
Mathematica Bohemica

Ivan Chajda; Miroslav Kolařík; Helmut Länger
c-ideals in complemented posets

Mathematica Bohemica, Vol. 149 (2024), No. 3, 305–316

Persistent URL: http://dml.cz/dmlcz/152536

Terms of use:
© Institute of Mathematics AS CR, 2024

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/152536
http://dml.cz


149 (2024) MATHEMATICA BOHEMICA No. 3, 305–316

c-IDEALS IN COMPLEMENTED POSETS

Ivan Chajda, Miroslav Kolařík, Olomouc, Helmut Länger, Wien

Received August 2, 2022. Published online June 28, 2023.
Communicated by Sándor Radeleczki

Abstract. In their recent paper on posets with a pseudocomplementation denoted by ∗

the first and the third author introduced the concept of a ∗-ideal. This concept is in fact an
extension of a similar concept introduced in distributive pseudocomplemented lattices and
semilattices by several authors, see References. Now we apply this concept of a c-ideal (du-
ally, c-filter) to complemented posets where the complementation need neither be antitone
nor an involution, but still satisfies some weak conditions. We show when an ideal or filter in
such a poset is a c-ideal or c-filter, and we prove basic properties of them. Finally, we prove
the so-called separation theorems for c-ideals. The text is illustrated by several examples.
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1. Introduction

The concept of a δ-ideal was introduced recently in pseudocomplemented dis-

tributive lattices and semilattices in [6], [7] and [8]. Later on, it was extended to

pseudocomplemented posets under the name ∗-ideal in [3] where ∗ means the pseu-

docomplementation on the poset in question. The authors used also some results

taken from their previous paper (see [2]).

It turns out that in complemented posets the aforementioned concepts of ideals

and filters play also an important role and this fact motivated us to extend our

study to complemented posets where the complementation need not be an antitone

involution in all cases. Several such examples are included in the paper. Hence, we
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obtain the concept of a c-ideal. Our goals are to present several basic properties

of c-ideals and prove the so-called separation theorems showing that under certain

assumptions for every ideal I and certain filters F of a complemented poset such

that I ∩ F = ∅ there exists a c-ideal J including I with J ∩ F = ∅.

In what follows we collect the concepts used throughout the paper. Some of them

are familiarly known and can be found e.g. in [1].

Let (P,6) be a poset and a, b ∈ P and A,B ⊆ P . We define

L(A) := {x ∈ P : x 6 y for all y ∈ A}

and

U(A) := {x ∈ P : y 6 x for all y ∈ A},

the so-called lower cone and upper cone of A, respectively. Instead of L({a}),

L({a, b}), L(A∪{a}), L(A∪B) and L(U(A)) we simply write L(a), L(a, b), L(A, a),

L(A,B) and LU(A), respectively. Analogously we proceed in similar cases.

Consider a bounded poset (P,6, 0, 1), i.e., a poset with the bottom element 0 and

top element 1. A unary operation ′ on P is called a complementation if for every

x ∈ P there exist x ∨ x′ and x ∧ x′ and, moreover, x ∨ x′ = 1 and x ∧ x′ = 0. If ′ is

a complementation on (P,6, 0, 1) then (P,6, ′, 0, 1) is called a complemented poset.

Clearly, 0′ = 0 ∨ 0′ = 1 and 1′ = 1 ∧ 1′ = 0.

A unary operation ′ on a poset (P,6) is called an involution if it satisfies the

identity x′′ ≈ x and it is called antitone if x, y ∈ P and x 6 y together imply y′ 6 x′.

Let us note that if ′ is an antitone involution on a given poset (P,6) then ′ satisfies

the identity x′′′ ≈ x′ and we can use De Morgan’s laws, i.e., (L(x, y))′ = U(x′, y′)

and (U(x, y))′ = L(x′, y′) for all x, y ∈ P .

Let P = (P,6, ′, 0, 1) be a complemented poset. For a subset A of P we put

A′ := {x′ : x ∈ A}, A0 := {x ∈ P : x′ ∈ A}.

It is an easy observation that A ⊆ B implies A0 ⊆ B0. An element a of P is called

Boolean if a′′ = a. For nonempty subsets I and F of P we define:

⊲ I is called an ideal of P if L(x) ⊆ I and U(x, y) ∩ I 6= ∅ for all x, y ∈ I,

⊲ F is called a filter of P if U(x) ⊆ F and L(x, y) ∩ F 6= ∅ for all x, y ∈ F .

