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Abstract. This paper aims at discussing asymptotic behaviour of nonoscillatory solutions
of the forced fractional difference equations of the form
ATu(k) + Ok + 7, w(k +7)]
=®(k+7)+Y(k+y)w' (k+7) + ¥k +vwk+7)], k€ Ni_~,
ug = Co,
where Nj_y ={1—+,2—7,3—7,...}, 0 <~ <1, A7 is a Caputo-like fractional difference
operator. Three cases are investigated by using some salient features of discrete fractional

calculus and mathematical inequalities. Examples are presented to illustrate the validity of
the theoretical results.

Keywords: fractional difference equation; nonoscillatory; Caputo fractional difference;
forcing term

MSC 2020: 26A33, 39A10, 39A13, 39A21

1. INTRODUCTION

Mathematical theory regarding fractional calculus was put forward before the com-
mencement of 20th century. The development of the theory of fractional calculus is
credited to the direct and indirect contributions of many eminent mathematicians.
Non-local property of fractional derivatives makes it unique and thus opening new
directions and avenues for exploration and applications. It has emerged as one of the
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significant interdisciplinary subjects in physical, biological sciences and engineering.
Specifically, in the last three decades, the subject witnessed exponential growth re-
garding its applicability in engineering, natural, physical and social sciences. Some
bibliographic metrics of this evolution are seen in [4], [15], [16], [21].

In the recent decade, theory of fractional difference equations is evolving as a
mathematical means to analyze problems arising in interdisciplinary applications.
Discrete fractional calculus is a nascent discipline and is analogous to its continuous
counter part. Fractional calculus is evolving as a notable platform to model real
world phenomena. The theory of delta fractional calculus is enriched by the contri-
butions of mathematicians like Atici, Eloe, Abdeljawad, Holm, Goodrich, Peterson
and Cheng, to note a few (see [5], [6], [13]). Delta fractional calculus has come to the
forefront during the recent decade due its inherent complexity and non-local prop-
erty. Development of its theory is still in the progressing stage and thus opening new
opportunities and scope to explore in this area.

The oscillation theory provides valuable insights into the dynamics of solutions
to problems modeled with equations in various areas of engineering and science. In
recent years, the study of the oscillation theory of fractional order difference equa-
tion has been remarkably constructive, advancing rapidly and has been the focus of
research for many scientists, see [1], [2], [3], [7], [17], [19], [20]. For the nonoscillatory
solutions of fractional differential equation, its asymptotic behaviour (see [11]) and
boundedness (see [10]) are discussed. The existence of nonoscillatory solutions of
nonlinear neutral delay difference equation of fractional order are dealt in [18].

In the recent times, the authors in [12] established the asymptotic behaviour of
nonoscillatory solutions of certain fractional differential equations with positive and
negative terms. Inspired by the above literature, the following forced discrete form
of fractional equations is considered

(1.1)  A"u(k)+ Ok + v, w(k +7)]
=®(k+7)+T(+NW(k+7)+V][r+y,wk+7)], rENI_,,

Uop = Co,

where Ny, = {1 —~v,2—7v,3—7,...}, 0 <y <1, A is a Caputo-like discrete frac-
tional difference operator. The asymptotic behaviour of the nonoscillatory solution
is discussed in the below mentioned three cases:

1.2 u(r) = Alo(r)[Aw(r)]"],
1.3 u(k) = o(r)[Aw(k)]",
1.4 u(k) = w(k)



The following assumptions are made:

(H1) v is the ratio of odd positive integers.

(Hz2) 0,Y: [k1,00) = (0,00) are continuous functions and & is a positive sequence.

