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Abstract. We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms con-
taining a finite number of unknown values u(n1,t),...,u(ng,t) with 0 < m <72 < ... <
ng < 1. By applying the linearization method together with the Faedo-Galerkin method
and the weak compact method, we first prove the existence and uniqueness of a local weak
solution of problem (P). Next, we consider a specific case (Pg) of (P) in which the nonlinear
term contains the sum Sy[u?](t) = ¢ * i u?((i —1)/q,t). Under suitable conditions, we

i=
prove that the solution of (Pg) converges to the solution of the corresponding problem (Poo)
as ¢ — oo (in a certain sense), here (Poo) is defined by (P,) in which Sy[u?](t) is replaced

by fol u? (y,t) dy. The proof is done by using the compactness lemma of Aubin-Lions and
the method of continuity with a priori estimates. We end the paper with remarks related
to similar problems.

Keywords: Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-
Galerkin method; linearization method
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1. INTRODUCTION

We investigate the Robin-Dirichlet problem for a nonlinear wave equation
st — Mgz — p(t,w(0, 1), u(n,t), . u(ng, t), [u®)]?, uw(t)]*)tas
t
+/ gt — $)uzy(z,8)ds = f(x,t), 0<z<l, 0<t<T,
0

(1.1)
uz(ovt) - Cu(ovt) = u(lvt) =0

u(z,0) = uo(x), u(z,0) =uy(z),
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where p, f, g, ug, uy are given functions and A > 0, { > 0, 771,7]2,...,77q are
given constants With 0<m <m<...<n, <1land |u@)?= fo (z,t) de,
luz(t)]]? = fo (z,t)d.

In the one- dlmensmnal case, the first equation (1.1); of problem (1.1) is regarded
as a model of nonlinear wave equations of the Kirchhoff-Carrier type with strong
damping and memory terms. It is well known that the mathematical model of
Kirchhoff and Carrier comes from a description of small vibrations of an elastic
stretched string. In [9], Kirchhoff first investigated the nonlinear vibration of an
elastic string

Eh [*|0u 2
1.2 h :(P —,t‘d) ,
( ) oNnUg O+2L/ ay(y ) YUz
where u = u(x, t) is the lateral displacement at the space coordinate = and the time ¢,
o is the mass density, h is the cross-section area, L is the length, E is the Young
modulus, Py is the initial axial tension. Carrier in [3] established a model of the type

L
(13) Ut — <PO + Pl / U’Q(yﬂt) dy) gy = Oa
0

where Py, P; are given constants, which models vibrations of an elastic string when
changes in tension are not small.

There is a great number of works in this aspect, for during the last decades,
initial-boundary value problems of the Kirchhoff-Carrier model have been studied
extensively providing many interesting results. Among the works of the Kirchhoff-
Carrier type we can cite, for example, Cavalcanti et al. (see [4]-[5]), Larkin (see [10]),
Long et al. (see [13]) , Medeiros (see [14]), Park and Bae (see [21]), Santos (see [23])
and the references given therein. A survey of the results about the mathematical
aspects of Kirchhoff model can be found in Medeiros et al. (see [15], [16]). By using
different methods together with various techniques in functional analysis, several
results concerning the existence/global existence and the properties of solutions such
as blow-up, decay, stability have been established. Especially, in case of the presence
of viscoelastic terms, the reciprocal effects between viscoelastic terms and the source
term can cause the decayed property or the blow-up phenomena of solutions in some
cases, see for example, [7], [8], [11], [17]-[19], [22], [25]-[27].

In [20], Nhan et al. considered the Robin problem for a wave equation with the
source containing nonlocal terms, i.e.,

(1.4)
Ut — Ugy = [zt u(z, t), u(ng, t), ..., ung, t),u(z,t), 0<z<l, 0<t<T,
uz(0,1) — hou(0,t) = ux(1,¢) + hyu(l,t) =0,
u(z,0) = up(z), u(x,0) =uy(x),
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where f, ug, u; are given functions and hg, b1 > 0, 11,72, ..., 7, are given constants
with ho +h1 > 0,0 <y < 2 < ... < 1ng < 1. Here, the authors proved the
existence and uniqueness of a weak solution and established an asymptotic expansion
of high order in a small parameter of a weak solution. However, to the best of our
knowledge, there are relatively few results about such a problem with the source
containing multi-point nonlocal terms.

Motivated by the above-mentioned inspiring works, we investigated problem (1.1)
and we first proved the existence and uniqueness of a local weak solution of this
problem. We further note that, when f has the general form

f= flatuue ug, w(0,8), uln, t), . ulng ), [u(®)]? lus ()],

the existence and uniqueness of a local weak solution are also valid. This result

can of course be immediately applied to specific cases of problem (1.1), namely,

qg—1
problem (P,) with = ,u(ﬁ,q_1 S u?(i/q,t), ||ux(t)|\2>, or problem (P.) with u =
i=0

w(t, [[u(®)|)?, ||luz(t)]|?), or some similar specific cases (see remarks in Section 5 below).
Therefore, based on the solvability of them, we then can consider the behavior of

q
solutions. Let us discuss the situation where the sum ¢=* > u?((i — 1)/q,t) can be

considered as a special combination of the discrete family {J(m, O}, in (1.1)1. It is
clear to see that, if the functions y — u?(y, ) are continuous on [0, 1] with ¢ € [0, T
fixed, then

1 1
ZuQ(Z ,t) —>/ u?(y,t) dy = |[u(t)]|®* as ¢ — oo,
— q 0

therefore, problem (P,) can have a close relationship (in a certain sense) with prob-
lem (P) for the equation

t
i = Mg — p(t a1 o (O]t + / 9t = $)uza(a, 5)ds = f(w,1),

0<x<1,0<t<T, associated with the Robin-Dirichlet condition and initial con-
dition (1.1)2,3. We will prove this relationship in this paper to obtain an approximate
solution of the Kirchhoff-Carrier problem (Po,). Obviously, similar relationships also
can be discussed and proposed.

