equivalent, then K1 and K2 are

equivalent L-retracts.

Proof: Let r1 and r2 be a pair of retractions associated with K1 and K2, re-

spectively. Since the natural mappings p1 and p2 are L-equivalent, there exists

topological isomorphisms i : L(X) → L(X) and j : L(X/K1) → L(X/K2) such

that j ◦(p1)# = (p2)# ◦ i. In view of the assumption that X/K1 is L-equivalent to

X/K2, we have that ker r1 and ker r2 are topologically isomorphic; let us denote

such topological isomorphism by t.

Using the equality i(L0(K1)) = i(ker(p1)#) = ker(p2)# = L0(K2), we ob-

tain that L(K1) is topologically isomorphic to L(K2). Let us denote by k such

a topological isomorphism. Then w = k× t is a topological isomorphism between

L(K1)× ker r1 and L(K2)× ker r2. Therefore, we have a topological isomorphism

ϕ : L(X) → L(X), which is defined by the formula

ϕ(α) = ξ2 ◦ w ◦ η1(α) = ξ2 ◦ w(r1(α), α− r1(α))

= ξ2
(

k(r1(α)), t(α − r1(α))
)

= k(r1(α)) + t(α)− t(r1(α)).

The mappings ξi and ηi, i = 1, 2, are defined as in the proof of Theorem 3.5.

We quickly notice that under this isomorphism, ϕ(ker r1) = ker r2, and there-

fore, defining ψ : L(K1) → L(K2) by ψ(α) = r2 ◦ ϕ(r−1
1 (α)), we obtain a topo-

logical isomorphism such that ψ ◦ r1 = r2 ◦ ϕ. This proves that K1 and K2 are

equivalent L-retracts. �

Corollary 3.9. Let K1 and K2 be L-retracts of X , and p1 : X → X/K1,

p2 : X → X/K2 the corresponding natural mappings. The following statements

are equivalent:

(1) K1 and K2 are equivalent L-retracts;

(2) p1 and p2 are L-equivalent;

(3) K1 is L-equivalent to K2, and X/K1 is L-equivalent to X/K2.

Proof: The equivalence between items (1) and (2) is evident. To demonstrate

the remaining equivalences, it suffices to prove that item (3) implies item (1).

First, according to the hypothesis, we have GL(X/K1) ∼= GL(X/K2), and thus,

by Proposition 3.7 we conclude that ker r1 and ker r2 are topologically isomor-

phic. Then, using the technique described in the previous propositions, we obtain

topological isomorphism i : L(X) → L(X) and j : L(K1) → L(K2) such that

i(ker r1) = ker r2 and j ◦ r1 = r2 ◦ i. Therefore, K1 and K2 are equivalent L-

retracts. �
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Corollary 3.10. Let r1 : X → K1 and r2 : X → K2 be two retractions in X , and

p1 : X → X/K1, p2 : X → X/K2 the respective natural mappings. The following

statements are equivalent:

(1) r1 is L-equivalent to r2;

(2) p1 is L-equivalent to p2;

(3) K1 is L-equivalent to K2, and X/K1 is L-equivalent to X/K2.

Corollary 3.11. Two retractions onto the same retract are L-equivalent.

Corollary 3.12. Let X and Y be two L-equivalent spaces, K1 and K2 be re-

tracts respectively of X and Y , which are L-equivalent and such that X/K1 is

L-equivalent to Y/K2. Then any two retractions X → K1 and Y → K2 are L-

equivalent, moreover, the corresponding natural mappings are also L-equivalent.

Example 3.13. Consider the retractions, r1 and r2, defined on the interval [0, 1]

to [0, 1/2] as follows: r1(x) = x for x ∈ [0, 1/2] and r1(x) = 1−x for x ∈ [1/2, 1],

r2(x) = x for x ∈ [0, 1/2] and r2(x) = 1/2 for x ∈ [1/2, 1]. These retractions

are L-equivalent. It is worth noting that r1 is both perfect and open, whereas r2
is perfect but not open.

Corollary 3.14. The property of being an open mapping is not preserved under

the relation of L-equivalence, even within the class of perfect retractions.

Example 3.15. Let X be the topological product of two disjoint copies of the in-

tegers Z. Consider the set K = (N∪{0})×{0} and the retractions r1, r2 : X → K

defined as r1(n,m) = (max{|n|, |m|}, 0), and r2(n,m) = (|n+m|, 0). By Corol-

lary 3.11 these retractions are L-equivalent. Furthermore, r1 is perfect and finite-

to-one, while r2 is closed but not perfect (since r2 has no compact fibers) and not

finite-to-one.

Corollary 3.16. The property of being a perfect function is not an L-invariant

of continuous functions, even within the class of retractions. In particular, the

property of being a function with compact fibers is not L-invariant of continuous

functions.

Corollary 3.17. The property of being a finite-to-one function is not an L-

invariant of continuous functions, even within the class of retractions.

Example 3.15 can be modified to show that the property of being a perfect

function is not preserved by means of the M -equivalence relation (a relation that

derives from the construction of the free topological group F (X)), in particular,

the property of being a function with compact fibers is not anM -invariant either.

In this way, Example 3.15 provides a solution to Question 3.25 of [12]. Moreover,

in view of Corollary 3.14 and Example 3.15, the following question arises: Is
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the property of being a closed function preserved through any of these algebraic-

topological equivalence relations?

On the other hand, Ln(X) denotes the subsets of L(X) consisting of linear

combinations of at most n elements, and we will say that two spaces X and Y are

strongly L-equivalent if there exists a topological isomorphism ϕ : L(X) → L(Y )

so that ϕ(X) ⊂ Ln(Y ) and ϕ−1(Y ) ⊂ Lm(X) for some integers m and n.

