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BAYESIAN NASH EQUILIBRIUM SEEKING
FOR MULTI-AGENT INCOMPLETE-INFORMATION
AGGREGATIVE GAMES

Hanzheng Zhang, Huashu Qin, and Guanpu Chen

In this paper, we consider a distributed Bayesian Nash equilibrium (BNE) seeking problem
in incomplete-information aggregative games, which is a generalization of either Bayesian games
or deterministic aggregative games. We handle the aggregation function to adapt to incomplete-
information situations. Since the feasible strategies are infinite-dimensional functions and lie in
a non-compact set, the continuity of types brings barriers to seeking equilibria. To this end, we
discretize the continuous types and then prove that the equilibrium of the derived discretized
model is an ε-BNE. On this basis, we propose a distributed algorithm for an ε-BNE and further
prove its convergence.

Keywords: aggregative games, Bayesian games, equilibrium approximation, distributed
algorithms

Classification: 91A27, 91A43, 68W15

1. INTRODUCTION

In recent years, distributed design for multi-agent decision and control has become in-
creasingly important and many distributed algorithms have been proposed for various
games [4, 11, 14, 21, 22]. Aggregative games, as non-cooperative distributed games,
are widely investigated. In aggregative games, each agent’s cost function depends on
its action and an aggregate of the decisions taken by all agents which is obtained via
network communication. [11] proposed both synchronous and asynchronous distributed
algorithms for aggregative games, and analyzed their convergence, while [14] considered
coupled constraints in aggregative games and provided a distributed continuous-time
algorithm for a generalized Nash equilibrium. In addition, [21] proposed a distributed
approximation algorithm using inscribed polyhedrons to estimate local set constraints,
while [10] proposed a distributed algorithm with multiple rounds of communication, and
provided its linear convergence rate.

Considering uncertainties in reality, there are various incomplete-information games,
and among them, Bayesian games are one of the most important and have a wide range
of applications [1, 3, 5, 12]. In Bayesian games, players cannot obtain complete char-
acteristics of the other players, which are called types subjected to a joint distribution.
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Each player knows its own type and has access to the joint distribution [8]. In the
investigation of various Bayesian games, the existence and computation of the Bayesian
Nash equilibrium (BNE) are fundamental problems. Many works have studied the com-
putation of BNE in the discrete-type Bayesian games [1, 2], by fixing the types and
converting the games to deterministic ones. In addition to the centralized models, there
are also many works on distributed Bayesian games [1, 13], where players make decisions
based on their local information.

However, most of the aforementioned works focus on discrete-type Bayesian games. In
fact, continuous-type Bayesian games are also widespread in various fields such as engi-
neering and economics [5, 12]. Due to the continuity of types, it is hard to seek and verify
BNE. Specifically, in these games, the feasible strategies are infinite-dimensional func-
tions, and thus, their sets are not compact [6, 16]. Lack of compactness, we cannot apply
the fixed point theorem for the existence of BNE, let alone seek a BNE. Fortunately,
many works have tried to investigate the existence of BNE in such continuous-type sit-
uations and design the computation. For instance, [16] analyzed the existence of BNE
in virtue of equicontinuous payoffs and absolutely continuous information, while [15]
investigated the situation when the best responses are equicontinuous. Afterwards, [6]
provided an equivalent condition of the equicontinuity and proposed an approximation
algorithm. Besides, [20] regarded the BNE as a solution to a variational inequality and
gave a sufficient condition of the existence of BNE, while [7] proposed two variational-
inequality-based algorithms provided that the strategy forms are prior knowledge. [18]
considered Bayesian games with finite actions and continuous types, and proposed a
fictitious-play-based algorithm for the games with linear costs, while [9] proposed a dis-
cretization method for the finite-action and continuous-type model, and proved that the
derived results converge to the BNE.

Therefore, using a Bayesian scheme to analyze an incomplete-information aggrega-
tive game is worth investigating, because it can be regarded as a generalization of either
deterministic aggregative games [11, 14, 21] or Bayesian games [6, 8, 16]. Nevertheless,
continuous-type aggregative Bayesian games are more challenging than both determin-
istic aggregative games and discrete-type Bayesian games. On the one hand, in the
incomplete-information models, the strategies are functions of random variables, i. e.,
types. Thus, as the aggregate of strategies, the aggregation term should also be a func-
tion of types, while the existing aggregation functions for deterministic cases [11, 14, 21]
cannot be directly applied to the incomplete-information cases. On the other hand,
to seek a continuous-type BNE in a distributed manner, we need an effective method
to convert the infinite-dimensional BNE-seeking problem into a finite-dimensional one,
which also has to be friendly to distributed design.

Specifically, we consider seeking a continuous-type BNE in distributed aggregative
games in this paper, where each agent has its own type following a joint distribution,
and makes decisions based on its type and local information. Agents exchange their
information and estimate the aggregate of all agents’ decisions via time-varying graphs.
The challenges lie in how to handle the aggregation term with incomplete-information
and how to seek a BNE in this continuous-type model. Existing methods are insufficient
to solve this problem. Although [5, 6, 7, 9] explored several ways to seek an approx-
imate BNE, their approaches were limited in heuristic approximations and lacked the
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quantitative analysis of the derived results. Moreover, existing aggregative game models
[11, 14, 21] cannot be directly applied to the incomplete-information cases. Considering
the importance of the distributed aggregative Bayesian games, we focus on the aggre-
gation functions which are well adapted to incomplete-information cases. To overcome
bottlenecks in seeking a BNE, we provide a new discretization method that generates an
ε-BNE with its quantitative analysis, and propose a distributed algorithm for an ε-BNE.
The contributions are summarized as follows.

