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Abstract. Let k > 2 and let (P
(k)
n )n>2−k be the k-generalized Pell sequence defined by

P
(k)
n = 2P

(k)
n−1 + P

(k)
n−2 + . . .+ P

(k)
n−k

for n > 2 with initial conditions

P
(k)
−(k−2)

= P
(k)
−(k−3)

= . . . = P
(k)
−1 = P

(k)
0 = 0, P

(k)
1 = 1.

In this study, we handle the equation P
(k)
n = ym in positive integers n, m, y, k such that

k, y > 2, and give an upper bound on n. Also, we will show that the equation P
(k)
n = ym

with 2 6 y 6 1000 has only one solution given by P
(2)
7 = 132.

Keywords: Fibonacci and Lucas numbers; exponential Diophantine equation; linear forms
in logarithms; Baker’s method

MSC 2020 : 11B39, 11D61, 11J86

1. Introduction

Let k, r be integers with k > 2 and r 6= 0. Let (G
(k)
n )n>2−k be the linear recurrence

sequence of order k defined by

G(k)
n = rG

(k)
n−1 +G

(k)
n−2 + . . .+G

(k)
n−k

for n > 2 with the initial conditions G
(k)
−(k−2) = G

(k)
−(k−3) = . . . = G

(k)
−1 = G

(k)
0 = 0

and G
(k)
1 = 1. For r = 1, the sequence (G

(k)
n )n>2−k is called k-generalized Fibonacci
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sequence (F
(k)
n )n>2−k (see [6]). For r = 2, the sequence (G

(k)
n )n>2−k is called

k-generalized Pell sequence (P
(k)
n )n>2−k (see [13]). The terms of these sequences

are called k-generalized Fibonacci numbers and k-generalized Pell numbers, respec-

tively. When k = 2, we have Fibonacci and Pell sequences (Fn)n>0 and (Pn)n>0,

respectively.

There has been much interest in the question, when the terms of a linear recurrence

sequence are perfect powers. For instance, in [14], Ljunggren showed that for n > 2,

Pn is a perfect square precisely for P7 = 132 and Pn = 2x2 precisely for P2 = 2.

In [9], Cohn solved the same equations for Fibonacci numbers. Later, these problems

were extended by Bugeaud, Mignotte and Siksek (see [8]) for Fibonacci numbers and

by Pethő (see [16]) for Pell numbers. Pethő [16] and Cohn [10] independently found

all perfect powers in the Pell sequence. They proved:

Theorem 1. The only positive integer solution (n, y,m) with m > 2 and y > 2

of the Diophantine equation Pn = ym is given by (n,m, y) = (7, 2, 13).

Bugeaud, Mignotte and Siksek (see [8]) solved the Diophantine equation Fn = yp

for p > 2 using modular approach and classical linear forms in logarithms. Lastly,

Bravo and Luca handled this problem with y = 2, for k-generalized Fibonacci num-

bers. They showed in [6] that the Diophantine equation F
(k)
n = 2m in positive

integers (n,m) has the solutions (n,m) = (6, 3) for k = 2 and (n,m) = (t, t− 2) for

all 2 6 t 6 k + 1.

In this paper, we deal with the Diophantine equation

(1) P (k)
n = ym

in positive integers n, m with k, y > 2. Our main result is the following.

Theorem 2. Let 2 6 y 6 1000. Then Diophantine equation (1) has only the

solution (n,m, k, y) = (7, 2, 2, 13).

2. Preliminaries

The characteristic polynomial of the sequence (P
(k)
n )n>2−k is

(2) Ψk(x) = xk − 2xk−1 − . . .− x− 1.

We know from Lemma 1 of [19] that this polynomial has exactly one positive real

root located between 2 and 3. We denote the roots of the polynomial in (2) by
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α1, α2, . . . , αk. Particuarly, let α = α1 denote the positive real root of Ψk(x). The

positive real root α = α(k) is called dominant root of Ψk(x). The other roots are

strictly inside the unit circle. In [5], the Binet- like formula for k-generalized Pell

numbers is given by

(3) P (k)
n =

k
∑

j=1

(αj − 1)

α2
j − 1 + k(α2

j − 3αj + 1)
αn
j .

It was also shown in [5] that the contribution of the roots inside the unit circle to

formula (2) is very small, more precisely the approximation

(4) |P (k)
n − gk(α)α

n| < 1

2

holds for all n > 2− k, where

(5) gk(z) =
z − 1

(k + 1)z2 − 3kz + k − 1
.

