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K Y B E R N E T I K A — V O L U M E 5 9 ( 2 0 2 3 ) , N U M B E R 5 , P A G E S 7 6 8 – 7 9 0

A CHARACTERIZATION OF UNINORMS ON BOUNDED
LATTICES VIA CLOSURE AND INTERIOR OPERATORS

Gül Deniz Çaylı

Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the
present study, we introduce two novel construction approaches for uninorms on bounded lattices
with a neutral element, where some necessary and sufficient conditions are required. These
constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator
on a bounded lattice. Some illustrative examples are also included to help comprehend the
newly added classes of uninorms.

Keywords: bounded lattice, closure operator, uninorm, interior operator, T-norm, T-
conorm
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1. INTRODUCTION

Triangular norms (t-norms, for short) and triangular conorms (t-conorms, for short) were
introduced by Menger [41] in 1942 and Schweizer and Sklar [46] in 1961, respectively, in
the framework of probabilistic metric spaces. T-norms and t-conorms perform as natu-
ral extensions of logical connectives, namely conjunction, and disjunction, respectively,
in fuzzy set theory and fuzzy logic. Therefore, these operators have been extensively
used in many various branches of science, such as fuzzy set theory, fuzzy logic, fuzzy
systems modeling, decision-making, probabilistic metric spaces, approximate reasoning,
and information aggregation [3, 25, 26, 33, 37, 38, 39, 47].

Uninorms on the unit interval [0, 1], as aggregation functions simultaneously gener-
alizing t-norms and t-conorms, were introduced by Yager and Rybalov [50] in 1996 and
studied comprehensively by Fodor et al. [30] in 1997. Since then, they have been widely
involved in several research areas, such as neural networks [4], fuzzy system modeling
[48, 49, 51], decision-making [52], fuzzy mathematical morphology, image processing [31],
fuzzy logic, and in general [42]. Uninorms allow their neutral element to lie anywhere
in the unit interval instead of point 1 (which is the case of t-norms) or point 0 (which
is the case of t-conorms). There are abundant investigations concerning uninorms (e. g.,
[18, 19, 20, 23, 24]).

Since bounded lattices are more general structures than the unit interval, the gener-
alization of binary aggregation operators from the real unit interval to bounded lattices
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becomes a rather hot topic. The definition of uninorms from the real unit interval to
bounded lattices was straightforwardly generalized by Karaçal and Mesiar [36] in 2015.
They also identified the smallest and largest uninorms on bounded lattices. Hitherto,
these operators on bounded lattices have caught intensive attention, notably several
construction approaches have been presented in the literature. Bodjanova and Kalina
[6, 7] described the structure of uninorms derived from both t-norms and t-conorms
on bounded lattices. Subsequently, Çaylı et al. [15] introduced two methods for ob-
taining internal and locally internal uninorms on bounded lattices based on only one of
the t-norm and the t-conorm. Moreover, Çaylı [10] examined the structure of idempo-
tent uninorms on bounded lattices with a neutral element. Dan et al. [16], and Dan
and Hu [17] proposed further characterizations of uninorms on bounded lattices. We
can also find some other related constructions of uninorms on bounded lattices (e. g.,
[2, 8, 9, 12, 28, 32, 34, 44, 53]).

In a general topology, letting the set K 6= ∅ and ℘ (K) be the set of all subsets of
K, if a map int : ℘ (K)→ ℘ (K) (resp. cl : ℘ (K)→ ℘ (K)) is idempotent, isotone and
contractive (resp. expansive), then it is said to be an interior (resp. closure) operator on
℘ (K). Both these maps can be applied for generating topologies on K [27]. In especial,
from the set of all interior (closure) operators on ℘ (K) to one of all topologies on K, a
one-to-one correspondence exists. That is to say that the interior (closure) operator on
℘ (K) can be generated by any topology on K. Notably, interior (closure) operators on
a lattice (℘ (K) ,⊆) can be described when the set intersection and union are meet and
join, respectively. Thence, the interior (resp. closure) operator on ℘ (K) to a lattice L
was generalized by Everett [29], where the condition int (K) = K (resp. cl (∅) = ∅) is
removed.

By using closure and interior operators on bounded lattices, the generation ap-
proaches of uninorms were improved by Ouyang and Zhang [43]. In particular, their
constructions encompass, as a special case, those introduced in [36]. In this case, one
can consider whether new classes of uninorms on bounded lattices with a neutral element
are constructed by interior and closure operators. Motivated by this consideration, in
the present study, we characterize two new classes of uninorms on bounded lattices via
closure and interior operators. Characterization examinations are important working ar-
eas since they present the necessary structures for uninorms on bounded lattices. More
precisely, we primarily introduce a new method for yielding uninorms on a bounded
lattice L with the neutral element e ∈ L\{0L, 1L} utilizing a t-norm on [0L, e]

2 and a

closure operator L. Next, based on a t-conorm on [e, 1L]
2

and an interior operator L, we
propose a dual construction of uninorms on L. Moreover, we investigate the relationship
between our methods and the ones described in [9, 14, 53]. We also demonstrate that
the tools in the present paper are different from the approaches in [9, 14, 43, 53]. Ac-
cordingly, it is worth noting that the characterization of uninorms on bounded lattices
via closure and interior operators contributes to enriching and analyzing the classes of
uninorms on bounded lattices.

The remainder of this paper is organized as follows: In Section 2, we provide some
basic definitions and properties related to uninorms on bounded lattices. In Section 3,
we develop two methods for yielding uninorms on a bounded lattice L with a neutral
element e ∈ L\{0L, 1L}, where some necessary and sufficient conditions are required.
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These constructions exploit an interior operator on L and a t-conorm on [e, 1L]
2
, or a

closure operator on L and a t-norm on [0L, e]
2
. Furthermore, we present some illustrative

examples in order to emphasize the differences between our methods and the existing
ones. In the final section, some conclusions of our discussion are listed.

2. PRELIMINARIES

In this section, we recall some basic concepts and results related to bounded lattices (for
more information, see, e. g., [5]) and uninorms on them.

A poset (L,6) is a nonempty set L equipped with an order relation 6 (i. e., a reflexive,
antisymmetric and transitive binary relation). For a, b ∈ L, the notation a < b means
that a 6 b and a 6= b. The notation a ‖ b implies that a and b are incomparable, i. e.,
neither a 6 b nor b < a. Ia denotes the set of all elements incomparable with a, i. e.,
Ia = {u ∈ L : u‖a}. An element a of a subset P of L is called a smallest (resp. greatest)
element of P if x > a (resp. x 6 a) for all x ∈ P. L is called bounded if it has a greatest
(also known as top) element and a smallest (also known as bottom) element.