(Hs) ©,¥: (k1,00) x R — R are real valued continuous functions and there exist
continuous functions ¢, o: [k1,00) — (0, 00) and positive real numbers A and «
with A > a such that

{w@)(mw) > (k) wAH,

forw#0, kK >0.
0 < w¥(k,w) < o(k)w|>? #

The remaining part of this paper is arranged as follows: The basic definitions and
lemmas are presented in Section 2 for further discussion on important results. Results
on nonoscillation are established in Section 3 by using features of discrete fractional
calculus and mathematical inequalities. Suitable examples are demonstrated in Sec-
tion 4 for the theoretical findings. The paper ends with a brief conclusion in the
last section.

2. PRELIMINARIES

The essential definitions and lemmas are included in this section for the proofs of
further results.

Definition 2.1 ([9]). A solution {w(k)} is said to be oscillatory if the terms of
the solution are neither eventually positive nor eventually negative. Otherwise, the
solution is called nonoscillatory.

Definition 2.2 ([5]). Let v > 0. Then the yth fractional sum A~7: N, — Ny,
of w is given by

A~ ’Yw _F—Z Iﬁl— —]. (6), KeNa+"/~

Here w is defined for 8 = a (mod 1) and A™Vw is defined for k = (a + ) (mod 1).

Definition 2.3 ([5]). For v > 0, f defined on N, and N € N such that 0 <
N —1 <~ < N let us define:

(a) The vth order Riemann-Liouville (RL) fractional difference of w is

AN r=(N—=7)
reAw(k) = ANAT Ny (k) = TN =) Z (k — B = 1N 1y(B)
B=a

for k € Ngpn—n.
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(b) The ~th order Caputo-like (C.A) fractional difference of w is

r—(N—=7)

> (k- B-DNTTIANw(B)
B=a

v — A~ (N=7) AN - -
calTw(k) = A, A w(k) TN =)

for kK € Ngpn—y.

Lemma 2.4 (Young’s inequality, see [12]). If X and Y are non-negative, § > 1
and 1/6 +1/¢ = 1, then XY < X?/5 + V&€, where equality holds if and only if
y=x°"1

Lemma 2.5 ([8]). Assume that { > 1 and § > 0, then

[Kfé]f _ F(l + 65) —6¢

7F5(1+5)H for k € N.

Lemma 2.6 ([8]). Initial value problem (IVP) (1.1) is equivalent to the expression

K=y

f@xggfﬂ—ﬂ—D“%¢W+7%Fﬂﬂ+wwﬁﬂ+w

= O[(B+7),wB+]+¥[(B+7),wB+7)]), &N

u(k) =co+

Lemma 2.7 (Discrete Gronwall’s inequality, see [14]). Let w and ¢ be non-
negative sequences and ¢ be a non-negative constant. If

w(k) < c+ Z e(B)w(B) for k =0,
B=0

then

(k) < cexp (BX:%E(B)) for 1 > 0.

Lemma 2.8 ([8]).

=

" (k1)

B=1—v

y—1 __ F(K—’_IY) o 1
(k) (k=17

3. MAIN RESULTS

This section is devoted to the nonoscillatory results. The results are stated and
proved in two separate subsections. The results are established by using some features
of discrete fractional calculus and mathematical inequalities.

464



3.1. Nonoscillatory solutions of equation (1.1) with (1.2). Consider the
equation

(3.1) A" o(k)[Aw(k)]"] + O[k + v, w(k +7)]
=@k +7) + Tk + 7w (K +7) + V[r+7,w(s +7)],
Aloo[Aw(0)]"] = co.

For the sake of convenience, let

(32) R(x) = Y 07 (9)
B=1
and assume that
(3.3) Rli_{{)lo R(k) = oo,
(34) 6 = 222 (Gotw) gt

The sufficient conditions under which any nonoscillatory solution w(k) of (1.1)
with (1.2) satisfies the following condition:

lw(k)| = O(kY"R(k)) as k — oco.

