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Abstract. The half-linear differential equation

(|u′|αsgn u′)′ = α(λα+1 + b(t))|u|αsgn u, t > t0,

is considered, where α and λ are positive constants and b(t) is a real-valued continuous
function on [t0,∞). It is proved that, under a mild integral smallness condition of b(t)
which is weaker than the absolutely integrable condition of b(t), the above equation has a

nonoscillatory solution u0(t) such that u0(t) ∼ e
−λt and u′0(t) ∼ −λe−λt (t → ∞), and

a nonoscillatory solution u1(t) such that u1(t) ∼ e
λt and u′1(t) ∼ λeλt (t → ∞).
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1. Introduction

In this paper we consider the half-linear ordinary differential equation

(1.1) (|u′|α sgnu′)′ = α(λα+1 + b(t))|u|α sgnu, t > t0,

where α > 0 and λ > 0 are constants and b(t) is a real-valued continuous function

on [t0,∞). If α = 1, then (1.1) reduces to the linear equation

(1.2) u′′ = (λ2 + b(t))u, t > t0.

It is known that basic results and qualitative results for the linear equation (1.2)

can be generalized to the half-linear equation (1.1). The important works relating

to (1.1) are summarized in the book of Došlý and Řehák (see [2]).
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It is well-known (see, for example, [1], page 90 and [3], Corollary 9.2, Chapter XI)

that if

(1.3)

∫
∞

t0

|b(s)| ds <∞,

then the linear equation (1.2) has a nonoscillatory solution u0(t) such that

(1.4) u0(t) ∼ e−λt, u′0(t) ∼ −λe−λt, t→ ∞,

and a nonoscillatory solution u1(t) such that

(1.5) u1(t) ∼ eλt, u′1(t) ∼ λeλt, t→ ∞.

Recently Naito and Usami in [11], Theorem 1.1 (i) have generalized the above result

for the linear equation (1.2) to the half-linear equation (1.1): if (1.3) holds, then the

half-linear equation (1.1) has a nonoscillatory solution u0(t) satisfying (1.4) and a

nonoscillatory solution u1(t) satisfying (1.5).

For the linear equation (1.2) it is also known (see [3], Corollary 9.2, Chapter XI)

that if

(1.6) lim
t→∞

∫ t

t0

e−2λrb(r) dr =

∫
∞

t0

e−2λrb(r) dr exists and is finite

and

(1.7)

∫
∞

t0

e2λs sup
σ>s

∣∣∣∣
∫

∞

σ

e−2λrb(r) dr

∣∣∣∣ ds <∞,

then (1.2) has a solution u0(t) satisfying (1.4) and a solution u1(t) satisfying (1.5).

It is easy to see that if (1.3) holds, then (1.6) and (1.7) hold.

In the present paper we consider the half-linear equation (1.1) under the conditions

(1.8) lim
t→∞

∫ t

t0

e−(α+1)λrb(r) dr =

∫
∞

t0

e−(α+1)λrb(r) dr exists and is finite

and

(1.9) lim
t→∞

e(α+1)λtΦλ(t) = 0 and

∫
∞

t0

e(α+1)λs|Φλ(s)| ds <∞,

where

(1.10) Φλ(t) =

∫
∞

t

e−(α+1)λsb(s) ds, t > t0.
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It can be checked that if (1.3) holds, then (1.8) and (1.9) hold. Throughout the

paper the condition (1.9) is used under the assumption that (1.8) holds.

Let α = 1. Then (1.8) becomes (1.6). It is seen that (1.7) implies (1.9) with α = 1.

In fact, if (1.7) holds, then

lim
t→∞

∫ t

t−1

e2λs sup
σ>s

∣∣∣∣
∫

∞

σ

e−2λrb(r) dr

∣∣∣∣ ds = 0.

Therefore, since

∫ t

t−1

e2λs sup
σ>s

∣∣∣∣
∫

∞

σ

e−2λrb(r) dr

∣∣∣∣ ds >
∫ t

t−1

e2λs ds sup
σ>t

∣∣∣∣
∫

∞

σ

e−2λrb(r) dr

∣∣∣∣

>
1

2λ
(1− e−2λ)e2λt

∣∣∣∣
∫

∞

t

e−2λrb(r) dr

∣∣∣∣,

we find that

lim
t→∞

e2λt
∣∣∣∣
∫

∞

t

e−2λrb(r) dr

∣∣∣∣ = 0.

This implies that if (1.7) holds, then the former half of (1.9) with α = 1 holds. It is

clear that if (1.7) holds, then the latter half of (1.9) with α = 1 holds.

In the next section it is proved that the condition (1.9) is equivalent to the condi-

tion

(1.11) lim
t→∞

e−(α+1)λtΨλ(t) = 0 and

∫
∞

t0

e−(α+1)λs|Ψλ(s)| ds <∞,

where

(1.12) Ψλ(t) =

∫ t

t0

e(α+1)λsb(s) ds, t > t0.