An element a of a poset (L,6) with the bottom element 0L is an atom if 0L < a
and there is no element u in L such that 0 < u < a (i. e., a is a minimal element in L
obtained by excluding 0L). The concept of coatom is defined dually.

A lattice (L,6) is a poset such that any two elements a and b have a greatest lower
bound (called meet or infimum), denoted by a ∧ b, as well as a smallest upper bound
(called join or supremum), denoted by a ∨ b. In this paper, unless otherwise stated, L
denotes a bounded lattice (L,6,∧,∨) with a top element 1L and a bottom element 0L.

For a, b ∈ L with a 6 b, the subinterval [a, b] of L is defined such that

[a, b] = {u ∈ L : a 6 u 6 b}.

The subintervals [a, b[, ]a, b], and ]a, b[ of L can be defined similarly. ([a, b],6,∧,∨) is a
bounded lattice with the top element b and the bottom element a.

Definition 2.1. (Çaylı et al. [15], Karaçal and Mesiar [36]) A function U : L×L→ L
is said to be a uninorm if, for any a, b, c ∈ L, the following conditions are fulfilled:

(i) U(b, a) = U(a, b) (commutativity);

(ii) If b 6 a, then U(b, c) 6 U(a, c) (increasingness);

(iii) U(b, U(a, c)) = U(U(b, a), c) (associativity);

(iv) There is an element e ∈ L, called a neutral element, such that U(b, e) = b (neutral
element).

In particular, a uninorm U is a t-norm T (resp. t-conorm S) if e = 1L (resp. e = 0L)
(for more information about t-norms and t-conorms, see, e. g., [1, 11, 13, 35, 40, 45]).

Example 2.2. (i) The largest t-norm is T∧ on [a, b]2 defined such that T∧(x, y) =
x ∧ y for all x, y ∈ [a, b], while the smallest one TW on [a, b]2 takes the value of
x ∧ y if b ∈ {x, y} and a otherwise. Thus, we obtain that TW 6 T 6 T∧ for any
t-norm T on [a, b]2.
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(ii) The smallest t-conorm is S∨ on [a, b]2 defined such that S∨(x, y) = x ∨ y for all
x, y ∈ [a, b], while the largest one SW on [a, b]2 takes the value of x∨y if a ∈ {x, y}
and b otherwise. Thus, we obtain that S∨ 6 S 6 SW for any t-conorm S on [a, b]2.

Proposition 2.3. (Karaçal and Mesiar [36]) Let U be a uninorm on L with a neutral
element e ∈ L\{0L, 1L}. Then, the following statements hold:

(i) U | [0L, e]
2 : [0L, e]

2 → [0L, e] is a t-norm.

(ii) U | [e, 1L]2 : [e, 1L]2 → [e, 1L] is a t-conorm.

Definition 2.4. (Drossos [21], Drossos and Navara [22], Everett [29]) A function cl :
L → L is said to be a closure operator if, for any a, b ∈ L, the following conditions are
fulfilled:

(i) Expansion: b 6 cl(b).

(ii) Preservation of join: cl(a ∨ b) = cl(a) ∨ cl(b).

(iii) Idempotence: cl (cl(b)) = cl(b).

By (i), the case (iii) is equivalent to cl (cl(b)) 6 cl(b). Additionally, (ii) implies to
(ii)′ : cl(a) 6 cl(b) if a 6 b. Observe that Birkhoff [5] defines a closure operator by (i),
(ii)′ and (iii).

Definition 2.5. (Drossos [21], Drossos and Navara [22], Everett [29]) A function int :
L→ L is said to be an interior operator if, for any a, b ∈ L, the following conditions are
fulfilled:

(i) Contraction: int(b) 6 b.

(ii) Preservation of meet: int(a ∧ b) = int(a) ∧ int(b).

(iii) Idempotence: int (int(b)) = int(b).

By (i), the case (iii) is equivalent to int(b) 6 int (int(b)). Additionally, (ii) implies
to (ii)′ : int(a) 6 int(b) if a 6 b. Observe that Birkhoff [5] defines an interior operator
by (i), (ii)′ and (iii).

In the following, we recall the construction methods for uninorms on bounded lattices
introduced by [9, 14, 53].

Theorem 2.6. (Çaylı [9], Theorem 8) Let e ∈ L\{0L, 1L}, T : [0L, e]
2 → [0L, e] be a

t-norm, and S : [e, 1L]2 → [e, 1L] be a t-conorm. Then the function U : L2 → L, given
by the formula (1), is a uninorm on L with a neutral element e iff x < y for all x < e
and y ∈ Ie.

U (a, b) =



T (a, b) if (a, b) ∈ [0L, e]
2,

a ∧ b
if (a, b) ∈ [0L, e[× Ie ∪ Ie × [0L, e[

∪ [0L, e[× [e, 1L] ∪ [e, 1L]× [0L, e[ ,
b if (a, b) ∈ {e} × Ie,
a if (a, b) ∈ Ie × {e} ,
S (a ∨ e, b ∨ e) otherwise.

(1)
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Theorem 2.7. (Zhao and Wu [53], Proposition 3.5) Let e ∈ L\{0L, 1L}, T : [0L, e]
2 →

[0L, e] be a t-norm, and cl : L → L be a closure operator. If cl (p) ∨ cl (q) ∈ Ie for all
p, q ∈ Ie or cl (p) ∨ cl (q) ∈ ]e, 1L] for all p, q ∈ Ie, then the function U : L2 → L, given
by the formula (2), is a uninorm on L with a neutral element e iff x < y for all x < e
and y ∈ Ie.

U (a, b) =



T (a, b) if (a, b) ∈ [0L, e]
2,

a ∧ b
if (a, b) ∈ [0L, e[× Ie ∪ Ie × [0L, e[

∪ [0L, e[× [e, 1L] ∪ [e, 1L]× [0L, e[ ,
b if (a, b) ∈ {e} × (Ie ∪ ]e, 1L]) ,
a if (a, b) ∈ (Ie ∪ ]e, 1L])× {e} ,
cl (a) ∨ cl (b) if (a, b) ∈ Ie × Ie,
1L otherwise.

(2)

Theorem 2.8. (Zhao and Wu [53], Proposition 3.6) Let e ∈ L\{0L, 1L}, T : [0L, e]
2 →

[0L, e] be a t-norm, S : [e, 1L]2 → [e, 1L] be a t-conorm, and cl : L → L be a closure
operator. If p ‖ q for all p ∈ Ie and q ∈ [e, 1L[ , then the function U : L2 → L, given by
the formula (3), is a uninorm on L with a neutral element e iff x < y for all x < e and
y ∈ Ie.

