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Abstract. We present some extensions of Chu’s formulas and several striking generaliza-
tions of some well-known combinatorial identities. As applications, some new identities on
binomial sums, harmonic numbers, and the generalized harmonic numbers are also derived.
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1. Introduction

First, let us recall that the generalized harmonic numbers denoted by H
(r)
n are

defined to be partial sums of the Riemann zeta series:

(1.1) H
(r)
0 = 0 and H(r)

n =

n
∑

k=1

1

kr
for n, r = 1, 2, . . .

When r = 1, these numbers reduce to the classical harmonic numbers, shortened as

Hn = H
(1)
n .

Secondly, we recall that the complete Bell polynomials can be explicitly expressed

as in [9]

Bn(x1, x2, . . . , xn) =
∑

m1+2m2+...+nmn=n

n!

m1!m2! . . .mn!

(x1

1!

)m1
(x2

2!

)m2

. . .
(xn

n!

)mn

.

Combinatorial identities is a classical topic in combinatorics that have always been

of great importance since Euler’s era. In [21], Karatsuba indicated that combinatorial
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identities are used in several combinatorial problems, number theory, probability,

the construction of computational algorithms, and mathematical physics. For some

specific references of these applications see, for example, [1], [2], [7], [11], [14], [18],

[19], [20], [24], [29], [30], [31], [33], [36].

There are various formulas and identities involving binomial coefficients. One of

these combinatorial identities is

n!

x(x + 1) . . . (x + n)
=

n
∑

j=0

(

n

j

)

(−1)j

x+ j
,

which appeared, for example, in [12], page 3, [14], equation (1.41) and [16], page 188.

In recent years, there has been considerable interest in providing simple probabilistic

proofs for this identity (see, for example, [26], [27], [32], [34]).

The second identity is the formula

n
∑

j=0

(−1)n−j

(

n

j

)

jn = n!.

In the literature, this identity is usually called the Boole formula because it appears

in Boole’s classical book (see [6]). Actually, it goes back to Euler, so Gould (see [15])

renamed it to Euler’s formula.

In recent decades, Euler’s formula has received a regain of interest, therefore sev-

eral papers have been devoted to provide new proofs. The interested reader can

consult [1], [3], [4], [5], [13], [17], [22], [28].

Involving complex numbers, Katsuura (in [22]) generalized Euler’s formula as

n
∑

j=0

(−1)j
(

n

j

)

(b+ aj)l =

{

0 if 0 6 l < n,

(−1)nann! if l = n,

where a and b are two complex numbers.

Extending Katsuura’s formula, Pohoata (see [28]) considered the following identity

in terms of polynomials with real coefficients:

n
∑

j=0

(−1)n−j

(

n

j

)

P (α+ βj) = βnn! an,

where P (x) is a polynomial of degree n with leading coefficient an.

In [8], among other results, Chu established for any two natural numbers λ and θ

with 0 6 θ < λ(n+1) the partial fraction decompositions of the two rational functions

1

xλ(x+ 1)λ . . . (x+ n)λ
and

xθ

xλ(x + 1)λ . . . (x + n)λ
,
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then he obtained several striking harmonic number identities and recovered a con-

jectured identity due to Weideman (see [35]):

(1.2)

n
∑

k=0

(−1)k
(

n

k

)3

(3(Hk −Hn−k)
2 + (H

(2)
k +H

(2)
n−k)) = 0.

In [10], Driver and his collaborators confirmed this formula via computer algebra

and symbolic calculus. It is important to note that Weideman (see [35]) declared

that this formula is one of the hardest challenges among algebraic identities.

In [37], Zhu and Luo rewrote these two identities of Chu (see [8]) in another form as

(1.3)
1

xλ(x+ 1)λ . . . (x+ n)λ
=

n
∑

k=0

(−1)kλ

(n!)λ

(

n

k

)λ λ−1
∑

j=0

Bj(x1, x2, . . . , xj)

j! (x+ k)λ−j
,

and for λ 6 M < λ(n+ 1),

(1.4)
xM

xλ(x+ 1)λ . . . (x+ n)λ
=

n
∑

k=0

(−1)kλ+M

(n!)λ

(

n

k

)λ

kM
λ−1
∑

j=0

Bj(x1, x2, . . . , xj)

j! (x+ k)λ−j
,

and gave a novel proof of these two main results of Chu (see [8]) using an appropriate

contour integral and Cauchy’s residue theorem.

Motivated by these results, our purpose is to establish the following general com-

binatorial identities which are a common generalization of these important works

introduced before.