We can show the following theorem.

Theorem 1.1. Suppose that (1.9) (or, equivalently, (1.11)) holds. Then the

half-linear equation (1.1) has a solution u0(t) satisfying (1.4) and a solution u1(t)

satisfying (1.5).

Theorem 1.1 generalizes the classical result for (1.2) in Hartman [3], Corollary 9.2,

Chapter XI and the recent result for (1.1) by Naito and Usami [11], Theorem 1.1 (i).

Consider now the general half-linear equation of the form

(1.13) (|u′|α sgnu′)′ = q(t)|u|α sgnu, t > t0,
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where q(t) is a real-valued continuous function on [t0,∞). It is well-known (see,

for example, [2], Theorem 1.1.1) that all local solutions of (1.13) can be continued

to t0 and ∞, and so all solutions of (1.13) exist on the entire interval [t0,∞). An

analogue of Sturm’s separation theorem remains valid for (1.13) (see, for example, [2],

Theorem 1.2.3). Hence, if the equation (1.13) has a nonoscillatory solution, then any

other nontrivial solution is also nonoscillatory. Clearly, if u(t) is a solution of (1.13),

then, for any constant c, the function cu(t) is also a solution of (1.13). In particular,

if u(t) is a solution of (1.13), then so is −u(t). Therefore we can suppose without loss

of generality that a nonoscillatory solution of (1.13) is eventually positive. Note that

a solution u0(t) satisfying (1.4) and a solution u1(t) satisfying (1.5) are eventually

positive.

In the last three decades, many results have been obtained in the theory of oscil-

latory and asymptotic behavior of solutions of half-linear differential equations. It is

known that basic results for the second order linear equations can be generalized to

the second order half-linear equations. The important works are summarized in the

book of Došlý and Řehák (see [2]). For the recent results to half-linear equations we

refer the reader to [4]–[15].

This paper is organized as follows. In Section 2 we state several preliminary results

which are related to the condition (1.9) and the condition (1.11). The main idea of the

proof of Theorem 1.1 is to show the existence of solutions with suitable asymptotic

conditions of generalized Riccati differential equations which are associated with the

half-linear equation (1.1). A few results concerning generalized Riccati differential

equations associated with (1.1) are stated in Section 3. The proof of Theorem 1.1

is presented in Section 4. An example illustrating the main result is provided in

Section 5. The Riccati technique is particularly useful in the qualitative theory of

half-linear equations, see, for example, [2], [4]–[6], [8]–[15].

2. Preliminary results

In this section we first prove that the condition (1.9) is equivalent to the condi-

tion (1.11).

Lemma 2.1. The condition (1.9) holds if and only if the condition (1.11) holds.

To shorten notation, we put

(2.1) β = (α+ 1)λ.

This notation is used throughout the paper.
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P r o o f of Lemma 2.1. Suppose first that (1.9) holds. Integration by parts gives

Ψλ(t) =

∫ t

t0

e(α+1)λsb(s) ds =

∫ t

t0

e2βse−βsb(s) ds

= −e2βtΦλ(t) + e2βt0Φλ(t0) + 2β

∫ t

t0

e2βsΦλ(s) ds

and so

(2.2) e−βt|Ψλ(t)| 6 eβt|Φλ(t)|+ e2βt0 |Φλ(t0)|e
−βt +

2β

eβt

∫ t

t0

e2βs|Φλ(s)| ds

for t > t0. By the former half of the condition (1.9), the first term of the right-hand

side of (2.2) tends to 0 as t → ∞. It is clear that the second term of the right-

hand side of (2.2) tends to 0 as t→ ∞. The last term of the right-hand side of (2.2)

also tends to 0 (t→ ∞). In fact, by l’Hospital’s rule we have

lim
t→∞

1

eβt

∫ t

t0

e2βs|Φλ(s)| ds = lim
t→∞

1

βeβt
e2βt|Φλ(t)| =

1

β
lim
t→∞

eβt|Φλ(t)| = 0.

Therefore we obtain lim e−βtΨλ(t) = 0 as t→ ∞.

From (2.2) it follows that

(2.3)

∫ t

t0

e−βs|Ψλ(s)| ds 6

∫ t

t0

eβs|Φλ(s)| ds+ e2βt0 |Φλ(t0)|

∫ t

t0

e−βs ds

+ 2β

∫ t

t0

e−βs

(∫ s

t0

e2βr|Φλ(r)| dr

)
ds

for t > t0. By the latter half of the condition (1.9), the first term of the right-hand

side of (2.3) converges as t → ∞. It is clear that the second term of the right-

hand side of (2.3) converges as t→ ∞. The last term of the right-hand side of (2.3)

also converges as t → ∞. In fact, by integration by parts and the latter half of the

condition (1.9) we find that
∫ t

t0

e−βs

(∫ s

t0

e2βr|Φλ(r)| dr

)
ds = −

1

β
e−βt

∫ t

t0

e2βs|Φλ(s)| ds

+
1

β

∫ t

t0

e−βse2βs|Φλ(s)| ds

6
1

β

∫
∞

t0

eβs|Φλ(s)| ds <∞.