Theorem 3.1. Let conditions (H1)—(H3) and (3.3) hold and assume that there
exist real numbers ! > 1 and 0 < v < 1 such that [(y—1)+1> 0. If

K=y
(35) S TTBHAE + ARG ) <00, m=
B=1—v
K=
(3.6) 1Lm Z (k=B—=1)""1®(B+7) < o0
K ooB=1_’y
and
K="
(3.7) Jim Y (n—F-1)TIG(B+ ) < oo,
B=1—v

then every solution w(k) of (1.1) with (1.2) satisfies

(3.8) lim sup [ (x)

— Y < oQ.
koo KYYR(K) >
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Proof. Let w(k) be a nonoscillatory solution of (1.1) with (1.2), say w(k) > 0
for K > K4 for some k1 > 0. Set F(k+7v) = V[k+v,w(k+7v)] — Ol +7v,w(k +7)].
It follows from (1.1) and (1.2) that

AT o(w)[A(w(K)]"] = @ (K +7) + T(k + 7w (K +7)
+ Uk + vy, w(k +7)] = Ok + 7, w(k +7)]
=0(k+7)+ T(k+y)w’(k+7v)+ F(k+7).

Using Lemma 2.6 yields

<o+ 7 (k=B =1)"HR(B+7) +T(B+7)w”(B+7) +F(B+7)
(k=B =17 HF(B+7)

o Y (k= B=1)T (B +y,w(B+7)] - OB+, w(B+7))
o Y (k=B=1)TIT(B+ W (B+7)

Ty O (=B 1) TS+ (B47)

[ _
<co+ W 5:1,7(1% -B—=1) 1|(I)(ﬂ +7)]
1 K1—1—v
F—-}j r=B =11 FB+ )
B=1—v
1 K1— ’Y )
T (k=B—=1)""T(B+7)w”(B+7)
7) B=1—v

466



K—"y

% Y (xm B2 (R4
1 =

ey D (=B 1084 (84 ) — (8 2w+ 7).

B=r1—7
Lemma 2.4 yields § = A a, X = w”’(B+ a), Y = (a/N)o(8+ a)/e(8+ «a) and
&= A/(A—a). Hence,

+

(3.10)  o(B+7)w(B+7) — (B +7)w (B +7)

_A aoc(f+7) a, a
= 2o+ (W BTGy~ TG

= 2+ 7) (xy - 527)
<i¢w+7%y§
A A—ajsaoc(B+7)\WVA-a)
<555
<2 (%)) (s e
=G(B+7).
Using (3.10) in (3.9) gives
Alo(r)[Aw(r)]"] < ¢ 6_21_ k=B =175+ )
_Z — 1) HF(B + )]
) 6;_7 (k=B =17 T(B+ 7w’ (B +7)
ﬁ _Zf k=B =178 +y)w” (8 +7)
(L Z (k—B—=1)"1G(s +7).
In view of (3.6) and (3.7)
(311)  Alo(s)[Au(x))] Fi Z (B 1)~ X (8 + ) (8 +7)
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for a constant ¢; > 0. Taking summation from k1 to kK — 1 we get

S Al Aw(x)])’] < i(m 2 = B 1Y T8+ w wm),

(3.12)  e(w)[Aw(r)]” = o(k1)[Aw(x )]

<01(/<;—/<;1)
k—1 e—y

Z Y = B-1)TIB+ N (B ),

6K1ﬂ e1—

(3.13) o(r)[Aw(k)]” := V(ﬁ).

Now

Aw(r)]” = V(Ii), Auw(s) = [V(/ﬁ)}l/u, '§ Aw(B) = Ki:l [M}l/u,

k—1
w(k) — w(ky Vv L Y
(k) = w(s) <V (),@;{@@}

w(r) < wlkr) + VY (R)R(x) = [%

+ Vl/”(ﬁ)}n(ﬁ),

for some K > ko, where ¢y = w(k1)/R(k2).
We shall apply the inequality

(3.14) (A+ B <2071 (A + B*), AB>0, u>1.