Lemma 1. Let P = (P,6, ′, 0, 1) be a complemented poset with antitone com-

plementation satisfying x 6 x′′ for all x ∈ P , let a ∈ P , and assume that every ideal

of P containing a contains a′′. Then a is a Boolean element of P.
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P r o o f. Every of the following statements implies the next one: a ∈ L(a) and

L(a) is an ideal of P, a′′ ∈ L(a), a 6 a′′ 6 a, a′′ = a, a is a Boolean element of P. �

Let I be an ideal of P. Then

⊲ I is called proper if I 6= P ,

⊲ I is called maximal if I is a maximal proper ideal of P,

⊲ I is called a prime ideal if I 6= P and {x, y} ∩ I 6= ∅ for all x, y ∈ P with

L(x, y) ⊆ I.

For a filter F of P,

⊲ F is called proper if F 6= P ,

⊲ F is called an ultrafilter if F is a maximal proper filter of P,

⊲ F is called a prime filter if F 6= P and {x, y} ∩ F 6= ∅ for all x, y ∈ P with

U(x, y) ⊆ F .

Now we define our main concepts. An ideal I of P is called a c-ideal if there exists

some filter F of P with F0 = I. A filter F of P is called a c-filter if there exists some

ideal I of P with I0 = F . Namely, these concepts enable to separate ideals from

filters in complemented posets as expressed in the separation theorems (Theorems 16

and 20).

It is evident that the concept of an ideal and a filter are dual to each other.

Clearly, 0, 1 are Boolean elements of a complemented poset P. Further, {0} and P

are ideals of P, and 0 ∈ I for all ideals I of P. Moreover, an ideal I of P is proper

if and only if 1 /∈ I. Dual statements hold for filters.

The ideals of the form L(a) with a ∈ P are called principal ideals, and the filters

of the form U(a) with a ∈ P principal filters.

Let us repeat the following useful results from [3].

Lemma 2 ([3]). Let P = (P,6) be a poset and I an ideal of P. Then the

following are equivalent:

(i) I is a prime ideal of P.

(ii) P \ I is a prime filter of P.

(iii) P \ I is a filter of P.

Moreover, the mapping I 7→ P \ I is a bijection from the set of all prime ideals of P

to the set of all prime filters of P.

Recall that a poset (P,6) satisfies the Ascending Chain Condition if it has no

infinite ascending chains. The Descending Chain Condition is defined dually.

Lemma 3 ([3]). Let P = (P,6) be a poset. Then the following statements hold.

(i) Every ideal of P is principal if and only if P satisfies the Ascending Chain

Condition.
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(ii) Every filter of P is principal if and only if P satisfies the Descending Chain

Condition.

Note that if P is finite then (P,6) satisfies the Ascending Chain Condition as well

as the Descending Chain Condition.

Lemma 4. Let P = (P,6, ′, 0, 1) be a complemented poset, a ∈ P and I a proper

ideal of P. Then either a /∈ I or a′ /∈ I.

P r o o f. If a, a′ ∈ I then {1} ∩ I = U(a, a′) ∩ I 6= ∅, i.e., 1 ∈ I which implies

I = P contradicting the assumption of I being a proper ideal of P. �

In the following we demonstrate the role of I0.

Proposition 5. Let P = (P,6, ′, 0, 1) be a complemented poset, I an ideal, and F

a filter of P. Then the following are equivalent:

(i) I is proper,

(ii) I0 6= P ,

(iii) I ∩ I0 = ∅.

Moreover, also the following are equivalent:

(iv) F is proper,

(v) F0 6= P ,

(vi) F ∩ F0 = ∅.

P r o o f. (i) ⇒ (ii): I0 = P would imply 0 ∈ I0 and hence 1 = 0′ ∈ I, i.e., I = P ,

a contradiction.

(ii) ⇒ (iii): Suppose I ∩ I0 6= ∅. Then there exists some a ∈ I ∩ I0. Hence

a, a′ ∈ I. Since I is an ideal of P we conclude {1} ∩ I = U(a, a′) ∩ I 6= ∅, i.e., 1 ∈ I

and therefore I = P whence I0 = P , a contradiction.

