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CONVEX (L,M)-FUZZY REMOTE NEIGHBORHOOD
OPERATORS

Hu Zhao, Li-Yan Jia and Gui-Xiu Chen

In this paper, two kinds of remote neighborhood operators in (L,M)-fuzzy convex spaces are
proposed, which are called convex (L,M)-fuzzy remote neighborhood operators. It is proved
that these two kinds of convex (L,M)-fuzzy remote neighborhood operators can be used to
characterize (L,M)-fuzzy convex structures. In addition, the lattice structures of two kinds of
convex (L,M)-fuzzy remote neighborhood operators are also given.

Keywords: convex (L,M)-fuzzy remote neighborhood operator, (L,M)-fuzzy convex
structure, complete lattice

Classification: 03E72, 52A01, 54A40

1. INTRODUCTION

Convex sets widely exist in various research areas of mathematics, such as metric spaces,
lattices, graphs, and topological spaces (see, for example, [4, 5, 13, 14]). In order to
deal with set-theoretic structures satisfying several axioms which are satisfied by usual
convex sets, abstract convex structures [15] were established, which provides a more
general framework for studying convex sets.

Many scholars generalized convex structures to fuzzy context from different view-
points. Generally speaking, there are three approaches to extensions of convex structures
to the fuzzy context, they are called L-convex structures (see, for example, [5, 9, 10]),
M -fuzzying convex structures (see, for example,[11, 17]), and (L,M)-fuzzy convex struc-
tures (see, for example,[12, 22, 23, 24]), respectively. Actually, both L-convex structures
and M -fuzzifying convex structures can be regarded as special cases of (L,M)-fuzzy
convex structures (see [12]). At present, many researchers studied fuzzy convex struc-
tures from different aspects, such as fuzzy hull operators, fuzzy interval operators, bases
and subbases, product and coproduct structures, fuzzy betweenness relations, and so on
(see, for example [7, 8, 12, 25, 26, 27]).

Wang [16] established the theory of remote neighborhood systems, which played im-
portant role in TML. Subsequently, Yue and Fang [21] proposed the concept of fuzzy
remote neighborhood systems in FTML, and studied the connections between fuzzy co-
topologies and topological fuzzy remote neighborhood systems. More generally, Yang
and Li [20] introduced the concept of topological remote neighborhood systems of fuzzy
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points in the (L,M)-fuzzy setting, and gave the relationship between (L,M)-fuzzy co-
topologies and topological (L,M)-fuzzy remote neighborhood systems. Using the idea
of remote neighborhood systems, Yang and Li [18] firstly proposed the concept of convex
L-remote neighborhood systems in L-convex spaces, then Yang and Pang [19] studied
the relationship between convex L-remote neighborhood systems and L-betweenness re-
lations. Note that (L,M)-fuzzy convex structure is the more general framework than
L-convex structures and M -fuzzying convex structures. Inspired by this, we will study
convex remote neighborhood operators in (L,M)-fuzzy setting.

The contents are organized as follows. In Section 2, we recall some necessary concepts
and results. In Section 3, we will propose the concept of the first kind of convex (L,M)-
fuzzy remote neighborhood operators, and discuss the categorical relationship between
this kind of operators and (L,M)-fuzzy convex structures. In Section 4, we will propose
the concept of the second kind of convex (L,M)-fuzzy remote neighborhood operators,
and also establish the categorical relationship between this kind of operators and (L,M)-
fuzzy convex structures.

2. PRELIMINARIES

In this paper, let M(L) be a complete lattice with the smallest element ⊥M (⊥L) and
the largest element ⊤M (⊤L). M⊥M

= M − {⊥M}. An element u in a complete lattice
M is said to be coprime if u ≤ s∨t implies that u ≤ s or u ≤ t. The set of all coprimes in
M⊥M

is denoted by J(M). ∀ u, s ∈ M, we say that u is wedge below s in M (in symbols,
u ≺ s) if for all subsets D ⊆ M, s ≤

∨
D always implies that u ≤ d for some d ∈ D.

We denote β(x) = {y ∈ M | y ≺ x}. A complete lattice M is said to be completely
distributive iff for each x ∈ M,x =

∨
β(x) =

∨
β∗(x), where β∗(x) = β(x) ∩ J(M) is

called the standard greatest minimal family of x (see [16]).

∀u, s ∈ L, we say that u is way below s in L (in symbols, u ≪ s) if for all directed
subsets D ⊆ L, s ≤

∨
D always implies that u ≤ d for some d ∈ D. A complete

lattice L is said to be continuous if for all x ∈ L,⇓ x is directed and x =
∨

⇓ x,

where ⇓ x = {y ∈ L | y ≪ x}. For a directed subset D ⊆ L, we use
∨d

D to denote its
supremum. Let L be a continuous lattice, then way below relations have some properties
as follows : (1) u ≪ s implies u ≤ s; (2) u ≪

∨d
D implies u ≪ d for some d ∈ D; (3)

If u is a coprime, we have u ≪ s if and only if u ≺ s (see [2]).

For a nonempty set X, LX denotes the set of all L-subsets on X. The operators
on L can be translated onto LX in a pointwise way. If L is a continuous lattice, then
LX is also a continuous lattice. The way below relation on LX is still denoted by
≪ . The smallest element and the largest element in LX are denoted by ⊥X

L and ⊤X
L ,

respectively. For each x ∈ X and µ ∈ L− {⊥L}, the L-subset xµ is called a fuzzy point
when xµ(y) = µ if y = x and xµ(y) = ⊥L if y ̸= x. The set of all fuzzy points in LX is
denoted by J(LX). For each γ ∈ L, let γ denote the constant L-fuzzy subset of X with

the value γ. We say {Ci}i∈I is directed subset of LX , if for each Ci1 , Ci2 ∈ {Ci}i∈I , there
exists Ci3 ∈ {Ci}i∈I such that Ci1 ≤ Ci3 and Ci2 ≤ Ci3 . We usually use the symbol∨d

i∈I Ci to represent the supremum of a directed subset {Ci}i∈I ⊆ LX . Let X,Y be
two nonempty sets. For an ordinary mapping h : X −→ Y, then the preimage h←(S)
of S ∈ LY and the image h→(U) of U ∈ LX are defined by:h←(S)(x) = S(h(x)),
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and h→(U)(y) =
∨
{U(x) | x ∈ X,h(x) = y}, respectively It can be verified that the

pair (h→, h←) is a Galois connection on (LX ,≤) and (LY ,≤). It is easy to check that
h→(xγ) = h(x)γ ∈ J(LY ) ( ∀ xγ ∈ J(LX)).