From [3], we can give the inequality, which will be used in the proof of Lemma 8,

(6)
∣

∣

∣

(αj − 1)

α2
j − 1 + k(α2

j − 3αj + 1)

∣

∣

∣
< 1

for k > 2, where αj ’s for j = 1, 2, . . . , k are the roots of the polynomial in (2).

Throughout this paper, α denotes the positive real root of the polynomial given

in (2). The following relation between α and P
(k)
n given in [5] is valid for all n > 1.

(7) αn−2 6 P (k)
n 6 αn−1.

Furthermore, Kılıç in [13] proved that

(8) P (k)
n = F2n−1

for all 1 6 n 6 k + 1.

Lemma 3 ([5], Lemma 3.2). Let k, l > 2 be integers. Then:

(a) If k > l, then α(k) > α(l), where α(k) and α(l) are the values of α relative to k

and l, respectively.

(b) ϕ2(1− ϕ−k) < α < ϕ2, where ϕ = 1
2

(

1 +
√
5
)

is the golden section.

(c) gk(ϕ
2) = 1/(ϕ+ 2).

(d) 0.276 < gk(α) <
1
2 .
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For solving equation (1), we use linear forms in logarithms and Baker’s theory.

For this, we give some notations, lemmas and a theorem.

Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + . . .+ ad = a0

d
∏

i=1

(x− η(i)) ∈ Z[x],

where the ai’s are integers with gcd(a0, . . . , an) = 1 and a0 > 0 and the η(i)’s are

conjugates of η. Then

(9) h(η) =
1

d

(

log a0 +

d
∑

i=1

log(max{|η(i)|, 1})
)

is called the logarithmic height of η. In particular, if η = a/b is a rational number

with gcd(a, b) = 1 and b > 1, then h(η) = log(max{|a|, b}).
We give some properties of the logarithmic height whose proofs can be found in [7]:

h(η ± γ) 6 h(η) + h(γ) + log 2,(10)

h(ηγ±1) 6 h(η) + h(γ),(11)

h(ηm) = |m|h(η).(12)

Now, from Lemma 6 given in [4], we can deduce the estimation

(13) h(gk(α)) < 5 log k for k > 2,

which will be used in the proof of Lemma 8.

We give a theorem deduced from Corollary 2.3 of Matveev [15], which provides a

large upper bound for the subscript n in equation (1) (also see Theorem 9.4 in [8]).

Theorem 4. Assume that γ1, γ2, . . . , γt are positive real algebraic numbers in a

real algebraic number field K of degree D, b1, b2, . . . , bt are rational integers, and

Λ := γb1
1 . . . γbt

t − 1 is not zero. Then

|Λ| > exp(−1.4 · 30t+3t9/2D2(1 + logD)(1 + logB)A1A2 . . . At),

where B > max{|b1|, . . . , |bt|}, and Ai > max{Dh(γi), | log γi|, 0.16} for all i =

1, . . . , t.

In [12], Dujella and Pethő gave a version of the reduction method based on the

Baker and Davenport (see [1]). Then, in [2], the authors proved the following lemma,

which is an immediate variation of the result due to Dujella and Pethő from [12].

This lemma is based on the theory of continued fractions and will be used to lower

the upper bound obtained by Theorem 4 for the subscript n in (1).
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Lemma 5. Let M be a positive integer, let p/q be a convergent of the continued

fraction expansion of the irrational number γ such that q > 6M, and let A, B, µ

be some real numbers with A > 0 and B > 1. Let ε := ‖µq‖ − M‖γq‖, where ‖·‖
denotes the distance from x to the nearest integer. If ε > 0, then there exists no

solution to the inequality

0 < |uγ − v + µ| < AB−w

in positive integers u, v, and w with

u 6 M and w >
log(Aq/ε)

logB
.

The following lemma can be found in [11].

Lemma 6. Let a, x ∈ R. If 0 < a < 1 and |x| < a, then

| log(1 + x)| < − log(1 − a)

a
|x| and |x| < a

1− e−a
|ex − 1|.

Finally, we give the following lemma, which can be found in [17].

Lemma 7. If m > 1, T > (4m2)m and x/(log x)m < T, then x < 2mT (logT )m.

Before proving our result, we prove the following lemma, which gives an estimate

on n in terms of k and y.

Lemma 8. All solutions (n,m, k, y) of equation (1) satisfy the inequality

(14) n < 6.81 · 1012k4(log k)2 logn · log y.

P r o o f. Assume that P
(k)
n = ym with m, k, y > 2. If 1 6 n 6 k+1, then we have

P
(k)
n = F2n−1 = ym by (8). F2n−1 = ym is not satisfied for any n > 1 by Theorem 1

given in [8]. Then we suppose that n > k + 2, which implies that n > 4. Let α be

the positive real root of Ψk(x) given in (2). Then 2 < α < ϕ2 < 3 by Lemma 3 (b).