(iii) ⇒ (i): I = P would imply I ∩ I0 = P ∩ P = P 6= ∅, a contradiction.

The proof for filters follows by duality. �

Lemma 6. Let P = (P,6, ′, 0, 1) be a complemented poset, I a c-ideal, and F a

c-filter of P. Then the following hold:

(i) Assume x′ 6 x′′′ for all x ∈ P . Then I ′′ ⊆ I.

(ii) Assume x′′′ 6 x′ for all x ∈ P . Then F ′′ ⊆ F .

P r o o f. (i) Since I is a c-ideal of P there exists some filter F of P with F0 = I

and every of the following statements implies the next one: x ∈ I, x ∈ F0, x
′ ∈ F ,

x′′′ ∈ F , x′′ ∈ F0, x
′′ ∈ I.

(ii) It follows by duality. �
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E x am p l e 7. Consider the complemented poset P = (P,6, ′, 0, 1) shown in

Figure 1 and the table for its complementation:

0

a b c

1

Figure 1. A bounded poset.

x 0 a b c 1
x′ 1 b c b 0
x′′ 0 c b c 1
x′′′ 1 b c b 0

We have:

⊲ Boolean elements: 0, b, c, 1,

⊲ maximal ideals: L(a), L(b), L(c),

⊲ ultrafilters: U(a), U(b), U(c),

⊲ P has neither prime ideals nor prime filters,

⊲ c-ideals: L(0), L(b), L(1),

⊲ c-filters: U(0), U(b), U(1).

The complementation defined by the above table is antitone and satisfies the

identity x′′′ ≈ x′, but it is not an involution. We have

L(0)′′ = L(0),

L(a)′′ = L(c) 6⊆ L(a),

L(b)′′ = L(b),

L(c)′′ = L(c),

L(1)′′ = {0, b, c, 1} ⊆ L(1).

Lemma 8. Let (P,6, ′, 0, 1) be a complemented poset satisfying x′′′ ≈ x′ and let

a ∈ P and A ⊆ P . Then a ∈ A0 if and only if a
′′ ∈ A0.

P r o o f. The following are equivalent: a ∈ A0, a
′ ∈ A, a′′′ ∈ A, a′′ ∈ A0. �

If we suppose that the complementation is antitone then we can formulate easy

assumptions ensuring that every ideal is a c-ideal and every filter is a c-filter.

Theorem 9. Let P = (P,6, ′, 0, 1) be a complemented poset with antitone com-

plementation, F a filter, and I an ideal of P. Then the following hold:

(i) Assume x 6 x′′ for all x ∈ P . Then F0 is a c-ideal of P.

(ii) Assume x′′ 6 x for all x ∈ P . Then I0 is a c-filter of P.
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P r o o f. (i) Let a, b ∈ F0. Since 0
′ = 1 ∈ F , we have 0 ∈ F0 and hence F0 6= ∅.

Because a′, b′ ∈ F and F is a filter of P there exists some c ∈ L(a′, b′) ∩ F . Since

c 6 c′′ we have c′′ ∈ F , i.e., c′ ∈ F0. Together c
′ ∈ U(a′′, b′′) ∩ F0 ⊆ U(a, b) ∩ F0,

which proves U(a, b) ∩ F0 6= ∅. If d ∈ P , e ∈ F0 and d 6 e then e′ ∈ F and e′ 6 d′

and hence d′ ∈ F , i.e., d ∈ F0. Altogether, F0 is an ideal and F a filter of P and

hence F0 is a c-ideal of P.

(ii) It follows by duality. �

If we assume that the complementation is an antitone involution, which is a rather

strong assumption, we can state the following result.

Corollary 10. Let P = (P,6, ′, 0, 1) be a complemented poset with an antitone

involution, I an ideal, and F a filter of P. Then

(i) I0 is a filter of P, I = (I0)0 and hence I is a c-ideal of P.

(ii) F0 is an ideal of P, F = (F0)0 and hence F is a c-filter of P.

P r o o f. (i) From (ii) of Theorem 9 we obtain that I0 is a filter of P. Moreover,

for x ∈ P the following are equivalent: x ∈ (I0)0, x
′ ∈ I0, x

′′ ∈ I, x ∈ I. This shows

(I0)0 = I. By (i) of Theorem 9 we conclude that I is a c-ideal of P.