This paper consists of five sections. In Section 2, we present some preliminaries.
In Section 3, by applying the linearization method together with the Faedo-Galerkin
method and the weak compact method, we prove the existence and uniqueness of
a local weak solution. In Section 4, we consider the couple of problems (P;), (Po)
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and prove that the solution of (P,) converges to the solution of (Ps) as ¢ — o
(in the same sense as in Theorem 4.4 below). The proof of this section is obtained
by the compactness lemma of Aubin-Lions and the method of continuity with a priori
estimates. Finally, in Section 5, we remark that the methods used can be applied
again to similar problems to obtain the same results (see Remarks 5.1, 5.2 below).

2. PRELIMINARIES

Put = (0,1). We omit the definitions of the usual function spaces and denote
them LP = LP(Q), H™ = H™(Q). Let (-,-) be either the scalar product in L2
or the dual pairing of a continuous linear functional and an element of a function
space. The notation [|-|| stands for the norm in L? and we denote by ||-||x the norm
in the Banach space X. We call X’ the dual space of X. We denote LP(0,T; X),
1 < p < oo, the Banach space of real measurable functions w: (0,7) — X such that
llullLe(0.7:x) < 00 with

T 1/p
(/ ()% dt) 1< p< oo,
ullr(o,1:x) = 0

esssup |Ju(t)| x if p = 0.
0<t<T

Let u(t), v'(t) = ut(t) = u(t) u”(t) = utt(t) = i(t), ug(t) = yu(t), ug(t) =
Au(t), put u(z,t), 2 St (z, t), & 5 (x, t), & G (x, t), 2 %2 (x,t), respectively.

Let T* > 0 with u € C*([0, T*] x RY"3), = p(t, 21, . .., 24+3), we take Dy = dd‘tL,
Dii1p= % withi=1,...,¢+3,and D*u = D™ .. D;yjjfu, a=(a1,...,0444) €
Zi+4, ol =01 + ...+ agra <K, D©:0) = .

On H', we use the norm

ol = VI[vlI? + [oz 1.

We put
(2.1) V={veH" v(1) =0},
(2.2) a(u,v) = /0 g (2)vg (z) dz + Cu(0)v(0), wu,v € V.

Obviously,V is a closed subspace of H! and on V, the three norms v — |vl g1,
v = |Jvg]] and v = ||[v||s = \/a(v,v) are equivalent norms. It is well known that the
imbedding H'! — C°(Q) is compact satisfying the inequality

lollgoy < Vlollm Vo e H.
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Moreover, we have the following lemmas, the proofs of which are straightforward
hence we omit the details.

Lemma 2.1. Let ¢ > 0. Then the imbedding V — C°(Q) is compact and

[0l co@y < llvell < [lvlla;

1
vl < fleall < llolla < VI+Clleall < VI il

Lemma 2.2. Let ¢ > 0. Then the symmetric bilinear form a(-,-) defined by (2.2)
is continuous on V' x V and coercive on V.

Lemma 2.3. Let ¢ > 0. Then there exists the Hilbert orthonormal base {w;}
of L? consisting of the eigenfunctions w; corresponding to the eigenvalues \;
such that

O<A<A<... <A<, lim Ay = o0,
J]—00
a(w;,v) = Xj(w;,v) VoeV, j=12,...

Furthermore, the sequence {w;/\/A;} is a Hilbert orthonormal base of V with re-
spect to the scalar product a(-,-). On the other hand, we have wj; satisfying the
boundary value problem

{ _ij - Ajwja in (07 1);
wjz(0) — Cw;(0) = w;(1) =0 w; € C*(Q).

The proof of Lemma 2.3 can be found in [24], Theorem 7.7, page 87 with H = L?
and V; a(-,-) are defined by (2.1), (2.2), respectively.

Definition 2.4. A function u = u(x,t) is a weak solution of problem (1.1) if u €
Vr ={v e L*(0,T; H>NV), v € L>(0,T; H*NV),v" € L>=(0,T; L*)NL?(0,T;V)},
and u satisfies the variational equation

(2.3) (' (8), w) + Aaul (1), w) + plul (a(u(t), )
- / gt — s)a(u(s), w) ds + (F(£), w)

for all w € V, a.e. t € (0,T), together with the initial conditions

(2.4) uw(0) = wp, u'(0) =7y,
where
(2.5) plul(t) = p(t, uw(0,t), u(ny, t), . .., w(ng, ), [[u()|1?, lus(®)]?)-
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3. EXISTENCE AND UNIQUENESS

In this section, we establish the local existence and uniqueness of problem (1.1).
First, we make the following assumptions:
(H1) o, a1 € V N H?, 1o, (0) — Clip(0) = 05
(Ha) g€ H'(0,T7);
(Hs) p € CY([0,T*] x R x R%) such that pu(t,z1,...,2¢43) = ps > 0 for all
t €10,7], for all (21,...,2q41) € R, for all (2442, 24+3) € R%;
(Hy) f € L*(0,T*; L?), f' € L?(0,T%; L?) = L?(Qr~), where Q7+ = (0,1) x (0,T*).