• We consider a distributed aggregative Bayesian game with continuous types, where
each agent has access to its own type and the aggregate. Such generalized models
can be regarded as not only Bayesian games [6, 8, 16] if each agent has access to
the strategies of all agents, but also deterministic aggregative games [11, 14, 21] by
letting out the uncertainties. Moreover, we focus on the incomplete-information
aggregation functions when agents adopt non-constant-valued functions as strate-
gies, which can turn to the average of strategies when types are deterministic
[11, 21].

• We provide a BNE approximation method by discretizing the continuous types.
By establishing a discretized model, we prove that the BNE of the derived model is
an ε-BNE of the continuous-type model. Compared with existing methods [6, 7, 9]
on continuous-type Bayesian games, our method provides an explicit error bound
as well as a practical implementation different from heuristics.

• Based on the discretization, we propose a gradient-descent-based distributed algo-
rithm for seeking a BNE of the discretized model, namely an ε-BNE of the original
model. Furthermore, we prove that the proposed algorithm generates a sequence
convergent to an ε-BNE of the continuous-type model using the Lyapunov theory.

The paper is arranged as follows. Section 2 summarizes the preliminaries. Section 3
formulates the problem. Section 4 provides a discretization method to generate an ε-
BNE, while Section 5 gives a distributed algorithm for the derived ε-BNE and analyzes
the convergence of the algorithm. Section 6 provides numerical simulations for illustra-
tions. Finally, Section 7 concludes the paper.

2. PRELIMINARIES

2.1. Notations

Denote the n-dimensional real Euclidean space by Rn and its measure by µ. B(a, ε) is
a ball with the center a and the radius ε > 0. Denote col(x1, . . . , xn) = (xT1 , . . . , x

T
n )T

and 1n ∈ R as the column vector with all entries equal to 1. For an integer n > 0,
denote [n] = {1, . . . , n}. For column vectors x, y ∈ Rn, 〈x, y〉 denotes the inner product,
and ‖·‖ denotes the 2-norm. For a matrix W ∈ Rn×n, denote its element in the ith
row and jth column by [W ]ij , i, j ∈ [n]. A function is piecewise continuous if it is
continuous except at finite points in its domain. For x = (x1, . . . , xn), define the vector
with entries of x except for i as x−i = (x1, . . . , xi−1, xi+1, . . . , xn). For a surface s =
{(x1, . . . , xn)|S(x1, . . . , xn) = 0}, denote its differential by ds.
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2.2. Convex analysis

A set C ⊆ Rn is convex if λz1 + (1 − λ)z2 ∈ C, ∀ z1, z2 ∈ C and 0 ≤ λ ≤ 1. For
a closed convex set C ⊆ Rn, a projection map ΠC : Rn → C is defined as ΠC(x) =
arg miny∈C‖x − y‖, and holds 〈x−ΠC(x),ΠC(x)− y〉 ≥ 0, ∀ y ∈ C. A function f :
Rn → R is (strictly) convex if

f(λx1 + (1− λ)x2)(<) ≤ λf(x1) + (1− λ)f(x2), ∀x1, x2 ∈ Rn, λ ∈ (0, 1).

For a convex differentiable function f , the gradient of f at point x is denoted by ∇f ,
satisfying f(y) ≥ f(x) + 〈y − x,∇f(x)〉, ∀ y ∈ Rn. For a convex differentiable function
f(x1, . . . , xn), denote ∇if as the differential of f with respect to xi. If f is (strictly)
convex, the gradient of f satisfies 〈∇f(x)−∇f(y), x− y〉 (>) ≥ 0, ∀x 6= y.

2.3. Bayesian games

Consider a Bayesian game denoted by G = (I, {Xi}i∈I ,Θ, P (·), {fi}i∈I) with a set of
agents I = [n], where agent i has the feasible action set Xi ⊆ Rmi and the cost function
fi(xi, x−i, θi). For i ∈ I, the incomplete information of agent i is referred to the type,
denoted by θi ∈ Θi ⊆ R, and θ = (θ1, . . . , θn) ∈ Θ is a random variable mapping
from the probability space (Ω,B, P ) to Rn. Denote the density function of P by p
with the marginal density pi(θi) =

∫
Θ−i

p(θi, θ−i) dθ−i and the conditional probability

density pi(θ−i|θi) = p(θi, θ−i)/pi(θi), i ∈ [n]. Throughout the paper, we use θ to denote
a random variable mapping from (Ω,B, P ) to Rn, or a deterministic element in Rn
depending on the context.

In Bayesian games, each agent i ∈ I only knows its own type but not those of its
rivals, and the joint distribution P is public information. The cost function of agent i
is defined as fi : Xi ×X−i ×Θi → R, depending on all agents’ actions and the type of
agent i. Each agent adopts a strategy σi, which is a measurable function mapping from
its type set Θi to its action set Xi, and σi(θi) is the action taken by agent i when it
receives the type θi ∈ Θi. Denote the feasible strategy set of agent i by Σi. For i ∈ I,
define a Hilbert space Hi consisting of measurable functions β : R→ Rmi with the inner
product 〈σ, σ′〉Hi

=
∫
θi∈Θi

〈σi, σ′i〉 pi(θi) dθi, σ, σ
′ ∈ Hi, i ∈ I. Thus, the strategy set

Σi is a subset of the Hilbert space Hi.

2.4. Graph theory

An undirected graph G is defined by G = (V, E), where V = [n] is the node set and
E ⊆ V × V is the edge set. Node j is a neighbor of i if (j, i) ∈ E , and thus, node i is
a neighbor of j. Take (i, i) ∈ E . A path in G from i1 to ik is an alternating sequence
i1e1i2 · · · ik−1ek−1ik such that ej = (ij , ij+1) ∈ E for j ∈ [k − 1]. W = ([W ]ij) ∈ Rn×n
is the adjacency matrix such that [W ]ij > 0 if (j, i) ∈ E and [W ]ij = 0 otherwise. G is
connected if there exists a path in G from i to j for any nodes i, j ∈ V.