Let m and n be two positive integers. Let P (x) = xm(x+1)m(x+2)m . . . (x+n)m

and Q(x) ∈ C[x] be two polynomials such that deg(Q) < m(n + 1). Then the

following algebraic identity holds true:

(n!)mQ(x)

P (x)
=

n
∑

j=0

(−1)jm
(

n

j

)m m−1
∑

i=0

m−1−i
∑

k=0

(−1)kBk(x1, x2, . . . , xk)Q
(i)(−j)

i! k! (x+ j)m−i−k
,

where

xl = m(l − 1)! (H
(l)
n−j + (−1)lH

(l)
j ).

Here and further, Q(i)(x) denotes the ith derivative of Q(x).

In addition, if Q(x) ∈ C[x] is a polynomial of degree l with leading coefficient al,

then we have the following identity:

n
∑

j=0

(−1)jm
(

n

j

)m m−1
∑

i=0

(−1)m−1−i
Bm−1−i(x1, x2, . . . , xm−1−i)Q

(i)(−j)

i! (m− 1− i)!

=

{

0 if 0 6 l < m(n+ 1)− 1,

(n!)mal if l = m(n+ 1)− 1.
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Consequently, we obtain

n
∑

j=0

(−1)j
(

n

j

)3
(Q(2)(−j)

2
− 3Q

′

(−j)(Hn−j −Hj)

+
3Q(−j)

2
(3(Hn−j −Hj)

2 + (H
(2)
n−j +H

(2)
j ))

)

=

{

0 if 0 6 l < 3n+ 2,

(n!)3al if l = 3n+ 2.

SettingQ(x) = 1, the last expression reduces to the conjectured identity of Weideman

(see [35]):
n
∑

j=0

(−1)j
(

n

j

)3

(3(Hn−j −Hj)
2 + (H

(2)
n−j +H

(2)
j )) = 0.

2. Preliminaries and the proof of the main identities

We first formulate the following important result.

Theorem 2.1. Let α1, α2, . . . , αs be distinct elements in the field of complex

numbers C. For a positive integer m, let P (x) = (x − α1)
m(x− α2)

m . . . (x− αs)
m.

For any polynomial Q(x) ∈ C[x] with deg(Q) < deg(P ), we have

(2.1)
Q(x)

P (x)
=

s
∑

j=1

m−1
∑

i=0

m−1−i
∑

k=0

(−1)kgj(αj)Bk(x1, . . . , xk)Q
(i)(αj)

i! k! (x− αj)m−i−k
,

where

xl = m(l − 1)!

s
∑

i=1,i6=j

1

(αj − αi)l
and gj(x) =

s
∏

i=1,i6=j

(x− αi)
−mi .

P r o o f. From [25], equation (4) we have

Q(x) =

s
∑

j=1

m−1
∑

i=0

1

i!
Q(i)(αj)Lji(x)[P ],

where

Lji(x)[P ] = Pj(x)(x − αj)
i

m−1−i
∑

k=0

1

k!
g
(k)
j (αj)(x− αj)

k

and

Pj(x) =

s
∏

i=1,i6=j

(x − αi)
m =

P (x)

(x − αj)m
, gj(x) = (Pj(x))

−1.
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As a consequence, we obtain the identity

Lji(x)[P ] = P (x)

m−1−i
∑

k=0

g
(k)
j (αj)

k! (x− αj)m−i−k
.

Therefore, by combining these identities, we can write

Q(x)

P (x)
=

s
∑

j=1

m−1
∑

i=0

m−1−i
∑

k=0

g
(k)
j (αj)Q

(i)(αj)

i! k! (x− αj)m−i−k
.

On the other hand, we have

gj(x) = ϕ(x) ◦ fj(x),

where ϕ(x) = exp(mx) and fj(x) = ln
( s

∏

i=1,i6=j

(x − αi)
−1

)

. It is clear that

ϕ(k)(x) = mk exp(mx) and f
(k)
j (x) = (−1)k(k − 1)!Hk,αs[j](x), where Hl,αs[j](x) =s

∑

i=1,i6=j

1/(x− αi)
l. Now by applying the Faà di Bruno formula [23], equation (1.13),

we get

g
(k)
j (x) = (−1)kgj(x)

∑

m1+2m2+...+kmk=k

k!

m1!m2! . . .mk!

k
∏

l=1

(m(l − 1)!Hl,αs[j](x)

l!

)ml

.

It follows that

g
(k)
j (αj) = (−1)kgj(αj)Bk(x1, . . . , xk).

Therefore, the rest follows easily. �

Theorem 2.1 has the following corollary.

Corollary 2.1. Let m and n be two positive integers. Let P (x) = xm ×

(x−1)m . . . (x−n)m and Q(x) ∈ C[x] be two polynomials such that deg(Q) < deg(P ).

