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Revisiting linear Weingarten spacelike submanifolds

immersed in a locally symmetric semi-Riemannian space

Weiller F. C. Barboza, Henrique F. de Lima, Marco A. L. Velásquez

Abstract. In this paper, we deal with n-dimensional complete linear Weingarten
spacelike submanifolds immersed with parallel normalized mean curvature vec-
tor field and flat normal bundle in a locally symmetric semi-Riemannian space

L
n+p

p of index p > 1, which obeys some curvature constraints (such an ambient
space can be regarded as an extension of a semi-Riemannian space form). Under
appropriate hypothesis, we are able to prove that such a spacelike submanifold is
either totally umbilical or isometric to an isoparametric submanifold of the am-
bient space. For this, we use three main core analytical tools: a suitable version
of the Omori–Yau maximum principle, parabolicity with respect to a modified
Cheng–Yau operator and a certain integrability property.

Keywords: locally symmetric semi-Riemannian space; mean curvature vector
field; complete linear Weingarten spacelike submanifold; totally umbilical sub-
manifold; isoparametric submanifold; L-parabolicity

Classification: 53C42, 53C21, 53C50

1. Introduction

Let us denote by Ln+p
p an (n + p)-dimensional connected semi-Riemannian

manifold with index p. An n-dimensional submanifold Mn immersed in Ln+p
p is

said to be spacelike if the induced metric on Mn is positive definite. The study

of spacelike submanifolds immersed in a semi-Riemannian space constitutes an

important thematic from both physical and mathematical points of view. For

instance, it was pointed out by J. Marsden and F. Tipler in [23] and S. Stumbles

in [31] that spacelike hypersurfaces with constant mean curvature in an arbitrary

Lorentzian space (which is a semi-Riemannian space of index p = 1) play an

important role in the general relativity, in that they serve as convenient initial

data for the Cauchy problem for Einstein’s equations. Furthermore, submanifold

theory provides the adequate tools to approach some important problem involv-

ing spacetime singularities and gravitational collapse. The singularity theorems
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proved in the 1960s by R. Penrose in [27] and S.W. Hawking and G. F.R. Ellis

in [19] state that the formation of singularities is unavoidable, if one assumes rea-

sonable conditions on the curvature of the spacetime, on the extrinsic geometry

of certain submanifolds and on the causal structure of the Lorentzian manifold.

The existence of spacelike submanifolds in the spacetime, in particular, is a key

requirement in the original formulation of the singularity theorems as well as in

their more recent generalizations, for more details, see G. J. Galloway and J.M.M.

Senovilla in [17], Z. Liang and X. Zhang in [21], J.M.M. Senovilla in [30].

From the mathematical point of view, the interest in the study of the geometry

of these submanifolds is mostly due to the fact that they exhibit nice Bernstein-

type properties, and one can truly say that the first remarkable results in this

branch were the rigidity theorems of E. Calabi in [7] and S.Y. Cheng and S. T. Yau

in [9], who showed (the former for n ≤ 4, and the latter for general n) that the only

complete maximal spacelike hypersurfaces of the Lorentz–Minkowski space L
n+1

are the spacelike hyperplanes. However, in the case that the mean curvature is

a positive constant, A. E. Treibergs in [33] astonishingly showed that there are

many entire solutions of the corresponding constant mean curvature equation

in Ln+1, which he was able to classify by their projective boundary values at

infinity.

S. Nishikawa in [25] extend the results of [7] and [9] for a wide class of semi-

Riemannian spaces, the so-called locally symmetric semi-Riemannian spaces. We

recall that a semi-Riemannian space Ln+p
p is said to be locally symmetric when its

curvature tensor R is parallel, that is, ∇R = 0, where ∇ denotes the Levi–Civita

connection of Ln+p
p . At this point, it is worth to recall that a fundamental prop-

erty of curvature is its control over the relative behavior of nearby geodesics. Be-

cause a normal neighborhood U is filled with radial geodesics, curvature thereby

gives a description of the geometry of U . Considering only the locally symmetric

case, we have that this description is so accurate that, if U and Ũ are normal

neighborhoods with the same description (and same dimension and index), then

U and Ũ must be isometric, for more details concerning locally symmetric spaces,

see [26, Chapter 8]. Returning to our context, we note that the seminal paper [25]

induced the appearing of several works approaching the problem of characteriz-

ing complete spacelike hypersurfaces immersed in a locally symmetric Lorentzian

space, see, for instance, [4], [12], [13], [15], [16], [22]. On the other hand, consid-

ering higher codimensions, T. Ishihara in [20] applied a technique developed by

S. S. Chern, M.P. do Carmo and S. Kobayashi in [11] in order to extend the results

of [7] and [9] for complete maximal spacelike submanifolds in a semi-Riemannian

space form of constant nonnegative sectional curvature.
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More recently, J.G. Araújo et al. in [14] investigated complete maximal space-

like submanifolds immersed with flat normal bundle in a locally symmetric semi-

Riemannian space obeying curvature conditions similar to those of S. Nishikawa

in [25]. In this setting, they obtained a suitable Simons type formula and, as appli-

cation, they showed that such a spacelike submanifold must be totally geodesic or