For each M > 0 given, we set the constants Ks(u), K 5 as

q+4
() = il ez, = Millooc iy + 2 1Dillco 4,
=1
Kf=|lflr=@rr + 1 l2@e Melloocz,, = sup  |ult, 21, zges)]s

(t,21,012q48) EAM

where
Ay =[0,T%] x [-M, M]qu1 X [O,MQ]Q.

For every T € (0, T*], if we take
Vi ={ve L™, T; H*NV): v € L>(0,T; H*NV), v" € L*(0,T;V)},
then Vp is a Banach space with respect to the norm (see Lions [12])
lvllvy = maX{HUHL‘”(O,T;Hzﬂ\/)v ||U/||L°°(O,T;H20V)v ||U”||L2(0,T;V)}~
For every M > 0, we put

WM, T)={veVr: |v|v, <M},
Wi(M,T) ={veW(M,T): v € L>(0,T;L*}.

Note that
Wi(T) = {ve C°0,T);V)NnC([0,T]; L?): v" € L*(0,T;V)}
is also a Banach space with respect to the norm
[ollwy () = vl coo, vy + 10 leoo,ry;z2) + 10| 220,75v)-

Now, we establish the recurrent sequence {u,,} defined by choosing the first iter-
ation ug = ug and suppose that

(31) Um—1 € Wl(M, T)
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We associate problem (1.1) with finding w,, € W(M,T), m > 1, such that w,,
satisfies the linear variational problem

(U (), w) + Aa(ug, (t), w) + prm (E)a(um(t), w)

(3.2) :/O g(t = $)a(um(s), w) ds + (f(t),w) YweV,

um (0) = g, ul,(0) =171,

where
(3.3)
fim () = p[um—1](t)
= pu(t, um—1(0,), um—1(n1,1), . . ., um—1(1g, 1), ||Um—1(t>|‘2a ||Vum—1(t)||2)-

Then, the existence of the sequence {u,,} is verified by the following theorem.

Theorem 3.1. Let (Hq)—(Hy) hold. Then there exist positive constants M and T
such that, for uy = o, there exists a recurrent sequence {u,,} C W(M,T) defined
by (3.2)—(3.3).

Proof. The proof consists of three steps.

Step 1. The Faedo-Galerkin approximation (introduced by Lions in [12]). Starting
from the basis {w;} defined for L? as in Lemma 2.3, we obtain the approximation
of the data in the form

uP () =3 e (tw;,

j=1
where the coefficients cg,]f;-, j=1,...,k, satisfy the system of linear differential equa-
tions
Giim (1), ;) + Naliin (£), w7) + o (B)a(uin’ (1), wj)
t
(34) = / g(t = s)a(ufy) (s),w;) ds + (f(t),w;), 1<) <k,
0
utn) (0) = Tog, i (0) = T,
where
~ ko (k) ~ .
Uor = Y o 'wj — g  strongly in H2NYV,
(3.5) =t

k
Uk = 5](»k)wj — Uy strongly in H2N V.
j=1

Using contraction mapping principle, it is not difficult to show that the system (3.4)
. . (k) /4
has a unique solution uy,’ (¢) in [0, T.
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Step 2. A priori estimates. Set
SO (8) = [1al) (1% + 1l (17 + MAGG 1 + (6 (Ll (D17 + [ Aul (¢)]1)
+2 /Ot(A(Hﬂ%f)(S)Hi + | Aagy) (s)II7) + [[i5 (s)117) ds
3.4) that

then we deduce from

(
(3.6) m.SP(t) <SPt
= S)(0) + 2(Atiok, Ating) + 2(f(0), Adiyg) + g(0)[| Ao

+/ (1 (5) = 29(0)) (lluty ()7 + 1 Aufz)(5)]1%) ds
0

+2/Otg(t—s)

< (a(ul®) (), (1) + (Aul(s), Auld) (1) + A (1)) ds

Y
% (a(u® (), ul® (7)) + (Aul (), Aud) (7) + Adlh) (7)) ds
2 f (7)) () — Al () ds 42 / {7(s), Al () ds
vz f AGEH (] ds — g(0) Aud ()]
— 28u® (1), A (1)) — 207(1), A (1),

where fi, = min{1, y., \} and

(3.7) 5B @) = [a® @) + [P W2 + 180D O + [ B2 + [ 2u® ©)2

+/ D )2 + 18D + 1 (5)]2) ds
Now, for convenience, we rewrite (3.6) in the form

9
7S (t) < S5 (0) + 2(Atiow, Ating) + 2(£(0), Atink) + g(0)[| Atiow > + > I;

with the terms I, ..., Iy defined and estimated as follows.
By (3.3), we first note here that

Hom (8) = D1t —1)(t) + Dapalum—1] ()1 (0,8) + D Dicvopluwm—1)(t)up_ (i, 1)