U (a, b) =



T (a, b) if (a, b) ∈ [0L, e]
2,

S (a, b) if (a, b) ∈ [e, 1L]2,
1L if (a, b) ∈ ]e, 1L]× Ie ∪ Ie × ]e, 1L] ,
b if (a, b) ∈ {e} × Ie,
a if (a, b) ∈ Ie × {e} ,
cl (a) ∨ cl (b) if (a, b) ∈ Ie × Ie,
a ∧ b otherwise.

(3)

Theorem 2.9. (Çaylı [14], Theorem 3.1) Let e ∈ L\{0L, 1L}, T : [0L, e]
2 → [0L, e] be a

t-norm, and cl : L→ L be a closure operator. Then the function U : L2 → L, given by
the formula (4), is a uninorm on L with a neutral element e iff x < y for all x < e and
y ∈ Ie.

U (a, b) =



T (a, b) if (a, b) ∈ [0L, e]
2,

a ∧ b
if (a, b) ∈ [0L, e[× Ie ∪ Ie × [0L, e[

∪ [0L, e[× [e, 1L] ∪ [e, 1L]× [0L, e[ ,
b if (a, b) ∈ {e} × (Ie ∪ [e, 1L]) ,
a if (a, b) ∈ (Ie ∪ [e, 1L])× {e} ,
cl (a) ∨ cl (b) otherwise.

(4)

Theorem 2.10. (Çaylı [14], Theorem 3.4) Let e ∈ L\{0L, 1L}, T : [0L, e]
2 → [0L, e] be

a t-norm, S : [e, 1L]2 → [e, 1L] be a t-conorm, and cl : L → L be a closure operator. If
p < q for all p ∈ Ie, q ∈ ]e, 1L] , and cl (p) ∨ cl (q) ∈ Ie for all p, q ∈ Ie, then the function
U : L2 → L, given by the formula (5), is a uninorm on L with a neutral element e iff



A characterization of uninorms on bounded lattices via closure and interior operators 773

x < y for all x < e and y ∈ Ie.

U (a, b) =



T (a, b) if (a, b) ∈ [0L, e]
2,

S (a, b) if (a, b) ∈ [e, 1L]2,

a ∧ b
if (a, b) ∈ [0L, e[× Ie ∪ Ie × [0L, e[

∪ [0L, e[× [e, 1L] ∪ [e, 1L]× [0L, e[ ,
b if (a, b) ∈ {e} × Ie,
a if (a, b) ∈ Ie × {e} ,
cl (a) ∨ cl (b) if (a, b) ∈ Ie × Ie,
a ∨ b otherwise.

(5)

3. CONSTRUCTION APPROACHES FOR UNINORMS

In this section, we introduce in Theorem 3.1 a novel method for getting the family of
uninorm U(T,cl) on a bounded lattice L with a neutral element e. The uninorm U(T,cl)

is derived from a t-norm T on [0L, e]
2 and a closure operator cl on L. In addition, we

propose in Theorem 3.11 a different method to obtain the family of uninorm U(S,int) on
L with a neutral element e. This construction is based on the existence of a t-conorm S
on [e, 1L]2 and an interior operator int on L.

Theorem 3.1. Let e ∈ L\{0L, 1L} and T : [0L, e]
2 → [0L, e] be a t-norm. The function

U(T,cl) : L×L→ L, given by the formula (6), is a uninorm on L with a neutral element
e for every closure operator cl : L → L iff f > g and d ∨ f ∈ Ie ∪ {1L} for all d, f ∈ Ie
and g ∈ [0L, e[.

U(T,cl) (a, b) =



T (a, b) if (a, b) ∈ [0L, e]
2,

1L if (a, b) ∈ ]e, 1L]
2
,

cl (a) ∨ cl (b) if (a, b) ∈ ]e, 1L]× Ie ∪ Ie × ]e, 1L] ,
a ∨ b if (a, b) ∈ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [e, 1L])× {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [e, 1L]) ,
a ∧ b otherwise.

(6)

P r o o f . Necessity. Let the function U(T,cl) be a uninorm on L with a neutral element
e. We first demonstrate that f > g for all f ∈ Ie, g ∈ [0L, e[ . Suppose that there exist
the elements f ∈ Ie, g ∈ ]0L, e[ such that f ‖ g. Then we have that

U(T,cl)(g, U(T,cl)(f, 1L)) = U(T,cl)(g, cl (f) ∨ cl (1L)) = U(T,cl)(g, 1L) = g ∧ 1L = g,

and

U(T,cl)(U(T,cl)(g, f), 1L) = U(T,cl)(g ∧ f, 1L) = g ∧ f ∧ 1L = g ∧ f,

which contradicts the associativity property of U(T,cl). Consequently, f > g for all
f ∈ Ie, g ∈ [0L, e[ .
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Now, we verify that d ∨ f ∈ Ie ∪ {1L} for all d, f ∈ Ie. Suppose that there exist the
elements d, f ∈ Ie such that e < d ∨ f < 1L. Then, for the closure operator cl : L → L
given by cl (x) = x for all x ∈ L, we get that

U(T,cl)(d ∨ f, U(T,cl)(d, f)) = U(T,cl)(d ∨ f, d ∨ f) = 1L,

and

U(T,cl)(U(T,cl)(d ∨ f, d), f) = U(T,cl)(cl (d ∨ f) ∨ cl (d) , f) = U(T,cl)(cl (d ∨ f) , f)
= U(T,cl)(d ∨ f, f) = cl (d ∨ f) ∨ cl (f) = cl (d ∨ f) = d ∨ f,

which contradicts the associativity property of U(T,cl). Consequently, d ∨ f ∈ Ie ∪ {1L}
for all d, f ∈ Ie.

Sufficiency. Let f > g and d ∨ f ∈ Ie ∪ {1L} for all d, f ∈ Ie and g ∈ [0L, e[ .
We verify that U(T,cl) is a uninorm on L with a neutral element e. Clearly, U(T,cl) is
commutative and e is a neutral element of U(T,cl). Therefore, it remains to verify the
increasingness and associativity of U(T,cl). Increasingness: We prove that, for all a, b, c ∈
L, U(T,cl)(a, c) 6 U(T,cl)(b, c) if a 6 b. If c = e, then U(T,cl)(a, c) = U(T,cl)(a, e) = a 6

b = U(T,cl)(b, e) = U(T,cl)(b, c). If (a, b) ∈ [0L, e[
2 ∪ {e}2 ∪ ]e, 1L]

2 ∪ I2e, the increasingness
holds. So, we consider all remaining possible cases.

