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MULTI-STEP-LENGTH GRADIENT ITERATIVE METHOD
FOR SEPARABLE NONLINEAR LEAST SQUARES
PROBLEMS

Hai-Rong Cui, Jing Lin and Jian-Nan Su

Separable nonlinear least squares (SNLLS) problems are critical in various research and ap-
plication fields, such as image restoration, machine learning, and system identification. Solving
such problems presents a challenge due to their nonlinearity. The traditional gradient iterative
algorithm often zigzags towards the optimal solution and is sensitive to the initial guesses of
unknown parameters. In this paper, we improve the convergence rate of the traditional gra-
dient method by implementing a multi-step-length gradient iterative algorithm. Moreover, we
incorporate the variable projection (VP) strategy, taking advantage of the separable structure
observed in SNLLS problems. We propose a multi-step-length gradient iterative-based VP
(Mul-GI-VP) method to solve such nonlinear optimization problems. Our simulation results
verify the feasibility and high efficiency of the proposed algorithm.

Keywords: separable nonlinear least squares, multi-step-length gradient iterative method,
variable projection algorithm, image restoration

Classification: 49M99

1. INTRODUCTION

Nonlinear regression often arises in many research fields, taking the form of a linear
combination of nonlinear functions:

y(a, c;x) =

n∑
j=1

cjfj(a;x), (1)

where {fj , j = 1, . . . , n} are the nonlinear functions with respect to an input vector
x ∈ Rdin whose dimension din depends on the dataset used. Note that unless other-
wise specified, uppercase and lowercase bold symbols in the following denote matrices
and vectors respectively. The parameters in (1) can be partitioned into two parts, in
which c = (c1, . . . , cn)

T appears linearly and a ∈ Rq represents the nonlinear param-
eters. Assuming that the noise is Gaussian, fitting model (1) to m input-output pairs
{(xi, yi), i = 1, . . . ,m} in a least-squares sense is a so-called separable nonlinear least
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squares (SNLLS) problem:

min
a,c

1

2

m∑
i=1

(yi −
n∑

j=1

cjfj(a;xi))
2. (2)

Define y =: (y1, . . . , ym)T, Φ(a)ij =: fj(a;xi), the optimization problem (2) can be
rewritten in a matrix form:

min
a,c

r(a, c) =
1

2
∥y − Φ(a)c∥2 , (3)

where ∥·∥ denotes 2-norm of a vector.
The SNLLS problem is commonly encountered in various application fields. For

example, in image processing, the blind deconvolution problem [7, 8] requires solving
problem (3) to estimate the blind operator. In machine learning, certain types of neural
networks (e. g., multi-layer perceptrons and radial-basis function (RBF) networks) are
linear combinations of nonlinear active functions [15, 16, 30]. The Prony’s method [27],
which is the sum of complex exponentials, has been widely used to analyze the frequency
components of a signal in signal processing. In system identification, the parameter
identification of separable nonlinear models (e. g., Exp-AR model [19], RBF-AR model
[28], and BFM-FCAR model [3]) can be formulated as solving SNLLS problems.

The optimization problem (3) is essentially non-convex, making it a challenge to solve
such problems. The gradient iterative (GI) algorithm [11, 31, 35], which requires less
computational effort, is commonly used to solve such problems. However, the zigzag
convergence phenomenon towards the optimal value can often result in a low conver-
gence rate of the GI algorithm. Many improvements have been reported in the literature
to enhance the convergence rate of the GI algorithm [5, 10, 21, 23]. These improvements
can be roughly classified into two categories. The first is to adjust the search direc-
tion, such as the conjugate gradient method developed by Hussu [21] for optimal control
problems. The other approach is to select an appropriate step-length [5, 23]. Most of
these modifications assume that the step-length is constant, regardless of the dimen-
sion of the unknown parameters. To address the problem where some initial variables
are far from the true values, while others are not, Chen et al. [6] proposed a multi-
step-length gradient iterative algorithm for the equation-type model. By introducing
multiple step lengths, the iterative algorithm significantly boosts the convergence rate.
We utilize the high efficiency of this method and reformulate the optimization problem
while introducing a multi-step-length gradient algorithm to update the parameters.