3. PROBLEM FORMULATION

Consider an incomplete-information aggregative game, denoted byG = (I, {Xi}i∈I ,Θ, P,
{fi}i∈I). Each agent i ∈ I = [n] has its type θi ∈ Θi ⊆ R, feasible action set Xi ⊆ Rm,
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and cost function fi(xi, x̃, θi), where the joint type θ = (θ1, . . . , θn) follows the joint
distribution P (θ) with the density p(θ), and x̃ is the aggregate of all agents’ decisions.
The type set Θi is compact and without loss of generalization, take Θi = [θi, θi]. Agent
i adopts a strategy σi, which is a measurable function from its type set Θi to its action
set Xi. Denote the strategy set of agent i by Σi.

Different from deterministic games, consider the aggregation functions in incomplete-
information situations where agents take non-constant-valued functions of types as
strategies, which are functions mapping to different values for different types, rather
than vectors in deterministic games. Here, the aggregation function is shown as follows.

σ̄(θ̃) =

∫
∑n

i=1 θi=nθ̃

∑n
i=1 σi(θi)

n
p̄(θ1, . . . , θn|θ̃) ds, (1)

where s = {(θ1, . . . , θn)|
∑n
i=1 θi = nθ̃} and θ̃ = (θ1 + · · · + θn)/n is the average type

following the distribution

P̄ (θ̃) =

∫
∑n

i=1 θi=nθ̃

p(θ1, . . . , θn) ds,

with the density function p̄(θ̃) and the conditional probability density function p̄(θ̃|θi) =∫∑
j 6=i θj=nθ̃−θi p(θi, θ−i)/pi(θi) ds−i. Note that σ̄ is a linear function with respect to

σ1, . . . , σn, denoted by H(σ1, . . . , σn).

Remark 3.1. The aggregation function (1) can be regarded as the average of the agents’
strategies. When the model is deterministic, which means that Θ = {θ0} and P (θ0) = 1,
the aggregation function (1) turns to the simple average of agents’ strategies, as [11, 21].

Example 3.2. Consider a Nash-Cournot game [11, 14], where firms compete to produce
a kind of commodity. For each firm i, the price of the raw materials θi is a continuous
random variable. All firms cannot know the exact type of other firms, and instead, they
know the distribution of the average price of the raw materials θ̃. The cost of each
firm is a function of the price of its raw materials θi, its production xi, and the average
production of all firms x̄.

With the above aggregation function, the goal of agent i is to minimize the following
conditional expectation of fi

Ui(σi, σ̄, θi) =

∫
Θ̃

fi(σi(θi), σ̄(θ̃|θi), θi)p̄(θ̃|θi) dθ̃

=

∫
Θ−i

fi(σi(θi), H(σi(θi), σ−i(θ−i)), θi)pi(θ−i|θi) dθ−i,

where σ̄(θ̃|θi) is the aggregate σ̄ when the average type is θ̃ ∈ Θ̃ and agent i’s type is
θi ∈ Θi. Denote its gradient by

Fi(σi, σ̄, θi) = ∇iUi(σi, H(σi, σ−i), θi).

Then we give the concept of the Bayesian Nash equilibrium.
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Definition 3.3. Consider the continuous-type Bayesian game G,

(i) For agent i ∈ I, a strategy σi∗ is a best response with respect to the strategy
profile σ−i if for almost every θi ∈ Θi,

σi∗ ∈ arg min
σi∈Σi

Ui(σi, H(σi, σ−i), θi),

where the best response set is denoted by BRi(σ−i).

(ii) A strategy profile (σ∗1 , . . . , σ
∗
n) is a Bayesian Nash equilibrium (BNE) if for any

σi ∈ Σi, i ∈ I,

Ui(σ
∗
i , H(σ∗i , σ

∗
−i), θi) ≤ Ui(σi, H(σi, σ

∗
−i), θi), for a.e. θi ∈ Θi.

Agents in our model have local interactions with each other over time to estimate
the aggregate, where these interactions are modeled by time-varying graphs G(t). At
the time t, agents exchange their estimations of the aggregate with current neighbors
through G(t).

We make the following assumptions for the aggregative game G.

Assumption 3.4. Consider the incomplete-information aggregative game G. For i ∈ I,

(i) the action set Xi is nonempty, convex, and compact;

(ii) the distribution P is atomless, i. e., P (θ = ζ) = 0 for any given ζ ∈ Θ. Moreover,
the measure µ({θi ∈ Θi|pi(θi) > 0}) = µ(Θi);

(iii) the cost function fi(xi, x̃, θi) is strictly convex in xi ∈ Xi and Lθ-Lipschitz contin-
uous in θi ∈ Θi for each xi, x̃ ∈ Rm;

(iv) the expectation Ui is well defined for every σj ∈ Σj and θi ∈ Θi, j ∈ I, and for any
θi ∈ Θi, its gradient Fi is D-Lipschitz continuous in σi(θi) ∈ Xi for any σ−i ∈ Σ−i,
and is Lu-Lipschitz continuous in σ̄ for any σi(θi) ∈ Xi;

(v) the graph sequence G(t) is uniformly jointly strongly connected, i. e., there exists
an integer B > 0 such that ∪t+Bk=tG(k) is strongly connected, and its adjacency
matrix W (t) satisfies [W (t)]ij > η (η > 0) when (j, i) ∈ E , and

∑n
i=1[W (t)]ij =∑n

j=1[W (t)]ij = 1.