the square norm of its second fundamental form must be bounded, extending the

results of T. Ishihara in [20] and S. Nishikawa in [25]. Afterwords, J.G. Araújo

et al. in [3] studied n-dimensional complete linear Weingarten spacelike subman-

ifolds Mn with flat normal bundle and parallel normalized mean curvature vec-

tor field immersed in an (n+ p)-dimensional locally symmetric semi-Riemannian

manifold Ln+p
p . We also recall that a spacelike submanifold Mn of Ln+p

p is called

linear Weingarten if its mean curvature H and its normalized scalar curvature R

satisfy a linear relation of the type R = aH+b for some real constants a and b. In

this setting, they obtained sufficient conditions to guarantee that, in fact, p = 1

and Mn is isometric to an isoparametric hypersurface of Ln+1
1 having two distinct

principal curvatures, one of which is simple. Next, working in this same context,

the authors of the present paper jointly with J.G. Araújo et al. in [2] obtained an-

other characterization result assuming an appropriate boundedness on the square

norm of the second fundamental form of Mn and considering the case that the

ambient space Ln+p
p is also conformally flat in order to reduce the codimension

to p = 1.

Here, our aim is also study complete linear Weingarten spacelike submanifolds

with parallel normalized mean curvature vector field and flat normal bundle in

a locally symmetric semi-Riemannian space Ln+p
p with index p > 1 and obeying

the same set of curvature conditions assumed in [2] and [3]. Initially, we establish

a more refined version of the Omori–Yau maximum principle, see Proposition 1,

which enables us to prove that such a spacelike submanifold must be either to-

tally umbilical or isometric to an isoparametric submanifold of the ambient space,

see Theorem 1. Afterwords, we assume the parabolicity with respect to a modi-

fied Cheng–Yau operator and an integrability property in order to get additional

characterization results, see Theorems 2 and 3.

2. Background

This section is devoted to present the necessary background to establish our

characterization results for linear Weingarten submanifolds immersed in a locally

symmetric semi-Riemannian space.

2.1 General facts concerning spacelike submanifolds. Let Mn be a space-

like submanifold immersed in a locally symmetric semi-Riemannian space Ln+p
p .
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In this context, we choose a local field of semi-Riemannian orthonormal frames

e1, . . . , en+p in Ln+p
p , with dual coframes ω1, . . . , ωn+p, such that, at each point

of Mn, e1, . . . , en are tangent to Mn. We will use the following convention of

indices

1 ≤ A,B,C, . . . ≤ n+ p, 1 ≤ i, j, k, . . . ≤ n

and

n+ 1 ≤ α, β, γ, . . . ≤ n+ p.

In this setting, the semi-Riemannian metric of Ln+p
p is given by

ds 2 =
∑

A

εA ω2
A,

where εi = 1 and εα = −1. Denoting by {ωAB} the connection forms of Ln+p
p ,

we have that the structure equations of Ln+p
p are given by:

dωA =
∑

B

εBωAB ∧ ωB, ωAB + ωBA = 0,

dωAB =
∑

C

εCωAC ∧ ωCB −
1

2

∑

C,D

εCεDRABCDωC ∧ ωD,

where, RABCD is the semi-Riemannian curvature tensor of the Lorentz space

Ln+p
p . In this configuration, the components RCD of the Ricci tensor and the

normalized scalar curvature R of Ln+p
p are defined respectively by

RCD =
∑

B

εBRCBDB and R =
∑

A

εARAA.

Moreover, the componentsRABCD;E of the covariant derivative of the Riemannian

curvature tensor Ln+p
p are defined by

∑

E

εERABCD;EωE = dRABCD −
∑

E

εE
(
REBCDωEA +RAECDωEB

+RABEDωEC +RABCEωED

)
.

Next, we restrict all the tensors to Mn. First of all,

ωα = 0, n+ 1 ≤ α ≤ n+ p.

Consequently, the Riemannian metric of Mn is written as

ds2 =
∑

i

ω2
i .
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Since ∑

i

ωαi ∧ ωi = dωα = 0,

from Cartan’s lemma we can write

(2.1) ωαi =
∑

j

hα
ijωj , hα

ij = hα
ji.

This gives the second fundamental form of Mn,

A =
∑

α,i,j

hα
ijωi ⊗ ωjeα,

and its square length from second fundamental form is

S = |A|2 =
∑

α,i,j

(hα
ij)

2.

Furthermore, we define the mean curvature vector field h and the mean curvature

function H of Mn respectively by

h =
1

n

∑

α

(∑

i

hα
ii

)
eα and H = |h| =

1

n

√√√√∑

α

(∑

i

hα
ii

)2
.

The structure equations of Mn are given by

dωi = −
∑

j

ωij ∧ ωj , ωij + ωji = 0,

dωij = −
∑

k

ωik ∧ ωkj −
1

2

∑

k,l

Rijklωk ∧ ωl,

where Rijkl are the components of the curvature tensor of Mn. Using the previous

structure equations, we obtain Gauss equation

(2.2) Rijkl = Rijkl −
∑

β

(hβ
ikh

β
jl − hβ

ilh
β
jk).

Denoting by R the normalized scalar curvature of Mn, from (2.2) we get

(2.3) n(n− 1)R =
∑

i,j

Rijij − n2H2 + S.
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We also state the structure equations of the normal bundle of Mn

dωα = −
∑

β

ωαβ ∧ ωβ , ωαβ + ωβα = 0,

dωαβ = −
∑

γ

ωαγ ∧ ωγβ −
1

2

∑

k,l

Rαβklωk ∧ ωl.