(ii) It follows by duality. �

R em a r k 11. If (P,6, ′, 0, 1) is a complemented poset whose complementation

is an antitone involution and a ∈ P then L(a)0 = U(a′) since the following are

equivalent: x ∈ L(a)0, x
′ ∈ L(a), x′ 6 a, a′ 6 x, x ∈ U(a′). According to (ii) of

Corollary 10 we have L(a) = U(a′)0.

Now we formulate a condition which will be helpful for the separation theorems.

Definition 12. A subset A of a complemented poset (P,6, ′, 0, 1) satisfies the

c-condition if for every x ∈ P the set A contains exactly one of x and x′.

Recall from Lemma 4 that for a proper ideal I of P and for arbitrary x ∈ P the

situation x, x′ ∈ I is impossible.

The following lemma shows that ideals satisfying the c-condition can be found

among prime ideals.

Lemma 13. Let P = (P,6, ′, 0, 1) be a complemented poset, I a prime ideal,

and F a prime filter of P. Then I and F satisfy the c-condition.

P r o o f. If a ∈ P then L(a, a′) = {0} ⊆ I and hence {a, a′} ∩ I 6= ∅. The rest

follows by duality. �
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Recall from [5] that a poset (P,6) is called distributive if it satisfies one of the

following equivalent conditions:

L(U(x, y), z) = LU(L(x, z), L(y, z)) ∀x, y, z ∈ P,

U(L(x, y), z) = UL(U(x, z), U(y, z)) ∀x, y, z ∈ P.

The next result illuminates the role of distributivity of the poset P for the c-condition

both for ideals and filters of P.

Theorem 14. Let P = (P,6, ′, 0, 1) be a complemented poset, I an ideal, and F

a filter of P. Consider the following statements:

(i) I satisfies the c-condition,

(ii) I is a maximal ideal of P,

(iii) (P,6) is distributive,

(iv)
⋃
{LU(a, i) : i ∈ I} is an ideal of P for all a ∈ P \ I,

(v) F satisfies the c-condition,

(vi) F is an ultrafilter of P,

(vii)
⋃
{UL(a, f) : f ∈ F} is a filter of P for all a ∈ P \ F .

Then

⊲ (i) ⇒ (ii),

⊲ ((ii), (iii) and (iv)) ⇒ (i),

⊲ (v) ⇒ (vi),

⊲ ((iii), (vi) and (vii)) ⇒ (v).

P r o o f. (i) ⇒ (ii): Since I satisfies the c-condition, I 6= P . Let J be an ideal

of P strictly including I. Then there exists some a ∈ J \I. Because of (i) we conclude

a′ ∈ I, which implies a′ ∈ J . Since J is an ideal ofP we have {1}∩J = U(a, a′)∩J 6= ∅

and hence 1 ∈ J which implies J = P .

((ii), (iii) and (iv))⇒ (i): Let a ∈ P \I. Because of (iv), K :=
⋃
{LU(a, i) : i ∈ I}

is an ideal of P including I∪{a} and hence strictly including I. Since I is a maximal

ideal of P we conclude K = P . Hence 1 ∈ K and therefore there exists some i ∈ I

with 1 ∈ LU(a, i). This means U(a, i) = {1}. Using (iii) we have

i ∈ U(i) = U(0, i) = U(L(a, a′), i) = UL(U(a, i), U(a′, i))

= UL(1, U(a′, i)) = ULU(a′, i) = U(a′, i) ⊆ U(a′),

i.e., a′ 6 i. Since i ∈ I and I is an ideal of P we conclude a′ ∈ I. The rest follows

by duality. �
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The following lemma shows that the condition (iv) of Theorem 14 is satisfied au-

tomatically if the poset P in question is a join-semilattice. Dually, the condition (vii)

of Theorem 14 holds if P is a meet-semilattice.

Lemma 15. Let P = (P,6) be a join-semilattice, I an ideal of P, and a ∈ P .

Then
⋃
{LU(a, i) : i ∈ I} is an ideal of P.