Therefore we get ∫
∞

t0

e−βs|Ψλ(s)| ds <∞.

This proves that (1.9) implies (1.11).
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Conversely, suppose that (1.11) holds. Integration by parts gives

∫ t

t0

e−βsb(s) ds =

∫ t

t0

e−2βseβsb(s) ds = e−2βtΨλ(t) + 2β

∫ t

t0

e−2βsΨλ(s) ds(2.4)

= e−βt(e−βtΨλ(t)) + 2β

∫ t

t0

e−βs(e−βsΨλ(s)) ds

for t > t0. By the former half of the condition (1.11), the first term of the last

member of (2.4) tends to 0 and the second term is convergent as t→ ∞. Therefore,

(1.8) holds. Then, as in the above calculation, we find that

Φλ(t) =

∫
∞

t

e−βsb(s) ds = 2β

∫
∞

t

e−2βs

(∫ s

t

eβrb(r) dr

)
ds, t > t0,

and hence

Φλ(t) = −e−2βtΨλ(t) + 2β

∫
∞

t

e−2βsΨλ(s) ds, t > t0.

Thus we have

(2.5) eβt|Φλ(t)| 6 e−βt|Ψλ(t)|+
2β

e−βt

∫
∞

t

e−2βs|Ψλ(s)| ds, t > t0.

By the former half of (1.11), the first term of the right-hand side of (2.5) tends to 0

as t→ ∞. The last term of the right-hand side of (2.5) also tends to 0 (t → ∞). In

fact, by l’Hospital’s rule we have

(2.6) lim
t→∞

1

e−βt

∫
∞

t

e−2βs|Ψλ(s)| ds = lim
t→∞

1

−βe−βt
(−e−2βt|Ψλ(t)|)

=
1

β
lim
t→∞

e−βt|Ψλ(t)| = 0.

Therefore we get eβtΦλ(t) → 0 as t→ ∞.

From (2.5) it follows that

(2.7)

∫ t

t0

eβs|Φλ(s)| ds 6

∫ t

t0

e−βs|Ψλ(s)| ds+ 2β

∫ t

t0

eβs
(∫

∞

s

e−2βr|Ψλ(r)| dr

)
ds

for t > t0. By the latter half of (1.11), the first term of the right-hand side of (2.7)

converges as t → ∞. The second term of the right-hand side of (2.7) also converges
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as t→ ∞. Indeed, by integration by parts, it is seen that

(2.8)

∫ t

t0

eβs
(∫

∞

s

e−2βr|Ψλ(r)| dr

)
ds =

1

βe−βt

∫
∞

t

e−2βs|Ψλ(s)| ds

−
1

βe−βt0

∫
∞

t0

e−2βs|Ψλ(s)| ds

+
1

β

∫ t

t0

e−βs|Ψλ(s)| ds.

Since we have (2.6), the first term of the right-hand side of (2.8) tends to 0 as t→ ∞.

From the latter half of (1.11), the last term of the right-hand side of (2.8) converges

as t→ ∞. Consequently we obtain
∫

∞

t0

eβs|Φλ(s)| ds <∞.

This shows that (1.11) implies (1.9). The proof of Lemma 2.1 is complete. �

Lemma 2.2.

(I) Suppose that (1.9) holds. Define the function Φ̂λ(t) by

(2.9) Φ̂λ(t) =

∫
∞

t

e(α+1)λs|Φλ(s)|
2 ds, t > t0.

Then we have

(2.10) lim
t→∞

e(α+1)λtΦ̂λ(t) = 0

and

(2.11)

∫
∞

t0

e(α+1)λsΦ̂λ(s) ds <∞.

(II) Suppose that (1.11) holds. Define the function Ψ̂λ(t) by

(2.12) Ψ̂λ(t) =

∫ t

t0

e−(α+1)λs|Ψλ(s)|
2 ds, t > t0.

Then we have

(2.13) lim
t→∞

e−(α+1)λtΨ̂λ(t) = 0

and

(2.14)

∫
∞

t0

e−(α+1)λsΨ̂λ(s) ds <∞.
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P r o o f. Let β be the constant defined by (2.1).