Definition 2.1. (Fang and Yue [1]) A mapping C : LX −→ M is called an (L,M)-fuzzy
closure system on X if it satisfies:

(LMC1) C(⊥X
L ) = C(⊤X

L ) = ⊤M ;

(LMC2)
∧

i∈I C(Ui) ≤ C(
∧

i∈I Ui).

Definition 2.2. (Pang [7], Pang [8], Shi and Xiu [12]) A closure system C is called
(L,M)-fuzzy convex structure, if one of the following conditions hold (the second then
following as a consequence):

(LMC3) If {Uk}k∈K ⊆ LX is totally ordered, then
∧

k∈K C(Uk) ≤ C(
∨

k∈K Uk).

(LMC3)* If {Ui}i∈I ⊆ LX is directed, then
∧

i∈I C(Ui) ≤ C(
∨d

i∈I Ui).

If C is an (L,M)-fuzzy convex structure on X, then the pair (X,C) is called an
(L,M)-fuzzy convex space. Let (X,CX) and (Y,CY ) be (L,M)-fuzzy convex spaces and
g : X −→ Y be a mapping. We say g is called (L,M)-convexity preserving ((L,M)-CP,
in short) (see [7, 12]) if CY (S) ≤ CX(g←(S)) for all S ∈ LY . It is easy to check that
all (L,M)-fuzzy convex spaces as objects and all corresponding (L,M)-CP mappings as
morphisms form a category, denoted by (L,M)-FC.

Remark 2.3. (Zhao et al. [25]) The set of all (L,M)-fuzzy convex structrues on X
is denoted by FC(X,L,M). Define a relation ≤ on FC(X,L,M) as follows: ∀ U ∈
LX ,C1 ≤ C2 ⇐⇒ C1(U) ≤ C2(U). Then (FC(X,L,M),≤) is a complete lattice, where
C1 : LX −→ M defined by ∀A ∈ LX , C1(A) = ⊤M is the greatest element in (FC(X,L,M),
≤), and C : LX −→ M defined by C(A) =

∧
j∈J Cj(A) is the infimum of {Cj}j∈J ⊆ LX .

3. THE FIRST KIND OF CONVEX (L,M)-FUZZY REMOTE NEIGHBORHOOD
OPERATORS

In this section, L denotes a completely distributive De Morgan algebra and M denotes
a completely distributive lattice. We will give the concept of the first kind of con-
vex (L,M)-fuzzy remote neighborhood operators, and discuss categorical relationship
between this kind of operators and (L,M)-fuzzy convex structures.

Definition 3.1. Let X be a set. A mapping R : LX × M⊥M
× X −→ L is called

a convex (L,M)-fuzzy remote neighborhood operator iff satisfies the following seven
axioms: for each x ∈ X, A,B ∈ LX and a, b ∈ M⊥M

,

(CFR1) R(⊥X
L , a, x) = ⊤L.

(CFR2) R(A, a, x) ≤ A′(x).

(CFR3) If A ≤ B, then R(B, a, x) ≤ R(A, a, x).
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(CFR4) If a ≤ b, then R(A, b, x) ≤ R(A, a, x).

(CFR5) R(A, a, x) =
∨{

R(B, a, x)|B′(y) ≤ R(A, a, y),∀y ∈ X
}
.

(CFR6) R(
∨d

j∈J Aj , a, x) =
∧

j∈J R(Aj , a, x).

(CFR7) For any nonempty subset {aj}j∈J of M⊥M
the implication holds:

A′(x) = R(A, aj , x) ∀j ∈ J, ∀x ∈ X =⇒ A′(x) = R
(
A,

∨
j∈J

aj , x
)
.

If R is a convex (L,M)-fuzzy remote neighborhood operator on X, then the pair
(X,R) is called a convex (L,M)-fuzzy remote neighborhood space. Let (X,RX) and
(Y,RY ) be two convex (L,M)-fuzzy remote neighborhood spaces, then a function g :
X −→ Y is called a convex (L,M)-fuzzy remote neighborhood preserving (hereinafter
referred to as (L,M)-RNP1) if RY (A, a, g(x)) ≤ RX(g←(A), a, x) for each x ∈ X, A ∈
LY and a ∈ M⊥M

. The category of all convex (L,M)-fuzzy remote neighborhood
spaces as objects and all their (L,M)-RNP1 mappings as morphisms is denoted by
(L,M)-FR1. The set of all convex (L,M)-fuzzy remote neighborhood operators on
X is denoted by CFR1(X,L,M). Define a relation ≤ on CFR1(X,L,M) as follows:
∀x ∈ X,A ∈ LX and a ∈ M⊥M

, R1 ≤ R2 ⇐⇒ R1(A, a, x) ≤ R2(A, a, x). It is easy to
check that (CFR1(X,L,M),≤) is a poset.

Remark 3.2. (1) As we know, convex structures are topological-like structures. So,
if one replace conditions (CFR3) and (CFR6) in Definition 3.1 with the following
condition:

R(A ∨B, a, x) = R(A, a, x) ∧R(B, a, x) (∀x ∈ X,A,B ∈ LXand a ∈ M⊥M
).

Then R is called a topological (L,M)-fuzzy remote neighborhood operator. We
can show that topological (L,L)-fuzzy remote neighborhood operators and Hohle’s
L-fuzzy neighborhood systems (cf., e. g., [[3], Definition 8.1.8]) are one-to-one cor-
respondence. In particular, if L = M = {0, 1}, then topological (L,M)-fuzzy
remote neighborhood operators can degenerate to remote neighborhood systems,
and there is a one-to-one correspondence between topological ({0, 1}, {0, 1})-fuzzy
remote neighborhood operators and neighborhood systems (cf., e. g., [[6]]).

(2) (CFR1(X,L,M),≤) is a complete lattice, where R1 : LX × M⊥M
× X −→ L

defined by R1(A, a, x) = A′(x) (∀x ∈ X,A ∈ LX , a ∈ M⊥M
) is the greatest

element of (CFR1(X,L,M),≤). And, let ∅ ≠ {Ri}i∈I ⊆ (CFR1(X,L,M),≤)
and I is an index set. The mapping R : LX ×M⊥M

×X −→ L defined by

R(A, a, x) =
∨{

C
′
(x) ∈ L | A ≤ C,

∧
i∈I

∨
∀y∈X,

Ri(C,r,y)=C
′
(y)

r ≥ a
}

is the infimum of {Ri}i∈I . In this case, we denote it as
⋂

i∈I Ri.
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Next, let’s establish a one-to-one correspondence between CFR1(X,L,M) and FC
(X,L,M).