We have

(n!)mQ(x)

P (x)
=

n
∑

j=0

(

n

j

)m m−1
∑

i=0

m−1−i
∑

k=0

(−1)m(n−j)+k
Bk(x1, x2, . . . , xk)Q

(i)(j)

i! k! (x− j)m−i−k
,

where

xl = m(l − 1)! (H
(l)
j + (−1)lH

(l)
n−j).
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In particular, we get

(n!)mxl

P (x)
=

n
∑

j=0

(

n

j

)m m−1
∑

i=0

m−1−i
∑

k=0

(

l

i

)

jl−i (−1)m(n−j)+k
Bk(x1, x2, . . . , xk)

k! (x− j)m−i−k
,

where 1 6 l < m(n+ 1), and

(n!)m

P (x)
=

n
∑

j=0

(

n

j

)m m−1
∑

k=0

(−1)m(n−j)+k
Bk(x1, x2, . . . , xk)

k! (x− j)m−k
.

According to the expression of Theorem 2.1, we can easily obtain the following

result.

Corollary 2.2. Let m and n be two positive integers. Let P (x) = xm(x+ 1)m ×

(x + 2)m . . . (x + n)m and Q(x) ∈ C[x] be two polynomials such that deg(Q) <

m(n+ 1). The following algebraic identity holds true:

(2.2)
(n!)mQ(x)

P (x)
=

n
∑

j=0

(−1)jm
(

n

j

)m m−1
∑

i=0

m−1−i
∑

k=0

(−1)kBk(x1, x2, . . . , xk)Q
(i)(−j)

i! k! (x+ j)m−i−k
,

where

xl = m(l − 1)! (H
(l)
n−j + (−1)lH

(l)
j ).

By multiplying both sides of (2.2) by x and letting x to∞, we obtain the following

result.

Theorem 2.2. Let m and n be two positive integers. Let Q(x) ∈ C[x] be a poly-

nomial of degree l with leading coefficient al. Then we have the following identity:

n
∑

j=0

(−1)jm
(

n

j

)m m−1
∑

i=0

(−1)m−1−i
Bm−1−i(x1, x2, . . . , xm−1−i)Q

(i)(−j)

i! (m− 1− i)!

=

{

0 if 0 6 l < m(n+ 1)− 1,

(n!)mal if l = m(n+ 1)− 1,

where

xl = m(l − 1)! (H
(l)
n−j + (−1)lH

(l)
j ).
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Setting m = 1, 2, 3 in Theorem 2.2, we gain the following identities.

Corollary 2.3. Let n be a positive integer and Q(x) ∈ C[x] be a polynomial of

degree l with leading coefficient al. Then we have

(a) for m = 1

(2.3)

n
∑

j=0

(−1)j
(

n

j

)

Q(−j) =

{

0 if 0 6 l < n,

n! al if l = n,

(b) for m = 2

(2.4)

n
∑

j=0

(

n

j

)2

(Q′(−j)− 2(Hn−j −Hj)Q(−j)) =

{

0 if 0 6 l < 2n+ 1,

(n!)2al if l = 2n+ 1,

(c) for m = 3

(2.5)
n
∑

j=0

(−1)j
(

n

j

)3
(Q(2)(−j)

2
− 3Q′(−j)(Hn−j −Hj)

+
3Q(−j)

2
(3(Hn−j −Hj)

2 + (H
(2)
n−j +H

(2)
j ))

)

=

{

0 if 0 6 l < 3n+ 2,

(n!)3al if l = 3n+ 2.

R em a r k 2.1. In the following, we derive Euler’s formula, Katsuura’s formula,

and Pohoata’s formula.

⊲ When Q(x) = xn, identity (2.3) gives Euler’s formula.

⊲ When Q(x) = (b − ax)l, identity (2.3) reduces to Katsuura’s formula.

⊲ Setting Q(x) = P (α− βx) in identity (2.3), we obtain Pohoata’s formula.

The following example is an illustration of (2.4).

E x am p l e 2.1. Choose Q(x) = x and Q(x) = x2n+1 in (2.4), we derive

n
∑

j=0

(

n

j

)2

(1 + 2j(Hn−j −Hj)) = 0

and
n
∑

j=0

(

n

j

)2

((2n+ 1)j2n + 2j2n+1(Hn−j −Hj)) = (n!)2,

respectively.
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E x am p l e 2.2. By choosing special polynomials in Corollary 2.3, we obtain

interesting identities.

⊲ Setting Q(x) = 1, the expression of (2.5) becomes

n
∑

j=0

(−1)j
(

n

j

)3

(3(Hn−j −Hj)
2 + (H

(2)
n−j +H

(2)
j )) = 0.

