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Abstract. The minimal nontrivial endomorphism monoidsM = EndCon (A,F ) of congru-
ence lattices of algebras (A,F ) defined on a finite set A are described. They correspond (via
the Galois connection End-Con) to the maximal nontrivial congruence lattices Con (A,F )
investigated and characterized by the authors in previous papers. Analogous results are
provided for endomorphism monoids of quasiorder lattices Quord (A,F ).
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1. Preliminaries

In this short note we describe the minimal nontrivial endomorphism monoidsM =

EndCon (A,F ) of congruence lattices of algebras (A,F ) defined on a finite set A.

Congruence relations (i.e., compatible equivalence relations) are one of the basic

tools for the investigation of universal algebras (A,F ). A nice property of equivalence

relations (or, more general, of quasiorders, i.e., reflexive and transitive relations) is

that their compatibility with the operations F of an algebra depends only on their

compatibility with unary polynomial functions f ∈ AA. Thus, one can focus on

unary algebras (A,F ) with F ⊆ AA or even on monounary algebras (A, f) via

Con (A,F ) =
⋂

f∈F

Con (A, f) (for the investigation of monounary algebras we refer

to the monograph [5], but they are also discussed in numerous recent publications,

of which we mention only [1], [2], [9] because these are close to our own research).
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For fixed A, the congruence lattices Con (A,F ) themselves form a lattice (with

respect to inclusion), which can be characterized as

EA := {Con (A,F ) : F ⊆ AA},

and was investigated, e.g., in [7] (see also [9]). Each congruence lattice is a complete

sublattice of Eq (A) (the lattice of all equivalence relations), in particular, it contains

the trivial congruences ∆A = {(x, x) : x ∈ A} and ∇A = A× A. Due to the Galois

connection End-Con (see below), the endomorphism monoids M = EndCon (A,F )

of such congruence lattices also form a lattice

MA := {EndCon (A,F ) : F ⊆ AA},

which is dual to EA.

The coatoms of EA (i.e., the maximal elements below the top element Eq (A) ∈ EA)

were determined in [7], Theorem 4.3 as congruence lattices of the form Con (A, f)

for special functions f of type I, II and III (and their structure was studied in detail

in [8]). It is natural to ask for the other (the monoid) side of the Galois connection,

that is, to consider the atoms ofMA, in other words, the minimal elements ofMA

above the least element T ∈ MA. This is done in the present short note.

We explicitly describe the atoms of MA, i.e., EndCon (A, f) for these special

functions f (Theorem 2.1 (A)). As shown in [6], the same functions of type I, II and III

also give the coatoms in the lattice of quasiorder lattices Quord (A,F ), therefore we

also shall characterize the corresponding atoms EndQuord (A, f) (Theorem 2.1 (B)).

To fix the notions and notation, recall that a binary relation θ ⊆ A×A is compatible

with (or invariant for) a function f ∈ AA; we also say f preserves ̺, denoted by

f ⊲ ̺, if

∀x, y ∈ A : (x, y) ∈ θ ⇒ (fx, fy) ∈ θ.

Equivalently, this expresses the fact that f is an endomorphism of θ (f ∈ End θ)

and (provided that θ is an equivalence relation (θ ∈ Eq (A))) that θ is a congruence

of the algebra (A, f) (θ ∈ Con (A, f)).

The relation ⊲ induces a Galois connection, namely End-Con, between unary

mappings and equivalence relations, defined by

End Q := {f ∈ AA : ∀ ̺ ∈ Q : f ⊲ ̺} for Q ⊆ Eq (A)

and

Con (A,F ) := Con F := {θ ∈ Eq (A) : ∀ f ∈ F : f ⊲ ̺} for F ⊆ AA.

The Galois closures are just the congruence lattices Con (A,F ) ∈ EA and the monoids

End Q ∈ MA. Thus, we are looking for the minimal nontrivial Galois closed en-

domorphism monoids. For a two-element base set A there exist only two (namely
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the trivial) equivalence relations. Thus, AA is the only Galois closed endomor-

phism monoid. We exclude this trivial case and, from now on, make the assumption

3 6 |A| <∞.

The least monoid T ∈ MA consists of all unary functions that preserve all equiv-

alence relations on A, that is, we have T = EndEq (A). Therefore, the monoid T

and the functions in it are called trivial. Since 3 6 |A|, it is known (e.g., [11], [10])

that T := {idA} ∪CA, where idA is the identity mapping and CA denotes the set of

all unary constant functions on A.