Example 3.18. Let X be a compact space with uncountable cellularity. If we

take the set ω with the discrete topology, then the spaces X×ω and (X×ω)⊕X

are homeomorphic and σ-compact. Since L(X×ω) is an L-retract of L(L(X×ω))

there exists a continuous linear retraction r : L(L(X×ω)) → L(X×ω) and we can

decompose L(L(X×ω)) as L(X×ω)⊕ker r. But L(X×ω)⊕ker r is topologically

isomorphic to

L((X × ω)⊕X)⊕ ker r ∼= L(X)⊕ L(X × ω)⊕ ker r ∼= L(X)⊕ L(L(X × ω)),

that is, L(X × ω) and L(X × ω)⊕X are L-equivalent.

We know that cellularity is an (l-invariant) L-invariant in the strong sense, and

every σ-compact topological group has the Souslin property. Therefore L(X ×ω)

has the Souslin property, however it is not true that L(X×ω)⊕X has the Souslin

property, that is, these spaces are not L-equivalent in the strong sense.

Corollary 3.19. There exist spaces that are L-equivalent and not strongly L-

equivalent.

Example 3.20. Let X = [0, 1] and K = {0, 1}, then K is an L-retract of X

and X+ is L-equivalent to X/K ⊕K, however, passing to the free locally convex

spaces in the sense of Graev we have that L([0, 1]) is topologically isomorphic to

L((S1)+), where X/K is homeomorphic to the unit circle S1. The unit interval

[0, 1] is connected, but (S1)+ is not, so these spaces are not A-equivalent (their

free topological Abelian groups are not topologically isomorphic).

Corollary 3.21. There exist L-equivalent compact metrizable spaces that are

not A-equivalent.

Corollary 3.22. Connectedness is not an L-invariant property, even in the class

of compact metrizable spaces.

All definitions and propositions in this section can be adapted to be applicable

to free topological Abelian groups and free topological vector spaces. This means

that the material in this section can be used to develop a method for constructing

examples of spaces that are A-equivalent or V -equivalent. However, it is necessary

to establish characterizations of A-retracts and V -retracts.
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The free topological vector space (in the Markov sense) over a topological

space X is a pair (δX , V (X)) formed by a continuous injection δX : X → V (X)

and a topological vector space V (X) such that V (X) is the linear span of δX(X)

and for every continuous function f : X → E to a topological vector spaceE, there

exists a unique continuous linear mapping f# : V (X) → E such that f = f#◦δX .

The concepts of V -equivalent spaces and functions, V -invariant properties, V -

retracts, among others, are entirely similar to those already defined in previous

sections. It is important to note that the sets V (X) and L(X) are essentially

the same, with the difference being in the topology. Therefore, the identity map

(idX)# : V (X) → L(X) is continuous.

To characterize those sets that are V -retracts, we must consider that R. Cauty

constructed a metrizable and σ-compact topological vector space V in [4], which

is not an absolute extensor for the class of metric spaces. That is, not every

closed subset of a metric space will be a V -retract, even if the spaces are compact.

Although this limits our options, we can at least ensure the following:

Theorem 3.23. If K is a strongly discrete and at most countable subset of

a topological space X , then K is a V -retract of X .

Proof: For countable and strongly discrete subsetsK ⊂ X , we have that L(K) =

V (K), in this sense, we have that L(K) = Rn for some n ∈ N or L(K) = L(N) is

the inductive limit of the spaces Rn, n ∈ N. �

If we modify Examples 3.18 and 3.20, we can obtain the following statements.

Corollary 3.24. There exist spaces that are V -equivalent but not strongly V -

equivalent.

Corollary 3.25. There exist V -equivalent compact metrizable spaces that are

not A-equivalent.

Corollary 3.26. Connectedness is not a V -invariant property, even in the class

of compact metrizable spaces.
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(1994), no. 1, 85–99 (French. English summary).

[5] Collins P. J., Roscoe A.W., Criteria for metrizability, Proc. Amer. Math. Soc. 90 (1984),
no. 4, 631–640.

[6] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin,
1989.

[7] Flood J., Free Topological Vector Spaces, Dissertationes Math. (Rozprawy Mat.) 221

(1984), 95 pages.
[8] Gabriyelyan S. S., Morris S.A., Free topological vector spaces, Topology Appl. 223 (2017),

30–49.
[9] Hoshina T., Yamazaki K., Weak C-embedding and P -embedding, and product spaces, Topol-

ogy Appl. 125 (2002), no. 2, 233–247.
[10] Karnik S.M., Willard S., Natural covers and R-quotient maps, Canad. Math. Bull. 25

(1982), no. 4, 456–461.
[11] Michael E., Some extension theorems for continuous functions, Pacific J. Math. 3 (1953),

789–806.
[12] Okunev O.G., A method for constructing examples of M-equivalent spaces, Seminar on

General Topology and Topological Algebra, Moscow, 1988/1989, Topology Appl. 36 (1990),
no. 2, 157–171.

[13] Okunev O.G., M-equivalence of products, Trudy Moskov. Mat. Obshch. 56 (1995), 192–205,
351 (Russian); translation in Trans. Moscow Math. Soc. (1995), 149–158.

[14] Schaefer H.H., Topological Vector Spaces, Graduate Texts in Mathematics, 3, Springer,
New York, 1971.

[15] Sennott L. I., A necessary condition for a Dugundji extension property, Proc. of the 1984
Topology Conf., Auburn, Ala., 1984, Topology Proc. 2 (1977), no. 1, 265–280.
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