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Abstract. In this paper, the structures of collection of pronormal subgroups of dicyclic,
symmetric and alternating groups G are studied in respect of formation of lattices L(G)
and sublattices of L(G). It is proved that the collections of all pronormal subgroups of An

and Sn do not form sublattices of respective L(An) and L(Sn), whereas the collection
of all pronormal subgroups LPrN(Dicn) of a dicyclic group is a sublattice of L(Dicn).
Furthermore, it is shown that L(Dicn) and LPrN(Dicn) are lower semimodular lattices.
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1. Introduction and notation

It is known that the set of all subgroups of a given finite group G forms a lattice

denoted by L(G) withH∧K = H∩K andH∨K = 〈H∪K〉 = 〈H,K〉, see Grätzer [4],

Schmidt [13], Suzuki [15]. For the group theoretic concepts and notations, we refer

to Passi [7], Schmidt [13], Suzuki [15].

The following nomenclature is being used throughout this article in which G de-

notes a finite group.

⊲ LN(G) - collection of all normal subgroups of G, which is a sublattice of L(G).

⊲ LPrN(G) - collection of all pronormal subgroups of G.

⊲ LSPrN(G) - collection of all strongly pronormal subgroups of G.

⊲ |G| - order of G - cardinality of G.
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⊲ |L(G)| - number of subgroups of G - cardinality of L(G).

⊲ o(a) - order of an element a of G.

⊲ e - neutral (identity) element in G.

⊲ 〈H,K〉 - subgroup generated by H and K.

⊲ d(n) - number of divisors of number n.

⊲ Dicn - dicyclic group of order 4n.

⊲ (k, l) - greatest common divisor of k, l.

⊲ [k, l] - least common multiplier of k, l.

Note that Sn denotes the symmetric group on n symbols and An denotes the

alternating group on n symbols, which is a normal subgroup of Sn.

The following definition of a pronormal subgroup of a finite group is due to Hall [5],

see Vdovin [16].

Definition 1.1 ([16]). Let G be a group and H be a subgroup of G. Then H

is said to be pronormal if H and given conjugates of H in G, say Hg, are also

conjugates in the subgroup generated by H and Hg, namely 〈H,Hg〉.

We recall the examples of pronormal subgroups in various groups as follows; see

Mann [8], Peng [11], Rose [12], Vdovin [16].

⊲ Every Hall subgroup (a subgroup whose order is coprime to its index) of a finite

solvable group is pronormal.

⊲ Every normal subgroup of a group is pronormal.

⊲ Every maximal subgroup of a group is pronormal.

⊲ Every Sylow p-subgroup of a finite group is pronormal.

⊲ Every Carter subgroup (a nilpotent self-normalizing subgroup) of a finite solvable

group is pronormal.

The collection of pronormal subgroups of dihedral groups and the collection of

all Hall subgroups of alternating groups, symmetric groups and dihedral groups are

studied in Mitkari and Kharat [9], [10].

2. Structure of pronormal subgroups of dicyclic groups

In this section, some properties of the collection of pronormal subgroups of Dicn
are investigated.

Definition 2.1. The dicyclic group (also called binary dihedral group) with

parameter n of order 4n is defined as for n > 3, Dicn = 〈a, b : a2n = e, b2 = an,

bab−1 = a−1〉.

The complete listing of subgroups of Dicn is in the following theorem, for more

details see Tărnăuceanu [6].
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Theorem 2.2. Every subgroup of Dicn is cyclic or dicyclic. A complete listing

of the subgroups is as follows:

(1) 〈ad〉, where d|2n, with index 2d,

(2) 〈ak, aib〉, where k|n and 0 6 i 6 k − 1, with index k.

Every subgroup of Dicn occurs exactly once in this listing.

R em a r k 2.3.

(1) A subgroup of Dicn is said to be of Type (1) if it is a cyclic subgroup as stated

in (1) of Theorem 2.2.

(2) A subgroup of Dicn is said to be of Type (2) if it is a dicyclic subgroup as stated

in (2) of Theorem 2.2.

Lemma 2.4. In Dicn, we have the following:

(1) (akb)−1 = b−1(ak)−1 = b3(a−k) = ban−k = ak−nb,

(2) bak = a2n−kb = a−kb, bakb−1 = a−k,

(3) elements of group H = 〈am, aib〉 are either of form akm or of form akm+ib for

some k.

Lemma 2.5. Every subgroup of Dicn of Type (1) is normal.

P r o o f. We have akb〈ad〉(akb)−1 = akb〈ad〉ak−nb = 〈ad〉 for any d|2n. Therefore

〈ad〉 is normal. �

We obtain the conjugate subgroup of a Type (2) subgroup determined by an

element of group Dicn in the following lemma.