Moreover, the separable structure present in the nonlinear optimization problem (3)
allows for an efficient optimization strategy known as variable projection (VP). Vari-
able projection was first proposed by Golub and Pereyra [17, 18] and has been widely
used in various application fields [2, 12, 14, 24, 32]. The fundamental idea behind VP
optimization strategy is to reduce the dimensionality of parameters by eliminating the
linear parameters. Compared with other optimization strategies (e. g., joint optimiza-
tion method [4, 26], alternating least squares (ALS) method [26], and others), the VP
method is more valuable in solving SNLLS problems. This idea of separability has also
been widely extended to identify various models in system modeling [9, 25].



Multi-step-length gradient iterative 199

In this paper, we analyze the local structure of the optimization problem (3) and pro-
pose a multi-step-length gradient iterative-based VP (Mul-GI-VP) method to optimize
the parameters of the nonlinear regression problem. The proposed algorithm initially
utilizes the VP strategy to remove the linear parameters appearing in (3) and then
employs the multi-step-length gradient method to optimize the reduced function con-
taining only nonlinear parameters. As the proposed algorithm only utilizes first-order
information, its implementation is more convenient. Furthermore, the incorporation of
multi-step-length allows the proposed algorithm to achieve a faster convergence rate.

The remainder of this paper is organized as follows. Section 2 introduces the basic
concepts, including the gradient method, multi-step-length, and the VP strategy. In
Section 3, we propose the Mul-GI-VP algorithm for solving the SNLLS problem. Section
4 presents numerical experiments on image restoration and parameter estimation of a
complex exponential model. Finally, we summarize the main conclusions of this paper
in Section 5.

2. PRELIMINARIES

2.1. Multi-step-length gradient algorithm

Consider the quadratic problem

v(θ) =
1

2
θTQθ − ηTθ, (4)

where Q is a symmetric and positive define matrix, and thus can be decomposed as
Q = JTJ. Many optimization problems in system identification can be formulated as
the form of (4). For example, the identification of equation-error type (EET) model [6]

A(z)y(t) = B(z)u(t) + ε(t) (5)

where y(t) and u(t) are the output and input of the system, A(z) and B(z) are the poly-
nomials in the backward-shift operator, denoted as z. Given observations {(u1, y1), . . . ,
(uL, yL)}, we can obtain the EET model by solving the following optimization problem:

min
θ

v(θ) =
1

2

∥∥∥∥∥∥Y (L) +

p∑
i=1

hi(L)θi +

q∑
j=p+1

hj(L)θj

∥∥∥∥∥∥
2

=
1

2
∥Y (L)−M(L)θ∥2 (6)

where Y (L) = (y1, . . . , yL)
T are the collected output from 1 to L, θ ∈ Rq, M(L) =

[h1(L), . . . ,hp(L),hp+1(L), . . . ,hq(L)] in which hi(L) = [−y(1−i),−y(2−i), . . . ,−y(L−
i)]T for i ∈ {1, . . . , p} and hi(L) = [u(1+p− i+1), u(2+p− i+1), . . . , u(L+p− i+1)]T

for i ∈ {p+ 1, . . . , q}.
For such problems, Chen et al. [6] proposed a multi-step-length gradient iterative al-

gorithm to improve the convergence rate of the standard GI algorithm. They introduced
an auxiliary model

Y (L) = M̃(L)β + ε(L) (7)
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where β ∈ Rq are the auxiliary variables and M̃(L) is obtained by the Gram-Schmidt
procedure, that is,

[h1(L), . . . ,hq(L)] =
[
M̃1(L), . . . , M̃q(L)

]
W (8)

W =


1 w1,2 · · · w1,q

0 1 · · ·
...

...
...

. . . wq−1,q

0 0 · · · 1

 , (9)

wi,j =
hT
i (L)M̃j(L)

M̃T
j (L)M̃j(L)

, j < i.

The Mul-GI algorithm can be summarized as:

βk+1 = βk + λkdk, (10)

dk = −[M̃T
1 (L)M̃1(L)β

k
1 − M̃T

1 (L)Y (L), . . . ,

M̃T
q (L)M̃q(L)β

k
q − M̃T

q (L)Y (L)]T, (11)

λk = diag(λk
1 , λ

k
2 , . . . , λ

k
q ), (12)

where λk
i = [M̃T

i (L)M̃i(L)]
−1 is the step-length of the direction dki (i. e., the ith element

in dk). The parameter θ can be calculated after the auxiliary variables β are updated

θk+1 = W−1βk+1. (13)

Compared with the standard gradient method, the multi-step-length gradient iterative
algorithm can achieve faster convergence rate and is less sensitive to the initial values
of the estimated parameters [6].