Let Mn have normal bundle flat, that is, R⊥ = 0 (equivalently Rαβjk = 0), we

get the following Ricci equation

(2.4) Rαβij =
∑

k

(hα
ikh

β
kj − hα

kjh
β
ik).

The components hα
ijk of the covariant derivative ∇B satisfy

(2.5)
∑

k

hα
ijkωk = dhα

ij +
∑

k

hα
ikωkj +

∑

k

hα
jkωki −

∑

β

hβ
ijωβα.

In this setting, from (2.1) and (2.5) we get Codazzi equation

Rαijk = hα
ijk − hα

ikj .

The first and the second covariant derivatives of hα
ij are denoted by hα

ijk and

hα
ijkl , respectively, which satisfy

∑

l

hα
ijklωl = dhα

ijk +
∑

l

hα
ljkωli +

∑

l

hα
ilkωlj +

∑

l

hα
ijlωlk −

∑

β

hβ
ijkωβα.

Thus, taking the exterior derivative in (2.5), we obtain the following Ricci identity

hα
ijkl − hα

ijlk =
∑

m

hα
imRmjkl +

∑

m

hα
mjRmikl.

Restricting the covariant derivative RABCD;E of RABCD on Mn, then Rαijk;l is

given by

Rαijkl = Rαijk;l +
∑

β

Rαβjkh
β
il +

∑

β

Rαiβkh
β
jl +

∑

β

Rαijβh
β
kl +

∑

m,k

Rmijkh
α
lm,

where Rαijkl denotes the covariant derivative of Rαijk as a tensor on Mn.

2.2 Linear Weingarten spacelike submanifolds. For our purposes, we will

consider that the mean curvature function H is positive, so that in the local

orthonormal frame {e1, . . . , en+p} we take

en+1 =
h

H
.
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Thus, we deal with the traceless second fundamental form Φ, which is defined as

the symmetric tensor

Φ =
∑

α,i,j

Φα
ijωi ⊗ ωjeα,

where Φα
ij = hα

ij −Hαδij . Here, H
α denotes the mean curvature function of Mn

in the direction of eα, that is,

Hn+1 =
1

n
tr(hn+1) = H and Hα =

1

n
tr(hα) = 0, α ≥ n+ 2,

where hα = (hα
ij) denotes the second fundamental form of Mn in direction eα for

every n+1 ≤ α ≤ n+p. From here it is not difficult to verify that Φ is a traceless

tensor, that is, tr(Φ) = 0 and that it holds the following relation

|Φ|2 = S − nH2.

Moreover, |Φ| vanishes identically on Mn if and only if Mn is a totally umbilical

spacelike submanifold. For this reason, Φ is also called the total umbilicity tensor

of Mn. We also note that, by (2.3), the following relation is trivially satisfied:

(2.6) n(n− 1)R =
∑

i,j

Rijij − n(n− 1)H2 + |Φ|2.

At this point, we will assume that Mn is a linear Weingarten spacelike sub-

manifold, which means that the normalized scalar curvature and mean curvature

functions are linearly related in the following way: there exist real constants

a, b ∈ R such that

R = aH + b.

Related to the geometry of linear Weingarten spacelike submanifolds there ex-

ists a Cheng–Yau type differential operator, which recently has been considered by

many authors. More precisely, let us introduce the second order linear differential

operator L : C∞(M) → C∞(M) defined by

(2.7) L = L+
n− 1

2
a∆,

where ∆ is the Laplacian operator on Mn and L : C∞(M) → C∞(M) denotes

the standard Cheng–Yau’s operator defined by S.Y. Cheng and S.T. Yau in [10],

which is given by

(2.8) L(u) = tr(P ◦ ∇2u)
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for every u ∈ C∞(M). Here, ∇2u is the self-adjoint linear tensor metrically

equivalent to the Hessian of u and P : X(M) → X(M) denotes the first Newton

transformation of Mn, that is, the tensor

(2.9) P = nHI − hn+1.

Thus, from (2.7) and (2.8) we get

(2.10) L(u) = tr(P ◦ ∇2u),

where

(2.11) P =
(
nH +

n− 1

2
a
)
I − hn+1.

2.3 Some curvature constraints. Inspired by the configuration assumed by

J.O. Baek, Q.M. Cheng and Y. J. Suh in [4], along this work we will suppose

that there exist constants c1, c2 and c3 such that the sectional curvature K and

the curvature tensor R of the ambient space Ln+p
p satisfy the following set of

constraints:

(2.12) K(u, η) =
c1
n

for any spacelike vector u and any timelike vector η; when p > 1, suppose that

(2.13) 〈R(ξ, u)η, u〉 = 0

for any spacelike vector u and timelike vectors ξ, η, with 〈ξ, η〉 = 0;

(2.14) K(u, v) ≥ c2

for any spacelike vectors u, v;

(2.15) K(η, ξ) =
c3
p

for timelike vectors η, ξ.