1. Let a ∈ [0L, e[ .
1.1. b = e and c ∈ [0L, e[,

U(T,cl)(a, c) = T (a, c) 6 c = U(T,cl)(e, c) = U(T,cl)(b, c).

1.2. b = e and c ∈ ]e, 1L] ∪ Ie,

U(T,cl)(a, c) = a ∧ c 6 c = U(T,cl)(e, c) = U(T,cl)(b, c).

1.3. b ∈ ]e, 1L] ∪ Ie and c ∈ [0L, e[ ,

U(T,cl)(a, c) = T (a, c) 6 b ∧ c = U(T,cl)(b, c).

1.4. b, c ∈ ]e, 1L] ,

U(T,cl)(a, c) = a ∧ c 6 1L = U(T,cl)(b, c).

1.5. (b ∈ Ie and c ∈ ]e, 1L]) or (b ∈ ]e, 1L] and c ∈ Ie),

U(T,cl)(a, c) = a ∧ c 6 cl (b) ∨ cl (c) = U(T,cl)(b, c).

1.6. b, c ∈ Ie,
U(T,cl)(a, c) = a ∧ c 6 b ∨ c = U(T,cl)(b, c).

2. Let a = e and b ∈ ]e, 1L].
2.1. c ∈ [0L, e[ ,

U(T,cl)(a, c) = U(T,cl)(e, c) = c = b ∧ c = U(T,cl)(b, c).
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2.2. c ∈ ]e, 1L],

U(T,cl)(a, c) = U(T,cl)(e, c) = c 6 1L = U(T,cl)(b, c).

2.3. c ∈ Ie,

U(T,cl)(a, c) = U(T,cl)(e, c) = c 6 cl (b) ∨ cl (c) = U(T,cl)(b, c).

3. Let a ∈ Ie and b ∈ ]e, 1L] .
3.1. c ∈ [0L, e[,

U(T,cl)(a, c) = a ∧ c 6 b ∧ c = U(T,cl)(b, c).

3.2. c ∈ ]e, 1L],

U(T,cl)(a, c) = cl (a) ∨ cl (c) 6 1L = U(T,cl)(b, c).

3.3. c ∈ Ie,
U(T,cl)(a, c) = a ∨ c 6 cl (b) ∨ cl (c) = U(T,cl)(b, c).

Associativity: We prove that U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl)(U(T,cl)(a, b), c) for all
a, b, c ∈ L. The associativity holds if e ∈ {a, b, c} . So, we consider all remaining possible
cases.

1. Let a ∈ [0L, e[ .
1.1. b, c ∈ [0L, e[,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, T (b, c)) = T (a, T (b, c))
= T (T (a, b), c) = U(T,cl)(T (a, b), c)
= U(T,cl)(U(T,cl)(a, b), c).

1.2. b ∈ [0L, e[ and c ∈ ]e, 1L] ∪ Ie,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, b ∧ c) = U(T,cl) (a, b) = T (a, b)
= T (a, b) ∧ c = U(T,cl)(T (a, b), c)
= U(T,cl)(U(T,cl)(a, b), c).

1.3. b ∈ ]e, 1L] ∪ Ie and c ∈ [0L, e[,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, b ∧ c) = U(T,cl) (a, c) = T (a, c)
= U(T,cl) (a, c) = U(T,cl) (a ∧ b, c)
= U(T,cl)(U(T,cl)(a, b), c).

1.4. b, c ∈ ]e, 1L] ,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, 1L) = a ∧ 1L = a = a ∧ c
= U(T,cl) (a, c) = U(T,cl) (a ∧ b, c)
= U(T,cl)(U(T,cl)(a, b), c).

1.5. (b ∈ Ie and c ∈ ]e, 1L]) or (b ∈ ]e, 1L] and c ∈ Ie),

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, cl (b) ∨ cl (c)) = a ∧ (cl (b) ∨ cl (c))
= a = a ∧ c = U(T,cl) (a, c) = U(T,cl) (a ∧ b, c)
= U(T,cl)(U(T,cl)(a, b), c).
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1.6. b, c ∈ Ie,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, b ∨ c) = a ∧ (b ∨ c) = a
= a ∧ c = U(T,cl) (a, c) = U(T,cl) (a ∧ b, c)
= U(T,cl)(U(T,cl)(a, b), c).

2. Let a ∈ ]e, 1L] ∪ Ie.
2.1. b, c ∈ [0L, e[,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl)(a, T (b, c)) = a ∧ T (b, c)
= T (b, c) = U(T,cl) (b, c) = U(T,cl) (a ∧ b, c)
= U(T,cl)(U(T,cl)(a, b), c).

2.2. b ∈ [0L, e[ and c ∈ ]e, 1L] ∪ Ie,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, b ∧ c) = U(T,cl) (a, b) = a ∧ b
= b = b ∧ c = U(T,cl) (b, c) = U(T,cl) (a ∧ b, c)
= U(T,cl)(U(T,cl)(a, b), c).

3. Let a ∈ ]e, 1L].
3.1. b ∈ ]e, 1L] and c ∈ [0L, e[ ,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, b ∧ c) = U(T,cl) (a, c) = a ∧ c
= c = 1L ∧ c = U(T,cl) (1L, c)
= U(T,cl)(U(T,cl)(a, b), c).

3.2. b ∈ Ie and c ∈ [0L, e[ ,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, b ∧ c) = U(T,cl) (a, c) = a ∧ c = c
= (cl (a) ∨ cl (b)) ∧ c = U(T,cl) (cl (a) ∨ cl (b) , c)
= U(T,cl)(U(T,cl)(a, b), c).

3.3. b, c ∈ ]e, 1L],

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, 1L) = 1L
= U(T,cl)(1L, c) = U(T,cl)(U(T,cl)(a, b), c).

3.4. b ∈ ]e, 1L] and c ∈ Ie,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, cl (b) ∨ cl (c)) = 1L
= cl (1L) ∨ cl (c) = U(T,cl)(1L, c)
= U(T,cl)(U(T,cl)(a, b), c).