We now define the above mentioned functions of type I, II and III, which play

the central role for describing the minimal endormorphism monoids of congruence

lattices.

Definition 1.1. A unary function f ∈ AA is called a function of type I, II or III,

respectively, if it is nontrivial and satisfies the following conditions:

(I) f2 = f ,

(II) f2 is a constant, say u, and |{x ∈ A : fx = u}| > 3,

(III) fp = idA for a prime p such that the permutation f has at least two cycles of

length p.

Some examples of special functions f of type I and II can be seen in Figure 1.

Every function f ∈ AA can be presented as a (directed) graph with vertex set A

and edge set f• := {(x, y) ∈ A2 : fx = y}. Two elements x, y ∈ A are called

connected if there exist m,n ∈ N such that fmx = fny (see, e.g., [5], page 11).

This is an equivalence relation and its equivalence classes are called (connected)

components of f . A nontrivial component of a function f of type I is an at least

two-element component of the graph of f , i.e., any at least two-element set of the

form f−1(z) for a fixed point z of f .

2. The endomorphism monoids of the coatoms of EA

As already mentioned, the coatoms of EA are well-known as Con (A, f) for func-

tions of type I, II, III (see [7], Theorem 4.3). In addition, we mention that the same

functions also determine the coatomsQuord (A, f) in the lattice of quasiorder lattices

of algebras on the base set A (see [6], Theorem 3.1).

We now consider the other side of the Galois connection End-Con and determine

EndCon (A, f) for all coatoms Con (A, f), i.e., the minimal nontrivial endomorphism

monoids in MA. In fact, this means to determine EndCon (A, f) for all functions

of type I, II and III. Before we give the result in Theorem 2.1, we need two more

definitions.

297



For a function f of type I with exactly one nontrivial component (whose fixed

point is denoted by z) let f̂ be defined as follows:

(∗) f̂x :=

{
z if fx = x,

x otherwise.

For a function f with a 2-element image Im(f) = {z, u}, let f ′ be defined as follows:

(∗∗) f ′x :=

{
u if fx = z,

z if fx = u.

These functions f̂ and f ′ (for f of type I or II) are shown in Figure 1, where

{a, . . . , a′} and {b, . . . , b′} schematically represent arbitrary nonempty subsets of A

(i.e., also one-element sets are allowed) while {b′, . . . , b′′} is an arbitrary (possibly

empty) subset. Note that
ˆ̂
f = f and f ′′ = f . It is straightforward to check that

Con (A, f̂) = Con (A, f) and Con (A, f ′) = Con (A, f).

. . .

d

. . .

type I

fa a′

b b′

. . .

d

. . .

type I

f̂b b′

a a′

. . . . . .

z c

type I f

a a′ b′ b′′

. . . . . .

c z

f ′

a a′ b′ b′′

. . .

z

c

type II

fa a′

b b′
. . .

. . .

c

z

type II

f ′

a a′

b b′
. . .

Figure 1. The functions f̂ and f ′.
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Theorem 2.1. Let 3 6 |A| <∞.

(A) The following table describes the Galois closure EndCon (A, f) for all func-

tions f of type I, II or III. The number s indicates the number of nontrivial

functions in the closure.

type of f | Im(f)|

number

of nontrivial

components K of f

other

conditions

Galois closure

EndCon (A, f)
s

(1) I > 3 > 2 {f} ∪ T 1

(2) I > 3 1 |K| > 3 {f, f̂ } ∪ T 2

(3) I > 3 1 |K| = 2 {f, f̂ , (f̂)′} ∪ T 3

(4) I 2 2 {f, f ′} ∪ T 2

(5) I 2 1 |A| > 3 {f, f ′, f̂ } ∪ T 3

(6) I 2 1 |A| = 3 {f, f ′, f̂ , (f̂)′} ∪ T 4

(7) II > 3 {f} ∪ T 1

(8) II 2 {f, f ′} ∪ T 2

(9) III cycle length p {f, f2, . . . , fp−1} ∪ T p− 1

(B) The Galois closures EndQuord (A, f) for the functions of type I and II are

always {f} ∪ T and for functions of type III we have EndQuord (A, f) =

EndCon (A, f) = {f, f2, . . . , fp−1} ∪ T .

P r o o f. (A): Observe that g ∈ EndCon (A, f) (for nontrivial g) is equiva-

lent to Con (A, g) = Con (A, f) (because g ∈ EndCon (A, f) implies Con (A, f) ⊆

Con (A, g), which yields equality since Con (A, f) is a coatom in EA for the functions f

of type I, II and III).