Assumption 3.4 was widely used in the study of aggregative games and Bayesian
games [6, 7, 11, 16, 22]. The atomless property in Assumption 3.4(ii) is a common
assumption in Bayesian games [6, 15, 16], and the measure condition can be guaranteed
by removing types in {θi ∈ Θi,∃ε > 0, pi(θ

′
i) > 0,∀ θ′i ∈ B(θi, ε)}. Assumption 3.4(v)

ensures the connectivity, and the property of the adjacency matrix W (t) ensures that
each agent can substantially and equally influence the aggregation term in the long run,
which holds for a variety of graphs[11, 17].

The existence of the BNE can be guaranteed by the variational inequalities [7, 20],
summarized as follows.

Lemma 3.5. Under Assumption 3.4, there exists a unique BNE of game G.
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In Bayesian games, it is hard to seek a BNE due to the continuity of types. As the
Riesz’s Lemma shows [19], any infinite-dimensional normed space contains a sequence
of unit vectors {xn} with ‖xn − xm‖ > α for any 0 < α < 1 and n 6= m. Then the
strategy set Σ lying in the infinite-dimensional space H1 × · · · × Hn is not compact,
which poses obstacles to computation. There are a few attempts to seek a continuous-
type BNE. For example, [7] considered the situation that the strategy forms are prior
knowledge, in which the forms are usually unavailable, while [6] utilized polynomial
approximations to estimate a BNE without the estimation error. Moreover, [9] adopted
heuristic approximations in discrete-action Bayesian games, but their method was NP-
hard and not practical to be implemented in continuous-action games. Thus, since
directly seeking a BNE is difficult, we introduce the following concept.

Definition 3.6. Denote EUi(σi, σ̄) =
∫

Θi
Ui(σi, σ̄, θi)pi(θi) dθi. For any ε > 0, a strat-

egy profile σ̂∗ = (σ̂∗1 , . . . , σ̂
∗
n) is an ε-Bayesian Nash equilibrium (ε-BNE) of G if for any

σi ∈ Σi, i ∈ I
EUi(σi, H(σi, σ̂

∗
−i)) ≥ EUi(σ̂∗i , H(σ̂∗))− ε.

The goal of this paper is to design a distributed algorithm to seek an approximate
BNE of the proposed model, summarized as follows.

Problem 3.7. Seek an approximate BNE of the incomplete-information aggregative
game G = (I, {Xi}i∈I ,Θ, P, {fi}i∈I) in a distributed manner.

To overcome the above bottlenecks in seeking BNE, in the following sections, we
first provide a discretization method to convert the infinite-dimensional problem to a
finite-dimensional one, and then propose a distributed algorithm for an ε-BNE.

4. DISCRETIZATION

In this section, we give a discretization method and show its effectiveness in approxi-
mating the best responses and the BNE of the continuous-type model G.

For each agent i, we select N points θki from Θi satisfying

Pi(θ
k
i ) =

k

N
, k ∈ [N ].

Denote the corresponding discrete type set by Θ̂i. Define θ0
i = θi and Θ̂ = Θ̂1×· · ·×Θ̂n.

In the discretized model, we regard all types in the interval (θk−1
i , θki ] as θki , then the

discrete type θ follow the below joint distribution

P̂ (θk11 , . . . , θknn ) =

∫ θ
k1
1

θ
k1−1
1

· · ·
∫ θkn

n

θkn−1
n

p(θ1, . . . , θn) dθ1 · · · dθn, (θk11 , . . . , θknn ) ∈ Θ̂. (2)

Correspondingly, the marginal distribution P̂i(θi) =
∑
θi∈Θ̂i

P̂ (θi, θ−i) and the condi-

tional distribution P̂i(θ−i|θi) = P̂ (θi, θ−i)/P̂i(θi).
Due to Assumption 3.4(ii) that µ({θi ∈ Θi|pi(θi) > 0}) = µ(Θi), the gap between

the adjacent discrete points θki − θk−1
i tends to 0 as N tends to infinity. Since we
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use θki to represent the interval (θki , θ
k−1
i ], we choose the length of such intervals as

small as possible, which can effectively reduce the error. Additionally, our design is
friendly to distributed algorithms, while other choices of discrete points will bring extra
computation when agents update the strategies.

Based on the above discretization, we formulate a discretized model as Ĝ = (I, {Xi}i∈I ,
Θ̂, P̂ , {fi}ni=1). In this model, strategies are restricted to N -dimensional vectors. Denote

the strategy set of agent i in Ĝ by Σ̂i. Thus, the aggregate of the discretized strategies
is

ˆ̄σ(θ̃) =
∑

∑n
i=1 θi=nθ̃,θi∈Θ̂i

∑n
i=1 σ̂i(θi)

n
ˆ̄P (θ1, . . . , θn|θ̃),

where θ̃ =
∑n
i=1 θi/n follows the below discrete distribution

ˆ̄P (θ̃) =
∑

∑n
i=1 θi=nθ̃,θi∈Θ̂i

P̂ (θ1, . . . , θn),

with the conditional probability ˆ̄P (·|θ̃). Since the ˆ̄P is a discrete distribution, the aggre-
gation function can be written as ˆ̄σ =

∑n
i=1 hi(σ̂i), where hi is a linear function mapping

from Σ̂i to RnNm. Denote h−i(σ̂−i) =
∑
j 6=i hj(σ̂j) for σ̂−i ∈ Σ̂−i, then the expectation

of the cost of i in Ĝ is

Ûi(σ̂i, ˆ̄σ, θi) =
∑

θ−i∈Θ̂−i

fi(σ̂i(θi), hi(σ̂i(θi)) + h−i(σ̂−i(θ−i)), θi)P̂i(θ−i|θi), θi ∈ Θ̂i.