3.5. b ∈ Ie and c ∈ ]e, 1L],

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, cl (b) ∨ cl (c)) = 1L
= U(T,cl)(cl (a) ∨ cl (b) , c)
= U(T,cl)(U(T,cl)(a, b), c).
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3.6. b, c ∈ Ie,

U(T,cl)

(
a, U(T,cl) (b, c)

)
= U(T,cl) (a, b ∨ c)

=

{
U(T,cl) (a, 1L) if b ∨ c = 1L,
cl (a) ∨ cl (b ∨ c) if b ∨ c ∈ Ie,

=

{
1L if b ∨ c = 1L,
cl (a ∨ b ∨ c) if b ∨ c ∈ Ie,

= cl (a ∨ b ∨ c)
= U(T,cl)(cl (a) ∨ cl (b) , c)
= U(T,cl)(U(T,cl)(a, b), c).

4. Let a ∈ Ie.
4.1. b ∈ ]e, 1L] and c ∈ [0L, e[ ,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, b ∧ c) = U(T,cl) (a, c) = a ∧ c = c
= (cl (a) ∨ cl (b)) ∧ c = U(T,cl) (cl (a) ∨ cl (b) , c)
= U(T,cl)(U(T,cl)(a, b), c).

4.2. b, c ∈ ]e, 1L] ,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, 1L) = cl (a) ∨ cl (1L)
= 1L = U(T,cl)(cl (a) ∨ cl (b) , c)
= U(T,cl)(U(T,cl)(a, b), c).

4.3. b ∈ ]e, 1L] and c ∈ Ie,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, cl (b) ∨ cl (c)) = cl (a) ∨ cl (b) ∨ cl (c)
= U(T,cl)(cl (a) ∨ cl (b) , c)
= U(T,cl)(U(T,cl)(a, b), c).

5. Let a, b ∈ Ie.
5.1. c ∈ [0L, e[ ,

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, b ∧ c) = U(T,cl) (a, c) = a ∧ c
= c = (a ∨ b) ∧ c = U(T,cl) (a ∨ b, c)
= U(T,cl)(U(T,cl)(a, b), c).

5.2. c ∈ ]e, 1L],

U(T,cl)(a, U(T,cl)(b, c)) = U(T,cl) (a, cl (b) ∨ cl (c))
= cl (a ∨ b ∨ c)

=

{
1L if a ∨ b = 1L,
cl (a ∨ b ∨ c) if a ∨ b ∈ Ie,

=

{
U(T,cl) (1L, c) if a ∨ b = 1L,
cl (a ∨ b) ∨ cl (c) if a ∨ b ∈ Ie,

= U(T,cl)(a ∨ b, c)
= U(T,cl)(U(T,cl)(a, b), c).



778 G. D. ÇAYLI

5.3. c ∈ Ie,

U(T,cl)

(
a, U(T,cl) (b, c)

)
= U(T,cl) (a, b ∨ c)

=

{
U(T,cl) (a, 1L) if b ∨ c = 1L,
a ∨ b ∨ c if b ∨ c ∈ Ie,

=

{
cl (a) ∨ cl (1L) if b ∨ c = 1L,
a ∨ b ∨ c if b ∨ c ∈ Ie,

=

{
1L if b ∨ c = 1L,
a ∨ b ∨ c if b ∨ c ∈ Ie,

and
U(T,cl)(U(T,cl)(a, b), c) = U(T,cl) (a ∨ b, c)

=

{
U(T,cl) (1L, c) if a ∨ b = 1L,
a ∨ b ∨ c if a ∨ b ∈ Ie,

=

{
cl (1L) ∨ cl (c) if a ∨ b = 1L,
a ∨ b ∨ c if a ∨ b ∈ Ie,

=

{
1L if a ∨ b = 1L,
a ∨ b ∨ c if a ∨ b ∈ Ie,

implying that U(T,cl)

(
a, U(T,cl) (b, c)

)
= U(T,cl)(U(T,cl)(a, b), c).

Therefore, U(T,cl) is an associative, commutative, and increasing function on L with
a neutral element e. Accordingly, U(T,cl) is a uninorm on L. �

Remark 3.2. Notice that the uninorm U(T,cl) : L× L→ L in Theorem 3.1 can be also
defined such that

U(T,cl) (a, b) =



T (a, b) if (a, b) ∈ [0L, e]
2,

1L if (a, b) ∈ ]e, 1L]
2
,

a
if (a, b) ∈ [0L, e[× Ie ∪ [0L, e[× [e, 1L]

∪ (Ie ∪ [e, 1L])× {e} ,

b
if (a, b) ∈ Ie × [0L, e[ ∪ [e, 1L]× [0L, e[

∪ {e} × (Ie ∪ [e, 1L]) ,
a ∨ b if (a, b) ∈ Ie × Ie,
cl (a) ∨ cl (b) if (a, b) ∈ Ie × ]e, 1L] ∪ ]e, 1L]× Ie.

Remark 3.3. From Remark 3.2, the structure of the uninorm U(T,cl) : L × L → L is
illustrated in Figure 1.

If we take in Theorem 3.1 the t-norm T : [0L, e]
2 → [0L, e] stated by T = T∧, we

define the corresponding uninorm as the following structure:

Corollary 3.4. Let e ∈ L\{0L, 1L}. The function U(cl) : L × L → L, given by the
formula (7), is a uninorm on L with a neutral element e for every closure operator
cl : L→ L iff f > g and d ∨ f ∈ Ie ∪ {1L} for all d, f ∈ Ie and g ∈ [0L, e[.

U(cl) (a, b) =



1L if (a, b) ∈ ]e, 1L]
2
,

cl (a) ∨ cl (b) if (a, b) ∈ ]e, 1L]× Ie ∪ Ie × ]e, 1L] ,
a ∨ b if (a, b) ∈ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [e, 1L])× {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [e, 1L]) ,
a ∧ b otherwise.

(7)
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T (a, b)

1L

a cl(a) ∨ cl(b)

a

b b

cl(a) ∨ cl(b)

a ∨ b

0L e

e

1L

1L

a||e

b||e

Fig. 1. Uninorm U(T,cl) : L× L→ L in Theorem 3.1.

If we allow in Theorem 3.1 to be an atom of the element e ∈ L\{0L, 1L}, we define
the corresponding uninorm as the following structure:

Corollary 3.5. Let e ∈ L\{0L, 1L} be an atom. The function U(e,cl) : L×L→ L, given
by the formula (8), is a uninorm on L with a neutral element e for every closure operator
cl : L→ L iff d ∨ f ∈ Ie ∪ {1L} for all d, f ∈ Ie.

U(e,cl) (a, b) =



1L if (a, b) ∈ ]e, 1L]
2
,

cl (a) ∨ cl (b) if (a, b) ∈ ]e, 1L]× Ie ∪ Ie × ]e, 1L] ,
a ∨ b if (a, b) ∈ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [e, 1L])× {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [e, 1L]) ,
0L otherwise.