Theorem 3.3. Let C ∈ FC(X,L,M). Define a mapping RC : LX ×M⊥M
×X −→ LX

as follows: for each x ∈ X,A ∈ LX and a ∈ M⊥M
,

RC(A, a, x) =
∨{

D′(x) ∈ L : D ≥ A, C(D) ≥ a
}
.

Then RC ∈ CFR1(X,L,M).

P r o o f . For each A ∈ LX and a ∈ M⊥M
, define RC(A, a) ∈ LX as folllows:

RC(A, a) =
∨{

D′ ∈ LX : D ≥ A, C(D) ≥ a
}
.

Then, for each x ∈ X,

RC(A, a, x) = RC(A, a)(x).

(CFR1) ∀a ∈ M⊥M
, we have C(⊥X

L ) = ⊤L ≥ a. So,

RC(⊥X
L , a, x) = RC(⊥X

L , a)(x) = ⊤X
L (x) = ⊤L.

(CFR2) is satisfied from the definition of RC. So we omit it.

(CFR3) If A ≤ B, then

RC(A, a) =
∨{

D′ ∈ LX : D ≥ A, C(D) ≥ a
}

≥
∨{

D′ ∈ LX : D ≥ B, C(D) ≥ a
}

= RC(B, a).

So, RC(B, a, x) ≤ RC(A, a, x).

(CFR4) If a ≤ b, then by (CFR2) and (CFR3), we have RC(R
′

C(A, b), a) ≤ RC(A, b),

and RC(R
′

C(A, b), a) ≤ RC(A, a). Thus,

C(R
′

C(A, b)) = C
(∧{

D ∈ LX : D ≥ A, C(D) ≥ b
})

≥ b ≥ a.

It implies that

RC(R
′

C(A, b), a) =
∨{

D′ ∈ LX : D ≥ R
′

C(A, b), C(D) ≥ a
}
≥ RC(A, b).

So, RC(R
′

C(A, b), a) = RC(A, b). Hence, RC(A, b) ≤ RC(A, a). It follows that

RC(A, b, x) ≤ RC(A, a, x).
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(CFR5) Let B ∈ LX and B′ ≤ RC(A, a), then B ≥ A. By (CFR3), we have
RC(B, a) ≤ RC(A, a). It implies that∨{

RC(B, a)|B′ ≤ RC(A, a)
}
≤ RC(A, a).

On the other hand, by the definition of RC, we have C(R
′

C(A, a)) ≥ a. It implies that

RC(R
′

C(A, a), a) =
∨{

D′ ∈ LX : D ≥ R
′

C(A, a), C(D) ≥ a
}
≥ RC(A, a).

So, ∨{
RC(B, a)|B′ ≤ RC(A, a)

}
≥ RC(R

′

C(A, a), a) ≥ RC(A, a).

Hence,

RC(A, a) =
∨{

RC(B, a)|B′ ≤ RC(A, a)
}
.

It follows that

RC(A, a, x) =
∨{

RC(B, a, x)|B′(y) ≤ RC(A, a, y),∀y ∈ X
}
.

(CFR6) By (CFR3), we easily obtain

RC

(∨d

j∈J
Aj , a

)
≤

∧
j∈J

RC(Aj , a).

On the other hand, let {Aj}j∈J is a directed subfamily of LX , then {R′C(Aj , a)}j∈J
is a directed subfamily of LX . By (CFR2), we have

∨d
j∈J R

′

C(Aj , a) ≥
∨d

j∈J Aj . Then
by the definition of C and RC, we have

C
(∨d

j∈J
R
′

C(Aj , a)
)
≥

∧
j∈J

C
(
R
′

C(Aj , a)
)
≥ a.

So,

RC

(∨d

j∈J
Aj , a

)
=

∨{
D′ ∈ LX : D ≥

∨d

j∈J
Aj ,C(D) ≥ a

}
≥

∧
j∈J

RC(Aj , a).

It implies that

RC

(∨d

j∈J
Aj , a

)
≥

∧
j∈J

RC(Aj , a).

Hence,

RC

(∨d

j∈J
Aj , a

)
=

∧
j∈J

RC(Aj , a).

It follows that

RC(
∨d

j∈J
Aj , a, x) =

∧
j∈J

RC(Aj , a, x).

(CFR7) Let {aj}j∈J be a nonempty subset of M⊥M
and satisfy A′ = RC(A, aj) for

each j ∈ J . Obviously, for each j ∈ J ,

C(A) = C(R
′

C(A, aj)) = C
(∧{

D ∈ LX : D ≥ A, C(D) ≥ aj

})
≥ aj .
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It follows that C(A) ≥
∨

j∈J aj ≥ aj . By (CFR4), we have

A′ =
∧

j∈J
RC(A, aj) ≥ RC

(
A,

∨
j∈J

aj

)
=

∨{
D′ ∈ LX : D ≥ A, C(D) ≥

∨
j∈J

aj

}
≥ A′.

It implies that RC

(
A,

∨
j∈J aj

)
= A′. Hence,

A′ = RC(A, aj) ∀j ∈ J =⇒ A′ = RC(A,
∨

j∈J
aj).

It follows that

A′(x) = RC(A, aj , x) ∀j ∈ J, ∀x ∈ X =⇒ A′(x) = RC

(
A,

∨
j∈J

aj , x
)
.

□

Conversely, we can construct an (L,M)-fuzzy convex structure via a convex (L,M)-
fuzzy remote neighborhood operator.

Theorem 3.4. Let R ∈ CFR1(X,L,M). Define a mapping CR : LX −→ M as
follows: for each A ∈ LX and a ∈ M⊥M

,

CR(A) =
∨{

a ∈ M⊥M
: A′(y) = R(A, a, y),∀y ∈ X

}
.

Then CR ∈ FC(X,L,M).

P r o o f . For each A ∈ LX and a ∈ M⊥M
, define R(A, a) ∈ LX as folllows: for each

y ∈ X, R(A, a)(y) = R(A, a, y). Then, CR(A) =
∨{

a ∈ M⊥M
: A′ = R(A, a)

}
.

(LMC1) By (CFR1) and (CFR2), for each a ∈ M⊥M
, we have R(⊥X

L , a) = ⊤X
L and

R(⊤X
L , a) = ⊥X

L , so we obtain CR(⊥X
L ) = CR(⊤X

L ) = ⊤M .

(LMC2) By (CFR2), we easily obtain

R
(∧

j∈J
Aj , a0

)
≤

(∧
j∈J

Aj

)′
.