2D sl )10 1) :
+ 2Dq+4,uf[um71](t)< (t) Uy — ( )>ﬂ
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|17, (8)] < Konr (1)(1+ (g 4+ V)|Vt y (8)]] 4 2t -1 (#) |1t (8)]
+ 2/ Vum -1 OV, 1 @)
< Kpr(p) (1 + (g + 1)M + 4M?) = T

Therefore
(3.8) I = /O (o (5) = 29(0) ([l ()12 + | At (5)]1%) ds

¢
< (i +209(0)) [ 5P
0
Applying the Cauchy inequality
2ab < Ba’ +ﬂ62 Va,be R, ,8_ * = B,

we make the following estimation

(3.9) I = 2/t g(t = s)(alufy) (s), uiy) (£) + (Aul) (s), Auf) (t) + Aaf) (1)) ds
0
2/0 l9(t = )I(lup () llallul (Olla + 1Auf (s) 1| Auf (1))
+ 1 Aul ()l Al (©)]]) ds

t
2/ lg(t = )| (luly ()12 + 1 2ui) (5)]° + | Aul) (5)]1%) 12
0
< (luf (ON2 + 1 2ui) (O] + AR (0)]*)"* ds

<4/t lg(t — $)|\/ S (s)\/ S (t) ds

0

< /3553? (1) + i||g||%2(o,m | 306 as
( (s ) (7)) + <Au(’“>( ), Aulp) (7) + Ady) () ds

<4/ dT/ 19/ (r — $)\/5® ()1/50 () ds
0 0

t
<WVTg 20y / 509 (s) ds
0

I3
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I=2 / (), B (5) — Aath) () ds < 2V f -1 / 5 as
<N i + | 5 (s)ds < AT + / 5 (5) s
=2 [ 47160, 804060 ds < 17 [y + [ 0600
<K+ [ We)ds
t t
=2 [ laa)as <2 [ 500 s
I = = gO)|Au® (1) < 219(0) (HMMHQ 1 | t ||Au$fi><s>||2ds)
< 24g(0) A+ 27190} | 5 (s)ds:
I = — 20800, 0 (0) < B5W (O + - Au (0]
< B.3W(H) + %(mmw 1 | 5(s) ds>;
I = = 2(f(0), M) (1)) < 55 0) + S £
<BIRO + 5O + 717 Baa,.)
<B.5WO + (O +TR3).
It follows from (3.6), (3.8) and (3.9) that

t
(3.10) S®H () < 8% 4+ TDy(f) + DQ(M)/ 55 (s)ds,
0

where

<) _ L (om EATIN
(311) 50 = 55 (S00) + (3190 + ) a0 )

+

32* ((ATok, Atik) + (£(0), Atig)) + %
2 1\—
Di(f) = 35 (1+ E)Kfc,

4 1
NETR (EHQIIQLQ(O,T*) + \/anfnmw)),

(1O +73).
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By (3.5), it follows from (3.11); that
= 1
(3.12) S < GM* VmkeN,

where M is a constant depending only on pu, f, g, @, U1, A, ¢, ¢. We choose T' € (0, T*]
such that

(3.13) (%MQ + TDl(f)) exp(T Dy (M) < M2

and

(3.14) kr = 3MKp(n)(1+ g+ 4M)\/;zexp(Tf72(M)) <1,
where

~ 1 . 1
Da(M) = = (1 4+ +2(9(O)] + =9l E0.00) + VT 207 ) )

*

By using Gronwall’s lemma, we deduce from (3.10), (3.12) and (3.13) that

S (1) < M2 exp(—TDa(M)) exp(tDo(M)) < M? Yt € [0,T] and Vm and k € N.
Therefore, we have

(3.15) u® e W(M,T) Vm and k € N.

Step 8. Limit procedure. From (3.15), there exists a subsequence of the se-
quence {uﬁ,’f)}, with the elements also denoted by ugf), such that

ut® o, in (0, T; H2 N V) weakly*,
alk) ! in L>=(0,T; H> N V) weakly*,
il ulh in L2(0,T;V) weakly,

Um € W(M,T).

(3.16)
Passing to limit in (3.4)—(3.5), we have u,, satisfying (3.2)—(3.3) in L?(0,T) weakly.
Furthermore, (3.2); and (3.16)4 imply that
¢
ul = ANAUL + i (1) Ay, — / g(t — 8)Auy,(s)ds + f € L>=(0,T; L?),
0

so we obtain u,, € Wi(M,T), Theorem 3.1 is proved. O
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Theorem 3.2. Let (Hy)—(H4) hold. Then, there exist positive constants M, T
such that the recurrent sequence defined by (3.2)—(3.3) converges strongly to a func-
tion u in Wy(T). Moreover, u € W1(M,T) and u is a local unique weak solution of
problem (1.1) satisfying the estimate

(317) Hum - uHWl(T) < CTk,}n Vm e N,
where kr € [0,1) and Cr are constants depending only on T, u, f, g, uo, U1, A, C, ¢

Proof. (a) Existence of the solution. By Theorem 3.1, there exist positive
constants M, T such that, for ug = g, there exists the recurrent sequence {u,,} C
W (M, T) defined by (3.2)—(3.3). We prove that {u,,} is a Cauchy sequence in W1 (7).

Let wy,, = tmy1 — Um. Then w, satisfies the variational problem
(3.18)

(wy, (£), w) + Aa(w, (£), w) + pan 41 (t)a(wm (1), w)

:/O 9(t = s)a(wm(s), w) ds + (pm+1() = pm () (Bum (t),w) Yw €V,
wm (0) = w!,(0) = 0.