Let f be as described in one of the cases (1)–(8) and letM := EndCon (A, f). The

description of the functions g ∈ M \ T , i.e., those with Con (A, g) = Con (A, f) (

Eq (A), follows from results in [3] summarized in [3], Proposition 4.11. Moreover, we

know 1 6 |M \ T | 6 4 by [3], Proposition 4.12. The functions which appear in each

line of the last but one column of the table in (A), are all different and have the same

congruences as f (as mentionend above); hence, they belong to M \ T . Therefore

it is enough to know the cardinality s of M \ T (with the notation from [3] this is

|R(f)|). If it coincides with the number s in the last column, then we are done.

At first, we note that the cases (3) and (5) are equivalent: in fact, if f is a function

of form (3), then g := f̂ is of form (5) and we have {g, g′, ĝ} = {f̂ , (f̂)′, f} (since
ˆ̂
f = f). Thus (3) follows from (5) (and vice versa).

Let fi denote a function of the form (i) (i ∈ {1, 2, 4, 5, 6, 7, 8}). Now we shall

discuss each case in more detail.
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⊲⊲ f1 satisfies the conditions in [3], Lemma 3.17, therefore s = |M \T | = 1 according

to [3], Lemma 4.1.

⊲⊲ f2 satisfies the conditions in [3], Lemma 3.15, therefore s = 2 according to [3],

Lemma 4.7.

⊲⊲ f4 satisfies the conditions in [3], Lemma 3.16 (a), therefore s = 2 according to

[3], Lemma 4.6.

⊲⊲ f5 satisfies the conditions in [3], Lemma 3.14 (a), therefore s = 3 according to

[3], Lemma 4.8.

⊲⊲ f6 satisfies the conditions in [3], Lemma 3.12 (b), therefore s = 4 according to

[3], Lemma 4.9, cf. also [3], Figure 3.12.

⊲⊲ f7 satisfies the conditions in [3], Lemma 3.7, therefore s = 1 according to [3],

Lemma 4.1.

⊲⊲ f8 satisfies the conditions in [3], Lemma 3.6, therefore s = 2 according to [3],

Lemma 4.3.

The remaining case (9) for functions f of type III directly follows from [7], Propo-

sition 2.8, where for permutations f of prime power order pm it was shown that

{g ∈ AA \ T : Con (A, f) ⊆ Con (A, g)} = {f, f2, . . . , fpm

−1}. Here we have to take

m = 1. We remark that the result also could be derived from results in [3], [4].

(B): Since congruences are special invariant quasiorders, for every f ∈ AA we have

EndQuord (A, f) ⊆ EndCon (A, f). Thus, one only has to check which functions

from EndCon (A, f) (as described in (A)) “survive” in the possibly smaller monoid

EndQuord (A, f). As in Part (A), for g ∈ AA we have g ∈ EndQuord (A, f) if and

only if Quord (A, g) = Quord (A, f), cf. [6].

It is straightforward to see that the quasiorder lattices Quord (A, f), Quord (A, f̂),

Quord (A, f ′ ) and Quord (A, (f̂)′) differ. For this one can choose suitable (x, y) ∈ A2

such that the principal quasiorders αf (x, y) ∈ Quord (A, f) generated by (x, y) differ

for the functions f under consideration. For example, we have (a, z) ∈ α
f̂
(a, b) \

αf (a, b), (u, z) ∈ αf ′(a, u) \ αf (a, u) and (a, z) ∈ α(f̂)′ (b, a) \ αf (b, a) (for notation

see Figure 1).

Concerning functions f of type III , the equality EndQuord (A, f)=EndCon (A, f)

was proved in [7], Lemma 2.7. �

Some of the results of Theorem 2.1 are already contained implicitly in [7], Propo-

sition 4.8.

Dealing with the functions of type I, II and III , we noticed a small but interesting

lattice theoretic application concerning the lattice EA of congruence lattices, which

one can derive directly from results in [12]. We are closing our paper with this

application.
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Proposition 2.2. For a finite set A, every distributive sublattice of Eq (A) con-

taining ∆A and ∇A is the meet of coatoms of type I or II in EA.