Also,

}y < [02 + Vl/u(li)]y < 2”7165 + 21/71[‘/—1/1/(&)]1/ < 21/7165 + 21/71‘/(&)

<2Vt 420t o(k1)[Aw(k1)]” + 2" ey (k — K1)
21/ 1 k—1 e—y

Z Y (e=B-1TYB+ N (B+7)
e=kK1 B=e1—v

eE ) Y kBT (54 ),
B=r1—v

v—1

< c3k+

and

Y (k=B-1)"TITBE+w(B+7)

B=r1—7

v—1

u(y+1)

(3.15) [1:1(7) R(n)}" <est
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for a constant c¢s > 0. Applying Holder’s inequality with Lemma 2.5 and Lemma 2.6

we have
S (- B 1B 4 ) (54 )
B=r1—7
Z e B S T(E e (E )
B=r1— B=K1—7
( Z TB+7)w"(B+7)
B=K1—7
1 1L/ R0 . . 1/m
:(<W)) <ﬁ_§f B+ w5+ )
for k > K1

(3.16) Z (k= B=1)""X(B+ 7w (8 +7)

K=y

1 1 1/1 - . 1/m
:<Wﬁ;”lr(1+vl)/rl(1+7)) < 2. TTB (6+7))

B=r1—7
L1+ )01+ 1+ 9DV R e . 1/m
( YT+ A1) (k1 + 1) ) <B=§—7T (B +7)w"™(B + 7))

k=7 1/m
= Ql/l( Z frm(ﬂ_’_,y)wum(ﬂ_’_v)) ’

B=k1—7

where Q = T(1 +v)T(k1 + 1 +41)/(y'T(1 + 41)T' (k1 + 1)). Using (3.16) in (3.15),

o > Tm(ﬂ+v)w”m(6+v)>l/m

B=r1—v

Z(k) = [

w(k) )}u -

2V*1
RV R (s TG+ 1)

K—" 1/m
<c3+D< > Tm(ﬁ+7)w”m(ﬁ+v)> :

B=k1—7y

Z™ (k) < <c3 + D(ﬁi TR 1 )™ (B + 7))mn)

<2 2D YT TT(E )™ (B + ).
B=r1—7
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By setting P, = 2™~ 'cf', Q) = 277'D™, VV™(x) = Z(k) and w*™(B + ) =
(B+7)™RY™ (B +v)O™(B + ) in the above inequality, we obtain

VE)SPL+Q > T(B+7)B+7)"R™(B+7)T(B+7).

B=kK1—v

Using Lemma 2.7,

Vi <Piew (3 T HE ) RE+))

B=k1—
Using (3.5),
lim sup ﬂ < 00.
koo KI/VR(K)
This completes the proof. ([

3.2. Nonoscillatory solutions of equation (1.1) with criteria (1.3). Consider
the equation
(3.17)
A[e(r)[Aw(x)]"] + Ok + v, w(k + )]
=®(k+7)+T(E+Vw(k+7) + Y[ +y,wE+7), wENI_,,
o0[Aw(0)]” = co.

The sufficient conditions under which any nonoscillatory solution w(k) of (1.1)
with (1.3) satisfies the following condition:

|lw(k)| = O(R(K)) as k — 0.

Theorem 3.2. Let conditions (H1)—(Hs) and (3.3) hold. Assume that there exist
real numbers ! > 1 and 0 < v < 1 such that I(y —1)+1> 0. If

(3.18) Y. YTEHNRT(BAA) <o, m=

L
B=r1—7 =1

and conditions (3.6) and (3.7) hold, then every solution w(k) of equation (1.1)
with (1.3) satisfies

(3.19) lim sup %EZ;' < oo
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Proof. Let w(x) be a nonoscillatory solution of equation (1.1) with (1.3), say
w(k) > 0 for k > k1 for some K1 > 0. Set Flk + 7] = Y[k + v,w(k + 7)] —
Ok + v, w(k +v)]. It follows from (1.1) and (1.3) that

A7o(k)[Aw(k)]"] = @(k +7) + T(k +7)w"(k +7)
+ U[k + v, w(k +7)] — Ok + 7, w(k +7)]
=®(k+v)+ T(k+y)w(k+7v) +F(k+7).