Then we define the following best response and equilibrium of Ĝ.

Definition 4.1. Consider the discretized model Ĝ,

(i) For agent i ∈ I, given a strategy profile σ̂−i ∈ Σ̂−i, a strategy σ̂Ni∗ is a best response

to σ−i if for any θi ∈ Θ̂i,

σ̂Ni∗ = arg min
σ̂(θi)∈Xi

Ûi(σi, hi(σ̂i) + h−i(σ̂−i), θi).

Denote the set of the best responses to σ̂−i by BRNi (σ̂−i) in Ĝ.

(ii) A strategy profile (σ̂∗1 , . . . , σ̂
∗
n) is a BNE of Ĝ, or a DBNE(N) of Ĝ if for i ∈ I,

σ̂∗i ∈ BRNi (σ̂∗−i).

The existence of DBNE can be guaranteed by variational inequalities [7, 20] or Browner
fixed point theorem [6, 16], summarized as follows.

Lemma 4.2. Under Assumption 3.4, there exists a unique DBNE(N) of the discretized
model Ĝ.
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To approximate the strategies in the continuous-type model G with the strategies in
the discretized model Ĝ, we extend the domains of strategies from Θ̂i to Θi, and define
the strategies of Ĝ at type θi ∈ (θk−1

i , θki ] as

σ̂i(θi) = σ̂i(θ
k
i ).

Denote ˆ̃Θ = {θ̃|nθ̃ =
∑n
i=1 θi, θi ∈ Θi} = {θ̃1, . . . , θ̃S}, S ≤ nN , and θ̃0 =

∑n
i=1 θi/n.

The aggregates in the discretized model Ĝ and the continuous-type model G satisfy

σ̄(θ̃) = ˆ̄σ(θ̃k), θ̃ ∈ (θ̃k−1, θ̃k], k ∈ [S].

With this extension, we denote ˆ̄σ of the discretized strategies as σ̄ for simplification.
Then we estimate the best response in G. Actually, a best response σ̂i∗ needs to

respond to any strategies in Σ−i, rather than strategies in Σ̂−i ⊆ Σ−i. To this end, we
modify the best responses σ̂i∗ with respect to σ−i ∈ Σ−i as follows. For θki ∈ Θ̂i,

σ̂i∗(θ
k
i ) = arg min

σ̂i(θi)∈Xi

∫
Θ−i

fi(σ̂(θki ), H(σ̂i(θ
k
i ), σ−i(θ−i)), θ

k
i )

∫ θki
θk−1
i

p(θi, θ−i) dθi

P̂i(θki )
dθ−i.

The following lemma shows the relation between the best response in the discretized
model Ĝ and in the continuous-type model G.

Lemma 4.3. Let Assumption 3.4(ii) hold. For a given σ−i ∈ Σ−i, if all the best re-
sponses inBRNi (σ−i) ofG are piecewise continuous, then the best responses inBRNi (σ−i)

of Ĝ are almost surely the best responses of G, as N tends to infinity. Specifically, for
any σ̂Ni∗ ∈ BRNi (σ−i), there exists σi∗ ∈ BRi(σ−i) such that

lim
N→∞

σ̂Ni∗(θi) = σi∗(θi), for a.e. θi ∈ Θi.

P r o o f . Due to the L’Hospital’s rule,

lim
N→∞

∫ θki
θr−1
i

p(θi, θ−i) dθi∫ θki
θr−1
i

pi(θi) dθi
=
p(θki , θ−i)

pi(θki )
= pi(θ−i|θki ).

Thus, for any σ̂i∗ ∈ BRNi (σ−i) and θi ∈ Θ̂i, there exists a strategy σi∗ ∈ BRi(σ−i)
such that, as N tends to infinity, σ̂Ni∗(θi) → σi∗. Since σi∗ is piecewise continuous, for
any ε > 0, there exists δ > 0 such that, for any θi ∈ Θi except for finite points and
θ′i ∈ B(θi, δ) ∩Θi, |σi∗(θi)− σi∗(θ′i)| < ε. Take ε = maxk{θki − θ

k−1
i }, thus∫

Θi

|σ̂Ni∗(θi)− σi∗(θi)|2pi(θi) dθi ≤
N∑
i=1

ε2(θki − θk−1
i ) = ε2(θi − θi).

As N tends to infinity, ε tends to 0, and thus, σ̂Ni∗ tends to σi∗ for almost every θi ∈ Θi.
�
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Lemma 4.3 implies that agents can utilize the best responses derived from Ĝ to
estimate the best responses in G. That is to say, agents are willing to adopt the best
responses in Ĝ, and thus, these best responses form a DBNE.

In the next theorem, we show that the DBNE(N) of Ĝ is an ε-BNE of G. In addi-
tion, we provide an explicit error bound of our approximation, compared with heuristic
approximations [6, 7, 9].

Theorem 4.4. Under Assumption 3.4(i), (ii), and (iv), the DBNE (σ̂∗1 , . . . , σ̂
∗
n) of the

discretized model Ĝ is an ε-BNE, where ε = O(maxi∈I maxk∈[N ](θ
k
i − θ

k−1
i )).

P r o o f . Due to the Lipschitz continuity of fi, |fi(xi, x−i, θi)−fi(xi, x−i, θ′i)| ≤ Lθ‖θi−
θ′i‖ for xi ∈ Xi, x−i ∈ X−i, θi, θ′i ∈ Θi. Denote EÛi(σ̂i, σ̄) =

∑
Θ̂i
Ûi(σ̂i, σ̄, θi)P̂i(θi).