(8)

Remark 3.6. Let e ∈ L\{0L, 1L}, S : [e, 1L]
2 → [e, 1L] be a t-conorm and cl : L → L

be a closure operator. We introduce in Theorem 3.1 a new construction approach for
uninorms on bounded lattices. To be more precise,

(i) If (a, b) ∈ ]e, 1L]
2 ∪ ]e, 1L]× Ie ∪ Ie× ]e, 1L]∪ I2e, the method in [9, Theorem 8] puts

for U(a, b) the value of S (a ∨ e, b ∨ e) . On the other hand, when (a, b) ∈ ]e, 1L]
2

(resp. (a, b) ∈ I2e) our construction puts for U(T,cl)(a, b) the value of 1L (resp. a∨b).
Moreover, in our construction U(T,cl)(a, b) = cl (a) ∨ cl (b) for (a, b) ∈ ]e, 1L]× Ie ∪
Ie × ]e, 1L] . However, both constructions coincide in the remaining domains;

(ii) If (a, b) ∈ ]e, 1L]
2 ∪ I2e, the method in [14, Theorem 3.1] puts for U(a, b) the value

of cl (a) ∨ cl (b) . On the other hand, when (a, b) ∈ ]e, 1L]
2

(resp. (a, b) ∈ I2e) our
construction puts for U(T,cl)(a, b) the value of 1L (resp. a ∨ b). However, both
constructions coincide in the remaining domains;
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(iii) If (a, b) ∈ ]e, 1L]
2

(resp. (a, b) ∈ ]e, 1L] × Ie ∪ Ie × ]e, 1L]), the method in [14,
Theorem 3.4] puts for U(a, b) the value of S (a, b) (resp. a ∨ b). Furthermore, in
[14, Theorem 3.4] U(a, b) = cl (a) ∨ cl (b) for (a, b) ∈ I2e. On the other hand, when

(a, b) ∈ ]e, 1L]
2

(resp. (a, b) ∈ ]e, 1L] × Ie ∪ Ie × ]e, 1L]) our construction puts for
U(T,cl)(a, b) the value of 1L (resp. cl (a) ∨ cl (b)). Moreover, in our construction
U(T,cl)(a, b) = a ∨ b for (a, b) ∈ I2e. However, both constructions coincide in the
remaining domains;

(iv) If (a, b) ∈ I2e (resp. (a, b) ∈ ]e, 1L]
2 ∪ ]e, 1L] × Ie ∪ Ie × ]e, 1L]), the method in [53,

Proposition 3.5] puts for U(a, b) the value of cl (a)∨ cl (b) (resp. 1L). On the other
hand, when (a, b) ∈ I2e (resp. (a, b) ∈ ]e, 1L]× Ie∪ Ie× ]e, 1L]) our construction puts
for U(T,cl)(a, b) the value of a∨b (resp. cl (a)∨cl (b)). Moreover, in our construction

U(T,cl)(a, b) = 1L for (a, b) ∈ ]e, 1L]
2
. However, both constructions coincide in the

remaining domains.

Remark 3.7. Let e ∈ L\{0L, 1L}. If we define the closure operator cl : L → L such
that cl(x) = x for all x ∈ L, then the following statements hold:

(i) the uninorm U(T,cl) in Theorem 3.1 coincides with the uninorm in [14, Theorem
3.1], where e is a coatom;

(ii) the uninorm U(T,cl) in Theorem 3.1 coincides with the uninorm in [14, Theorem
3.4], where the t-conorm S : [e, 1L]2 → [e, 1L] is S = SW ;

(iii) the uninorm U(T,cl) in Theorem 3.1 coincides with the uninorm in [53, Proposition
3.5], where b1 ‖ b2 for all b1 ∈ [e, 1L[ , b2 ∈ Ie;

(iv) the uninorm U(T,cl) in Theorem 3.1 coincides with the uninorm in [53, Proposition
3.6], where b1 ‖ b2 for all b1 ∈ [e, 1L[ , b2 ∈ Ie, and the t-conorm S : [e, 1L]2 → [e, 1L]
is S = SW .

It should be pointed out that the uninorm constructed by the method in Theorem
3.1 does not have to coincide with those introduced in [9, Theorem 8], [14, Theorems 3.1
and 3.4], and [53, Propositions 3.5 and 3.6]. In the following examples, we demonstrate
this observation.

Example 3.8. Consider the lattice L1 = {0L1
, u, v, y, z, r, e, 1L1

} characterized by Hasse
diagram in Figure 2.

Define the closure operator cl : L1 → L1 such that cl(x) = x for all x ∈ L1. By
using the construction approach in Theorem 3.1, the uninorm U1

(T,cl) : L1 × L1 → L1 is

given as in Table 1. Clearly, U1
(T,cl) (r, r) = 1L1 , U

1
(T,cl) (r, u) = r and U1

(T,cl) (y, z) = z.

On the other hand, the uninorms U1 and U2 constructed by [14, Theorem 3.1] and [53,
Proposition 3.5], respectively, satisfy that U1 (r, r) = r and U2 (r, u) = 1L1

. Moreover,
the uninorm U3 in [9, Theorem 8] satisfies that U3 (y, z) = 1L1

. Hence, U1
(T,cl) differs

from the uninorms U1, U2 and U3 on L1.
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1L1

z r

y v e

u

0L1

Fig. 2. The lattice L1.

U1
(T,cl) 0L1

e u v y z r 1L1

0L1
0L1

0L1
0L1

0L1
0L1

0L1
0L1

0L1

e 0L1
e u v y z r 1L1

u 0L1 u u v y z r 1L1

v 0L1
v v v z z r 1L1

y 0L1
y y z y z 1L1

1L1

z 0L1 z z z z z 1L1 1L1

r 0L1
r r r 1L1

1L1
1L1

1L1

1L1
0L1

1L1
1L1

1L1
1L1

1L1
1L1

1L1

Tab. 1. Uninorm U1
(T,cl) on L1.

Example 3.9. Consider the lattice L2 = {0L2
, s,m, n, e, 1L2

} characterized by Hasse
diagram in Figure 3.

Define the closure operator cl : L2 → L2 such that cl(0L2) = cl(s) = s, cl(n) =
cl(m) = m and cl(e) = cl(1L2

) = 1L2
. By virtue of the construction approach in Theorem

3.1, the uninorm U2
(T,cl) : L2×L2 → L2 is given as in Table 2 when considering the t-norm

T∧ : [0L2
, e]2 → [0L2

, e]. Clearly, U2
(T,cl) (n, n) = n. On the other hand, the uninorms U4

and U5 constructed by [14, Theorem 3.4] and [53, Proposition 3.6], respectively, satisfy
that U4 (n, n) = U5 (n, n) = m. Hence, U2

(T,cl) differs from the uninorms U4 and U5 on
L2.