Remark 1. The curvature constraints (2.12) and (2.14) are natural extensions

for higher codimension of those assumed by S. Nishikawa in [25] for the study

of spacelike hypersurfaces. When the ambient space Ln+p
p has constant sectional

curvature c, then it is a locally symmetric space satisfying all these curvature

constraints with c1 = nc, c2 = c and c3 = pc, see [26, Corollary 8.11]. On the

other hand, [2, Example 3.1] gives us a situation where these curvature constraints

are satisfied but the ambient space does not have constant sectional curvature.

More precisely, let be the locally symmetric semi-Riemannian space

Ln+p
p = R

p
p × S

n,
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where Rp
p stands for the p-dimensional semi-Euclidean space of index p and Sn is

the n-dimensional unit Euclidean sphere. Hence, the curvature constraints (2.12),

(2.13), (2.14) and (2.15) are satisfied for c1 = 0, c2 = 1 and c3 = 0. Furthermore,

we note that Rp
p × Sn can be regarded as a natural extension of the (n + 1)-

dimensional Einstein static universe R1 × Sn, see [5, Example 5.11].

Now, we denote by RCD the components of the Ricci tensor of Ln+p
p . So, its

scalar curvature R is given by

R =
∑

A

εARAA =
∑

i,j

Rijij − 2
∑

i,α

Riαiα +
∑

α,β

Rαβαβ .

Furthermore, if Ln+p
p satisfies conditions (2.12) and (2.15), then

(2.16) R =
∑

i,j

Rijij − 2pc1 + (p− 1)c3.

But, it is well known that the scalar curvature of a locally symmetric Lorentz

space is constant, see [26, Proposition 8.10]. Consequently,

1

n(n− 1)

∑

i,j

Rijij

is a constant naturally attached to a locally symmetric Lorentz space satisfying

conditions (2.12) and (2.15), which will be denoted by R.

Considering the previous digression, we obtain the following lemma whose proof

can be found in [3].

Lemma 1. Let Mn be a linear Weingarten spacelike submanifold immersed in

locally symmetric space Ln+p
p satisfying conditions (2.12) and (2.15), such that

R = aH + b for some a, b ∈ R. Suppose that

(n− 1)a2 + 4n(R− b) ≥ 0.

Then,

(2.17) |∇A|2 ≥ n2|∇H |2.

Moreover, if the equality holds in (2.17) on Mn, then H is constant on Mn.

3. Characterization results

This section is dedicated to state and prove our main results concerning lin-

ear Weingarten spacelike submanifolds immersed with parallel normalized mean

curvature vector field in a semi-Riemannian locally symmetric space. For this,
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we will use three main core analytical tools: a suitable version of the Omori–

Yau maximum principle, parabolicity with respect to the modified Cheng–Yau

operator defined in (2.7) and a certain integrability property.

3.1 Via Omori–Yau maximum principle. In order to prove our first result,

we will make use of a generalized version of the Omori–Yau maximum principle for

trace type differential operators proved by L. J. Aĺıas, P. Mastrolia and M. Rigoli

in [1]. Let Mn be a Riemannian manifold and let L = tr(P◦∇2) be a semi-elliptic

operator, where P : X(M) → X(M) is a positive semi-definite symmetric tensor.

Following the terminology introduced by S. Pigola, M. Rigoli and A.G. Setti

in [29], we say that the Omori–Yau maximum principle holds on Mn for the

operator L if for any function u ∈ C2(M) with

u∗ = sup
Mn

u ≪ ∞,

there exists a sequence of points {pj} ⊂ Mn satisfying

u(pj) > u∗ −
1

j
, |∇u(pj)| <

1

j
and Lu(pj) <

1

j
,

for all j ∈ N. Equivalently, for any function u ∈ C2(M) with

u∗ = inf
Mn

u ≫ −∞,

there exists a sequence of points {pj} ⊂ Mn satisfying

u(pj) < u∗ +
1

j
, |∇u(pj)| <

1

j
and Lu(pj) > −

1

j

for all j ∈ N.

The following proposition establishes a suitable version of the Omori–Yau max-

imum principle for the Cheng–Yau type differential operator L defined in (2.7).

Proposition 1. Let Mn be an n-dimensional linear Weingarten spacelike sub-

manifold immersed with parallel normalized mean curvature vector field in a lo-

cally symmetric semi-Riemannian space Ln+p
p satisfying curvature conditions

(2.12), (2.14), (2.15), and such that R = aH + b for some a, b ∈ R, with b < R

(b ≤ R, respectively). The following holds:

(i) The operator L defined in (2.7) is elliptic (semi-elliptic, respectively) or,

equivalently, P defined in (2.11) is positive definite (semi-definite, respec-

tively);

(ii) If

sup
Mn

|Φ|2 ≪ ∞,
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then the Omori–Yau maximum principle holds on Mn for the operator L

defined in (2.7).

Proof: Initially, we recall that conditions (2.12) and (2.15) guarantee that R is

constant.

For proof of item (i), let us consider the case that a = 0. Since R = b < R,

from (2.3) if we choose a (local) orthonormal frame {ei} on Mn such that

hn+1
ij = λiδij ,

we have that ∑

i<j

λiλj > 0.

Consequently,

n2H2 =
∑

i

λ2
i + 2

∑

i<j

λiλj > λ2
i

for any i and, hence, we have that

nH − |λi| > 0

for every i. Therefore, in this case, we conclude that L is elliptic.