Lemma 2.6. LetH = 〈am, aib〉 be a subgroup of Dicn. ThenH
ak

= 〈am, a2k+ib〉,

Hakb = 〈am, a2k−ib〉 and 〈H,Hak

〉 = 〈am, a2k, aib〉.

P r o o f. As ba−k = akb, ak(aib)a−k = a2k+ib, and we have that Hak

=

〈am, a2k+ib〉. Next, (akb)am(akb)−1 = ak(bamb−1)a−k = aka−ma−k and (akb)aib×

(akb)−1 = (akb)aibb−1a−k = akbai−k = akak−ib = a2k−ib, so that Hakb =

〈am, a2k−ib〉. Finally, 〈H,Hak

〉 = 〈am, aib, a2k+ib〉 = 〈am, a2k, aib〉, because

a2k+ib(aib)−1 = a2k. �

We prove that the conjugate of a given subgroup of Dicn is determined by a power

of the generator a of Dicn.

Lemma 2.7. For any subgroup H of Dicn and for any k ∈ Z, there is a j ∈ Z

such that Hakb = Haj

.

P r o o f. Let H = 〈am, aib〉. By Lemma 2.6 we have Hak−i

= 〈am, a2(k−i)+ib〉 =

〈am, a2k−ib〉 = Hakb. �
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In what follows, we characterize the pronormal subgroups of Dicn.

Theorem 2.8. A subgroup of Dicn is pronormal unless it is of the form 〈am, aib〉,

where 4|m|n and 0 6 i 6 m− 1.

P r o o f. Let H be a subgroup of Dicn. If H is of Type (1), then it is pronormal

since it is normal by Lemma 2.5. We therefore assume the possibilities only when H

is a subgroup of Type (2).

Claim 1. If H= 〈am, aib〉 is a subgroup of Type (2) and m is not divisible by 4,

then H is pronormal.

In the view of Lemma 2.7, it is sufficient to consider Hx for an element x = ak

of Dicn. As H
x = 〈am, a2k+ib〉, we claim that 〈Hx, H〉 = 〈ag, aib〉, where g =

(m, 2k). Indeed, note that 〈Hx, H〉 = 〈am, a2k, aib〉, and as g|m and g|2k, we have

〈Hx, H〉 ⊆ 〈ag, aib〉. Moreover, if z ∈ 〈ag, aib〉, then either z = alg or z = agq+ib

for some l, q ∈ N. If z = alg, then z ∈ 〈am, a2k, aib〉 = 〈Hx, H〉. If z = agq+ib, for

some t1, t2 ∈ Z we have g = mt1 +2kt2, hence z = a(mt1+2kt2)q+ib ∈ 〈am, a2k, aib〉 =

〈Hx, H〉, and this proves that 〈Hx, H〉 = 〈ag, aib〉.

We claim that H and Hx are conjugates in 〈Hx, H〉 = 〈ag, aib〉, i.e., there exists

y ∈ 〈Hx, H〉 such that Hx = Hy holds. We have g = (m, 2k), so let m = gm′ and

2k = gk′ for some m′, k′ ∈ Z. Note that if m is even, then 2|g and since 4 ∤ m, we

have (m′, 2) = 1. Also, if m is odd, then 2 ∤ m′ and so (m′, 2) = 1. In both the cases

we have (m′, 2) = 1 and therefore there exist d1, d2 ∈ Z such that 1 = m′d1 + 2d2.

Now, gk′ = m′gd1k
′ + 2gd2k

′ = md1k
′ + 2gd2k

′ = ms1 + 2gs2, where s1 = d1k
′ and

s2 = d2k
′, i.e., 2k = ms1 + 2gs2. Put y = ags2 . Then Hy = 〈am, a2gs2+ib〉 and so it

contains an element a2k+ib of Hx and consequently, Hx ⊆ Hy. Therefore, Hx = Hy

since Hx and Hy have the same number of elements.

Claim 2. If H= 〈am, aib〉 is a subgroup of Type (2) and m > 1 is divisible by 4,

then H is not pronormal.

In order to show that H is not pronormal in Dicn, it is sufficient to find an

element g ∈ Dicn such that H and Hg are not conjugates in 〈H,Hg〉. We have

〈H,Ha〉= 〈am, aib, a2〉. As m is even, we have 〈H,Ha〉 = 〈a2, b〉 if i is even and

〈H,Ha〉 = 〈a2, ab〉 if i is odd. As such, we have the following two cases.