(I) Suppose that (1.9) holds. The function Φ̂λ(t) is well defined since eβt|Φλ(t)|

is integrable on [t0,∞) (the latter half of (1.9)) and Φλ(t) → 0 as t → ∞. By

l’Hospital’s rule and the former half of (1.9), we see that

lim
t→∞

eβtΦ̂λ(t) = lim
t→∞

1

e−βt

∫
∞

t

eβs|Φλ(s)|
2 ds =

1

β
lim
t→∞

(eβt|Φλ(t)|)
2 = 0,

which proves (2.10). Integration by parts gives

∫ t

t0

eβsΦ̂λ(s) ds =
1

β
eβtΦ̂λ(t)−

1

β
eβt0Φ̂λ(t0) +

1

β

∫ t

t0

e2βs|Φλ(s)|
2 ds

for t > t0. The first term of the right-hand side of the above equality tends to 0 as

t→ ∞ by (2.10). Since eβt|Φλ(t)| → 0 (t → ∞), we have

e2βt|Φλ(t)|
2 6 eβt|Φλ(t)|

for all large t. Since eβt|Φλ(t)| is integrable on [t0,∞), the function e2βt|Φλ(t)|
2 is

also integrable on [t0,∞). Consequently, (2.11) holds.

(II) Suppose that (1.11) holds. By l’Hospital’s rule and the former half of (1.11)

we see that

lim
t→∞

e−βtΨ̂λ(t) = lim
t→∞

1

eβt

∫ t

t0

e−βs|Ψλ(s)|
2 ds =

1

β
lim
t→∞

(e−βt|Ψλ(t)|)
2 = 0,

proving (2.13). By using integration by parts we have

∫ t

t0

e−βsΨ̂λ(s) ds = −
1

β
e−βtΨ̂λ(t) +

1

β

∫ t

t0

e−2βs|Ψλ(s)|
2 ds

6
1

β

∫ t

t0

e−2βs|Ψλ(s)|
2 ds, t > t0.

Since e−βt|Ψλ(t)| → 0 as t → ∞, we have

e−2βt|Ψλ(t)|
2
6 e−βt|Ψλ(t)|

for all large t. Since e−βt|Ψλ(t)| is integrable on [t0,∞) (the latter half of (1.11)),

the function e−2βt|Ψλ(t)|
2 is integrable on [t0,∞). Consequently, (2.14) holds. The

proof of Lemma 2.2 is complete. �
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3. Preliminary results (continued)

We use the asterisk notation

ξα∗ = |ξ|α sgn ξ, ξ ∈ R, α > 0.

It is easy to see that, for ξ, η, ξ1, ξ2 ∈ R and α, α1, α2 > 0,

⊲ (ξη)α∗ = ξα∗ηα∗, (−ξ)α∗ = −ξα∗;

⊲ (ξα1∗)α2∗ = ξ(α1α2)∗, (ξα∗)(1/α)∗ = ξ, (ξ(1/α)∗)α∗ = ξ;

⊲ ξα∗ = η if and only if ξ = η(1/α)∗;

⊲ ξα∗1 6 ξα∗2 if and only if ξ1 6 ξ2; ξα∗1 < ξα∗2 if and only if ξ1 < ξ2;

⊲ f(ξ) = ξα∗ is a continuous function of ξ ∈ R.

With this asterisk notation, the equation (1.1) is rewritten in the form

(3.1) (u′α∗)′ = α(λα+1 + b(t))uα∗, t > t0.

Throughout the paper the following fact plays an essential part. Let u(t) be a

nonoscillatory solution of (3.1). We may suppose that u(t) > 0 for t > T (> t0). Put

(3.2) v(t) =
(u′(t)
u(t)

)α∗
, t > T.

Then v(t) satisfies the generalized Riccati differential equation

(3.3) v′(t) = α(λα+1 + b(t))− α|v(t)|(α+1)/α, t > T.

Conversely, if v(t) is a solution of (3.3) on [T,∞), then

(3.4) u(t) = exp

(∫ t

T

v(s)(1/α)∗ ds

)
, t > T,

is a positive solution of (3.1) on [T,∞). The proof is immediate.

If a nonoscillatory solution u(t) of (3.1) on [T,∞) satisfies the asymptotic condition

of the type (1.4), then the function v(t) which is defined by (3.2) satisfies lim v(t) =

−λα as t→ ∞. Put w(t) = −λα − v(t) for t > T . From (3.3) it is evident that

(3.5) w′(t) = −α(λα+1 + b(t)) + α|λα + w(t)|(α+1)/α, t > T.

It is also clear that lim
t→∞

w(t) = 0. Therefore we can suppose that |w(t)| 6 1
2λ

α for

t > T .
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Define the constant β by (2.1), and the function ϕ(w) by

(3.6) ϕ(w) = (λα + w)(α+1)/α − λα+1 −
α+ 1

α
λw, |w| 6

λα

2
.

Note that |λα + w| = λα + w for |w| 6 1
2λ

α. Then (3.5) is rewritten as

(3.7) w′(t) = −αb(t) + βw(t) + αϕ(w(t)), t > T.

Similarly, if a nonoscillatory solution u(t) of (3.1) on [T,∞) satisfies the asymptotic

condition of the type (1.5), then the function v(t) which is defined by (3.2) satisfies

lim v(t) = λα as t→ ∞, w(t) = −λα + v(t) (t > T ) satisfies

(3.8) w′(t) = α(λα+1 + b(t))− α|λα + w(t)|(α+1)/α, t > T,

and limw(t) = 0 as t → ∞. We suppose that |w(t)| 6 1
2λ

α for t > T . By using the

constant β given by (2.1) and the function ϕ(w) given by (3.6), the equality (3.8) is

rewritten in the form

(3.9) w′(t) = αb(t)− βw(t) − αϕ(w(t)), t > T.