Now, suppose that a 6= 0. From (2.3) we get that

(3.1) a =
1

n(n− 1)H

(
S − n2H2 + n(n− 1)R− n(n− 1)b

)
.

For any i, from (3.1) we have

(3.2)

nH − λn+1
i +

n− 1

2
a = nH − λn+1

i

+
1

2nH
(S − n2H2 + n(n− 1)(R− b))

=
(1
2
(nH)2 − nHλn+1

i +
1

2
S

+
1

2
n(n− 1)(R− b)

)
(nH)−1.

Since ∑

j

λn+1
j = nH and S ≥

∑

j

(λn+1
j )2,
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from (3.2) we have

nH − λn+1
i +

n− 1

2
a

≥

{
1

2

(∑

j

λn+1
j

)2
− λn+1

i

∑

j

λn+1
j +

1

2

∑

j

(λn+1
j )2

}
(nH)−1

+
1

2
n(n− 1)(R− b)(nH)−1

=

{∑

j

(λn+1
j )2 +

1

2

∑

l 6=j

λn+1
l λn+1

j − λn+1
i

∑

j

λn+1
j

}
(nH)−1

+
1

2
n(n− 1)(R− b)(nH)−1

=

{∑

i6=j

(λn+1
j )2 +

1

2
n(n− 1)(R− b) +

1

2

∑

l 6=j,l,j 6=i

λn+1
l λn+1

j

}
(nH)−1

=
1

2

{∑

i6=j

(λn+1
j )2 + n(n− 1)(R− b) +

(∑

j 6=i

λn+1
j

)2}
(nH)−1.

Therefore, considering b < R (b ≤ R), we conclude that L is an elliptic (semi-

elliptic) operator.

Now, let us proof item (ii). By (2.6) we find

(3.3) |Φ|2 = n(n− 1)(H2 + aH) + n(n− 1)(b−R),

which assures that

sup
Mn

H ≪ ∞

because of our assumption on |Φ|2. From here and of (2.3) for every α, i, j, it

holds that

(hα
ij)

2 ≤ |A|2 = n(nH2 + (n− 1)aH) + n(n− 1)(b−R),

so that

sup
Mn

hα
ij ≪ ∞.

Thus, it follows from the Gauss equation, (2.14) and (2.16) that

(3.4) Rijij = Rijij −
∑

α

(
hα
iih

α
jj − (hα

ij)
2
)
≥ c2 −

∑

α

hα
iih

α
jj ≫ −∞,

that is, the sectional curvatures of Mn are bounded from below.

Besides, from (2.11) one verifies that

(3.5) tr(P) = n(n− 1)H +
n(n− 1)a

2
.
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In particular, from (3.5) we get

sup
Mn

tr(P) ≪ ∞.

Therefore, taking into account (2.10) and (3.4), we can apply [1, Theorem 6.13]

to conclude the desired result. �

So, we apply Proposition 1 to establish the following characterization result:

Theorem 1. Let Mn be an n-dimensional complete linear Weingarten spacelike

submanifold immersed with parallel normalized mean curvature vector field and

flat normal bundle in a locally symmetric semi-Riemannian space Ln+p
p with

p > 1 and satisfying conditions (2.12), (2.13), (2.14) and (2.15), such that R =

aH + b, with a ≥ 0 and b ≤ R < b + c, where c = c1/n + 2c2. Suppose that

there exists an orthogonal basis for TM that diagonalizes simultaneously all Aξ,

ξ ∈ TM⊥. Then,

(i) either |Φ| ≡ 0 and Mn is a totally umbilical submanifold,

(ii) or

sup
Mn

|Φ| ≥ α(n, p, a, b, c,R) > 0,

where α(n, p, a, b, c,R) is a positive constant that depends only on n, p,

a, b, c and R. Moreover, if b < R, the equality

sup
Mn

|Φ| = α(n, p, a, b, c,R)

holds and this supremum is attained at some point of Mn, then Mn is an

isoparametric submanifold, in the sense that its principal curvatures are

constant.

Proof: Initially we must obtain a suitable lower boundedness for the operator L

acting on the squared norm of the total umbilicity tensor Φ of Mn. To get it, let

us begin observing that, since Mn is linear Weingarten, by (2.6) we get

(3.6)

n

2(n− 1)
L(|Φ|2) =

1

2
L(n2H2) +

an

2
L(nH)

= nHL(nH) + n2〈P∇H,∇H〉+
an

2
L(nH).

By using item (i) of Proposition 1, we have that P is positive semi-definite. In

particular, from (3.6) we find

(3.7)
1

2(n− 1)
L(|Φ|2) ≥

(
H +

a

2

)
L(nH).
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On the other hand, since we are supposing that Mn has parallel normalized mean

curvature vector field, flat normal bundle and that there exists an orthogonal

basis for TM that diagonalizes simultaneously all Aξ, ξ ∈ TM⊥, from the proof

of [3, Proposition 1], see the bottom of page 75, we have the following

(3.8)

L(nH) =
1

2
∆S − n2|∇H |2 − n

∑

i,j

hn+1
ij Hij

≥ |∇A|2 − n2|∇H |2 + cn|Φ|2

− nH
∑

i,j,m,α

hα
ijh

α
mih

n+1
mj +

∑

α,β

[tr(hαhβ)]2.