2.2. Variable projection method

The separable structure presented in problem (3) allows for an efficient optimization
strategy, the VP strategy, which was proposed by Golub Pereyra [18]. The underlying
principle of the VP strategy is to reduce the dimensionality of the parameters by solving
a linear least-squares subproblem of (3)

ĉ = argmin
c

1

2
∥y −Φ(a)c∥2 = Φ(a)†y, (14)

where Φ† = (ΦTΦ)−1ΦT is the Moore-Penrose inverse of matrix Φ. Plugging (14) into
(3) yields a reduced function

r1(a) =
1

2

∥∥y −Φ(a)Φ(a)†y
∥∥2 =

1

2

∥∥∥P⊥
Φ(a)y

∥∥∥2 , (15)
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where P⊥
Φ = I−ΦΦ† is a projection operator that projects a vector onto the orthogonal

complement of space spanned by the columns of Φ.
The VP strategy usually yields a lower dimension of estimated parameter space,

a better-conditioned problem [30] and a faster convergence rate of the optimization
algorithm [1, 4, 29]. Note that ĉ is the optimal solution of the convex problem (3) for
fixed a, we can obtain the gradient of the reduced function

∂r1(a)

∂a
=

∂r

∂a
+

∂c

∂aT

∂r

∂c
=

∂r(a, ĉ)

∂a
= −(DΦ(a)ĉ)TP⊥

Φ(a)y, (16)

where DΦ(a) is the Fréchet derivative of Φ(a).

3. MULTI-STEP-LENGTH GRADIENT ITERATIVE-BASED VP METHOD

In this section, we analyze the local structure of the reduced problem (15), and pro-
pose a multi-step-length gradient based-variable projection (Mul-GI-VP) algorithm by
incorporating the advantage of muti-step-length method.

In the following part, the reduced nonlinear regression problem (15) is first approxi-
mated by its second-order Taylor expansion

r1(a
k+1) ≈ r1(a

k) + r′1(a
k)T(∆ak) +

1

2
(∆ak)TH(ak)∆ak, (17)

where ∆ak = ak+1 − ak and H is the Hessian matrix. In practice, the Hessian matrix
can be often approximated by different methods. In some settings, calculating Jacobian
matrix of reduced function does not require huge calculation. In this case, we can
approximate the Hessian matrix by

H ≈ Q = JTJ, (18)

where J is the Jacobian matrix of the reduced function. For the reduced problem (15),
Golub and Pereyra [18] presented the analytical expression of the Jacobian matrix

JGP = −P⊥
ΦDΦΦ−y − (P⊥

ΦDΦΦ−)Ty, (19)

where Φ− is generalized inverse of Φ (satisfying (ΦΦ−)T = ΦΦ− and ΦΦ−Φ = Φ)
and DΦ is the Fréchet derivative of Φ. Kaufman [22] proposed a simplified form by
dropping the second term of (19)

JKau = −P⊥
ΦDΦΦ−y. (20)

Many empirical evidences [13, 17] suggest that the simplified Jacobian matrix form
(20) achieves similar performance to the full form (19). In the following part, we use
Kaufman’s simplified form of Jacobian matrix instead of Golub and Pereyra’s form for
convenience, and the second-order approximated function of the reduced function can
be expressed as

v(ak+1) = r1(a
k) + r′1(a

k)T∆ak+1 +
1

2
(∆ak+1)TJT

Kau(a
k)JKau(a

k)∆ak+1

=
1

2
(ak+1)TQak+1 − ηTak+1 + γ (21)
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where ∆ak+1 = ak+1 − ak, Q = JT
Kau(a

k)JKau(a
k) = yT(Φ−)T(DΦ)TP⊥

ΦDΦΦ−y,
η = −r′1(a

k) +Qak and γ = r1(a
k) − r′1(a

k)Tak + 1
2 (a

k)TQak. Note that the r′1(a
k)

computed by (16) is equal to JT
Kau(a

k)P⊥
Φ(ak)y, since (P⊥

Φ)
T = P⊥

Φ and (P⊥
Φ)

2 = P⊥
Φ.