The last identity is declared as one of the hardest challenges among identities.

It is conjectured by [35], equation (20) and proved in [10] by means of symbolic

calculus and computer algebra package Sigma.

⊲ When Q(x) = x, the formula of (2.5) reduces to the identity

n
∑

j=0

(−1)j
(

n

j

)3

(2(Hn−j −Hj) + j(3(Hn−j −Hj)
2 + (H

(2)
n−j +H

(2)
j ))) = 0.

When we set Q(x) = 1 and Q(x) = xθ, where θ is a positive integer, in the

formula (2.2), we can easily reformulate the two algebraic identities appeared in the

work of Chu (see [8]), anticipated at the beginning of this paper, as follows.

Corollary 2.4. Let m, n and θ be three positive integers with 0 6 θ < m(n+1).

Then

(2.6)
(n!)mxθ

xm(x+ 1)m . . . (x + n)m

=

n
∑

j=0

(−1)jm
(

n

j

)m m−1
∑

i=0

m−1−i
∑

k=0

(

θ

i

)

jθ−i (−1)k+θ−i
Bk(x1, x2, . . . , xk)

k! (x+ j)m−i−k
,

where

xl = m(l − 1)! (H
(l)
n−j + (−1)lH

(l)
j ).

In particular, we have

(2.7)
(n!)m

xm(x + 1)m . . . (x+ n)m
=

n
∑

j=0

(−1)jm
(

n

j

)m m−1
∑

k=0

(−1)kBk(x1, x2, . . . , xk)

k! (x+ j)m−k
.

According to (2.6), we can provide a list of identities, for example the following

two examples.
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E x am p l e 2.3. Let n and θ be two positive integers with θ < n+ 1. Then

n!xθ

x(x + 1) . . . (x+ n)
=

n
∑

j=0

(

n

j

)

(−1)j+θ jθ

(x+ j)
.

The last identity appeared in the work of Chu (see [8], Example 1).

E x am p l e 2.4. Let n and θ be two positive integers with θ < 2(n+ 1). Then

(n!)2xθ

x2(x + 1)2 . . . (x+ n)2
=

n
∑

j=0

(

n

j

)2
( (−1)θjθ

(x+ j)2
− (−1)θ

jθ(Hn−j −Hj) + θjθ−1

(x+ j)

)

and the corresponding harmonic number identity is

n
∑

j=0

jθ−1

(

n

j

)2

(θ − 2j(Hj −Hn−j)) =

{

0 if 0 6 θ < 2n+ 1,

(n!)2 if θ = 2n+ 1.

We note that the last formula has been conjectured by Weideman in [35], equa-

tion (11) and proved in [10], Theorem 1 and recovered by Chu in [8], Example 2.

According to (2.7), we can obtain several expansion expressions involving the

generalized harmonic numbers, for example for m = 2, 3, one obtains the following

two identities.

R em a r k 2.2.

(n!)2

x2(x+ 1)2 . . . (x+ n)2
=

n
∑

j=0

(

n

j

)2
( 1

(x + j)2
−

2

(x+ j)
(Hn−j −Hj)

)

,

n
∑

j=0

(−1)j
(

n

j

)3
( 1

(x+ j)3
−

3(Hn−j −Hj)

(x+ j)2
+

9(Hn−j −Hj)
2 + 3(H

(2)
n−j +H

(2)
j )

(x+ j)

)

=
(n!)3

x3(x+ 1)3 . . . (x + n)3
.

Corollary 2.5. Let n be a positive integer. Let Q(x) ∈ C[x] be a polynomial

such that deg(Q) < n+ 1. We have

(2.8)
n!Q(x)

x(x + 1) . . . (x + n)
=

n
∑

j=0

(

n

j

)

(−1)jQ(−j)

(x+ j)
.
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When Q(x) = xl, l = 0, 1, . . . , n, formula (2.8) reduces to

n!xl

x(x + 1) . . . (x+ n)
=

n
∑

j=0

(

n

j

)

(−1)j+ljl

(x+ j)
.

As a consequence, we recover the well-known identity (see, for example, [12], page 3,

[14], equation (1.41), and [16], page 188):

n!

x(x + 1) . . . (x + n)
=

n
∑

j=0

(

n

j

)

(−1)j

x+ j
.

3. Conclusion

In this concluding section, we encourage the interested reader to develop the results

of this paper and examine other important algebraic identities.

A c k n ow l e d gm e n t s. The authors would like to thank the referee for the

detailed and valuable comments that helped to improve the original manuscript in

its present form.
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