Using (7), we get αn−2 < ym < αn−1. Making necessary calculations, we obtain

(15) m < (n− 1)
logα

log y
6 (n− 1)

logϕ2

log 2
< 1.4n

for n > 4. Now, let us rearrange (1) using inequality (4). Thus, we have

(16) |ym − gk(α)α
n| < 1

2
.

If we divide both sides of inequality (16) by gk(α)α
n, from Lemma 3, we get

(17)
∣

∣

∣

ym

αngk(α)
− 1

∣

∣

∣
<

1

2gk(α)αn
<

1

0.552αn
<

1.82

αn
.
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In order to use Theorem 4, we take

(γ1, b1) := (y,m), (γ2, b2) := (α,−n), (γ3, b3) := (gk(α),−1).

The number field containing γ1, γ2, and γ3 is K = Q(α), which has degree D = k.

We show that the number

Λ1 :=
ym

αngk(α)
− 1

is nonzero. In contrast to this, assume that Λ1 = 0. Then

ym = αngk(α) =
α− 1

(k + 1)α2 − 3kα+ k − 1
αn.

Conjugating the above equality by some automorphism belonging to the Galois group

of the splitting field of Ψk(x) over Q and taking absolute values, we get

ym =
∣

∣

∣

αi − 1

(k + 1)α2
i − 3kαi + k − 1

αn
i

∣

∣

∣

for some i > 1. Using (6) and that |αi| < 1, we obtain from the last equality that

ym =
∣

∣

∣

αi − 1

(k + 1)α2
i − 3kαi + k − 1

∣

∣

∣
|αi|n < 1,

which is impossible since y > 2. Therefore Λ1 6= 0.

Moreover, since h(y) = log y, h(γ2) = (logα)/k < (log 3)/k by (9) and h(gk(α)) <

5 log k by (13), we can take A1 := k log y, A2 := log 3 and A3 := 5k log k. Also, since

m 6 1.4n, it follows that B := 1.4n. Thus, taking into account inequality (17) and

using Theorem 4, we obtain

1.82

αn
> |Λ1| > exp(−Ck2(1 + log k)(1 + log 1.4n)k log y · log 3 · 5k log k)

and so

n logα− log 1.82 < Ck2 · 3 log k · 2 logn · k log y · log 3 · 5k log k,

where C = 1.4 · 306 · 39/2 and we have used the fact that 1 + log k < 3 log k for

all k > 2 and 1 + log 1.4n < 2 logn for n > 4. From the last inequality, a quick

computation with Mathematica yields

n logα < 4.72 · 1012k4(log k)2 · logn · log y

or

n < 6.81 · 1012k4(log k)2 · logn · log y.
Thus, the proof is completed. �
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3. The proof of Theorem 2

Assume that Diophantine equation (1) is satisfied for 2 6 y 6 1000. If 1 6 n 6

k + 1, then we have P
(k)
n = F2n−1 = ym by (8). The equation F2n−1 = ym has no

solutions by Theorem 1 given in [8]. Then we suppose that n > k+2. If k = 2, then

we have P
(2)
n = Pn = ym, which implies that (n,m, k, y) = (7, 2, 2, 13) by Theorem 1.

Now, assume that k > 3. So, n > 5. On the other hand, since y 6 1000, it follows

that

(18)
n

logn
< 4.71 · 1013k4(log k)2

by (14). By Lemma 7, inequality (18) yields that

n < 2T logT,

where T := 4.71 · 1013k4(log k)2. Making necessary calculations, we get

(19) n < 3.3 · 1015k4(log k)3

for all k > 3.

Let k ∈ [3, 555]. Then, we obtain n < 7.9 · 1028 from (19). Now, let us try to
reduce this upper bound on n by applying Lemma 5. Let

z1 := m log y − n logα+ log
1

gk(α)

and x := ez1 − 1. Then from (17), it is seen that

|x| = |ez1 − 1| < 1.82

αn
< 0.12

for n > 5. Choosing a := 0.12, we get the inequality

|z1| = | log(x+ 1)| < log 100
88

0.12

1.82

αn
<

1.94

αn

by Lemma 6. Thus, it follows that

0 <
∣

∣

∣
m log y − n logα+ log

1

gk(α)

∣

∣

∣
<

1.94

αn
.