Case 1: Suppose that i is odd. In this case, 〈H,Ha〉 = 〈a2, ab〉, and if H and Ha

are conjugates in 〈H,Ha〉, then there must exist an element x ∈ 〈H,Ha〉 such that

Ha = Hx and such x is of the form a2p for some p or a2p+1b for some p.

Subcase 1.1: If x = a2p, then Hx = 〈am, a4p+ib〉 = Ha = 〈am, a2+ib〉 and we must

have amqa4p+ib = a2+ib for some q ∈ Z. But then, amq+4p = a2, i.e., amq+4p−2 = e.

Now, o(a) = 2n and 4|n, therefore we have 2n|4p+mq−2 and so 4|4p+mq−2. Also,

4|m and so we must have 4| − 2, which is not true and therefore no such x exists.
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Subcase 1.2: If x = a2p+1b, then Hx = 〈am, a4p+2−ib〉 = Ha = 〈am, a2+ib〉, and

so we must have amqa4p+2−ib = a2+ib for some q. As such, amq+4p+2−i = a2+i, i.e.,

amq+4p−2i = e. Now, o(a) = 2n and 4|n, so we have 2n|4p+mq−2i and 4|4p+mq−2i.

Also, 4|m and so we must have 4|2i, which is not possible as i is odd, and so, no

such x exists. Therefore, in this Case 1, H and Ha are not conjugates in 〈H,Ha〉.

Case 2: Suppose that i is even. In this case, 〈H,Ha〉 = 〈a2, b〉, and if H and Ha

are conjugates in 〈H,Ha〉, then there must exist an element x ∈ 〈H,Ha〉 such that

Ha = Hx and such x is of the form a2p for some p or a2pb for some p.

Subcase 2.1: If x = a2p, then Hx = 〈am, a4p+ib〉 = Ha = 〈am, a2+ib〉, and so we

have amqa4p+ib = a2+ib for some q ∈ Z. As such, amq+4p = a2, i.e., amq+4p−2 = e.

Now, o(a) = n and 4|n and so we have 2n|4p+mq− 2 and 4|4p+mq− 2. Also, 4|m

and so we must have 4| − 2, which is not true and so no such x exists.

Subcase 2.2: If x = a2pb, then Hx = 〈am, a4p−ib〉 = Ha = 〈am, a2+ib〉 and

so we have amqa4p−ib = a2+ib for some q. Accordingly, amq+4p−i = a2+i, i.e.,

amq+4p−2i−2 = e. Now, o(a) = 2n and 4|n, and so we have 2n|4p+mq − 2i− 2 and

4|4p+mq − 2i− 2. Also, 4|m and so we must have 4|2, which is not true and so no

such x exists. Therefore, in Case 2 also, H and Ha are not conjugates in 〈H,Ha〉.

Consequently, in either of these cases, the subgroup H is not pronormal. �

It is known that the number of subgroups of Dicn= |L(Dicn)| = number of divisors

of 2n + sum of divisors of n, n > 3. We have the following formula for the number

of pronormal subgroups of Dicn, i.e., |LPrN(Dicn)|.

Corollary 2.9. For any n, |LPrN(Dicn)| = d(2n) +
∑

4∤d′|n

d′.

P r o o f. From Theorem 2.8, for every choice of a divisor m of n which is not

divisible by 4 there is a dicyclic pronormal subgroup 〈am, aib〉 for every i. Moreover,

every divisor m of 2n will determine a cyclic pronormal subgroup 〈am〉 of Dicn and

these are the only pronormal subgroups of Dicn. �

We prove that the set of all pronormal subgroups of Dicn forms a sublattice of the

subgroup lattice of Dicn for any n.

Theorem 2.10. LPrN(Dicn) is a sublattice of L(Dicn).

P r o o f. We show that the intersection of two pronormal subgroups of Dicn is

again pronormal. Let H and K be two pronormal subgroups of Dicn. If one of

these subgroups is cyclic of the form 〈ak〉, then by Lemma 2.5, we are through. So,

let H = 〈am, aib〉 and K = 〈ar, ajb〉 for some m, r > 1, m|n, r|n, 0 6 i 6 m − 1,

0 6 j 6 r − 1, moreover 4 ∤ m, 4 ∤ r by Theorem 2.8. Suppose that for some k,

akb ∈ H ∩K. Then there is l such that H ∩K = 〈a[m,r], alb〉. As 4 ∤ m and 4 ∤ r,
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we also have that 4 ∤ [m, r] and H ∩K = 〈a[m,r], alb〉 is pronormal by Theorem 2.8.

If H ∩K is cyclic, it is pronormal by Lemma 2.5. Therefore the intersection of any

two pronormal subgroups is a pronormal subgroup.