Taking w = w/, in (3.18); and integrating with respect to t, we get
(3.19)
t

BT < [ as) = 200w (o) 2 ds+2 g = alun(s). (1) ds

— 2/0 dT/O 9 (17— 8)a(wn (), wn, (7)) ds
42 [ (i (5) = o (6)) Bt (5) ) () s,
0
where i, = min{l, ., A} and
Xon(t) = [l (O] + [[wm ()12 +/0 [[w), (5)]]7 ds.

With similar estimations as in the proof of Theorem 3.1, we obtain

820) [ (s = 200N om ()2 s < (i +200)) [ Fols) s,
2 [t = 9)alan (s). 0 () s < G Ton(0) + = llEror / X,
—2/ dT/ (7 — 8)a(wm (8), wn (7)) ds <2\/FH91”L2(0,T*)/0 Xm(s)ds
2 / (i s1(5) = i (5)){Dti (5, 0], (5)) s

t
STMPK3 () (1 + g+ 4M)? w1 |3y, () +/ X n(s)ds.
0

272



It follows from (3.19) and (3.20) that

t
(3.21) Xm(t) < TDl(M)||wm,1H%V1(T) + 2D2(M)/O Xm(s)ds,
where

~ 92 ~
Dy(M) = ﬂ—MQK?VI(M(l +q+4M)?,

~ 1 . 1
Do) = = (147 +2(lg(0)] + = lgllE o) + VIl o) )

Using Gronwall’s lemma, (3.21) gives
lwm|lw, (1) < krl|lwm—1llw,(ry Ym €N,
where kr € (0,1) is defined as in (3.14). It leads to
(3.22) [t = tmpllw 1y < lluo — utllw, (1 — k) " k7 Vm,p € N.

It follows that {u,,} is a Cauchy sequence in Wi (7). Then there exists u € W1 (T)
such that

(3.23) U — u  strongly in Wi (T).

Because of u,,, € W(M,T), there exists a subsequence {uy,,} of {u,,} such that

Um; — U in L°°(0,T; H>N'V) weakly*,
(3.24) Uy, —> 0 in L°°(0,T; H>NV) weakly*,

ugﬁ —u” in L2(0,T;V) weakly,

u€ W(M,T).

On the other hand, we have the estimation

= ]| oo 0,7y < Kar () (1 + g+ AM) [t 1 = ullyw, (1)
Therefore, (3.23) leads to
(3.25) tm — plu]  strongly in L°°(0,T).

Passing to limit in (3.2)—(3.3) as m = m; — oo, it follows from (3.23)—(3.25) that
there exists u € W(M,T) satisfying (2.3)—(2.5). Furthermore, (2.3) and (3.24)4
imply that

' = NAY + plu](t)Au — /tg(t —s)Au(s)ds + f € L*(0,T; L?),
0

so we obtain v € W1 (M, T). The existence proof is completed. On the other hand,
by (3.22)—(3.24), (3.17) follows.
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(b) Uniqueness of the solution. Let ui,us € Wi(M,T) be two weak solutions of
problem (1.1). Then u = u; — uo satisfies the variational problem

(o (8), 0} + N (8),10) + s (a(u(t) )
(3.26) = A0S0 = [ gt = shatu(s)w)as Vaev;
u(0) = w(0) =0,
where j(t) = i (£) — o), p(t) = uluil(), i = 1,2.

Taking w = v/(t) in (3.26); and then integrating with respect to ¢, we have
(3.27)

[ X () < /0 (11(s) = 29(0)) [[u(s)|17 ds + 2/0 g(t — s)a(u(s), u(t)) ds
- 2/0 d7'/0 g (1= s)a(u(s),u(r))ds + 2/0 B(s)(Aug(s),u'(s)) ds,

where ji, = min{1, g, \} and X (t) = ||u/(t)||? + ||Ju(?)]]? + fot |u/(s)]|2 ds. Similarly,
we also have the estimate

(3.28) X(t) <Ky /t X(s)ds,
0

where ) )
Kir = = (i + 2000+ = 9l 0:7-) + 2Vl |20

4~
+ — MKy (p)(1 + q+ 4M).

*

Using Gronwall’s lemma, it follows from (3.28) that X (¢) = 0, i.e., u; = ug. Theo-
rem 3.2 is proved. (I

4. AN APPROXIMATE SOLUTION OF THE KIRCHHOFF-CARRIER PROBLEM

In this section, we consider the couple of problems (P;), (Ps),

1q71 . t
Utt — AMUpgy — u(t, - ZuQ(E,t), |ugg(t)||2>uM + / g(t — s)ugy(z,s)ds
g q 0
(Py) = f(z,t), O0<z<l, 0<t<T,

Uy (0,t) — Cu(0,t) = u(1,t) =0,

u(z,0) = uo(x), ue(z,0) =1uy(z)
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and
t
et = Nugg — (e, (O], e (0] iz + / ot = $)tiza () ds
0
=f(z,t), 0<az<1,0<t<T,
g (0,t) — Cu(0,t) = u(1,t) =0,

u(z,0) = uo(x), w(x,0) =u(x),

(Poo)

where ¢ > 0, A > 0 are constants and p, f, g, ug, ¥ are given functions.
We first note that, (P,) is a special case of problem (1.1) with

p= mful® = (] E_ju(qt) 017 )

On the other hand, for a.e. t € [0,T], by the fact that the function y — u?(y,t) is
continuous on [0, 1], we have

=

Q

S0 = = 37w (5. 6) = Ju)]P as = oc,

1
q“

~
I
o

$0 pg[ul(t) converges to pfu](t) = p(t, |u(t)||?, [|us(t)]|?) as ¢ — oo in the same sense
as in Lemma 4.3 below.