Remark 3.10. Notice that the uninorm U(T,cl) in Theorem 3.1 coincides with the t-

conorm SW on [e, 1L]
2
. However, U(T,cl) does not have to coincide with another t-conorm

except SW on [e, 1L]
2
. To demonstrate this observation, considering the lattice L1 in

Figure 2, we define the closure operator cl : L1 → L1 such that cl(x) = 1L1 for all x ∈ L1.

Assume that the uninorm U(T,cl) | [e, 1L1
]
2

is the t-conorm S∨ : [e, 1L1
]
2 → [e, 1L1

] . By
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1L2

m e

n

s

0L2

Fig. 3. The lattice L2.

U2
(T,cl) 0L2 s n m e 1L2

0L2
0L2

0L2
0L2

0L2
0L2

0L2

s 0L2 s s s s s
n 0L2 s n m n 1L2

m 0L2
s m m m 1L2

e 0L2 s n m e 1L2

1L2 0L2 s 1L2 1L2 1L2 1L2

Tab. 2. Uninorm U2
(T,cl) on L2.

applying the construction approach in Theorem 3.1, we obtain

U(T,cl) (u, r) = cl (u) ∨ cl (r) = 1L1
> r = S∨ (r, r) = U(T,cl) (r, r) ,

for u ∈ Ie and r > e with u < r. It contradicts the increasingness property of U(T,cl).
Therefore, U(T,cl) does not have to coincide with any t-conorm except the t-conorm SW

on [e, 1L1
]
2
.

We suggest in Theorem 3.11 a dual construction method for uninorms on bounded
lattices. Namely, based on a t-conorm S on [e, 1L]2 and an interior operator int on L,
we define the family of uninorm U(S,int) on L with a neutral element e.

Theorem 3.11. Let e ∈ L\{0L, 1L} and S : [e, 1L]
2 → [e, 1L] be a t-conorm. The

function U(S,int) : L×L→ L, given by the formula (9), is a uninorm on L with a neutral
element e for every interior operator int : L→ L iff f < h and d ∧ f ∈ Ie ∪ {0L} for all
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d, f ∈ Ie, h ∈ ]e, 1L].

U(S,int) (a, b) =



S (a, b) if (a, b) ∈ [e, 1L]2,

0L if (a, b) ∈ [0L, e[
2
,

int (a) ∧ int (b) if (a, b) ∈ Ie × [0L, e[ ∪ [0L, e[× Ie,
a ∧ b if (a, b) ∈ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [0L, e])× {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [0L, e]) ,
a ∨ b otherwise.

(9)

P r o o f . It is similar to that of Theorem 3.1. �

Remark 3.12. Notice that the uninorm U(S,int) : L × L → L in Theorem 3.11 can be
also defined such that

U(S,int) (a, b) =



S (a, b) if (a, b) ∈ [e, 1L]2,

0L if (a, b) ∈ [0L, e[
2
,

a
if (a, b) ∈ ]e, 1L]× Ie ∪ ]e, 1L]× [0L, e]

∪ (Ie ∪ [0L, e])× {e} ,

b
if (a, b) ∈ Ie × ]e, 1L] ∪ [0L, e]× ]e, 1L]

∪ {e} × (Ie ∪ [0L, e]) ,
a ∧ b if (a, b) ∈ Ie × Ie,
int (a) ∧ int (b) if (a, b) ∈ Ie × [0L, e[ ∪ [0L, e[× Ie.

Remark 3.13. From Remark 3.12, the structure of the uninorm U(S,int) : L × L → L
is illustrated in Figure 4.

If we take in Theorem 3.11 the t-conorm S : [e, 1L]
2 → [e, 1L] given by S = S∨, we

define the corresponding uninorm as the following structure:

Corollary 3.14. Let e ∈ L\{0L, 1L}. The function U(int) : L × L → L, given by the
formula (10), is a uninorm on L with a neutral element e for every interior operator
int : L→ L iff f < h and d ∧ f ∈ Ie ∪ {0L} for all d, f ∈ Ie, h ∈ ]e, 1L].

U(int) (a, b) =



0L if (a, b) ∈ [0L, e[
2
,

int (a) ∧ int (b) if (a, b) ∈ Ie × [0L, e[ ∪ [0L, e[× Ie,
a ∧ b if (a, b) ∈ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [0L, e])× {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [0L, e]) ,
a ∨ b otherwise.

(10)

If we allow in Theorem 3.11 to be a coatom of the element e ∈ L\{0L, 1L}, we define
the corresponding uninorm as the following structure:



784 G. D. ÇAYLI

0L

S(a, b)

int(a) ∧ int(b) a

b

a int(a) ∧ int(b)

b

a ∧ b

0L e

e

1L

1L

a||e

b||e

Fig. 4. Uninorm U(S,int) : L× L→ L in Theorem 3.11.

Corollary 3.15. Let e ∈ L\{0L, 1L} be a coatom. The function U(e,int) : L × L → L,
given by the formula (11), is a uninorm on L with a neutral element e for every interior
operator int : L→ L iff d ∧ f ∈ Ie ∪ {0L} for all d, f ∈ Ie.

U(e,int) (a, b) =



0L if (a, b) ∈ [0L, e[
2
,

int (a) ∧ int (b) if (a, b) ∈ Ie × [0L, e[ ∪ [0L, e[× Ie,
a ∧ b if (a, b) ∈ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [0L, e])× {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [0L, e]) ,
1L otherwise.