On the other hand, let b ∈ β∗
(∧

j∈J CR(Aj)
)
, then b ≺

∧
j∈J CR(Aj) and b ∈ J(M).

Thus, b ≺ CR(Aj) for each j ∈ J . By the definition of CR, there exists aj ∈ M⊥M
such

that A
′

j = R(Aj , aj) and b ≤ aj . Let a0 =
∧

j∈J aj , then we have b ≤ a0. By (CFR4)
and (CFR3), we obtain

R
(∧

j∈J
Aj , a0

)
≥ R

(∧
j∈J

Aj , aj

)
≥ R(Aj , aj).

So,

R
(∧

j∈J
Aj , a0

)
≥

∨
j∈J

R(Aj , aj) =
∨

j∈J
A
′

j =
(∧

j∈J
Aj

)′
,
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i. e.,

R
(∧

j∈J
Aj , a0

)
≥

(∧
j∈J

Aj

)′
.

Therefore,

R
(∧

j∈J
Aj , a0

)
=

(∧
j∈J

Aj

)′
.

It implies that CR

(∧
j∈J Aj

)
≥ a0 ≥ b. Hence

CR

(∧
j∈J

Aj

)
≥

∧
j∈J

CR(Aj).

(LMC3)* Let {Aj}j∈J be a directed subfamily of LX and b ∈ β∗
(∧

j∈J CR(Aj)
)
,

then b ≺
∧

j∈J CR(Aj) and b ∈ J(M). Thus, b ≺ CR(Aj) for each j ∈ J . There exists

aj ∈ M⊥M
such that A

′

j = R(Aj , aj) and b ≤ aj . Let a0 =
∧

i∈J aj , then b ≤ a0. By

(CFR2), (CFR4) and (CFR6), we have
∧

j∈J A
′

j =
(∨d

j∈J Aj

)′
≥ R

(∨d
j∈J Aj , a0

)
=∧

j∈J R(Aj , a0) ≥
∧

j∈J R(Aj , aj) =
∧

j∈J A
′

j . So, R
(∨d

j∈J Aj , a0

)
=

(∨d
j∈J Aj

)′
. It

implies that

CR

(∨d

j∈J
Aj

)
≥ a0 ≥ b.

Hence

CR

(∨d

j∈J
Aj

)
≥

∧
j∈J

CR(Aj).

□

Proposition 3.5. (1) CRC
= C (∀C ∈ FC(X,L,M));

(2) RCR
= R (∀R ∈ CFR1(X,L,M)).

P r o o f . (1) Assume that b ∈ β∗
(
CRC

(A)
)
, then b ∈ J(M) and

b ≺ CRC
(A) =

∨{
a ∈ M⊥M

: A′ = RC(A, a)
}
,

there exists a0 ∈ M⊥M
such that A′ = RC(A, a0) and thus b ≤ a0. By the definition of

RC, we have C(A) = C(R
′

C(A, a0)) ≥ a0 ≥ b. Hence, CRC
(A) ≤ C(A).

On the other hand, if C(A) = ⊥M , we obtain CRC
(A) ≥ ⊥M = C(A). If C(A) ∈ M⊥M

,
then

A′ ≥ RC(A,C(A)) =
∨{

D′ ∈ LX : D ≥ A, C(D) ≥ C(A)
}
≥ A′.

Therefore, we obtain A′ = RC(A,C(A)). Then by the definition of CRC
, we have

CRC
(A) ≥ C(A). Hence, CRC

= C.

(2) Let D ≥ A, and CR(D) ≥ a. By (CFR7), we have

D′ ≥ R(D, a) ≥ R(D,CR(D)) = R
(
D,

∨{
a ∈ M⊥M

: D′ = R(D, a)
})

= D′.
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So, D′ = R(D, a) ≤ R(A, a). It follows that for each x ∈ X, we obtain

RCR
(A, a) =

∨{
D′ ∈ LX : D ≥ A,CR(D) ≥ a

}
≤ R(A, a).

Therefore, RCR
(A, a) ≤ R(A, a).

On the other hand, by (CFR2), we easily obtainR(R′(A, a), a) ≤ R(A, a). By (CFR2)

and (CFR5), we have R(A, a) =
∨{

R(B, a)|B′ ≤ R(A, a)
}

≤ R(R′(A, a), a) . So,

R(R
′
(A, a), a) = R(A, a). It implies that

RCR
(A, a) =

∨{
D′ ∈ LX : D ≥ A,CR(D) ≥ a

}
≥

∨{
D′ ∈ LX : A′ ≥ D′ = R(D, a)

}
≥ R(A, a).

Hence, RCR
(A, a) ≥ R(A, a). Therefore, RCR

= R. □

Proposition 3.6. (1) If g : (X,CX) −→ (Y,CY ) is an (L,M)-CP, then
g : (X,RCX

) −→ (Y,RCY
) is an (L,M)-RNP1.

(2) If g : (X,RX) −→ (Y,RY ) is an (L,M)-RNP1, then g : (X,CRX
) −→ (Y,CRY

) is
an (L,M)-CP.

P r o o f . (1) Since g : (X,CX) −→ (Y,CY ) is an (L,M)-CP, it follows that CX(g←(A)) ≥
CY (A) for each A ∈ LY . So,

RCY
(A, a, g(x)) =

∨{
D′(g(x)) ∈ L : D ≥ A, CY (D) ≥ a

}
≤

∨{
(g←(D))′(x) ∈ L : g←(D) ≥ g←(A),CX(g←(D)) ≥ a

}
≤

∨{
C ′(x) ∈ L : C ≥ g←(A), CX(C) ≥ a

}
= RCX

(g←(A), a, x).

Hence, g : (X,RCX
) −→ (Y,RCY

) is an (L,M)-RNP1.
(2) Since g : (X,RX) −→ (Y,RY ) is an (L,M)-RNP1, it follows that

RY (A, a, g(x)) ≤ RX(g←(A), a, x)

for all x ∈ X, A ∈ LY and a ∈ M⊥M
. So,

CRY
(A) =

∨{
a ∈ M⊥M

: A′(y) = RY (A, a, y),∀y ∈ Y
}

≤
∨{

a ∈ M⊥M
: A′(g(x)) = RY (A, a, g(x)),∀x ∈ X

}
≤

∨{
a ∈ M⊥M

: (g←(A))′(x) = RX(g←(A), a, x),∀x ∈ X
}

= CRX
(g←(A)).