Dividing this inequality by logα, we get

(20) 0 < |mγ − n+ µ| < AB−w,

where

γ :=
log y

logα
, µ :=

1

logα
log

1

gk(α)
, A := 2.8, B := α, and w := n.
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It can be easily seen that log y/ logα is irrational. If it were not, then we could write

log y/ logα = b/a for some positive integers a and b. This implies that ya = αb.

Conjugating this equality by an automorphism belonging to the Galois group of the

splitting field of Ψk(x) over Q and taking absolute values, we get y
a = |αi|b for some

i > 1. This is impossible since |αi| < 1 and y > 2. Put

M := 1.106 · 1029,

which is an upper bound on m since m < 1.4n < 1.106 · 1029. Thus, we find that q91,
the denominator of the 91th convergent of γ, exceeds 6M. Furthermore, a quick

computation with Mathematica gives us that the value

log(Aq91/ε)

logB

is less than 164.9 for all k ∈ [3, 555]. So, if (20) has a solution, then

n <
log(Aq91/ε)

logB
6 164.9,

that is, n 6 164. In this case,m < 229 by (15). A quick computation with Mathemat-

ica gives us that the equation P
(k)
n = ym has no solutions for n ∈ [5, 164],m ∈ [2, 229)

and k ∈ [3, 555]. Thus, this completes the analysis in the case k ∈ [3, 555].

From now on, we can assume that k > 555. Then we can see from (19) that the

inequality

(21) n < 3.3 · 1015k4(log k)3 < ϕk/2−2 < ϕk/2

holds for k > 555.

Now, let λ > 0 be such that α+ λ = ϕ2. By Lemma 3 (b), we obtain

λ = ϕ2 − α < ϕ2 − ϕ2(1− ϕ−k) = ϕ2−k,

i.e.,

(22) λ <
1

ϕk−2
.

On the other hand,

αn = (ϕ2 − λ)n = ϕ2n
(

1− λ

ϕ2

)n

= ϕ2nen log(1−λ/ϕ2)

> ϕ2ne−nλ > ϕ2n(1 − nλ) > ϕ2n
(

1− n

ϕk−2

)

,

where we have used the facts that log(1 − x) > −ϕ2x for 0 < x < 0.907 and

e−x > 1− x for all x ∈ R \ {0}. Thus,

αn > ϕ2n − nϕ2n

ϕk−2
> ϕ2n − ϕ2n

ϕk/2
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by (21). Since α < ϕ2, it follows that

αn < ϕ2n +
ϕ2n

ϕk/2

and so we have

(23) |αn − ϕ2n| < ϕ2n

ϕk/2
.

Thus, we can write αn = ϕ2n + δ with |δ| < ϕ2n/ϕk/2. Also, the equality

(24) gk(α) = gk(ϕ
2) + η, |η| < 4k

ϕk

is given in Lemma 13 of [18]. Since gk(ϕ
2) = 1/(ϕ+ 2) by Lemma 3 (c), it follows

that

gk(α) =
1

ϕ+ 2
+ η.

Now we can give the following result.

Lemma 9. Let k > 555 and let α be the dominant root of the polynomial Ψk(x).

Let us consider gk(x) defined in (5) as a function of a real variable. Then

(25) gk(α)α
n =

ϕ2n

ϕ+ 2
+

δ

ϕ+ 2
+ ηϕ2n + ηδ,

where δ and η are real numbers such that

(26) |δ| < ϕ2n

ϕk/2
and |η| < 4k

ϕk
.

So, using (16), (25) and (26), we obtain

∣

∣

∣
ym − ϕ2n

ϕ+ 2

∣

∣

∣
=

∣

∣

∣
(ym − gk(α)α

n) +
δ

ϕ+ 2
+ ηϕ2n + ηδ

∣

∣

∣
(27)

6 |ym − gk(α)α
n|+ |δ|

ϕ+ 2
+ |η|ϕ2n + |η||δ|

<
1

2
+

ϕ2n

ϕk/2(ϕ+ 2)
+

4kϕ2n

ϕk
+

4kϕ2n

ϕ3k/2
.

Dividing both sides of the above inequality by ϕ2n/(ϕ+ 2), we get

|ymϕ−2n(ϕ+ 2)− 1| < ϕ+ 2

2ϕ2n
+

1

ϕk/2
+

4k(ϕ+ 2)

ϕk
+

4k(ϕ+ 2)

ϕ3k/2
(28)

<
0.05

ϕk/2
+

1

ϕk/2
+

0.005

ϕk/2
+

0.005

ϕk/2
=

1.06

ϕk/2
,
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where we have used the facts that n > k + 2 and

4k(ϕ+ 2)

ϕk
<

0.005

ϕk/2
and

4k(ϕ+ 2)

ϕ3k/2
<

0.005

ϕk/2
for k > 555.