In this paper the equations (3.7) and (3.9) play an important role. For the proof

of the existence of a solution u0(t) (or u1(t)) of (1.1) satisfying (1.4) (or (1.5)), we

use (3.7) (or (3.9)). We need the following lemmas.

Lemma 3.1. Let α > 0 and λ > 0 be constants. Define the function ϕ(w)

by (3.6). Then we have

0 6 ϕ(w) 6 L(α, λ)w2 and |ϕ′(w)| 6 2L(α, λ)|w|

for |w| 6 1
2λ

α, where

L(α, λ) =





α+ 1

2α2

(3
2

)(1/α)−1

λ−α+1, 0 < α 6 1,

α+ 1

2α2

(1
2

)(1/α)−1

λ−α+1, α > 1.

Define the function ψ(w) by

(3.10) ψ(w) = (λα + w)1/α − λ−
1

α
λ−α+1w, |w| 6

λα

2
.

Then we obtain the the following estimate for ψ(w).
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Lemma 3.2. Let α > 0 and λ > 0 be constants. Define the function ψ(w)

by (3.10). Then we have

|ψ(w)| 6M(α, λ)w2, |w| 6
λα

2
,

where

M(α, λ) =





|α− 1|

2α2

(3
2

)(1/α)−2

λ−2α+1, 0 < α 6 1
2 ,

|α− 1|

2α2

(1
2

)(1/α)−2

λ−2α+1, α > 1
2 .

For the proofs of Lemmas 3.1 and 3.2, see [11], Lemma 2.1 and Lemma 2.2.

4. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. For the proof of the existence of

a solution u0(t) (or u1(t)) of (1.1) satisfying (1.4) (or (1.5)) we use (1.9) (or (1.11)).

As before, β > 0 is the constant given by (2.1).

P r o o f of Theorem 1.1. We will first prove the existence of a nonoscillatory

solution u0(t) of (1.1) which satisfies (1.4). As mentioned above, we use (1.9) and

solve the generalized Riccati differential equation (3.3). To this end, we utilize the

equation (3.7). As an integral form of (3.7) it is natural to consider

(4.1) w(t) = αeβt
∫

∞

t

e−βsb(s) ds− αeβt
∫

∞

t

e−βsϕ(w(s)) ds, t > T,

where T is a suitable number. Note that the first term of the right-hand side of (4.1)

is equal to αeβtΦλ(t), where Φλ(t) is given by (1.10). We define Φ̂λ(t) by (2.9).

By (I) of Lemma 2.2 we have (2.10) and (2.11).

By (1.9), (2.10) and (2.11), the functions eβt|Φλ(t)| and eβtΦ̂λ(t) tend to 0 as

t → ∞ and are integrable on [t0,∞). Let L(α, λ) be a positive constant appearing

in Lemma 3.1. For simplicity of notation, we put

(4.2) γ = 3α3L(α, λ).

It is possible to take a number T > t0 so that

(4.3) αeβt|Φλ(t)|+ γeβtΦ̂λ(t) 6
λα

2
, t > T,

and

(4.4) αL(α, λ)

∫
∞

T

(αeβs|Φλ(s)|+ γeβsΦ̂λ(s)) ds 6
1

6
.
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Then, by (4.4), we have

(4.5) αL(α, λ)γ

∫
∞

T

eβsΦ̂λ(s) ds 6
1

6
.

Let CB [T,∞) denote the Banach space of all bounded continuous functions w(t)

on [T,∞) with the supremum norm

(4.6) ‖w‖ = sup
t>T

|w(t)|.

Define the set W by

W = {w ∈ CB[T,∞) : |w(t)| 6 αeβt|Φλ(t)|+ γeβtΦ̂λ(t) for t > T }.

If w ∈ W , then |w(t)| 6 1
2λ

α for t > T (see (4.3)). The set W is a nonempty closed

subset of CB [T,∞). Define the integral operator F on W by

(Fw)(t) = αeβt
∫

∞

t

e−βsb(s) ds− αeβt
∫

∞

t

e−βsϕ(w(s)) ds, t > T,

where ϕ(w) is given by (3.6). Observe that Fw is well-defined for w ∈ W and that

(Fw)(t) is a continuous function on [T,∞).