Using Lemma 2.6, we get

1 B
o(k)[Aw(k)]” < co + ) PRCENE

B=1—v

X (B+7)+YB+w"(B+7)+F(B+7))-

Proceeding as in the proof of Theorem 3.1, equation (3.11) is obtained in the following

form:
SR et i S (k= BT ) (84 2) = T
B=r1—7
_ Tl/y(ﬂ)
(Bl = S
Now

2z 2 ) 2
w(k) < w(ki) + T (k Z 0 YV(B) < w(ky) + T (K)R(k)
B=k1 < ['L;;,(E:)) —I—Tl/'/( )}R(/ﬁ),
’IU(H) 1/v
R(n) <es+TY (k)

for some K > Ka, where ¢5 = w(k1)/R(k2). Applying inequality (3.14), we have
(3.20)

[§3Y<M+Twww<w"%+w1wwww<w*¢+wlﬂm

=27l + 2" ey Z Y(B+7)w” (B+)(k = ~1)7"

1
SOTTe) 5%:7(#; —B=1)TY(B+ N (B+7).
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Repeating the procedure of the proof of Theorem 3.1 from equation (3.15) to (3.16),
we obtain

v—1

) V< 2 1/1 <« Tm vm Hm
|"<arime( X mermwmes)

K=y 1/m
<are( X TMBEemGE)

B=kK1—v

K=" 1/m\m
M™ (k) < <06 + 5( > XTB N (B+ v)) >
B=k1—
K="
<2m e +2mTIE™ Y T X (B A )W (B + ).

B=r1—7
By setting Py = 2™~ 1cl?, Qp = 2771E™ T(k) = M™(k) = TY™ (k) = M(k),

w(k) w’™ (k)

Mx) = {R(H)} - M) = ey
w™ (k) = M™(R)R"™ (k) = R™™()T (k),  w"™ (B +7) = R"™ (B +7)T (5 +7),

we obtain

T(k)<Pa+Q2 Y. YTT(B+7R™(B+1T(B+7).

B=r1—7

Using Lemma 2.7,

T(k) < P2exp (Qz Z_) T8 +7)R"™(B + 7))-

B=K1—v
Using (3.18), we finally arrive at
. w(k)
lim su < 00.
n—>oop R(H)
This completes the proof. ([

3.3. Nonoscillatory solutions of equation (1.1) with criteria (1.4). Consider

(3:21)  Aw(k) + Ok + 7, w(k +7)]
— B+ y) + Tl ) () + Uy w(e+ )], 6 e Ny,
w(0) = co.
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Theorem 3.3. Let conditions (H1)—(Hs3) hold. Assume that there exist real
numbers | > 1 and 0 < vy < 1 such that [(y—1)+1> 0. If

K=y
l
.22 T =
(3.22) > (B+7) <oo, m=7—,
B=r1—=7
then every solution w(k) of equation (1.1) with (1.4) satisfies

(3.23) lim sup |w(k)| < 0.

K— 00

Proof. Let w(k) be a nonoscillatory solution of equation (1.1) with (1.4), say
w(k) > 0 for k > Ky for some k1 > 0. By setting Flk + ] = Y[k + v, w(k + v)] —
Ok + v, w(k + )], it follows from (1.1) and (1.4) that

AVw(k) = ®(k +7) + T(k +7)w”’ (k +7)
+ Y[k + v, w(k +7)] — Ok + v, w(k + )]
= ®(k+7) + Y(k +y)w” (k +7) + F(r + 7).