Moreover, we see that

(3.9)

−nH
∑

α

tr[hn+1(hα)2] +
∑

α,β

[tr(hαhβ)]2

≥
−n(n− 2)√
n(n− 1)

H |Φ|3 − nH2|Φ|2 +
|Φ|4

p
.

From (3.8) and (3.9), we have

(3.10)

L(nH) ≥ |∇A|2 − n2|∇H |2

+ |Φ|2
( |Φ|2

p
−

n(n− 2)√
n(n− 1)

H |Φ| − n(H2 − c)
)
.

Besides, from (2.6) we have

H +
a

2
=

1√
n(n− 1)

√
|Φ|2 + n(n− 1)

(a2
4

+R− b
)
.

This jointly with (3.7), (3.10) and Lemma 1 enables us to deduce that

(3.11)
1

2
L(|Φ|2) ≥ (n− 1)|Φ|2Qn,p,a,b,c,R(|Φ|)

√
|Φ|2

n(n− 1)
+

a2

4
+R− b,

where the function Qn,p,a,b,c,R(x) is given by

(3.12)

Qn,p,a,b,c,R(x) =
n− p− 1

p(n− 1)
x2

+
(
na−

n(n− 2)√
n(n− 1)

x
)√ x2

n(n− 1)
+

a2

4
+R− b

+
n(n− 2)a

2
√
n(n− 1)

x+ n
(
−

a2

2
+ b+ c−R

)
.
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At this point, we will make a brief analysis of the behavior of the function

Qn,p,a,b,c,R(x), considering p > 1, a ≥ 0 and b ≤ R < b + c. Let us observe that

when x > 0, from (3.12) we get

(3.13)

lim
x→∞

Qn,p,a,b,c,R(x) = lim
x→∞

x2
{n− p− 1

p(n− 1)

+
(na
x

−
n(n− 2)√
n(n− 1)

)
√

1

n(n− 1)
+

a2

4x2
+

R− b

x2

+
n(n− 2)a

2x
√
n(n− 1)

+
n

x2

(
−

a2

2
+ b+ c−R

)}
.

Thus, taking into account that p > 1, from (3.13) we obtain

(3.14) lim
x→∞

Qn,p,a,b,c,R(x) = lim
x→∞

x2
{n− p− 1

p(n− 1)
−

n− 2

n− 1

}
= −∞.

Since we are also assuming that b ≤ R < b+ c and a ≥ 0, we also have that

(3.15)
Qn,p,a,b,c,R(0) = n

(
a

√
a2

4
+R− b−

a2

2

)
+ n(b+ c−R)

≥ n(b+ c−R) > 0.

From (3.14) and (3.15), we can define α(n, p, a, b, c,R) as being the first positive

root of the function Qn,p,a,b,c,R(x).

Now, we are going to finish the proof by applying our version of the Omori–Yau

maximum principle to the operator L acting on the function |Φ|2. Before, we

note that if

sup
Mn

|Φ| = ∞,

then the claim (ii) of Theorem 1 trivially holds and there is nothing to prove.

So, let us assume without loss of generality that

sup
Mn

|Φ| ≪ ∞.

In this case, from item (ii) of Proposition 1 we obtain a sequence {pj} in Mn

satisfying

lim
j

|Φ|(pj) = sup
Mn

|Φ| and L(|Φ|2)(pj) <
1

j
,
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for all j ∈ N, which jointly with (3.11) gives

1

j
> L(|Φ|2)(pj)

≥ (n− 1)|Φ|2(pj)Qn,p,a,b,c,R (|Φ|(pj))

√
|Φ|2(pj)

n(n− 1)
+

a2

4
+R− b

for all j ∈ N. Taking the limit as j → ∞, we infer

(
sup
Mn

|Φ|

)2
Qn,p,a,b,c,R

(
sup
Mn

|Φ|

)√
(supMn |Φ|)2

n(n− 1)
+

a2

4
+R− b ≤ 0.

It follows from here that either

sup
Mn

|Φ| = 0,

which means that |Φ| ≡ 0 on Mn and the submanifold is totally umbilical, or

sup
Mn

|Φ| > 0

and then

Qn,p,a,b,c,R

(
sup
Mn

|Φ|

)
≤ 0.

Thus, from the behavior of the function Qn,p,a,b,c,R(x) and according to our choice

of the positive constant α(n, p, a, b, c,R), we deduce that

sup
Mn

|Φ| ≥ α(n, p, a, b, c,R).

Finally, let us assume that

sup
Mn

|Φ| = α(n, p, a, b, c,R).

In this case, from (3.11) and taking into account once more the behavior of the

function Qn,p,a,b,c,R(x), we get that L(|Φ|
2) ≥ 0. But, since we are assuming that

b < R, item (i) of Proposition 1 guarantees that L is elliptic. Consequently, since

we are also supposing that the supremum of |Φ| on Mn is attained at some point

of Mn, we conclude that |Φ| is constant on Mn and, from (3.3), the same holds

for H . Hence, returning to (3.10) we obtain

∑

i,j,k

(hα
ijk)

2 = |∇A|2 = n2|∇H |2 = 0,

that is, hα
ijk = 0 for all i, j ∈ {1, . . . , n}. Therefore, we conclude that Mn is an

isoparametric submanifold of Ln+p
p . �
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Remark 2. For the spacelike submanifoldMn = {0}×Sn in the locally symmetric

semi-Riemannian space Ln+p
p = Rp

p × Sn, in the example mentioned in Remark 1,

we note that besides checking the assumptions (2.12), (2.13), (2.14) and (2.15),

the hypothesis b ≤ R < b + c is also satisfied and it is such that there exists an

orthogonal basis for TM that diagonalizes simultaneously all Aξ, ξ ∈ TM⊥, the

conditions required in the statement of Theorem 1. Indeed, we have that

R =
1

n(n− 1)

∑

i,j

Rijij =
1

n(n− 1)

∑

i,j

K(ei, ej) = 1.