Let w ∈ W . By Lemma 3.1 and the definition of Fw, we get

|(Fw)(t)| 6 αeβt|Φλ(t)|+ αeβt
∫

∞

t

e−βs|ϕ(w(s))| ds

6 αeβt|Φλ(t)|+ αL(α, λ)eβt
∫

∞

t

e−βs|w(s)|2 ds

for t > T . As a general inequality we have (A + B)2 6 2A2 + 2B2 for all real

numbers A and B. Therefore, if w ∈W , then
∫

∞

t

e−βs|w(s)|2 ds 6

∫
∞

t

e−βs(2(αeβs|Φλ(s)|)
2 + 2(γeβsΦ̂λ(s))

2) ds

6 2α2Φ̂λ(t) + 2γ2Φ̂λ(t)

∫
∞

t

eβsΦ̂λ(s) ds

for t > T . Here, in the last step, the decreasing property of Φ̂λ(t) has been used.

Hence, in view of (4.2) and (4.5), we obtain

|(Fw)(t)| 6 αeβt|Φλ(t)|+
2

3
γeβtΦ̂λ(t) + 2αL(α, λ)γ2eβtΦ̂λ(t)

∫
∞

t

eβsΦ̂λ(s) ds

6 αeβt|Φλ(t)|+ γeβtΦ̂λ(t), t > T.

This implies that F maps W into W .
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Furthermore, it can be proved that F is a contraction mapping on W . In fact, if

w1, w2 ∈W , then

|(Fw1)(t) − (Fw2)(t)| 6 αeβt
∫

∞

t

e−βs|ϕ(w1(s)) − ϕ(w2(s))| ds, t > T.

The mean value theorem implies that there exists θ(t) ∈ (0, 1) such that

ϕ(w1(t)) − ϕ(w2(t)) = ϕ′(ξ(t))(w1(t)− w2(t))

with

ξ(t) = w1(t) + θ(t)(w2(t)− w1(t)).

Then, noting that

|ξ(t)| 6 αeβt|Φλ(t)|+ γeβtΦ̂λ(t), t > T,

and using the estimate for |ϕ′(w)| in Lemma 3.1, we see that

|ϕ(w1(t))− ϕ(w2(t))| 6 2L(α, λ)(αeβt|Φλ(t)|+ γeβtΦ̂λ(t))|w1(t)− w2(t)|

for t > T . Therefore we find that

|(Fw1)(t)− (Fw2)(t)|

6 2αL(α, λ)eβt
∫

∞

t

e−βs(αeβs|Φλ(s)|+ γeβsΦ̂λ(s)) ds‖w1 − w2‖

6 2αL(α, λ)

∫
∞

t

(αeβs|Φλ(s)|+ γeβsΦ̂λ(s)) ds‖w1 − w2‖

for t > T . Therefore it follows from (4.4) that

|(Fw1)(t)− (Fw2)(t)| 6
1

3
‖w1 − w2‖, t > T,

which yields

‖Fw1 −Fw2‖ 6
1

3
‖w1 − w2‖.

Thus, F is a contraction mapping on W as claimed.

By the contraction mapping principle, F has a fixed element w ∈ W . This fixed

element w(t) satisfies (4.1), and so it satisfies (3.7). By the definition of ϕ(w) we

find that w(t) satisfies (3.5). By the construction of w(t) we have

(4.7) |w(t)| 6 αeβt|Φλ(t)| + γeβtΦ̂λ(t) 6
λα

2
, t > T,
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which gives λα + w(t) > 1
2λ

α > 0 for t > T . The function v(t) defined by v(t) =

−λα − w(t) (t > T ) satisfies (3.3) and v(t) 6 − 1
2λ

α < 0 for t > T . For this v(t),

define u(t) by (3.4). It is seen that u(t) is a positive solution of (3.1) on [T,∞).

Using the function ψ(w) given by (3.10), we have

(4.8)
u′(t)

u(t)
= v(t)(1/α)∗ = −(λα + w(t))1/α = −λ−

λ−α+1

α
w(t) − ψ(w(t))

for t > T and integration of (4.8) gives

(4.9) log
u(t)

u(T )
= −λ(t− T )−

λ−α+1

α

∫ t

T

w(s) ds−

∫ t

T

ψ(w(s)) ds

for t > T . Since eβt|Φλ(t)| and eβtΦ̂λ(t) are integrable on [t0,∞), the inequality (4.7)

implies

(4.10)

∫
∞

T

|w(s)| ds <∞.

From Lemma 3.2 and (4.7) it is seen that

|ψ(w(t))| 6M(α, λ)w(t)2, t > T.

Since w(t) → 0 as t→ ∞ (see (4.7)), we have w(t)2 6 |w(t)| for all large t. Therefore,

(4.10) gives

(4.11)

∫
∞

T

|ψ(w(s))| ds <∞.

By (4.9), the solution u(t) is written in the form

u(t) = c(t)e−λt, t > T,

where

c(t) = u(T ) exp

(
λT −

λ−α+1

α

∫ t

T

w(s) ds−

∫ t

T

ψ(w(s)) ds

)
, t > T.

Then, from (4.10) and (4.11), it is clear that c(t) has a positive finite limit as t→ ∞.

Put lim
t→∞

c(t) = c0 (> 0). Since lim
t→∞

w(t) = 0, the equality (4.8) gives

lim
t→∞

u′(t)

u(t)
= −λ.