Hence, g : (X,CRX
) −→ (Y,CRY

) is an (L,M)-CP. □

By Propositions 3.5 and 3.6, we obtain the following theorem:
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Theorem 3.7. RC and CR are isomorphic functors, where two functors are given as
follows:

RC :

 (L,M)-FC −→ (L,M)-FR1,
(X,C) 7−→ (X,RC),
g 7−→ g.

CR :

 (L,M)-FR1 −→ (L,M)-FC,
(X,R) 7−→ (X,CR),
g 7−→ g.

By Proposition 3.5, Remarks 2.3 and 3.2, we have the following result.

Corollary 3.8. (CFR1(X,L,M),≤) and (FC(X,L,M),≤) are complete lattice iso-
morphic.

4. THE SECONDKINDOF CONVEX (L,M)-FUZZY REMOTE NEIGHBORHOOD
OPERATORS

In this section, L denotes a continuous lattice and M denotes a completely distributive
lattice. We will give the concept of the second kind of convex (L,M)-fuzzy remote neigh-
borhood operators, study some its fundamental properties and discuss the categorical
relationship between this kind of operators and (L,M)-fuzzy convex structures.

4.1. The lattice structures of convex (L,M)-fuzzy remote neighborhood op-
erators

In this subsection, we will give the concept of convex (L,M)-fuzzy remote neighborhood
operators and study the lattice structures of this kind of operators.

Definition 4.1. A mapping R : LX −→ MJ(LX) is called a convex (L,M)-fuzzy
remote neighborhood operator on X if it satisfies: for any U, S ∈ LX ,

(LMR1) R(⊥X
L )(xλ) = ⊤M ;

(LMR2) R(U)(xλ) = ⊥M for each xλ ≤ U ;

(LMR3) R(U)(xλ) =
∨

xλ≰S≥U
∧

yµ≰S R(S)(yµ);

(LMR4) For each directed subfamily {Ui}i∈I ⊆ LX ,

R

(∨d

i∈I
Ui

)
(xλ) =

∨
µ≪λ

∧
i∈I

R(Ui)(xµ).

If R is a convex (L,M)-fuzzy remote neighborhood operator on X, then the pair
(X,R) is called a convex (L,M)-fuzzy remote neighborhood space. The set of all con-
vex (L,M)-fuzzy remote neighborhood operators on X is denoted by CFR2(X,L,M).
Define a relation ≤ onCFR2(X,L,M) as follows: ∀ U ∈ LX , xλ ∈ J(LX),R1 ≤ R2 ⇐⇒
R1(U)(xλ) ≤ R2(U)(xλ), then (CFR2(X,L,M),≤) is a poset.
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Let (X,RX) and (Y,RY ) be convex (L,M)-fuzzy remote neighborhood spaces and
g : X −→ Y be a mapping. We say g is called convex (L,M)-fuzzy remote neighbor-
hood preserving ((L,M)-RNP2, in short) if RY (g

→(U))(g(x)λ) ≤ RX(U)(xλ), for all
U ∈ LX , xλ ∈ J(LX). It is easy to check that all convex (L,M)-fuzzy remote neigh-
borhood spaces as objects and all their (L,M)-RNP2 mappings as morphisms form
acategory, denoted by (L,M)-FR2. It is easy to know that convex (L,M)-fuzzy remote
neighborhood operator can degenerate to convex L-remotehood system by restricting
M = {0, 1} (see [18, 19]).

Example 4.2. Let X = {x, y, z}, L = {0, 1} and M = {⊥M , a, b, c, d,⊤M} (see
Figure 1). Then LX = {0, x1, y1, z1, A,B,C, 1} and J(LX) = {x1, y1, z1}, where A =

x1 ∨ y1, B = x1 ∨ z1, and C = y1 ∨ z1. Define a mapping R : LX −→ MJ(LX) as follows:
for each xλ ∈ J(LX), R(0)(xλ) = ⊤M ,R(1)(xλ) = ⊥M , and

R(x1)(xλ) =


⊥M , if xλ = x1,

a, if xλ = y1,

b, otherwise,

R(y1)(xλ) =


a, if xλ = x1,

⊥M , if xλ = y1,

d, otherwise,

R(z1)(xλ) =


c, if xλ = x1,

a, if xλ = y1,

⊥M , otherwise,

R(A)(xλ) =


⊥M , if xλ = x1,

⊥M , if xλ = y1,

b, otherwise ,

R(B)(xλ) =


⊥M , if xλ = x1,

a, if xλ = y1,

⊥M , otherwise ,

R(C)(xλ) =


c, if xλ = x1,

⊥M , if xλ = y1,

⊥M , otherwise.

Then we can easily verify that R ∈ CFR2(X,L,M).

Proposition 4.3. Let R : LX −→ MJ(LX) be a mapping. Then (LMR3) implies
(LMR5) and (LMR6).

(LMR5) R(U)(xλ) =
∨

µ≪λ R(U)(xµ);

(LMR6) U ≤ S implies R(S) ≤ R(U).

P r o o f . (LMR5) Since L is a continuous lattice, it follows that λ =
∨

⇓ λ. Then,

{S ∈ LX | xλ ≰ S} =
⋃

µ≪λ

{
S ∈ LX | xµ ≰ S

}
.
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c

a b

d

⊤M

⊥M

Fig. 1. Hasse diagram of M .

By (LMR3), we have

R(U)(xλ) =
∨

xλ≰S≥U

∧
yν≰S

R(S)(yν)

=
∨

µ≪λ

∨
xµ≰S≥U

∧
yν≰S

R(S)(yν)

=
∨

µ≪λ
R(U)(xµ).

(LMR6) If U ≤ S, then

R(U)(xλ) =
∨

xλ≰C≥U

∧
yν≰C

R(C)(yν) ≥
∨

xλ≰D≥S

∧
yν≰D

R(D)(yν) = R(S)(xλ).

Hence, R(S) ≤ R(U). □

Proposition 4.4. Let R : LX −→ MJ(LX) be a mapping satisfying (LMR1)-(LMR3).
Then the following statements are equivalent.

(LMR4) For each directed subfamily {Ui}i∈I ⊆ LX ,

R

(∨d

i∈I
Ui

)
(xλ) =

∨
µ≪λ

∧
i∈I

R(Ui)(xµ).

(LMR4)* R(U)(xλ) =
∨

µ≪λ

∧
F≪U R(F )(xµ).