Under suitable conditions, we next prove that the solution of (P,) converges to the
solution of the Kirchhoff-Carrier problem (P,) as ¢ — oo. We make the assumptions:
(H3) pe€ C'([0,T*] x R%) such that u(t,y,z) > p > 0 for all (¢,y, 2) € [0,T*] x R?;
(Hy) f € L*(0,T*; L?) such that f' € L2(0,T*; L?).

For each M > 0 given, we set

3
Ku(p) = HMHcl(,ZM) = ”“”CO(ZM) + Z HDWHCO(,ZMy
i=1
where H“HCO(KM) = sup  |u(t,y,z)| with Ay = [0,T%] x [0, M2] x [0, M?2].

(t,y,2)€EAM

Lemma 4.1. Let (Hy), (Hz), (H3), (H4) hold. Then, there exist positive constants
M, T independent of q such that (P,) has a unique weak solution u, € W1 (M, T)
for all ¢ € N and (P,) has a unique weak solution us, € Wy (M, T) .

Proof. By the assumptions (H;), (Hz), (Hz), (Hy), based on the proof of The-
orem 3.2, there exist positive constants M, T such that the problems (P,) and (P)
have unique weak solutions u, € Wi (M,T) for all ¢ € N and us € Wi(M,T),
respectively.
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It remains to show that, in this specific case, the positive constants M, T' can be
chosen independent of ¢. Indeed, as in (3.1)—(3.3) of linearization approximation,
corresponding to iy, (t) = pglum—1](t) = u(t, Syluz,_11(t), | Vum—1(t)]|?), we have

)
f (t) = D1paftin—1](t) + 2D2p[um 1] Zum 1( ) Uiy 1(q,t>
+ 2D pftin 1| () (V1 (1), Vum_l(t)>-

On the other hand,

1 )
Salud )ty == > w2 i (t)
qi:O
1
<L 2 VeI < Znum iy < M2,
=0
therefore
(4.1)
~ 2 <2 i i
() < Raa o) (14 23 Juma (0ot (5 ) | + 209 0191 1))
=0
~ 9 171
< B (n) (14 2 1V tm s OVt 1 ()] 4+ 2 Vs (V21,1 ()]
=0

= Kar() (1 + 4|Vt a () [[ Vet (D)) < Kg (0)(1 + 4022).

Using (4.1), proving the estimates similar to (3.6)—(3.15) for (P,), S (t) obtained
satisfies the integral inequality

(4.2) S (1) < 8% 4+ TDy(f) + Do(M / 50 (s

(43) 50 = 55 (S0 + (3190 + ) 1870 )

+ 3 (AT, M) + (70), M) + 5= (IO + T3,
Di() = 5 (14 ) T3,
12, )
D) = 3/3*(/3? + Karlp) (14 4M2) + 201+ 7] 0)])
+ g (14 1010 1) + VI 2o
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By (3.5), it follows from (4.3); that

- 1
(4.4) S5 < GM* VmkeN,

where M is a constant independent of ¢ and depending only on u, f, g, uog, u1, A, C.

We choose T € (0, T*] such that

(4.5) ( M? + TDy(M ) exp(T Dy (M) < M2,

kr =12y /= / MQKM WT exp(TDy(M)) <
where

Da(M) = (1 + (1 + 4M) Ray (1))

+ = (9O + 29107y + VT 220
By using Gronwall’s lemma, we deduce from (4.2), (4.4) and (4.5) that
S8 (1) < M? exp(—=TDy(M)) exp(tDy(M)) < M?
for all t € [0,T], for all m,k € N. Obviously, M, T chosen as in (4.4), (4.5) are
independent of q. Lemma 4.1 is proved. O

Because of u, € Wi(M,T) for all ¢ € N, there exists a subsequence of {u,} with
the same symbol, such that

ug—u in L>®(0,T; H2NV) weakly*,
(4.6) upy — ' in L°°(0,T; H*N'V) weakly*,
upy — v’ in L?(0,T;V) weakly.

Applying the compactness lemma of Aubin-Lions, there exists a subsequence of {u,},
also with the same symbol, such that

ug = u in C([0,T]; V) strongly,
(47) {q ([0, T} V) gly.

up —u' in C([0,T]; V) strongly.

Because u, is the unique weak solution of (P,), we get
(4.8)

/ (ug (1), w)e(t) dt + A / aug(t), w)e(t) dt + / fiqlug) (£)aluqg(t), w)p(t) dt
0 0 0
T t T
:/0 (/0 g(t — s)a(ug(s), )ds) ()dt+/0 (f (1), w)p(t) dt
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for all w € V, for all p € C(0,T"). By (4.6)3 and (4.7), it leads to

(4.9) / (u!'(t), w)p(t) dt — / (1), wyp(t) dt,
T T
| atw@.wedt— [ awo,wemd,
0 0
A /0 aul (£), w)p(t) dt — A /O Al (8), w)p(t) dt,
T t
/O () dt / ot — $)a(ug(s), w) ds

-/ " alugls) ) (/ "ottt — 9 at)

= [ ot ([ etvate-s)ar) as

- [ eta | gt~ S)afus), w) ds.