Since u(t)/e−λt = c(t) → c0 (t→ ∞), the above equality implies u′(t)/e−λt → −λc0
(t→ ∞). Then the function u0(t) = u(t)/c0 is a solution of (1.1) and satisfies (1.4).
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Next we prove the existence of a nonoscillatory solution u1(t) which satisfies (1.5).

For this purpose, we use (1.11) and solve the equation (3.9). An integral form

of (3.9) is

w(t) = e−β(t−T )w(T ) + αe−βt

∫ t

T

eβsb(s) ds− αe−βt

∫ t

T

eβsϕ(w(s)) ds

for t > T , where T is a suitable number. If we take w(T ) = αe−βTΨλ(T ), whereΨλ(t)

is defined by (1.12), then the above equality becomes

(4.12) w(t) = αe−βt

∫ t

t0

eβsb(s) ds− αe−βt

∫ t

T

eβsϕ(w(s)) ds, t > T.

The first term of the right-hand side of (4.12) is equal to αe−βtΨλ(t).

Now, define Ψ̂λ(t) by (2.12). By (II) of Lemma 2.2, we have (2.13) and (2.14).

From (1.11), (2.13) and (2.14), the functions e−βt|Ψλ(t)| and e−βtΨ̂λ(t) tend to 0 as

t → ∞ and are integrable on [t0,∞). Therefore it is possible to choose a number

T > t0 so that

(4.13) αe−βt|Ψλ(t)|+ γe−βtΨ̂λ(t) 6
λα

2
, t > T,

and

(4.14) αL(α, λ)

∫
∞

T

(αe−βs|Ψλ(s)|+ γe−βsΨ̂λ(s)) ds 6
1

6
,

where γ is given by (4.2) and L(α, λ) is a positive constant appearing in Lemma 3.1.

The inequality (4.14) implies

(4.15) αL(α, λ)γ

∫
∞

T

e−βsΨ̂λ(s) ds 6
1

6
.

Let CB [T,∞) denote the Banach space of all bounded continuous functions w(t)

on [T,∞) with the supremum norm (4.6). Define the set W by

W = {w ∈ CB [T,∞) : |w(t)| 6 αe−βt|Ψλ(t)|+ γe−βtΨ̂λ(t) for t > T }.

If w ∈W , then |w(t)| 6 1
2λ

α for t > T (see (4.13)). The set W is a nonempty closed

subset of CB [T,∞). Define the operator F on W by

(Fw)(t) = αe−βt

∫ t

t0

eβsb(s) ds− αe−βt

∫ t

T

eβsϕ(w(s)) ds, t > T,

where ϕ(w) is given by (3.6). It is clear that (Fw)(t) is a continuous function on

[T,∞).
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Let w ∈ W . By Lemma 3.1,

|(Fw)(t)| 6 αe−βt|Ψλ(t)|+ αe−βt

∫ t

T

eβs|ϕ(w(s))| ds

6 αe−βt|Ψλ(t)|+ αL(α, λ)e−βt

∫ t

T

eβs|w(s)|2 ds

for t > T . It is found that

∫ t

T

eβs|w(s)|2 ds 6

∫ t

T

eβs(2(αe−βs|Ψλ(s)|)
2 + 2(γe−βsΨ̂λ(s))

2) ds

6 2α2Ψ̂λ(t) + 2γ2Ψ̂λ(t)

∫ t

T

e−βsΨ̂λ(s) ds

for t > T . Here, in the last step, the increasing property of Ψ̂λ(t) has been used.

Hence, by (4.2) and (4.15), we obtain

|(Fw)(t)| 6 αe−βt|Ψλ(t)|+
2

3
γe−βtΨ̂λ(t) + 2αL(α, λ)γ2e−βtΨ̂λ(t)

∫ t

T

e−βsΨ̂λ(s) ds

6 αe−βt|Ψλ(t)|+ γe−βtΨ̂λ(t), t > T.

This implies that F mapsW into itself. Moreover, it is shown that F is a contraction

mapping on W . In fact, if w1, w2 ∈W , then

|(Fw1)(t)− (Fw2)(t)| 6 αe−βt

∫ t

T

eβs|ϕ(w1(s))− ϕ(w2(s))| ds, t > T.

As in the previous calculation we have

|ϕ(w1(t))− ϕ(w2(t))| 6 2L(α, λ)(αe−βt|Ψλ(t)|+ γe−βtΨ̂λ(t))|w1(t)− w2(t)|

for t > T . Therefore we find that

|(Fw1)(t)− (Fw2)(t)|

6 2αL(α, λ)e−βt

∫ t

T

eβs(αe−βs|Ψλ(s)|+ γe−βsΨ̂λ(s)) ds‖w1 − w2‖

6 2αL(α, λ)

∫ t

T

(αe−βs|Ψλ(s)|+ γe−βsΨ̂λ(s)) ds‖w1 − w2‖

for t > T . Hence, (4.14) yields

‖Fw1 −Fw2‖ 6
1

3
‖w1 − w2‖.