P r o o f . (LMR4)=⇒(LMR4)*. For each U ∈ LX ,⇓ U = {F ∈ LX | F ≪ U} is
directed. Then it follows from (LMR4) that

R(U)(xλ) = R

(∨d

F≪U
F

)
(xλ) =

∨
µ≪λ

∧
F≪U

R(F )(xµ).
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(LMR4)*=⇒(LMR4). By Proposition 4.3, we have

R

(∨d

i∈I
Ui

)
(xλ) =

∨
µ≪λ

R

(∨d

i∈I
Ui

)
(xµ) ≤

∨
µ≪λ

∧
i∈I

R(Ui)(xµ).

Furthermore, it follows from (LMR4)* and (LMR6) that

R

(∨d

i∈I
Ui

)
(xλ) =

∨
µ≪λ

∧
F≪

∨d
i∈I Ui

R(F )(xµ)

=
∨

µ≪λ

∧
i∈I

∧
F≪Ui

R(F )(xµ)

≥
∨

µ≪λ

∧
i∈I

R(Ui)(xµ).

This shows that

R(
∨d

i∈I
Ui)(xλ) =

∨
µ≪λ

∧
i∈I

R(Ui)(xµ).

□

Now, we will study the lattice structures of convex (L,M)-fuzzy remote neighborhood
operators.

Theorem 4.5. (CFR2(X,L,M),≤) is a complete lattice.

P r o o f . We need to prove the following two steps.

Step 1: Define R1 : LX −→ MJ(LX) as follows: for any U ∈ LX , xλ ∈ J(LX),

R1(U)(xλ) =

 ⊤M , if xλ ≰ U,

⊥M , if xλ ≤ U,

then R1 is the greatest element of (CFR2(X,L,M),≤). Indeed, (LMR1) and (LMR2)
are trivial, so we omit them.

(LMR3) We distinguish the following two cases:

Case 1: if xλ ≤ U, then R1(U)(xλ) = ⊥M , and {S ∈ LX | xλ ≰ S ≥ U} = ∅. Hence,∨
xλ≰S≥U

∧
yµ≰S

R1(S)(yµ) =
∨

∅ = ⊥M = R1(U)(xλ).

Case 2: if xλ ≰ U, then R1(U)(xλ) = ⊤M , and

⊤M ≥
∨

xλ≰S≥U

∧
yµ≰S

R1(S)(yµ) ≥
∧

yµ≰U
R1(U)(yµ) =

∧
yµ≰U

⊤M = ⊤M .

Hence, ∨
xλ≰S≥U

∧
yµ≰S

R1(S)(yµ) = ⊤M = R1(U)(xλ).
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(LMR4) We also distinguish the following two cases:

Case 1: if xλ ≤
∨d

i∈I Ui, then R1(
∨d

i∈I Ui)(xλ) = ⊥M , and for any µ ≪ λ, we have

µ ≪ λ ≤
∨d

i∈I Ui(x). There exists i0 ∈ I such that µ ≤ Ui0(x), i. e., xµ ≤ Ui0 . It implies
that R1(Ui0)(xµ) = ⊥M . So,

⊥M ≤
∧

i∈I
R1(Ui)(xµ) ≤ R1(Ui0)(xµ) = ⊥M .

Hence,
∧

i∈I R1(Ui)(xµ) = ⊥M for any µ ≪ λ. Therefore,∨
µ≪λ

∧
i∈I

R1(Ui)(xµ) = ⊥M = R1

(∨d

i∈I
Ui

)
(xλ).

Case 2: if xλ ≰
∨d

i∈I Ui, then R1

(∨d
i∈I Ui

)
(xλ) = ⊤M , and there exists µ0 ≪ λ such

that xµ0
≰

∨d
i∈I Ui, which means xµ0

≰ Ui for each i ∈ I, So,
∧

i∈I R1(Ui)(xµ0
) = ⊤M .

Hence,

⊤M =
∧

i∈I
R1(Ui)(xµ0

) ≤
∨

µ≪λ

∧
i∈I

R1(Ui)(xµ) ≤ ⊤M ,

Therefore, ∨
µ≪λ

∧
i∈I

R1(Ui)(xµ) = R1

(∨d

i∈I
Ui

)
(xλ).

From the above proof, we know that R1 is a convex (L,M)-fuzzy remote neighborhood
operator, i. e., R1 ∈ CFR2(X,L,M). For any R ∈ CFR2(X,L,M), according to the
definition of R1, for each U ∈ LX and xλ ∈ J(LX), we have R(U)(xλ) ≤ R1(U)(xλ). It
implies that R ≤ R1. Hence R1 is the greatest element of (CFR2(X,L,M),≤).

Step 2: ∀ ∅ ≠ {Ri}i∈I ⊆ (CFR2(X,L,M),≤), where I be an index set. Define

R : LX −→ MJ(LX) as follows: for each U ∈ LX , xλ ∈ J(LX),

R(U)(xλ) =
∨

xλ≰S≥U

∧
yµ≰S

∧
i∈I

Ri(S)(yµ).

Then, we can verify that R ∈ CFR2(X,L,M). Meanwhile,

R(U)(xλ) =
∨

xλ≰S≥U

∧
yµ≰S

∧
i∈I

Ri(S)(yµ)

≤
∧

i∈I

∨
xλ≰S≥U

∧
yµ≰S

Ri(S)(yµ)

=
∧

i∈I
Ri(U)(xλ)

≤ Ri(U)(xλ).

It implies that R is a lower bound of {Ri}i∈I .
If R⋆ is another convex (L,M)-fuzzy remote neighborhood operator, such that R⋆ ≤

Ri for any i ∈ I. Then, for any U ∈ LX and xλ ∈ J(LX), we have R⋆(U)(xλ) ≤∧
i∈I Ri(U)(xλ). In particular, ∀S ∈ {S ∈ LX |xλ ≰ S ≥ U}, we obtain∧

yµ≰S
R⋆(S)(yµ) ≤

∧
yµ≰S

∧
i∈I

Ri(S)(yµ).
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Hence,

R⋆(U)(xλ) =
∨

xλ≰S≥U

∧
yµ≰S

R⋆(S)(yµ)

≤
∨

xλ≰S≥U

∧
yµ≰S

∧
i∈I

Ri(S)(yµ)

= R(U)(xλ).

It follows that R is the infimum of the {Ri}i∈I , and denoted by
∧

i∈I Ri. Therefore,
(CFR2(X,L,M),≤) is a complete lattice. □

4.2. The category of convex (L,M)-fuzzy remote neighborhood operators

In this subsection, we will discuss the categorical relationship between convex (L,M)-
fuzzy remote neighborhood operators and (L,M)-fuzzy convex structures.