In order to use the result of Theorem 4, we take

(γ1, b1) := (y,m), (γ2, b2) := (ϕ,−2n), (γ3, b3) := (ϕ+ 2, 1).

The number field containing γ1, γ2, and γ3 is K = Q
(√

5
)

, which has degree D = 2.

We show that the number

Λ1 := ymϕ−2n(ϕ+ 2)− 1

is nonzero. In contrast to this, assume that Λ1 = 0. Then ym(ϕ+2) = ϕ2n and con-

jugating this relation in Q
(√

5
)

, we get ym(β+2) = β2n, where β = 1
2

(

1−
√
5
)

= ϕ.

The left-hand side of the last equality is always greater than 1, while the right-hand

side is smaller than 1 because n > k + 2 > 512. This is a contradiction. Therefore

Λ1 6= 0. Moreover, since

h(γ1) = h(y) = log y, h(γ2) = h(ϕ) 6
logϕ

2

and

h(γ3) 6 h(ϕ) + h(2) + log 2 6
logϕ

2
+ log 4

by (11), we can take A1 := 2 log y, A2 := logϕ and A3 := log 16ϕ. Also, since

m < 1.4n by (15), we can take B := 2n. Thus, taking into account inequality (28)

and using Theorem 4, we obtain

(1.06) · ϕ−k/2 > |Λ1| > exp(−C(1 + log 2n)2 log y · logϕ · log 16ϕ),

where C = 1.4 · 30639/222(1 + log 2). This implies that

(29) k < 4.2 · 1013 logn,

where we have used the fact that (1 + log 2n) < 2.1 logn for n > k + 2 > 557. On

the other hand, from (19) we get

logn < log(3.3 · 1015k4(log k)3) < 35.8 + 4 log k + 3 log(log k) < 43 log k

for k > 3. So, from (29) we obtain

k < 4.2 · 1013 · 43 log k,

which implies that

(30) k < 7.1 · 1016.
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Substituting this bound of k into (19), we get n < 4.9 · 1087, which implies that
m < 6.86 · 1087 by (15).
Now, let

z2 := m log y − 2n logϕ+ log(ϕ+ 2)

and x := 1− ez2 . Then

|x| = |1− ez2 | < 1.06

ϕk/2
< 0.1

by (28) since k > 555. Choosing a := 0.1, we obtain the inequality

|z2| = | log(x+ 1)| < log 10
9

0.1

1.06

ϕk/2
<

1.12

ϕk/2

by Lemma 6. That is,

0 < |m log y − 2n logϕ+ log(ϕ+ 2)| < 1.12

ϕk/2
.

Dividing both sides of the above inequality by logϕ, it is seen that

(31) 0 < |mγ − 2n+ µ| < AB−w,

where

γ :=
log y

logϕ
, µ :=

log(ϕ+ 2)

logϕ
, A := 2.33, B := ϕ and w :=

1

2
k.

It is clear that log y/ logϕ is irrational. If it were not, then log y/ logϕ = a/b for some

positive integers a and b with. Thus, we get yb = ϕa. Conjugating this equality in

Q
(√

5
)

, we get yb = βa, which is impossible since βa < 1, where β = 1
2

(

1−
√
5
)

= ϕ.

Besides, if we takeM := 6.86 ·1087, which is an upper bound onm, we find that q212,
the denominator of the 212th convergent of γ, exceeds 6M. Furthermore, a quick

computation with Mathematica gives us that the value

log(Aq212/ε)

logB

is less than 614.4. So, if (31) has a solution, then

k

2
<

log(Aq212/ε)

logB
6 614.4,

that is, k 6 1228. Hence, from (19), we get n < 2.71 · 1030, which implies that m <

3.8 ·1030 by (15). If we apply again Lemma 5 to inequality (31) with M := 3.8 ·1030,
we find that q84, the denominator of the 84th convergent of γ, exceeds 6M. After

doing this, a quick computation with Mathematica shows that inequality (31) has

solutions only for k 6 552. This contradicts the fact that k > 555. Thus, the proof

is completed. �
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[18] Z. Şiar, R.Keskin: On perfect powers in k-generalized Pell-Lucas sequence. Available at
https://arxiv.org/abs/2209.04190 (2022), 17 pages.

[19] Z.Wu, H. Zhang: On the reciprocal sums of higher-order sequences. Adv. Difference
Equ. 2013 (2013), Article ID 189, 8 pages. zbl MR doi
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