We have to show that

(4.10) /0Mq[uq](t)a(uq(t),w)@(t)dt—>/0 plul(t)a(u(t), w)e(t) dt.

We use the following lemmas.

Lemma 4.2. The following properties are fulfilled:
(i) [1Sqluz] = Sq[u?llleo.ry) — 0 as ¢ — oo,

(i) [1S[u®] = [luC)IP 20,0y = 0 as g — o0,

(iil) [1Sqluz] = luC)IPI720,y — 0 as g — oc.

Proof. (i) Note that we have the estimation

(4.11)

Sulu3)(0) = Sufe?0] < £ 3 [ud(£.8) = (2,8 [< N0 = 0,

: q
=0
< 2M|Jug(t) — u(®)|lv < 2M ||lug — ulleo,m:v)-
Then, by (4.7), we deduce from (4.11) that
184 [ug] = Sqlu?llleqo,m) < 2M|lug = ulleqo,mvy =0 as g — oo.
Thus (i) is valid.
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(ii) For all h € C°(]0,1]), we have

égh(é) . /Olh(y)dy

Since u € L>(0,T;V) — L>(0,T;C°(Q)), the function y — u?(y,t), a.e. t € [0,T],
belongs to C°(Q). Then, as above, we obtain

q—1

1
Sl [ = ol e
q =0

Additionally,

142 1<
1S, <Y (L) <23 fua @) < M2
1 N\ 9

lu@)l* < llua(B)|* < M2,
so we get that
1S, [u?](t) — |lu(®)]?| < 2M?* VqeN and ae. t €[0,7].

Applying the dominated convergence theorem, we confirm that

2
dt -0 asq— oo,

1

T
HSqW]—IIU(-)|\2||2L2<0,T>=/O Sq[UQ](t)—/O u?(y, 1) dy

thus, (ii) holds.
(iii) It follows from (i), (ii) that

184 luz] = [luC)IIP] z20,7)
< N18qlug] = Sq[u?]ll 2o,y + 1Sg[u®] = ()1 20,m)
< 2VTM |Jug — ullcorpv) + [1Se[w?]) = luC) |20y = 0 as g — oo.

Hence, (iii) also holds. Therefore, Lemma 4.2 is proved. O
Lemma 4.3. The convergence
([ 1g[uqg] = plulllL2(0,r) = 0 as g — oo
holds.
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Proof. Due to

(4.12)  |pqlugl () = plul(D)] = lut, Sqlug)(t), luge (W)I7) = p(t; [lu(®)?, llua (8)]1%)]
< K (1) (1S [ug)(t) = [u@®?] + [lluga (D] = llua()]1*))
< 2 (1) (18 [ug) (8) = lu(®)]|*] + 2M [|uga (t) — ua(t)]])
< K () (1S[ug)(t) = u®I?| + 2M [Jug — ulleo,mv)),

it follows from (4.7)1, (4.12) and Lemma 4.2 (iii) that

2qluq) — plulll 20,y < Knr ()] Sqlu2] = ()12l r2go,m)
+ ZﬁMKM(,u)Huq —ulleo,m;v) — 0 as ¢ — oo.

Thus, Lemma 4.3 is proved. O

Now, we continue the proof of (4.10). By the inequality

‘ /OT fhqlug) (t)aluq(t), w)p(t) dt — /OT plu](t)a(u(t), w)p(t) dt‘

<

T
/0 [1qlug] (t) — plul(t)]a(u,(t), w)e(t) dt‘

+

[ il @atu ) = ute). whote dt\
< [ Inalual) = Ol a0
n / ull (Bl g t) — u(t) o]l (D)

< Mwllall@ll 20,7 | 11qltea] = plulll L2(0,7)

+ Kn()lwllallellz o, llug —uleqorivy = 0 as g — oo,

combining (4.7); and Lemma 4.3, we get (4.10).
Finally, by (4.9) and (4.10), letting ¢ — oo in (4.8), we obtain that uw € W (M, T)
satisfies the equation

T T T
/ (" (£), wp(t) dt + A / a(ud (1), w)p(t) dt + / ) (t)a(u(t), wye(t) dt
0 0 0

- /OT (/Otg(t — s)a(u(s), w) ds>sa(t) dt + /OT<f(t)7w>sa(t) dt

together with the initial conditions u(0) = ug, u'(0) = u;.
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Consequently,
(u”(£), w) + Aa(w/(t), w) + plu](t)a(u(t), w)
(4.13) — [ gt = shaul).w)ds + (7O w) weV.
0
U(O) = ﬂo, ’U,/(O) = ﬁl,

and v € W(M,T). Furthermore, (4.13); implies that
' 2
= M, + plu] () vz, — /0 g(t — s)uzg(s)ds+ f € L°(0,T; L7),

so u € Wi(M,T), hence u € W1 (M, T) is a solution of (P.;). By the uniqueness
of (Poo), we have u = un. Further, we note that the sequence {uy} converges to u
in the same sense as in (4.6) and (4.7).

The above result leads to the following theorem.

Theorem 4.4. Let (Hy), (Hs), (H3), (Hy) hold. Then there exist positive con-
stants M, T such that:

(i) (Poo) has the unique weak solution u € W1(M,T).