Theorem 4.6. Let C ∈ FC(X,L,M). Define a mapping RC : LX −→ M as follows:
for any U ∈ LX , xλ ∈ J(LX),

RC(U)(xλ) =
∨

xλ≰S≥U
C(S).

Then RC ∈ CFR2(X,L,M).

P r o o f . (LMR1) Since ⊤M = C(⊥X
L ) ≤

∨
xλ≰S≥⊥X

L
C(S) = RC(⊥X

L )(xλ) ≤ ⊤M . It

follows that RC(⊥X
L )(xλ) = ⊤M .

(LMR2) If xλ ≤ U, then {S ∈ LX | xλ ≰ S ≥ U} = ∅. So, we have

RC(U)(xλ) =
∨

xλ≰S≥U
C(S) =

∨
∅ = ⊥M .

(LMR3) If U ≤ V, by the definition of RC, we have

RC(V )(xλ) =
∨

xλ≰S≥V
C(S) ≤

∨
xλ≰S≥U

C(S) = RC(U)(xλ).

It implies that RC(V )(xλ) ≤ RC(U)(xλ). For any xλ ≰ V ≥ U ,

C(V ) ≤
∧

yµ≰V
RC(V )(yµ) ≤ RC(V )(xλ) ≤ RC(U)(xλ).

Therefore,

RC(U)(xλ) =
∨

xλ≰V≥U
C(V ) ≤

∨
xλ≰V≥U

∧
yµ≰V

RC(V )(yµ) ≤ RC(U)(xλ).

Hence,

RC(U)(xλ) =
∨

xλ≰V≥U

∧
yµ≰V

RC(V )(yµ).
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(LMR4) For each directed subfamily {Ui}i∈I ⊆ LX . In order to show the following
equality:

RC

(∨d

i∈I
Ui

)
(xλ) =

∨
µ≪λ

∧
i∈I

RC(Ui)(xµ).

Notice that

RC

(∨d

i∈I
Ui

)
(xλ) =

∨
xλ⩽̸S⩾

∨d
i∈I Ui

C(S) =
∨

µ≪λ

∨
xµ⩽̸S⩾

∨d
i∈I Ui

C(S),

and ∨
µ≪λ

∧
i∈I

RC(Ui)(xµ) =
∨

µ≪λ

∧
i∈I

∨
xµ⩽̸S⩾Ui

C(S).

So, we only need to show that∨
µ≪λ

∨
xµ⩽̸S⩾

∨d
i∈I Ui

C(S) =
∨

µ≪λ

∧
i∈I

∨
xµ⩽̸S⩾Ui

C(S).

If S ⩾
∨d

i∈I Ui, then S ⩾ Ui for each i ∈ I. Thus,∨
xλ⩽̸S⩾

∨d
i∈I Ui

C(S) =
∨

µ≪λ

∨
xµ⩽̸S⩾

∨d
i∈I Ui

C(S) ≤
∨

µ≪λ

∧
i∈I

∨
xµ⩽̸S⩾Ui

C(S).

For the inverse inequality, let

α ≺
∨

µ≪λ

∧
i∈I

∨
xµ⩽̸S⩾Ui

C(S).

Then, there exists µ ≪ λ, such that

α ≺
∧

i∈I

∨
xµ⩽̸S⩾Ui

C(S).

Further, for each i ∈ I, there exists xµ ⩽̸ Sµi ⩾ Ui such that α ≤ C(Sµi).
For each i ∈ I, define

Sµ
i =

∧{
D ∈ LX |xµ ≰ D ≥ Ui, α ≤ C(D)

}
,

then Sµ
i is well defined, and α ≤ C(Sµ

i ). Moreover, {Sµ
i }i∈I is directed, and

xλ ≰
∨d

i∈I
Sµ
i ≥

∨d

i∈I
Ui.

So, by (LMC3), we have

α ≤
∧

i∈I
C(Sµ

i ) ≤ C
(∨d

i∈I
Sµ
i

)
≤

∨
xλ≰S≥

∨d
i∈I Ui

C(S),

i. e., α ≤
∨

xλ⩽̸S⩾
∨d

i∈I Ui
C(S). By the arbitrariness of α, we obtain∨

xλ⩽̸S⩾
∨d

i∈I Ui

C(S) ≥
∨

µ≪λ

∧
i∈I

∨
xµ⩽̸S⩾Ui

C(S).
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Therefore,∨
xλ⩽̸S⩾

∨d
i∈I Ui

C(S) =
∨

µ≪λ

∨
xµ⩽̸S⩾

∨d
i∈I Ui

C(S) =
∨

µ≪λ

∧
i∈I

∨
xµ⩽̸S⩾Ui

C(S).

It follows from above proof that RC ∈ CFR2(X,L,M). □

Proposition 4.7. If g : (X,CX) −→ (Y,CY ) is an (L,M)-CP, then g : (X,RCX ) −→
(Y,RCY ) is an (L,M)-RNP2.

P r o o f . Since g : (X,CX) −→ (Y,CY ) is an (L,M)-CP, we have CX(g←(S)) ≥ CY (S)
for each S ∈ LY . Then for each U ∈ LX and xλ ∈ J(LX), we obtain

RCY (g→(U))(g(x)λ) =
∨

g(x)λ≰S≥g→(U)
CY (S)

≤
∨

xλ≰g←(S)≥U
CX(g←(S))

≤
∨

xλ≰D≥U
CX(D)

= RCX (U)(xλ).

This shows that g : (X,RCX ) −→ (Y,RCY ) is an (L,M)-RNP2. □

By Theorem 4.6 and Proposition 4.7, we have a functor

RC :

 (L,M)-FC −→ (L,M)-FR2,
(X,C) 7−→ (X,RC),
g 7−→ g.

Conversely, we can construct an (L,M)-fuzzy convex structure from a convex (L,M)-
fuzzy remote neighthood operator.

Theorem 4.8. Let R ∈ CFR2(X,L,M). Define CR : LX −→ M as follows: for any
U ∈ LX ,

CR(U) =
∧

xλ≰U
R(U)(xλ),

then CR ∈ FC(X,L,M).

P r o o f . (LMC1) By Definition 4.1, we have

CR(⊥X
L ) =

∧
xλ≰⊥X

L

R(⊥X
L )(xλ) = ⊤M ,

CR(⊤X
L ) =

∧
xλ≰⊤X

L

R(⊤X
L )(xλ) =

∧
∅ = ⊤M .
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(LMC2) Since {xλ ∈ J(LX) | xλ ≰
∧

i∈I Ui} =
⋃

i∈I{xλ ∈ J(LX) | xλ ≰ Ui} for
each {Ui}i∈I ⊆ LX , then we have

CR
(∧

i∈I
Ui

)
=

∧
xλ≰

∧
i∈I Ui

R
(∧

i∈I
Ui

)
(xλ)

=
∧

i∈I

∧
xλ≰Ui

R
(∧

i∈I
Ui

)
(xλ)

≥
∧

i∈I

∧
xλ≰Ui

R(Ui)(xλ) =
∧

i∈I
CR(Ui).