Using Lemma 2.6, we get

w(k) < co + ﬁ (k— B — 17 (@(B + )+ T(B + 1) (B + )+ F(B +)).
B=1—v

Proceeding as in the proof of Theorem 3.1, equation (3.11) is obtained in the form

(3.24) w(k) < er + ﬁ > (k=B=1TTB+ Y (B+7)
B=1—v

for a constant ¢;7 > 0. Applying Holder’s inequality with Lemma 2.5 and Lemma 2.6,

we obtain
(3.25)
K= K= 1/m
o (k=B=D)TTBE+N(B+7) = Q! ( > B+ ™ (B +7)) :
B=1—v B=r1—v

where Q = T(1 +7)T'(k1 + 1 + 1)/ (v'T(1 +v)['(k1 + 1)). Using (3.27) in (3.26),
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K=y 1/m\m
wr) < (et a( X @) )
B=r1—7
K="
<2m e 2T N YT (B w ™ (B + ).
B=r1—7

By setting P3 = 2™~ 1clt, Q3 = 2m~1 7™ the above inequality yields

K=y
w(k) < P+ Qs Z T8+ )w"™(B+7).

B=r1—=7

Applying Lemma 2.7 we have

w(k) < Psexp (Qg Fi T8+ v)>~

B=r1—=7
From 3.24 we arrive at

lim sup w(k) < co.
K—00

This completes the proof. ([

4. EXAMPLES

Example 4.1. Consider the fractional difference equation

1 1
41 Al/2 — o—2(r+1/2) 3 1
(41) u(r) =e +1+(/<;+%)2w <H+2)
P(k+3) (er1/2), 1/ 1
TTr12)° w2 (s +3)
P(k+3) (er1/2), 13 1
_F(H+3)e w (H+§), I<L€N1/2.
In equation (4.1), v = %, ®(k) = e 2%, Y(k) = 1/(1+K2) , v = 3, O(k,w) =
p(r)w* = (D(k+1)/T(k + 5))e”"w!/?, ¥(x,w) = o(k)w* = (P(k +1)/T(k + §)) x
e w3 (k) = o(k) = e, A =3 a=2% A>a Abo,setl =1 m=
I/i1—-1) —1,l('y—1)+1:%>0andg(/£) k. Now
k—1 Kk—1 k—1 1
o —1/v __ —-1/3 __
R(”)*Z(@(ﬂ)) / *Zﬂ / *ZW
p=1 p=1 p=1
Also,
rk—1 1
Jm Rlw) = lim, 3 7 = o
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Moreover,

(pl)/ e = =

Q 436’

S TG 4B+ )R B )
B=1—vy

- B—1 .
1\2 1\1/3
Z % (1+(B+§>>Z(a+§) < 0.
B=0 e=1
Furthermore,
K="
. o 1yr-1
lim Y (k=1 BB+ )
B=1—v
[ee] oo F
= Z(K_ﬁ_ 1)"1/2e=2(x+1/2) Z e 21 < oo,
B=0 £=0 F H - 5 + )
K=y
. _a . 1yr-1
lim Y (= —1)7'C(B +7)
B=1—v
G (ﬁ+1/2) e~ 1/2 2
e
_ (ﬁ_ﬁ_l)—lﬂ e ¥ < .
2 B L el
Hence,
lim sup [w(r)] = lim sup wix) < 00

wooo RIVR(K)  pmve w1335 1 3173

Example 4.2. Consider the fractional difference equation

_l_

1 3
4.9 A3/4 (k374 L 3( _)
(42) ulw) = e 1+(n+§)3w Ty

=

o~ (K +3/4),,1/4 (K i Z)

+
—

e~ (R H3/4)1/2 (Ii + Z), K € Ny

H+ |+
S wfe

| =
TS F|a

In equation (4.2), v = 3, ®(k) = e™", T(k) = 1/1+x%) , v = 3, O(k,w) =
p(r)w = (D(k + 1)/T(k + }))e " w'/?, W(k,w) = o(k)w® = (C(k + 1)/T(r + §)) x
e rfwt/t (k) = o(k) = e, A = 2, a =1, A>a Also, set | =2, m = 2, with
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Moreover,