Define ε0 = maxi∈I maxk∈[N ](θ
k
i − θ

k−1
i ). Then for any σ̂i ∈ Σ̂i and σ̂−i ∈ σ̂−i,

EUi(σ̂i, σ̄) =

N∑
k=1

∫ θki

θk−1
i

Ui(σ̂i, σ̄, θi)pi(θi) dθi

=

N∑
k=1

∫ θki

θk−1
i

(Ui(σ̂i, σ̄, θi)− Ui(σ̂i, σ̄, θki ) + Ui(σ̂i, σ̄, θ
k
i ))pi(θi) dθi

≤EÛi(σ̂i, σ̄) + Lθε0.

(3)

Denote the aggregate of the DBNE by ˆ̄σ∗. Recalling the definition of DBNE, for any
θi ∈ Θ̂i and σ̂i ∈ σ̂i,

Ûi(σ̂
∗
i , ˆ̄σ
∗, θi) ≤ Ûi(σ̂i, hi(σ̂i) + h−i(σ̂

∗
−i), θi). (4)

Then we convert the DBNE from the discretized model to the continuous-type model.
Due to Assumption 3.4(ii), the distribution P is continuous, and thus, p is Lp-Lipschitz
continuous over Θ. Therefore, for any θi ∈ (θk−1

i , θki ], k ∈ [N ],∣∣∣∣∣p(θi, θ−i)−
∫ θki

θk−1
i

p(θ′i, θ−i) dθ′i
θki − θ

k−1
i

∣∣∣∣∣
≤ 1

θki − θ
k−1
i

∫ θki

θk−1
i

|p(θi, θ−i)− p(θ′i, θ−i)|dθ′i ≤ Lpε0.

Thus, for any σi ∈ Σi and k ∈ [N ],∫ θki

θk−1
i

∫
Θ−i

fi(σi(θi), H(σi(θi), σ̂
∗
−i(θ−i)), θ

k
i )p(θi, θ−i) dθidθ−i

≥
∫ θki

θk−1
i

∫
Θ−i

fi(σi(θi), H(σi(θi), σ̂
∗
−i(θ−i)), θ

k
i )

∫ θki
θk−1
i

p(θ′i, θ−i) dθ′i

θki − θ
k−1
i

dθidθ−i

−MLp(θ
k
i − θk−1

i )µ(Θ−i)ε0.

(5)
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With (4) and (5), for any σi ∈ Σi,

EÛi(σ̂
∗
i , ˆ̄σ
∗)

≤
N∑
k=1

(∫ θki

θk−1
i

∫
Θ−i

fi(σi(θi), H(σi(θi), σ̂
∗
−i(θ−i)), θ

k
i )p(θi, θ−i) dθidθ−i

+MLp(θ
k
i − θk−1

i )µ(Θ−i)ε0)

)
≤

N∑
k=1

(∫ θki

θk−1
i

∫
Θ−i

(fi(σi(θi), H(σi(θi), σ̂
∗
−i(θ−i)), θi) + Lθε0)p(θi, θ−i) dθidθ−i

+MLp(θ
k
i − θk−1

i )µ(Θ−i)ε0

)
=EU(σi, ˆ̄σ

∗) + (MLpµ(Θ) + Lθ)ε0.

(6)

Define C = MLpµ(Θ) + 2Lθ. Combining (3) and (6), for any σi ∈ Σi,

EU(σ̂∗i , ˆ̄σ
∗) ≤ EÛ(σ̂∗i , ˆ̄σ

∗) + Lθε0 ≤ EUi(σi, H(σi, σ̂
∗
−i)) + Cε0,

which means that the DBNE is an ε-BNE with ε = Cε0. �

Remark 4.5. Taking advantage of the probability 1

θki −θ
k−1
i

∫ θki
θk−1
i

p(θ′i, θ−i) dθ′i, we con-

vert the discrete distribution P̂ of Ĝ into a continuous distribution of G, thereby over-
coming the challenges in quantitative analysis. Compared with existing methods which
were limited in heuristic approximations [6, 7, 9], we quantitatively analyze the de-
rived DBNE of Ĝ and provide the explicit error bound of the DBNE. Moreover, our
discretization is a practical method rather than heuristics.

Remark 4.6. Since we discretize the continuous types, the dimension of the aggregation
term in the discretized model Ĝ depends on the number of discrete points. For higher
accuracy, we need to take more discrete points, which brings barriers to distributed
computation when agents exchange such high-dimensional aggregation terms. In fact,
these bottlenecks are common in discretization methods [7, 9], and we are still trying to
handle this challenge.

5. DISTRIBUTED ALGORITHM

In this section, we propose a distributed algorithm for the BNE of the discretized model
Ĝ, namely an ε-BNE of the continuous-type model G.

At the time t, agent i estimates the aggregate according to neighbors’ approximations
as

uti =

n∑
j=1

[W (t)]ijv
t
j , (7)

where vtj is the approximation of the aggregate made by agent j at the time t. Due to

the uncertainties, we can also regard uti(θ̃) as a function mapping from ˆ̃Θ to Rm, where
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θ̃ follows the discrete distribution ˆ̄P as defined in Section 4. Then agent i evaluates its
subgradient as

gti = (Fi(σ
t
i , u

t
i, θ

1
i ), . . . , Fi(σ

t
i , u

t
i, θ

N
i ))/N, (8)

where Fi(σ
t
i , u

t
i, θ

k
i ) (k ∈ [N ]) was defined in Section 3. We summarize the above proce-

dures as follows.

Algorithm 1 Algorithm for an ε-BNE of continuous-type Bayesian games.

Initialization: For i ∈ I: take σi(0) ∈ Σ̃i, and vi(0) = hi(σi(0)).
Discretization: For i ∈ I, take N discrete points from the type set Θi as (2).
Iterate until t ≥ T :
Communicate and Update: Agent i evaluates the aggregate of neighbors ui(t)
based on (7) and the gradient gti based on (8), then updates σi(t) and its observation
vi(t) by

σt+1
i = ΠΣ̂i

(σti − α(t)gti),

vt+1
i = uti − n(hi(σ

t
i) + hi(σ

t+1
i )).