Consequently, since R = 1, b = 1 and c = 2, we conclude that b ≤ R < b + c.

Furthermore, as the immersion Mn = {0} × S
n →֒ Ln+p

p = R
p
p × S

n is totally

geodesic, we get that Aξ ≡ 0 for all ξ ∈ TM⊥.

Remark 3. In Theorem 1, since the normal bundle of linear Weingarten spacelike

submanifold Mn is assumed to be flat, from Ricci equation (2.4) we observe that

the existence of an orthonormal basis for TM that diagonalizes simultaneously

all Aξ, with ξ ∈ TM⊥, is guaranteed when the components Rαβij of the curvature

tensor R of Ln+p
p vanish identically. Indeed, in this case, the commutator of any

two shape operators is identically zero and, therefore, an orthonormal basis that

diagonalizes one of these shape operators will also diagonalizes the other ones.

This geometric configuration is more evident when the ambient space Ln+p
p has

constant sectional curvature, but it also happens in other types of ambient spaces,

see Remark 2.

3.2 Via L-parabolicity. We recall that a Riemannian manifold Mn is said to

be parabolic (with respect to the Laplacian operator) if the constant functions

are the only subharmonic functions on Mn which are bounded from above; that

is for a function u ∈ C2(M)

∆u ≥ 0 and u ≤ u∗ ≪ ∞ implies u = constant.

From a physical viewpoint, parabolicity is closely related to the recurrence of

the Brownian motion. Roughly speaking, the parabolicity is equivalent to the

property that all particles will pass through any open set at an arbitrarily large

time, for more details see [18].

Extending this previous concept for the operator L defined in (2.10), Mn is said

to be L-parabolic if the constant functions are the only functions u ∈ C2(M) which

are bounded from above and satisfies Lu ≥ 0, that is, for a function u ∈ C2(M),

Lu ≥ 0 and u ≤ u∗ ≪ ∞ implies u = constant.
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In this setting, we obtain the following gap result:

Theorem 2. Let Mn be an n-dimensional complete linear Weingarten spacelike

submanifold immersed with parallel normalized mean curvature vector field and

flat normal bundle in a locally symmetric semi-Riemannian space Ln+p
p with p > 1

and satisfying conditions (2.12), (2.14) and (2.15), such that R = aH + b, with

a ≥ 0 and b ≤ R < b + c, where c = c1/n + 2c2. Suppose that there exists an

orthogonal basis for TM that diagonalizes simultaneously all Aξ, ξ ∈ TM⊥.

Assume in addition that 0 ≤ |Φ| ≤ α(n, p, a, b, c,R), where α(n, p, a, b, c,R)

is the positive constant which was obtained in Theorem 1. If Mn is a L-

parabolic submanifold, then either |Φ| ≡ 0 and Mn is totally umbilical, or

|Φ| ≡ α(n, p, a, b, c,R) and Mn is an isoparametric submanifold.

Proof: Suppose that Mn is not totally umbilical. Since we are assuming that

0 ≤ |Φ| ≤ α(n, p, a, b, c,R), we obtain

0 < sup
Mn

|Φ|2 ≤ α(n, p, a, b, c,R).

In this case, from item (ii) of Theorem 1 we get that

sup
Mn

|Φ|2 = α(n, p, a, b, c,R).

Furthermore, since estimate (3.11) jointly with our restriction on |Φ| implies

L(|Φ|2) ≥ 0 on Mn, from the L-parabolicity of Mn we conclude that |Φ| must

be constant and identically equal to α(n, p, a, b, c,R). Therefore, at this point

we can proceed as in the last part of the proof of Theorem 1 to conclude the

result. �

When the ambient space Ln+p
p is supposed to be Einstein, reasoning as in the

first part of the proof of [12, Theorem 1.1], from (2.7) and (2.8) it is not difficult

to verify that

(3.16) L(f) = div(P(∇f)),

where P is just the operator defined in (2.11). Taking into account this fact, we

obtain the following criterion for L-parabolicity of complete linear Weingarten

spacelike submanifolds:

Proposition 2. Let Mn be an n-dimensional complete linear Weingarten space-

like submanifold immersed with parallel normalized mean curvature vector field

in a locally symmetric Einstein semi-Riemannian space Ln+p
p satisfying condi-

tions (2.12), (2.14) and (2.15), such that R = aH + b, with a ≥ 0 and b ≤ R <
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b+ c, where c = c1/n+ 2c2. If
sup
Mn

|Φ|2 ≪ ∞

and for some reference point o ∈ Mn,

(3.17)

∫ ∞

0

dr

vol(∂Br)
= ∞,

then Mn is L-parabolic. Here Br denotes the geodesic ball of radius r in Mn

centered at the origin o.