P r o o f. If b, c ∈ I then there exists some d ∈ U(b, c) ∩ I whence b ∨ c 6 d ∈ I

and hence b ∨ c ∈ I. Put J :=
⋃
{LU(a, i) : i ∈ I}. Then

J =
⋃

{LU(a ∨ i) : i ∈ I} =
⋃

{L(a ∨ i) : i ∈ I}.

If b, c ∈ J then there exist j, k ∈ I with b 6 a ∨ j and c 6 a ∨ k and hence

b ∨ c ∈ U(b, c) ∩ L(a ∨ (j ∨ k)) ⊆ U(b, c) ∩ J.

Since J is downward closed it is an ideal of P. �

Now we are ready to prove our first separation theorem.

Theorem 16 (First Separation Theorem). Let P = (P,6, ′, 0, 1) be a comple-

mented poset with antitone complementation satisfying x 6 x′′ for every x ∈ P ,

let I be an ideal, and F a filter of P satisfying the c-condition and I ∩F = ∅. Then

there exists some c-ideal J of P with I ⊆ J and J ∩ F = ∅.

P r o o f. By Theorem 9, F0 is a c-ideal of P. Since I 6= ∅ and I ∩F = ∅ we have

F 6= P which implies F ∩ F0 = ∅ according to Proposition 5. Since F satisfies the

c-condition, we have F ∪ F0 = P . Thus I ⊆ P \ F = F0. This shows that one can

take J := F0. �

E x am p l e 17. Consider the following bounded posets P1 and P2 which are not

lattices:

0

a b

f

c d

e

1

0

a b

f

c d

e

1

(a)

g

(b)

Figure 2. Bounded posets.
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If the unary operation ′ is defined by

x 0 a b c d e f g 1
x′ 1 f f f f f e c 0
x′′ 0 e e e e e f f 1

then P1 = (P1,6, ′, 0, 1) and P2 = (P2,6, ′, 0, 1) are complemented posets and the

complementation is antitone, but not an involution. Moreover, it can be seen from the

table that all elements x except the element g satisfy the inequality x 6 x′′. We have

P1: Boolean elements: 0, e, f , 1,

maximal ideals: L(e), L(f), L(g),

ultrafilters: U(a), U(b), U(f), U(g),

P1 has neither prime ideals nor prime filters,

c-ideals: L(0), L(e), L(f), L(1),

c-filters: U(0), U(g), U(1),

P1 has no filter satisfying the c-condition.

P2: Boolean elements: 0, e, f , 1,

maximal ideals: L(e), L(f),

ultrafilters: U(a), U(b), U(f),

prime ideals: L(e),

prime filters: U(f),

c-ideals: L(0), L(e), L(f), L(1),

c-filters: U(0), U(f), U(1),

filters satisfying the c-condition: U(f).

P1 has no filter satisfying the c-condition.

The situation for P2 is different. Here U(f) is the unique filter satisfying the

c-condition. For every ideal I ⊆ L(e) we have I∩U(f) = ∅ and taking J := L(e), J is

a c-ideal of P2 with I ⊆ J and J ∩ U(f) = ∅.

Example 17 shows that the implication (ii) ⇒ (i) in Theorem 14 does not hold in

general.

The next result is in fact another version of the First Separation Theorem where

we use the result from Lemma 13.

Corollary 18. Let P = (P,6, ′, 0, 1) be a complemented poset with antitone

complementation satisfying x 6 x′′ for every x ∈ P , let I be an ideal, and F a prime

filter of P and assume I ∩F = ∅. Then there exists some c-ideal J of P with I ⊆ J

and J ∩ F = ∅.

P r o o f. From Lemma 13 we conclude that F satisfies the c-condition. Now

apply Theorem 16. �
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E x am p l e 19. Consider the complemented poset P visualized in Figure 3:

0

a b c d

d
′

c
′

b
′

a
′

1

Figure 3. A complemented poset with an antitone involution.

Evidently, P is neither a lattice nor distributive since

L(U(a, b), c) = L(d′, c) = L(c) 6= L(0) = LU(0) = LU(L(a, c), L(b, c)).

We have

Boolean elements: 0, a, b, c, d, a′, b′, c′, d′, 1,

maximal ideals: L(a′), L(b′), L(c′), L(d′),

ultrafilters: U(a), U(b), U(c), U(d),

prime ideals: L(a′), L(d′),

prime filters: U(a), U(d),

c-ideals: L(0), L(a), L(b), L(c), L(d), L(a′), L(b′), L(c′), L(d′), L(1),

c-filters: U(0), U(a), U(b), U(c), U(d), U(a′), U(b′), U(c′), U(d′), U(1).