For large-scale problems, the approximated Hessian matrix can be obtained by a
recursive Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method that just uses the
gradient information of the reduced problem

Hk =

(
I− ∆ak(∆gk)T

(∆gk)T∆ak

)
Hk−1 ·

(
I− ∆gk(∆ak)T

(∆gk)T∆ak

)
+

∆ak(∆ak)T

(∆gk)T∆ak
, (22)

∆ak = ak − ak−1, (23)

∆gk = gk − gk−1, (24)

where ak is the estimated value of nonlinear parameter and gk is the gradient of the
reduced function at kth iteration. In this case, Q, η and γ in the second-order approxi-
mation function are

Q = Hk = JT
BFGS(a

k)JBFGS(a
k),

η = −r′1(a
k) +Hkak,

γ = r1(a
k)− r′1(a

k)Tak +
1

2
(ak)THkak,

where JBFGS is obtained by performing Cholesky decomposition on Hk.
The minimization of approximated function is obviously a quadratic optimization

problem, then the multi-step-length gradient iterative method is employed to update
the nonlinear parameters. Comparing (21) with (6), we can find that

M = J(ak),Y = J(ak)ak −P⊥
Φ(ak)y, (25)

where J can be JKau or JBFGS. Applying the Gram-Schmidt procedure to M, we
can obtain M̃ and W. Then executing the Mul-GI algorithm (10)-(13), the nonlinear
parameters can be updated by:

ak+1 = W−1βk+1. (26)

This minimization strategy for solving the nonlinear regression problem is named as
multi-step-length gradient iterative-based variable projection (Mul-GI-VP) method. The
proposed algorithm first utilizes the VP method to eliminate the linear parameters and
then the multi-step-length gradient iterative method is adopted to update the nonlinear
parameters. The Mul-GI-VP algorithm is summarized in Algorithm 1:

Algorithm 1: Multi-step-length gradient iterative-based variable pro-
jection (Mul-GI-VP) algorithm
Initialize
Choose positive numbers ε1 and ε2, a maximum iteration number N , and the
initial values of nonlinear parameters a0. Let k = 0 and the initial β0 = 1/106,
with 1 being a q-dimensional column vector.
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Estimate nonlinear parameters a
Step 1: Eliminate the linear parameters ĉ by (14) for the fixed a = ak, resulting
in a reduced function (15) that only contains the nonlinear parameters.
Step 2: Compute the approximated Hessian matrix according to Kaufman’s sim-
plified Jacobian matrix (20) or using the BFGS method (22)-(24).
Step 3: Utilize the quadratic function (21) to approximate the reduced function
by computing the symmetric positive matrix Q = JT

KauJKau or JT
BFGSJBFGS, η

and γ.
Step 4: Compute M and Y by (25) using JKau or JBFGS and then apply the
Gram-Schmidt procedure to M to obtain M̃ and W by (8) and (9).

Step 5: Compute the update direction dk by (11) and λk by (12).

Step 6: Calculate the auxiliary variables βk by (10) and then update the nonlinear
parameters ak+1 by (26).
Step 7: if

∣∣r1(ak+1)− r1(a
k)
∣∣ < ε1 or

∥∥ak+1 − ak
∥∥ < ε2

Terminate the process, break;
else

k = k + 1, go to Step 1;
end
Output
Nonlinear parameters: â = ak+1;

Linear parameters: ĉ = argmin
c

1
2 ∥y −Φ(â)c∥2 = Φ(â)†y.

4. NUMERICAL EXPERIMENTS

In this section, two numerical experiments, including image restoration and data fitting
of complex exponential model, are employed to verify the performance of the proposed
algorithm. Different optimization strategies (including the joint optimization method,
alternating optimization method and VP method) are used as comparison methods to
verify the effectiveness of the proposed algorithm. To ensure the fairness of comparison,
all the algorithms compared in the experiments adopt the same randomly generated
initial values and all the algorithms were run on MATLAB R2018b.

4.1. Data fitting of complex exponential model

In this subsection, we consider the following complex exponential model

f(a, c; t) = c1e
−a2t cos(a3t) + c2e

−a1t cos(a2t) + ϵt, (27)

where a = (a1, a2, a3)
T and c = (c1, c2)

T are the nonlinear parameters and linear pa-
rameters; ϵt is the white noise.