Proof: We consider on Mn the symmetric (0, 2) tensor field ξ given by

ξ(X,Y ) = 〈PX,Y 〉,

or equivalently,

ξ(∇u, ·)♯ = P(∇u),

where P is defined in (2.9) and ♯ : T ∗M → TM denotes the musical isomorphism.

Thus, from (3.16) we get
L(u) = div

(
ξ(∇u, ·)♯

)
.

On the other hand, since we are assuming that

sup
Mn

|Φ|2 ≪ ∞

and a ≥ 0, from (3.3) we get that

sup
Mn

H ≪ ∞.

So, we can define a positive continuous function ξ+ on [0,∞), by

(3.18) ξ+(r) = 2n

(
sup
∂Br

H

)
+ (n− 1)a.

Thus, from (3.18) we have

(3.19) ξ+(r) = 2n

(
sup
∂Br

H

)
+ (n− 1)a ≤ 2n

(
sup
Mn

H

)
+ (n− 1)a ≪ ∞.

Hence, from (3.17) and (3.19) we get

∫ ∞

0

dr

ξ+(r)vol(∂Br)
= ∞.

Therefore, we can apply [28, Theorem 2.6] to conclude the proof. �

Remark 4. Taking into account Proposition 2, it is natural to ask oneself about

the existence of Einstein manifolds which are locally symmetric. In this direction,
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K.P. Tod in [32] showed that four-dimensional Einstein manifolds which are also

D’Atri spaces are necessarily locally symmetric. Later on, S. Brendle in [6] proved

that a compact Einstein manifold of dimension n ≥ 4 having nonnegative isotropic

curvature must be locally symmetric, extending a previous result of M. J. Micallef

and M.Y. Wang for n = 4, see [24, Theorem 4.4]. See also [34] for another

sufficient conditions for an Einstein manifold to be locally symmetric.

3.3 Via integrability property. In [35], S. T. Yau established the following

version of Stokes’ theorem on an n-dimensional complete noncompact Riemannian

manifold Mn: If ω ∈ Ωn−1(M) is an (n− 1)-differential form on Mn, then there

exists a sequence {Bi} of domains on Mn such that

Bi ⊂ Bi+1, Mn =
⋃

i≥1

Bi and lim
i→∞

∫

Bi

dω = 0.

Supposing that Mn is oriented by the volume element dM and considering the

contraction of dM in the direction of a smooth vector field X on Mn, that is,

dω = ιXdM , A. Caminha in [8] obtained a suitable consequence of Yau’s result,

which is described below (specifically, see [8, Proposition 2.1]). In what follows,

L1(M) stands for the space of Lebesgue integrable functions on Mn.

Lemma 2. Let X be a smooth vector field on the n-dimensional complete ori-

ented Riemannian manifold Mn, such that divX does not change sign on Mn. If

|X | ∈ L1(M), then divX = 0.

We close our paper applying Lemma 2 in order to obtain the following charac-

terization result.

Theorem 3. Let Mn be an n-dimensional complete linear Weingarten spacelike

submanifold immersed with parallel normalized mean curvature vector field and

flat normal bundle in a locally symmetric Einstein semi-Riemannian space Ln+p
p

with p > 1 and satisfying conditions (2.12), (2.13), (2.14) and (2.15), such that

R = aH + b, with a ≥ 0 and b ≤ R < b + c, where c = c1/n + 2c2. Sup-

pose that there exists an orthogonal basis for TM that diagonalizes simultane-

ously all Aξ, ξ ∈ TM⊥. Assume in addition that 0 ≤ |Φ| ≤ α(n, p, a, b, c,R),

where α(n, p, a, b, c,R) is the positive constant which was obtained in Theo-

rem 1. If |∇H | ∈ L1(M), then either |Φ| ≡ 0 and Mn is totally umbilical,

or |Φ| ≡ α(n, p, a, b, c,R) and Mn is an isoparametric submanifold.

Proof: Since R = aH + b and taking into account that (3.3) gives that H is

bounded on Mn, from (2.3) we have that A is bounded on Mn. Consequently,

from (2.11) we conclude that the operator P is bounded, that is, there exists

a positive constant C1 such that |P| ≤ C1. Since we are also assuming that
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|∇H | ∈ L1(M) and (3.3), we obtain that

(3.20) |P (∇H)| ≤ |P ||∇H | ≤ C1|∇H | ∈ L1(M).

Thus, taking into account (3.16) and (3.20), we can apply Lemma 2 to obtain

(3.21) L(nH) = div(P(nH)) = 0.

Hence, using the fact that 0 ≤ |Φ| ≤ α(n, p, a, b, c,R), from (3.10) and (3.21) we

conclude that

(3.22) 0 = L(nH) ≥ |∇A|2 − n2|∇H |2 + |Φ|2Qn,p,a,b,c,R(|Φ|) ≥ 0.

Thus, from (3.22) we get that |∇A|2 = n2|∇H |2 and, consequently, Lemma 1

guarantees that H is constant. Hence,
∑

i,j,k,α

(hα
ijk)

2 = |∇A|2 = n2|∇H |2 = 0,

that is, hα
ijk = 0 for all i, j, and we obtain that Mn is isoparametric. Therefore,

the result follows once more as in the last part of the proof of Theorem 1. �
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