The complementation is an antitone involution. Thus the assumption x 6 x′′

from Corollary 18 is satisfied. If we consider the prime filter F = U(d) and the

ideal I = L(a) then I ∩ F = ∅ and there exists a c-ideal J = L(d′) with I ⊆ J and

J ∩ F = ∅.

Now we can formulate our second separation theorem for distributive comple-

mented posets satisfying the Descending Chain Condition, in particular for finite

distributive complemented posets. Here we need not assume that the complementa-

tion satisfies x 6 x′′ nor that the filter in question satisfies the c-condition.

Theorem 20 (Second Separation Theorem). Let P = (P,6, ′, 0, 1) be a distribu-

tive complemented poset satisfying the Descending Chain Condition, let I be an

ideal, and F an ultrafilter of P. Then there exists some g ∈ F with U(g) = F . Now

assume that x ∧ g exists for every x ∈ P \ F and that I ∩ F = ∅. Then there exists

some c-ideal J of P with I ⊆ J and J ∩ F = ∅.
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P r o o f. Let a ∈ P \ F and b ∈ P . Since P satisfies the Descending Chain

Condition we have that F is principal according to Lemma 3, i.e., there exists some

g ∈ F with U(g) = F . Because of L(a, g) ⊆ L(a, f) for all f ∈ F we have UL(a, f) ⊆

UL(a, g) for all f ∈ F and hence
⋃
{UL(a, f) : f ∈ F} = UL(a, g) = UL(a ∧ g) =

U(a ∧ g) which shows that
⋃
{UL(a, f) : f ∈ F} is a filter of P. According to

Theorem 14 we conclude that F satisfies the c-condition. Moreover,

L(b′′) = L(1, b′′) = L(U(b′, b), b′′)

= LU(L(b′, b′′), L(b, b′′)) = LU(0, L(b, b′′))

= LU(0, L(b′′, b)) = LU(L(b′, b), L(b′′, b))

= L(U(b′, b′′), b) = L(1, b) = L(b)

and hence b′′ = b, i.e., the complementation is an involution. Now apply Theorem 16.

�

E x am p l e 21. The complemented poset P depicted in Figure 4 is distributive,

but not a semilattice.

0

a b c d

e e
′

d
′

c
′

b
′

a
′

1

Figure 4. A distributive complemented poset.

We have

Boolean elements: 0, a, b, c, d, e, a′, b′, c′, d′, e′, 1,

maximal ideals: L(a′), L(b′), L(c′), L(d′),

ultrafilters: U(a), U(b), U(c), U(d),

c-ideals: L(0), L(a), L(b), L(c), L(d), L(e), L(a′), L(b′), L(c′), L(d′),

L(e′), L(1).

One can easily check that for the ultrafilter F = U(b) we have x ∧ b = 0 for all

x ∈ P \ F . Thus the assumptions of Theorem 20 are satisfied. Now if I denotes

the ideal L(e′) then I ∩ F = ∅ and there exists a c-ideal J = L(b′) with I ⊆ J and

J ∩ F = ∅.
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C l o s i n g R em a r k s . It is well-known (see e.g. [4]) that for a distributive lattice

L = (L,∨,∧) there holds the separation theorem saying that if F is a filter of L then

every ideal I of L being disjoint to F can be extended to some prime ideal P of L being

disjoint to F . Using this fact, a Stone space can be introduced on L whose subbase

for open sets is given by the sets r(a) := {P : P is a prime ideal of L and a /∈ P},

a ∈ L. One cannot assume that such a strong result would be valid in our case where

only posets with involution are considered. However, it can encourage the readers to

try to define a certain structure on a poset which could be close to the Stone space

where the “open” subsets can be generated by means of c-ideals.

Let us note that the assumption of the Descending Chain Condition in Theorem 20

can be weakened by assuming that every nonempty subset of P contains at least one

minimal element, but we do not see an advantage of this approach.

A c k n ow l e d g em e n t . The authors are grateful to the anonymous referee

whose valuable remarks helped to increase the quality of the paper.
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