Next, we prove that the subgroup generated by the union of two pronormal sub-

groups is pronormal. Let H and K be two pronormal subgroups of Dicn.

Case I: Suppose that bothH andK are a subgroups of Type (2), sayH = 〈am, aib〉

andK = 〈ar, ajb〉 for somem, r > 1, m|n, r|n, 0 6 i 6 m−1, 0 6 j 6 r−1, moreover

4 ∤ m, 4 ∤ r by Theorem 2.8.

We contend that 〈H ∪ K〉 = 〈ag, aib〉, where g = (m, r, i − j). Indeed, for S =

〈ag, aib〉 and x ∈ S, we have x = agk1+ib, for some k1 ∈ Z. However, since g =

(m, r, i − j), there exist p1, p2, p3 ∈ Z such that g = mp1 + rp2 + (i− j)p3 and so

x = a(mp1+rp2+(i−j)p3)k1+ib, which is a finite product of elements of H and K, and so

x ∈ 〈H ∪K〉, therefore S ⊆ 〈H ∪K〉. Now to show that S ⊇ 〈H ∪K〉, it is sufficient

to show that ajb ∈ S. We have aib ∈ S, aj−i ∈ S and so ajb ∈ S. Consequently,

〈am, aib, ar, ajb〉 ⊆ S, i.e., S ⊇ 〈H ∪K〉.

Now, since H and K are pronormal, we have 4 ∤ m and 4 ∤ r, and so 4 ∤ g, which

implies that 〈H ∪K〉 is pronormal.

Case II: Suppose that both H and K are a cyclic subgroups of Type (1), then

obviously 〈H ∪K〉 is also cyclic of Type (1) which is normal by Lemma 2.5 and so

pronormal.

Case III: Suppose that one of H and K is a cyclic subgroups of Type (1) and the

other one is of Type (2), say H = 〈ar〉 and K = 〈am, aib〉. Then 〈H ∪K〉 = 〈ag, aib〉,

where g = (m, r). Now, 4 ∤ m, so 4 ∤ g, which implies that 〈H ∪K〉 is pronormal.

We conclude that given pronormal subgroups H and K of Dicn, we have that both

H ∨K = 〈H ∪K〉 and H ∧K = H ∩K are pronormal. Therefore LPrN(Dicn) is a

sublattice of L(Dicn). �

Now, we establish lattice theoretic property, namely lower semimodularity in

L(Dicn) and LPrN(Dicn).

Definition 2.11 ([14]). A lattice L is said to be lower semimodular (LSM) if it

satisfies the following condition:

⊲ If T ≺ T ∨ S, then T ∧ S ≺ S for T, S ∈ L.

Theorem 2.12. L(Dicn) is lower semimodular.

P r o o f. Let T, S ∈ L(Dicn) be such that T ≺ T ∨ S. We claim that T ∧ S ≺ S.

Case 1: Let T and S be two cyclic subgroups of Type (1), say T = 〈at〉 and

S = 〈as〉. Clearly, T ∨ S = 〈ag〉, where g = (t, s). Note that 〈at〉 ≺ 〈ag〉 if and only

if gp = t for a prime p|n.
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Note that T ∧ S = 〈al〉, where l = [s, t] and as g|s, we have s = gq for a pos-

itive integer q, then l = [gq, gp] = g[q, p] = gqp. (Note that p ∤ q as (t, s) 6= t).

Consequently, S ∧ T = 〈al〉 = 〈asp〉 ≺ 〈as〉 = S.

Case 2: Let T be a cyclic subgroup of Type (1) and S be a subgroup of Type (2),

say T = 〈at〉 and S = 〈as, aib〉.

Clearly, T ∨ S = 〈ag, aib〉, where g = (t, s). We have that 〈at〉 ≺ 〈ag, aib〉 is true

if and only if g = t.

Note that T ∧ S = 〈al〉, where l = [s, t], as g|s, we have s = gq = tq for a positive

integer q, then l = [gq, t] = g[q, 1] = gq = tq = s. Consequently, S ∧ T = 〈al〉 =

〈as〉 ≺ 〈as, aib〉 = S.

Case 3: Let T be a subgroup of Type (2) and S be a cyclic subgroup of Type (1),

say T = 〈at, aib〉 and S = 〈as〉.

Clearly, T ∨ S = 〈ag, aib〉, where g = (t, s). We have that 〈at, aib〉 ≺ 〈ag, aib〉 is

true if and only if gp = t for a prime p|n.

Note that T ∧ S = 〈al〉, where l = [s, t], as g|s, we have s = gq for a positive inte-

ger q, then l = [gq, gp] = g[q, p] = gqp. (Note that, p ∤ q as (t, s) 6= t). Consequently,

S ∧ T = 〈al〉 = 〈asp〉 ≺ 〈as〉 = S.