(11)

Remark 3.16. Let e ∈ L\{0L, 1L}, T : [0L, e]
2 → [0L, e] be a t-norm and int : L → L

be an interior operator. We suggest in Theorem 3.11 a new construction approach for
uninorms on bounded lattices. To be more precise,

(i) If (a, b) ∈ [0L, e[
2∪ [0L, e[× Ie∪ Ie× [0L, e[∪ I2e, the method in [9, Theorem 11] puts

for U(a, b) the value of T (a ∧ e, b ∧ e) . On the other hand, when (a, b) ∈ [0L, e[
2

(resp. (a, b) ∈ I2e) our construction puts for U(S,int)(a, b) the value of 0L (resp.
a ∧ b). Moreover, in our construction U(S,int)(a, b) = int (a) ∧ int (b) for (a, b) ∈
[0L, e[ × Ie ∪ Ie × [0L, e[ . However, both constructions coincide in the remaining
domains;

(ii) If (a, b) ∈ [0L, e[
2 ∪ I2e, the method in [14, Theorem 3.10] puts for U(a, b) the value

of int (a) ∧ int (b) . On the other hand, when (a, b) ∈ [0L, e[
2

(resp. (a, b) ∈ I2e)
our construction puts for U(S,int)(a, b) the value of 0L (resp. a∧ b). However, both
constructions coincide in the remaining domains;
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(iii) If (a, b) ∈ [0L, e[
2

(resp. (a, b) ∈ [0L, e[ × Ie ∪ Ie × [0L, e[), the method in [14,
Theorem 3.12] puts for U(a, b) the value of T (a, b) (resp. a ∧ b). Furthermore, in
[14, Theorem 3.12] U(a, b) = int (a) ∧ int (b) for (a, b) ∈ I2e. On the other hand,

when (a, b) ∈ [0L, e[
2

(resp. (a, b) ∈ [0L, e[×Ie∪Ie×[0L, e[) our construction puts for
U(S,int)(a, b) the value of 0L (resp. int (a)∧ int (b)). Moreover, in our construction
U(S,int)(a, b) = a ∧ b for (a, b) ∈ I2e. However, both constructions coincide in the
remaining domains;

(iv) If (a, b) ∈ I2e (resp. (a, b) ∈ [0L, e[
2 ∪ [0L, e[ × Ie ∪ Ie × [0L, e[), the method in [53,

Corollary 4.2] puts for U(a, b) the value of int (a)∧ int (b) (resp. 0L). On the other
hand, when (a, b) ∈ I2e (resp. (a, b) ∈ [0L, e[ × Ie ∪ Ie × [0L, e[) our construction
puts for U(S,int)(a, b) the value of a ∧ b (resp. int (a) ∧ int (b)). Moreover, in our

construction U(S,int)(a, b) = 0L for (a, b) ∈ [0L, e[
2
. However, both constructions

coincide in the remaining domains.

Remark 3.17. Let e ∈ L\{0L, 1L}. If we define the interior operator int : L→ L such
that int(x) = x for all x ∈ L, then the following statements hold:

(i) the uninorm U(S,int) in Theorem 3.11 coincides with the uninorm in [14, Theorem
3.10], where e is an atom;

(ii) the uninorm U(S,int) in Theorem 3.11 coincides with the uninorm in [14, Theorem
3.12], where the t-norm T : [0L, e]

2 → [0L, e] is T = TW ;

(iii) the uninorm U(S,int) in Theorem 3.11 coincides with the uninorm in [53, Corollary
4.2], where c1 ‖ c2 for all c1 ∈ ]0L, e] , c2 ∈ Ie;

(iv) the uninorm U(S,int) in Theorem 3.11 coincides with the uninorm in [53, Corollary
4.4], where c1 ‖ c2 for all c1 ∈ ]0L, e] , c2 ∈ Ie and the t-norm T : [0L, e]

2 → [0L, e]
is T = TW

Similarly to Examples 3.8 and 3.9, we can show that the uninorm obtained via the
approach in Theorem 3.11 does not have to coincide with the ones introduced by [9,
Theorem 11], [14, Theorems 3.10 and 3.12], and [53, Corollaries 4.2 and 4.4].

Remark 3.18. Let e ∈ L\{0L, 1L}, cl : L → L be a closure operator, and int : L → L
be an interior operator. The uninorms obtained by the methods in Theorems 3.1 and
3.11 do not have to coincide with those introduced by [43, Theorems 4.1 and 5.1]. That
is to say

(i) the uninorm U(T,cl) in Theorem 3.1 satisfies that U(T,cl) (0L, 1L) = 0L and U(T,cl) (1L, x) =
1L for any x ∈ Ie;

(ii) the uninorm U(S,int) in Theorem 3.11 satisfies that U(S,int) (0L, 1L) = 1L and
U(S,int) (0L, x) = 0L for any x ∈ Ie;
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(iii) the uninorm U in [43, Theorem 4.1] satisfies that U (0L, 1L) = 1L and U (0L, x) = x
for any x ∈ Ie;

(iv) the uninorm U in [43, Theorem 5.1] satisfies that U (0L, 1L) = 0L and U (1L, x) = x
for any x ∈ Ie.

Remark 3.19. Notice that the uninorm U(S,int) in Theorem 3.11 coincides with the

t-norm TW on [0L, e]
2
. However, U(S,int) does not have to coincide with another t-norm

except TW on [0L, e]
2
. To illustrate this fact, take the lattice L3 = {0L3 , k, s, n, e, 1L3}

depicted by Hasse diagram in Figure 5. We define the interior operator int : L3 → L3

such that int(0L3
) = 0L3

, int(e) = int(s) = int(k) = k, int(n) = n and int(1L3
) = 1L3

.

Assume that the uninorm U(S,int) | [0L3
, e]

2
is the t-norm T ′ : [0L3

, e]
2 → [0L3

, e] given
as in Table 3.

1L3

n e

s

k

0L3

Fig. 5. The lattice L3.

T ′ 0L3
k s e

0L3
0L3

0L3
0L3

0L3

k 0L3 0L3 0L3 k
s 0L3

0L3
s s

e 0L3
k s e

Tab. 3. T-norm T ′ on [0L3 , e]
2.

By applying the construction approach in Theorem 3.11, we obtain

U(S,int)

(
U(S,int) (s, s) , n

)
= U(S,int) (T ′ (s, s) , n) = U(S,int) (s, n) = int(s) ∧ int(n) = k,

and

U(S,int)

(
s, U(S,int) (s, n)

)
= U(S,int) (s, int(s) ∧ int(n)) = U(S,int) (s, k) = T ′ (s, k) = 0L3

,
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which contradicts the associativity property of U(S,int). Therefore, U(S,int) does not have

to coincide with any t-norm except the t-norm TW on [0L3 , e]
2
.

4. CONCLUSION

This paper characterized two new families of uninorms on bounded lattices by virtue of
the closure and interior operators. We introduced two novel methods to obtain uninorms
on a bounded lattice L with a neutral element e ∈ L\{0L, 1L}, where some necessary
and sufficient conditions are required. It should be noted that our methods are derived
from a t-norm on [0L, e]

2
and a closure operator on L, or a t-conorm on [e, 1L]

2
and

an interior operator on L. Subsequently, some specific examples were included to help
comprehend the newly added classes of uninorms. Furthermore, we investigate how our
approaches compare with some methods outlined in [9, 14, 53]. We also demonstrate
that our construction approaches do not have to coincide with the known ones.
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