The stepsize α(t) taken in Algorithm 1 satisfies

(i) α(t) is a positive non-increasing sequence.

(ii)
∑∞
t=0 α(t) =∞,

∑∞
t=0 α

2(t) <∞.

Therefore, we give the following main result of this paper to show the convergence of
Algorithm 1 to an ε-BNE, or the DBNE(N) with an explicit error bound ε.

Theorem 5.1. Under Assumption 3.4, Algorithm 1 generates a sequence convergent to
the DBNE of Ĝ, which is an ε-BNE of G, with ε = O(maxi∈I maxk∈[N ](θ

k
i − θ

k−1
i )).

P r o o f . Define the average of the estimations vti as v̄t =
∑n
i=1 v

t
i/n. Firstly, we prove

that v̄t =
∑n
i=1 hi(σ

t
i) by induction on t.

For t = 0, the above relation holds trivially. Since the adjacency matrices have
columns sum up to 1, assume the above relation holds for t− 1, as the induction step,

n∑
i=1

vti
n

=

n∑
i=1

(
ut−1
i

n
+ hi(σ

t
i)− hi(σt−1

i )

)

=

n∑
i=1

n∑
j=1

[W (t− 1)]ij

(
vt−1
j

n
+ hj(σ

t
j)− hj(σt−1

j )

)

=

n∑
i=1

(
vt−1
i

n
+ hi(σ

t
i)− hi(σt−1

i )

)
=

n∑
i=1

hi(σ
t
i).

Thus, v̄t =
∑n
i=1 hi(σ

t
i)/n holds for all t ≥ 0.
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Secondly, we establish a relation between the estimation uti and the average v̄t. From
the update rule of vti , for t ≥ 1,

uti =

n∑
j=1

[Φ(t, 0)]ijv
0
j +

t∑
r=1

n∑
j=1

[Φ(t, r)]ijn(hj(σ
r
j )− hj(σr−1

j )). (9)

Then, for t ≥ 1, v̄t can be reconstructed as

v̄t =
1

n

n∑
j=1

v0
j +

t∑
r=1

n∑
i=1

(hi(σ
r
i )− hi(σr−1

i )). (10)

Since hi is linear, there exists a constant C > 0 such that hi is C
n -Lipschitz continuous

for i ∈ I. Due to the property of projection, ‖ΠΣ̂i
(σti−α(t)gti)−σti‖ ≤ α(t)‖gti‖ ≤ α(t)D

for σti ∈ Σ̂i.

Claim 5.2. (Koshal et al. [11], Nedic et al. [17]) Denote the transition matrices
Φ(k, s) from time s to k > s as Φ(k, s) = W (k)W (k − 1) · · ·W (s) for 0 ≤ s < k. Under
Assumption 3.4(v),

(i) limk→∞ Φ(k, s) = 1
n11T for all s ≥ 0.

(ii) |[Φ(k, s)]ij−1/n| ≤ Γβk−s for all k ≥ s ≥ 0 and i, j ∈ I, where Γ = (1−η/(4n2))1/B

and β = (1− η/(4n2))1/B.

Combining (9) and (10), with Claim 5.2, for t ≥ 1,

‖uti − v̄t‖ ≤ ΓβtR0 + CΓD

t∑
r=1

βt−rα(r),

where R0 =
∑n
j=0 v

0
j . Since α(t) is non-increasing,

∞∑
t=0

α(t)‖vti − v̄t‖ ≤ Γ
1

1− β
R0α(0) + CΓD

1

1− β

∞∑
t=0

α2(t). (11)

Because the stepsize α(t) satisfies
∑∞
t=0 α(t) =∞ and

∑∞
t=0 α

2(t) <∞,
∑∞
t=0 α(t)‖vti −

v̄t‖ <∞.
Thirdly, we give the convergence result. With the update rule of σti ,

‖σt+1
i − σ̂∗i ‖ = ‖ΠΣ̂i

(σti − α(t)gti)− σ̂∗i ‖ ≤ ‖σti − σ̂∗i − α(t)(gti + g∗i )‖,

where g∗i = col(Fi(σ̂
∗
i , ˆ̄σ
∗, θ1

i ), . . . , Fi(σ̂
∗
i , ˆ̄σ
∗, θNi )). Then

‖σt+1
i − σ̂∗i ‖2 ≤ ‖σti − σ̂∗i ‖2 + α2(t)‖gti − g∗i ‖2 − 2α(t)

〈
gti − g∗i , σti − σ̂∗i

〉
. (12)

To prove that σti converges to σ̂∗i , we need to show that
∑∞
t=0 α(t)‖σti −σ∗i ‖ <∞. Since

‖gti‖ ≤
√
ND and ‖g∗i ‖ ≤

√
ND,

∞∑
t=0

α2(t)‖gti − g∗i ‖ <∞.
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Based on the property of subgradients, for θki ∈ Θ̂i,

N
〈
gti , σ

t
i − σ̂∗i

〉
=

N∑
k=1

〈
Fi(σ

t
i , u

t
i, θ

k
i )− Fi(σ̂∗i , ˆ̄σ∗, θki ), σti(θ

k
i )− σ̂∗i (θki )

〉
.