—0(K

A—a(c; ())/\/(/\—a)(b

(H))a/(a%) - =

k—3/4

— l/m 1
ﬁ;_v TBAYNRT(B ) = Z TGl QZ€+

Furthermore,
K=y
lim Y (= —1) BB+ )
B=1—v
= _ _ . L(k=pB) _ 3/4
- Z(H —B— 1) Ve (v H3/M) — Z — e (K +3/4) < o0,
B=0 B=0 F(K/_ﬁ_‘_ Z)
K="
lim o (k= —1)7'C(B +7)
B=1—v
— I 1 I(k-
S DCRVERIRLERES ph: L EORp
=0 8 Sﬁ = F(k—B+1)
Hence,
lim sup [wir)] = lim sup M < 00.

K—00 R(H) K—00 Z

Example 4.3. Ion traps, combined effect of electric and magnetic fields in
capturing ions, have a wide range of applications in physics, mass spectrometry and
in controlling quantum states. There are different types of traps with most commonly
used being Penning and Paul trap. Dynamic electric field is employed by Paul trap
also known as quadrupole ion trap to trap the charged particles. A relatively strong
influence on quadrupole ion traps is obtained with higher field imperfections. These
influence by the higher field imperfections are described by beat-envelope equation.
The motion of ion equation with octopole-only imperfections can be obtained as

(4.3) AV[A(w(k))] + 2qcos(2k)w(k + v) = —4dqas cos(2k)w(k + 7)3,

where w(k) represents the motion of ion, ay is the 4th field harmonic in comparison
to the quadrupole field, ¢ is a real parameter. This is the special case of discrete
fractional nonlinear equation (1.1).

Consider the fractional difference equation (1.1) with v = £, ®(x
v =1, O(k,w) = ¢(k)w* = 4dqascos(2r)w(k + 7)%, ¥(k,w) = o /@)wa =
2q cos(2k)w(k + ), @(Kk) = 267" cos(2k), (k) = cos(2k), ¢ = 3, au = e ", A =3,
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a=1,A>a Also,setl =1, m=10/(I1-1)=-1,1(y-1)+1=2>0and
o(k) = 1. Now

rk—1 k—1
R(k)=> (o8 1/”—211 >
B=1 B=1

Also,
Jim R(e) = Jim, Zl -
Moreover,
A—a/a A/A—a _ 1 /2 cos(2k)
_ bl a/a—A N
G =22 (Sotm) (el e,
K=y
D XTB+NB+NR(B+7Y) =0 < oo
B=1—vy
Furthermore,
K=y
. A 1yr—-1 _
3520521: (k=B =1)""'0(B+7) =0 < oo,
=1—v

K= o0

- B 1 /2 206+1
nlLII;O 521:7(1% —B-1)71G(B+) = Z(H -p-1)" 1/2 COS/(e,ﬁq_uz )

(k=P cos(26+1)
\[Z ﬁ—/3+ Jorz %

Hence,

|w(x)

lim sup M = lim sup 1| ) < o0
1

(
K—»00 fil/uR(fi) K—00 lﬁlzg;

5. CONCLUSION

The arrival of discrete fractional calculus in the framework of mathematical mod-
elling has provided researchers with new ideas to model systems with discrete-time
features and memory effects, which are quite common in real world scenario. The
main difficulty that we have faced lies in putting the main problem within the discrete
fractional settings and adopting the terminologies and corresponding definitions to
provide a correct platform. Furthermore, getting inequality (3.15) was challenging.
To proceed with this, we applied some fundamental techniques as well as mathe-
matical inequalities such as Holders, Youngs and Discrete Gronwalls inequalities to
analyse the results. To ensure the validity of theoretical results, three numerical
examples are presented.
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