P r o o f. In [12], it is shown that any distributive sublattice of Eq (A) contain-

ing ∆A and ∇A (denoted L
′ in [12]) can be represented as a congruence lattice

Con (A,F ). For this representation the authors use algebras (A,F ) with functions

f ∈ F which arise in the following situation: Let θ, θ1, θ2 ∈ Eq (A) such that θ1 * θ

and θ * θ2. This implies |A| > 3 and we can fix elements a, b, c, d ∈ A with

(a, b) ∈ θ \ θ2 and (c, d) ∈ θ1 \ θ. Then f is defined as follows:

fx :=

{
c if (a, x) ∈ θ2,

d otherwise.

Claim. There exist functions g, h of type I or II such that Con (A, f) =

Con (A, g) ∩ Con (A, h) (the cases g = h or f = g = h are not excluded).

We observe that only the following four cases are possible and prove the claim for

each case. Note that a 6= b, c 6= d, fa = c, fb = d and Im(f) = {c, d} by definition

of f , in particular, f is nontrivial.

Case 1: (a, d) /∈ θ2 and (a, c) ∈ θ2. Then fd = d and fc = c, thus both c and d

are fixed points and every element is mapped to one of them, i.e., f is of type I (and

we can take g := h := f).

Case 2: (a, d) /∈ θ2 and (a, c) /∈ θ2. Then we have fa = c, fc = fd = d and

fx ∈ {c, d}. If there exists u /∈ {c, d} with fu = d, then f is of type II and we are

done (g := h := f). Otherwise, fx = c for every x ∈ A \ {c, d}. Consider the maps

gx :=

{
d if x = d,

c otherwise,
and hx :=

{
d if x ∈ {c, d},

x otherwise.

Both g and h are functions of type I, see Figure 2. Moreover, f = g ◦ h, therefore

Con (A, g) ∩ Con (A, h) ⊆ Con (A, f). We show equality. In fact, let ψ ∈ Con (A, f).

. . .

c

d

f

x x′

. . .

c d

g

x x′

d

c

. . .

h

x x′

Figure 2. Functions f , g, h with Con (A, f) = Con (A, g) ∩ Con (A, h) (Case 2).
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If (c, d) /∈ ψ, then, as f ⊲ ψ 6∋ (c, d), the ψ-equivalence classes of c and d do not

contain elements from A \ {c, d}, respectively, and are hence singletons. Thus, we

have ψ = ψ1 ∪∆A, where ψ1 = ψ ∩ (A \ {c, d})2. One then immediately checks that

both g and h preserve ψ.

If, on the other hand, (c, d) ∈ ψ, then clearly g ⊲ ψ, but we can also show h ⊲ ψ. To

see this, take (x, y) ∈ ψ with x ∈ A\{c, d}, then (hx, hy) = (x, y) ∈ ψ if y ∈ A\{c, d},

(hx, hy) = (x, d) ∈ ψ if y = d, and (hx, hy) = (x, d) if y = c, but (x, d) ∈ ψ

by transitivity, since (x, c), (c, d) ∈ ψ; from this one concludes that (hx, hy) ∈ ψ

for every (x, y) ∈ ψ, i.e., h ⊲ ψ, equivalently ψ ∈ Con (A, h). Consequently, ψ ∈

Con (A, g) ∩ Con (A, h).

Case 3: (a, d) ∈ θ2 and (a, c) ∈ θ2. Then fd = fc = c and fx ∈ {c, d}. If there

exists u /∈ {c, d} with fu = c, then f is of type II and we are done. Otherwise,

fx = d for all x ∈ A \ {c, d} and we can proceed analogously as in Case 2 using the

functions of type I

gx :=

{
c if x = c,

d otherwise,
and hx :=

{
c if x ∈ {c, d},

x otherwise,

giving f = g ◦ h and Con (A, f) = Con (A, g) ∩Con (A, h).

Case 4: (a, d) ∈ θ2 and (a, c) /∈ θ2. Then fd = c and fc = d and fx ∈ {c, d}

for every x ∈ A. Further, g := f ′ (as defined in (∗∗) above, see also Figure 1) is a

function of type I and we have Con (A, f) = Con (A, g) (formally put h := g). Thus,

the claim is proved.

Con (A,F ) is the intersection of all Con (A, f) with f ∈ F . Because of the just

proved claim, Con (A,F ) is also the intersection of Con (A, g) with functions g ∈ AA

of type I or II only, i.e., it is the intersection of coatoms (due to the already mentioned

result [7], Theorem 4.3). �

A c k n ow l e d g em e n t . The authors thank the anonymous reviewer for his/her

profound and very helpful report; due to it some gaps in the proofs could be closed

and the presentation could be improved considerably.
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