Thus, F is a contraction mapping on W .
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By the contraction mapping principle, F has a fixed element w ∈ W . This fixed

element w(t) satisfies (4.12), and so it satisfies (3.9). By the definition of ϕ(w) we

see that w(t) satisfies (3.8). Therefore the function v(t) = λα + w(t) satisfies (3.3).

By the construction of w(t) we have

(4.16) |w(t)| 6 αe−βt|Ψλ(t)| + γe−βtΨ̂λ(t) 6
λα

2
, t > T,

and hence v(t) > 1
2λ

α > 0 for t > T . For this v(t), define u(t) by (3.4). It is seen

that u(t) is a positive solution of (3.1) on [T,∞). Using the function ψ(w) defined

by (3.10), we have

(4.17)
u′(t)

u(t)
= v(t)(1/α)∗ = (λα + w(t))1/α = λ+

λ−α+1

α
w(t) + ψ(w(t))

for t > T and integration of (4.17) gives

(4.18) log
u(t)

u(T )
= λ(t− T ) +

λ−α+1

α

∫ t

T

w(s) ds+

∫ t

T

ψ(w(s)) ds

for t > T . Since e−βt|Ψλ(t)| and e−βtΨ̂λ(t) are integrable on [t0,∞), the inequal-

ity (4.16) implies ∫
∞

T

|w(s)| ds <∞.

By Lemma 3.2 and (4.16) we have

|ψ(w(t))| 6M(α, λ)w(t)2, t > T.

Since w(t) → 0 as t → ∞ (see (4.16)), we have w(t)2 6 |w(t)| for all large t.

Therefore, the integrability of |w(t)| on [T,∞) gives

∫
∞

T

|ψ(w(s))| ds <∞.

By (4.18), the solution u(t) is written in the form

u(t) = c(t)eλt, t > T,

where

c(t) = u(T ) exp

(
−λT +

λ−α+1

α

∫ t

T

w(s) ds+

∫ t

T

ψ(w(s)) ds

)
, t > T.
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Then it is clear that c(t) has a positive finite limit as t → ∞. Put lim
t→∞

c(t) = c1

(> 0). Since lim
t→∞

w(t) = 0, the equality (4.17) gives

lim
t→∞

u′(t)

u(t)
= λ.

Since u(t)/eλt = c(t) → c1 (t → ∞), the above equality implies u′(t)/eλt → λc1
(t→ ∞). Then the function u1(t) = u(t)/c1 is a solution of (1.1) and satisfies (1.5).

This finishes the proof of Theorem 1.1. �

5. An example

We now give an example illustrating the main result. Consider the equation (1.1)

with

(5.1) b(t) =
sin(t2)

t3
−

cos(t2)

t
, t > t0 (> 0).

Since b(t) is bounded on [t0,∞), the condition (1.8) is clearly satisfied. It is easy to

see that

lim
t→∞

∫ t

t0

b(s) ds =

∫
∞

t0

b(s) ds exists and is finite,

and ∫
∞

t

b(s) ds =
sin(t2)

2t2
, t > t0.

Then we find that

Φλ(t) =

∫
∞

t

e−(α+1)λsb(s) ds

= e−(α+1)λt

∫
∞

t

b(r) dr − (α+ 1)λ

∫
∞

t

e−(α+1)λs

(∫
∞

s

b(r) dr

)
ds

= e−(α+1)λt sin(t
2)

2t2
− (α+ 1)λ

∫
∞

t

e−(α+1)λs sin(s
2)

2s2
ds, t > t0,

and so

|Φλ(t)| 6 e−(α+1)λt 1

2t2
+ (α+ 1)λ

∫
∞

t

e−(α+1)λs 1

2s2
ds

6 e−(α+1)λt 1

2t2
+ e−(α+1)λt 1

2t2
= e−(α+1)λt 1

t2
, t > t0.
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Then it is obvious that the condition (1.9) holds. Therefore, by Theorem 1.1, we

can conclude that the equation (1.1) has a solution u0(t) satisfying (1.4) and a

solution u1(t) satisfying (1.5).

The function b(t) which is given by (5.1) satisfies

(5.2)

∫
∞

t0

|b(s)| ds = ∞.

To prove (5.2), note that

(5.3)
1

2

∫ τ2

t2
0

|cosσ|

σ
dσ =

∫ τ

t0

|cos (s2)|

s
ds 6

∫ τ

t0

|b(s)| ds+

∫ τ

t0

|sin (s2)|

s3
ds

for τ > t0. Then, since

∫
∞

t2
0

|cosσ|

σ
dσ = ∞ and

∫
∞

t0

|sin (s2)|

s3
ds <∞,

the inequality (5.3) implies (5.2). Therefore we cannot apply (i) of Theorem 1.1

in [11].
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