(ii) The solution sequence {uq} of (P,) converges to the weak solution u of (P)

in the sense
ug—u  in L>=(0,T; H*NV) weakly*,
upy — ' in L(0,T; H*NV) weakly*,
uy —u” in L*(0,T;V) weakly,
ug —u  in CY([0,T); V) strongly.

(iii) Furthermore, we have the estimation
lug = ullyyry < CrllSlugl = luC) 20 YaEN,

where Cr is a constant depending only on T, u, f, g, ug, u1, A, C.

Proof. It remains to prove (iii). We set

(4.14) Vg =uq —u, [ig(t) = palugl(t) — plul(t), Fq(t) = pqlug)(t),
then v, € Vr satisfies the variational problem
{vg (£), w) + Aa(vg(£), w) + fig(t)a(vg(t), w)

(4.15) = —[fig(t)a(u(t), w) —|—/ g(t — s)a(vy(s),w)ds Ywe,
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Taking w = v;(t) in (4.15); and then integrating with respect to ¢, we have
(4.16)
t

X0 < [ @) = 200))lEds+2 [ ot = s)afv (s).0,(0)ds
=2 [ ar [ = 9alwn .0 () as 2 [ (o)), 05 (5) ds.

where fi, = min{l, ., A} and )_(q(t) = ||v¢’](t)||2 + [Jug(t) % + fo ||v (8)]|? ds.
Note that

fiq(t) = D1p(t, Sylugl(t), |lugs (1)|%)
-1

20, S, )0 e 1) - S () (2

=0
+2Ds3p(t, Sq[ug)(t), ||ugz (1) |2)<uq9c( ) g (1)

|
< Kt (1) (1 + 4 uga (0) gy (1) < Knr () (1 + 4M?) = fins;
g ()] = |p1q[ug] (t) = pelu](1)]
< Ko () (15 [ug)(t) = a7+ uge (DI = lluz()]1%])
< Kt () (1Sq[ug) (8) = ()] + 2M|og (D))

< Kaa () (|S03)(1) = lu(t) 2] + 20/ X (1))

Using similar estimations as in the proof of Theorem 3.2, we obtain
t t o
(4.17) / (7 (5) — 29(0)) [u(s) 2 ds < (Fing +219(0) ) / X, (5) ds:
t fis — 9 ) t
2 / gt = $)a(ua(s), va(0)) ds < 55X (0) + —lgllEsor) | Fals)ds:
t T t
= / dr / g7 = $)a(v(s), vo(r)) ds < 2VT\g/ | 2o / X, (5) ds;
0 0 0
t
2 [ o) (g (3). 4 5) s
t
< 2MKu(p) / (1Sa[u2)(s) = ()] + 20/ Xy (5) )/ Ky () ds
t
< Enr()1Sglu?] — ()32 007) + 3M> Kar(u) / X, (s) ds.
It follows from (4.16) and (4.17) that
t
(4.18) X, (t) < Da(M)|Sglu?] — uC)32(07) + 2D2(M) / X, (s) ds,
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where
(4.19) Dy(M) = = Rs(p),

1 - ~ 2 1
Da(M) = i + 30 Rar ) + (90| = VI 12001 + o 7o)
Using Gronwall’s lemma, it follows from (4.18) that
(4.20) X4(t) < Dy(M) exp(2TDa(M))[|Sq[ug] — [uC)IlZ20,7)-

We deduce from (4.20) that

g = ully, zy < 34/ D1(M) exp(TDa(M))||Sglug] — [u(-)|1? ] 2 (0,1)-
Hence, (iii) holds. Therefore, Theorem 4.4 is proved. O

5. REMARKS

In this section, we remark that methods similar to the above ones can be applied
to obtain similar results.

Remark 5.1. When f has the general form

f=flatuue ug, w(0,8), uln, t), . ulng ), [u(®)? [lus ()],

the existence and uniqueness of a local weak solution of problem (1.1) are also valid.
It means that we also prove a sufficient condition for the solvablility of problem (1.1)
in this case.

Remark 5.2.
(i) The methods used to prove the unique existence of a weak solution for prob-
lem (P,) can be applied to problem (P,) in which S, [u?](t) is replaced by the sum

Salu?)(1) = 1qfu2(”q"i,t),

q =0

where 0; € [0,1),i=0,...,g — 1, are given constants.
(ii) The arguments used to consider the relationship of (P,) and (P.) can be also

applied to the problems (P,), (P), and then, the same results are also given
st — Mgz — 11ty Squ?)(t), Sg[u] () use = f(z,t), 0<z <1, 0<t<T,
(Py) < uz(0,t) — Cu(0,t) = u(1,t) = 0,

u(z,0) = uo(x), ue(z,0) =uy(z),
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where A > 0, ¢ > 0 are given constants, pu, f, ug, u; are given functions and

SR = a7t T R+ 0)/a0), Slul) = a7 T (4 0)/0.0). 0, €

[0,1),7i=0,...,q— 1 are given constants,

Ut — Mgz — plt, [u®)])?, ua(®)P)ten = fl2,t), 0<z <1, 0<t<T,
(P) 4 ua(0,) = Cu(0,) = u(1,t) =0,
u(z,0) = uo(x), u(z,0) =1uy(z),

where [[u(t)|2 = [y u*(y,t)dy, Jua(t)[|* = f, u?
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