It implies that

CR(
∧

i∈I
Ui) ≥

∧
i∈I

CR(Ui).

(LMC3)* For each directed subfamily {Uk}k∈K ⊆ LX . In order to show the following
inequality:

CR

(∨d

k∈K
Uk

)
≥

∧
k∈K

CR(Uk).

Notice that

CR

(∨d

k∈K
Uk

)
=

∧
xλ≰

∨d
k∈K Uk

R

(∨d

k∈K
Uk

)
(xλ)

=
∧

xλ≰
∨d

k∈K Uk

∨
µ≪λ

∧
k∈K

R(Uk)(xµ)

and ∧
k∈K

CR(Uk) =
∧

k∈K

∧
xλ≰Uk

R(Uk)(xλ).

So, we only need to show that∧
xλ≰

∨d
k∈K Uk

∨
µ≪λ

∧
k∈K

R(Uk)(xµ) ≥
∧

k∈K

∧
xλ≰Uk

R(Uk)(xλ).

Let
α ≺

∧
k∈K

∧
xλ≰Uk

R(Uk)(xλ).

Then for each k ∈ K and each xλ ≰ Uk implies α ≤ R(Uk)(xλ). For each xλ ≰
∨d

k∈K Uk,

there exists µ0 ≪ λ such that xµ0
≰

∨d
k∈K Uk. So, xµ0

≰ Uk for each k ∈ K. This
implies that α ≤ R(Uk)(xµ0

) for each k ∈ K. Thus, α ≤
∧

k∈K R(Uk)(xµ0
). Hence, for

each xλ ≰
∨d

k∈K Uk, we know that

α ≤
∧

k∈K
R(Uk)(xµ0) ≤

∨
µ≪λ

∧
k∈K

R(Uk)(xµ).

Therefore,

α ≤
∧

xλ≰
∨d

k∈K Uk

∨
µ≪λ

∧
k∈K

R(Uk)(xµ).
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By the arbitrariness of α, we obtain∧
xλ≰

∨d
k∈K Uk

∨
µ≪λ

∧
k∈K

R(Uk)(xµ) ≥
∧

k∈K

∧
xλ≰Uk

R(Uk)(xλ).

It follows from above proof that CR ∈ FC(X,L,M). □

Proposition 4.9. If g : (X,RX) −→ (Y,RY ) is an (L,M)-RNP2, then g : (X,CR
X) −→

(Y,CR
Y ) is an (L,M)-CP.

P r o o f . Since g : (X,RX) −→ (Y,RY ) is an (L,M)-RNP2, we have

RX(U)(xλ) ≥ RY (g
→(U))(g(x)λ),∀ U ∈ LX , xλ ∈ J(LX).

Then for each S ∈ LY , we obtain

CRX (g←(S)) =
∧

xλ≰g←(S)
RX(g←(S))(xλ)

≥
∧

g(x)λ≰S
RY (g

→(g←(S)))(g(x)λ)

≥
∧

g(x)λ≰S
RY (S)(g(x)λ)

≥
∧

yµ≰S
RY (S)(yµ) = CRY (S).

This shows that g : (X,CRX ) −→ (Y,CRY ) is an (L,M)-CP. □

By Theorem 4.8 and Proposition 4.9, we have a functor:

CR :

 (L,M)-FR2 −→ (L,M)-FC,
(X,R) 7−→ (X,CR),
g 7−→ g.

Now, we show that RC and CR are isomorphic functors.

Theorem 4.10. RC and CR are isomorphic functors.

P r o o f . It suffices to show that RC ◦ CR = I(L,M)-FR2 and CR ◦ RC = I(L,M)-FC.
That is, for each (L,M)-fuzzy convex space (X,C) and for each convex (L,M)-fuzzy
remote neighborhood space2 (X,R), it follows that

(1) RCR

= R.

(2) CRC

= C.

For (1), for each U ∈ LX and xλ ∈ J(LX). Then by Theorems 4.6 and 4.8, we have

RCR

(U)(xλ) =
∨

xλ≰S≥U
CR(S) =

∨
xλ≰S≥U

∧
yµ≰S

R(S)(yµ) = R(U)(xλ).
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Hence RCR

= R.
For (2), for each U ∈ LX . Then

CRC

(U) =
∧

xλ≰U
RC(U)(xλ) =

∧
xλ≰U

∨
xλ≰S≥U

C(S) ≥
∧

xλ≰U
C(U) = C(U).

On the other hand, denote Sxλ
= {S ∈ LX | xλ ≰ S ≥ U}. By the completely

distributive law in [2], it follows that

CRC

(U) =
∧

xλ≰U

∨
xλ≰S≥U

C(S)

=
∨

g∈
∏

xλ≰U Sxλ

∧
xλ≰U

C(g(xλ))

≤
∨

g∈
∏

xλ≰U Sxλ

C

(∧
xλ≰U

g(xλ)

)
.

Since
∧

xλ≰U g(xλ) = U for every g ∈
∏

xλ≰U Sxλ
, we have

∨
g∈

∏
xλ≰U Sxλ

C

(∧
xλ≰U

g(xλ)

)
= C(U).

Therefore, CRC

(U) ≤ C(U). This shows that CRC

= C. □

By Remark 2.3 and Theorem 4.10, we easily obtain the following result.

Corollary 4.11. (CFR2(X,L,M),≤) and (FC(X,L,M),≤) are complete lattice iso-
morphic.

By Corollaries 3.8 and 4.11, we can obtain the following result.

Corollary 4.12. If L is a completely distributive De Morgan algebra, and M is a
completely distributive lattice, then CFR1(X,L,M) and CFR2(X,L,M) are complete
lattice isomorphic.

5. CONCLUSIONS

In this paper, we proposed the concept of two kinds of convex (L,M)-fuzzy remote
neighborhood operators. When L and M satisfy certain conditions, we proved that
these two kind of convex (L,M)-fuzzy remote neighborhood operators and (L,M)-fuzzy
convex structures are lattice (categorically) isomorphic. In the future, we will consider
the compatibility of (L,M)-fuzzy convex structures and some algebraic structures.
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