Since F is Lipschitz continuous,

‖Fi(σti , uti, θki )− Fi(σti , v̄t, θki )‖ ≤ Lu‖uti(θki )− v̄t(θki )‖,

where uti(θ
k
i ) and v̄t(θki ) denoted the aggregates uti(θ̃|θki ) and v̄t(θ̃|θki ) with θ̃ ∈ {

∑n
i=1 θi/n,

θi = θki , θ−i ∈ Θ−i}, satisfying ‖u‖2 =
∑N
k=1‖u(θki )‖2 for i ∈ I and u = uti, v̄

t. Then

N
〈
gti − g∗i , σti − σ̂∗i

〉
≤

N∑
k=1

〈
Fi(σ

t
i , v̄

t, θki )− Fi(σ̂∗i , ˆ̄σ∗, θki ), σti(θ
k
i )− σ̂∗i (θki )

〉
+
√
NLu‖uti − v̄t‖.

Denote EFi(σi, σ̄) =
∑N
k=1 F (σi, σ̄, θ

k
i ) for σ ∈ Σ̂, where σ̄ is the aggregate of σ, and

EF (σ) = col(EF1(σ1, σ̄), . . . , EFn(σn, σ̄)). From the strict convexity of fi, EUi is strict
convex, and thus, 〈

EF (σt, H(σt))− EF (σ̂∗, H(σ̂∗)),σt − σ̂∗
〉
< 0.

Combining with (11),
∑n
i=1‖σti − σ̂∗i ‖2 = ‖σt − σ̂∗‖2 is convergent. Furthermore,

∞∑
t=0

α(t)
〈
EF (σt, H(σt))− EF (σ̂∗, H(σ̂∗)),σt − σ̂∗

〉
<∞.

Since
∑∞
t=0 α(t) =∞, there exists a subsequence {tl} such that

lim
l→∞

〈
EF (σtl , H(σtl))− EF (σ̂∗, H(σ̂∗)),σtl − σ̂∗

〉
= 0.

Due to the strict convexity of fi, EF is strictly monotone, and thus, liml→∞‖σtl−σ̂∗‖ =
0. Since ‖σt − σ̂∗‖ is convergent,

lim
t→∞
‖σt − σ̂∗‖ = 0.

Therefore, we complete the proof. �

Remark 5.3. Compared with existing works which were restricted in deterministic ag-
gregative games [11, 14, 21], Algorithm 1 handles the equilibrium seeking problem on
aggregative Bayesian games, and Theorem 5.1 provides its convergence to an ε-BNE of
G with an explicit bound ε.
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6. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations to illustrate the effectiveness of Algo-
rithm 1 on aggregative Bayesian games.

Consider a Nash-Cournot game played by 5 competitive firms to produce a kind
of commodity. The costs of productivity, for example, the price of raw materials, are
uncertain in the game, which is referred to the type θ = (θ1, . . . , θ5) ∈ [1, 2]5 and
θ1, . . . , θ5 are independent and uniformly distributed over [1, 2], respectively. For firm i,
i ∈ {1, . . . , 5}, it has a feasible action set Xi = [0, 10] and cost function fi(xi, x̃, θi) =
−(40 − 5x̄)xi + (3θi + 0.5(i + 1))x2

i , where x̃ is the aggregate of actions. Each firm i
can only obtain the probability distribution of its own type θi and the average type θ̃.
Firm i adopts a strategy σi, which means that when it receives a type θi ∈ [1, 2], it takes
σi(θi) ∈ Xi = [0, 10] as the quantity of the commodity to produce. The expectation of
the cost and the aggregation function were defined in Section 3. Firms exchange their
aggregates via a connected time-varying graph G(t), which is randomly generated.

Firstly, we show the convergence of Algorithm 1. Fig. 1 presents the trajectories of
strategies for different agents at some specific types under N = 100. We can see that
the agents’ strategies at these specific types converge, which indicates the convergence
of Algorithm 1 in Theorem 5.1.
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Fig. 1. Strategies of agents at specific types with N = 100.

Next, we verify the effectiveness of the discretization. Since Algorithm 1 generates an
ε-BNE of the continuous-type model G, we calculate the value of ε for different numbers
of discrete points N . Denote εi as the difference of the expectations EUi at the BNE
(σ∗i , σ

∗
−i) and at the DBNE (σ̂∗i , σ̂

∗
−i), i. e., εi = EUi(σ̂

∗
i , σ̂
∗
−i)−EUi(σ∗i , σ∗i ). Tab. 1 shows

εi for different agents and N ’s. Since ε = maxi∈I εi, we find that ε tends to 0 as N tends
to infinity and is consistent with Theorem 4.4 that ε = O(maxi∈I maxk∈[N ](θ

k
i − θ

k−1
i )).

7. CONCLUSION

In this paper, we considered an aggregative Bayesian game, which is a generalization of
both Bayesian games and deterministic aggregative games. We handled the aggregation
function with the incomplete-information situations. To break through barriers in seek-
ing BNE, we provided a discretization method, and proved that the DBNE of the gen-
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N ε1 ε2 ε3 ε4 ε5
50 3.60× 10−2 1.20× 10−2 1.16× 10−3 4.33× 10−3 7.28× 10−3

100 1.82× 10−2 6.23× 10−3 8.02× 10−4 1.96× 10−3 3.45× 10−3

200 1.40× 10−2 7.09× 10−3 3.75× 10−3 1.91× 10−3 8.24× 10−4

500 4.80× 10−3 2.20× 10−3 9.64× 10−4 3.05× 10−4 7.44× 10−5

Tab. 1. The value εi for different agents and N ’s.

erated discretized model is an ε-BNE of the original model with an explicit error bound.
On this basis, we proposed a distributed algorithm for the DBNE of the discretized
model, namely an ε-BNE of the continuous-type model, and proved its convergence. Be-
cause the dimension of the aggregation term can be very huge after discretization, which
may cause problems in communications as discussed in Remark 4.5, we are trying to
explore more efficient distributed designs that can reduce the resulting communication
burdens.
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