Here the parameters in (27) are set to be: a = (1, 2.5, 4)T and c = (6, 1)T. The
noise {ϵt} obeys Gaussian distribution with 0 mean and variance σ2 = 0.12. Based on
these selected parameters, 19 data points from t = 0.1 to 1 with time interval 0.05 are
randomly generated.

Assume that the form of model (27) is known, the parameter estimation is equivalent



204 H.R. CUI, J. LIN AND J.N. SU

to solving the following nonlinear regression problem according the observations {(ti, yi)}

1

2

m∑
i=1

(yi − c1e
−a2ti cos(a3ti)− c2e

−a1ti cos(a2ti))
2. (28)

Three different optimization strategies are used to solve the problem (28), and for each
strategy, we use the standard gradient iterative method and multi-step-length gradient
iterative method. For a fair comparison, the initial values of each algorithm are kept the
same. Figure 1 shows the comparison of the convergence process of different algorithms.
The error of estimated parameters is defined as:

Err(ak) =
∥∥ak − atrue

∥∥2 ,
where ak are the estimated nonlinear parameters at kth iteration. From Figure 1, we can
observe that the multi-step-length gradient iterative algorithm outperforms the standard
gradient iterative method, achieving faster convergence rate. The VP optimization strat-
egy greatly accelerates the convergence speed of the algorithm and makes the parameter
estimation more accurate. The overall comparison results confirm the effectiveness of
the proposed Mul-GI-VP algorithm.
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Fig. 1. Convergence comparison of different algorithms for

estimating the parameters of complex exponential model.
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4.2. Image restoration

In image restoration, a type of image deblurring problem, named blind deconvolution, can
be reduced to solving an SNLLS problem. The image blurring process can be modeled
by

b = A(P(a))xtrue + ϵ, (29)

where b represents the blurred image, A(P(a)) is a blurring operator that is determined
by the point spread function (PSF) P(a) and the boundary condition. Various PSFs
have been used in real applications. In this case, we use the Gauss blur P(a), which can
be expressed as

pij = exp

(
−1

2

[
i− k
j − l

]T [
s21 r2

r2 s22

]−1 [
i− k
j − l

])
,

where (k, l) is the center of PSF. The PSF is determined by the orientation and spread
parameters a = (s1, s2, r)

T, which is regarded as the nonlinear parameters of the blurring
model. We aim to estimate the parameters a to obtain the blurring operator , and then
to reconstruct the true image x, which is equivalent to solving the nonlinear regression
problem

min
a,x

1

2
∥b−A(P(a))x∥2 , (30)

where we assume that the image has a reflexive boundary. More information about the
blurring model can refer to [7, 20].

ture blurred

Fig. 2. A piece of grain with 128× 128 size and the blurred image

generated according to blurring model (1% Gaussian noise is added)

(29).

In this case, a piece of grain with size of 128× 128 shown in Figure 2 is used and the
blurred image generated by model (29) (1% Gaussian noise is added) is shown in Figure 2.
Different methods (including GI-joint, Mul-GI-joint, GI-alternating, Mul-GI-alternating,
GI-VP and Mul-GI-VP) are employed to reconstruct the true image. Figure 3 shows
the convergence process of the objective function values obtained by different methods.
As shown in Figure 3, we can find that: 1) multi-step-length optimization strategy
makes the algorithm converge faster; 2) the proposed Mul-GI-VP method obviously
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Fig. 4. Recovered images by different methods.

outperforms the other methods, especially the joint optimization method and alternating
optimization method.

The above results confirm the effectiveness of the proposed Mul-GI-VP algorithm
compared to the other first-order gradient methods.
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5. CONCLUSION

In this paper, we discuss gradient iterative-based algorithms for SNLLS problems. Tak-
ing advantage of the special structure presented in such models, we propose a highly
efficient Mul-GI-VP algorithm. This method utilizes the VP strategy to obtain a re-
duced problem with a lower dimension of estimated parameters and then introduces the
multi-step-length strategy to update the nonlinear parameters. In this way, the pro-
posed algorithm overcomes the low convergence rate of the standard gradient iterative
algorithm and is more robust to the initial values of parameters.

Multi-step-length provides a feasible way to improve the convergence rate of the
gradient iterative method. For some real-world problems [33, 34], when the parameter
dimension is large, it will be a meaningful research topic in the future to explore how to
use as few step-lengths as possible to achieve the best performance.

(Received July 26, 2023)
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