Case 4: Let T and S be subgroups of Type (2), say T = 〈at, aib〉 and S = 〈as, ajb〉,

where t, s|n and 0 6 i 6 t− 1, 0 6 j 6 s− 1. It is easy to see that T ∨ S = 〈ag, aib〉,

where g = (t, s, i− j). We have that 〈at, aib〉 ≺ 〈ag, aib〉 is true if and only if gp = t

for some a p|n.

Subcase 4.1: Suppose that the equation tx1 + sx2 = i − j has a solution, namely

(x1, x2). Number i − j is a multiple of (t, s) in this case. Substituting the values

of t and s we get gpx1 + gqx2 = gα, where s = gq and i − j = gα. If p|q, then

p|α since the equation has a solution. Consequently, we get g = t, which is a

contradiction to the assumption T ≺ T ∨ S. And so we must have p ∤ q. Note that

S ∧ T = 〈al, akb〉, where l = [s, t], then l = [gq, gp] = g[q, p] = gqp. Consequently,

S ∧ T = 〈al, akb〉 = 〈asp, akb〉 ≺ 〈as, ajb〉 = S.

Subcase 4.2: Suppose that equation tx1 + sx2 = i− j has no solution. If for some

0 < l < 2n, alb ∈ H ∩K, then there are p, q such that apt+ib = alb = aqs+jb. This

means that tp+i ≡ sq+j (mod 2n), it means that for some kt(−p)+sq+2kn = i−j.

As t|n, s|n, there are u, v such that tu = n, sv = n. Then 2kn = t(ku) + s(kv) and

t(−p + ku) + s(q + kv) = i − j, which means that the equation tx1 + sx2 = i − j

has a solution, a contradiction. Consequently, in this case, we have S ∧ T = 〈al〉,

where l = [s, t]. If p ∤ q, then (p, q) = 1, therefore g = (t, s) and so the equation

tx1+ sx2 = i− j will have a solution, which is a contradiction. Therefore p|q is true,

so t|s and so [s, t] = l = s. This concludes, S ∧ T = 〈al〉 = 〈as〉 ≺ 〈as, ajb〉 = S.

Hence L(Dicn) is lower semimodular. �
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Corollary 2.13. LPrN(Dicn) is lower semimodular.

P r o o f. In order to show that LPrN(Dicn) is lower semimodular, it is sufficient

to show that LPrN(Dicn) is a cover preserving the sublattice of L(Dicn). Already,

we have LPrN(Dicn) as a sublattice of L(Dicn) by Theorem 2.8. We show that for

given pronormal subgroups T and S of L(Dicn) such that T ≺ S in LPrN(Dicn), we

have to have T ≺ S in L(Dicn).

Case I: Suppose that both T and S are cyclic subgroups of Type (1) with T ≺ S

in LPrN(Dicn). As every cyclic subgroup of Type (1) is normal and so pronormal,

we have T ≺ S in L(Dicn).

Case II: Suppose that T is a cyclic subgroup of Type (1) and S is a subgroup of

Type (2) such that T ≺ S in LPrN(Dicn).

Let T = 〈at〉 and S = 〈as, aib〉 such that T ≺ S. S is pronormal, so 4 ∤ s

by Theorem 2.8 and also s|t, say sq = t. If T 6≺S in L(Dicn), then we must have

〈at〉 ⊆ 〈as〉 ⊆ S and if q 6= 1, then 〈at〉 ( 〈as〉. Subgroups of Type (1) are pronormal

in Dicn and therefore 〈a
s〉 ∈ LPrN(Dicn), a contradiction to the assumption that

T ≺ S in LPrN(Dicn). Hence, we must have t = s and so T ≺ S in L(Dicn) as well.

Case III: Suppose that T and S are subgroups of Type (2) such that T ≺ S in

LPrN(Dicn).

Let T = 〈at, ajb〉 and S = 〈as, aib〉 such that T ≺ S. Subgroups S, T are

pronormal and therefore 4 ∤ t and 4 ∤ s. If T 6≺S in L(Dicn), then there exists a

dicyclic subgroup, say X = 〈ax, akb〉 containing T and contained in S, which implies

that 〈at〉 ⊆ 〈ax〉, but asX is not pronormal, we must have 4|x and as x|t, we have 4|t,

a contradiction to the fact that T is a dicyclic pronormal subgroup of Dicn. Hence,

no such subgroup exists. Consequently, LPrN(Dicn) is a cover preserving sublattice

of L(Dicn) and hence lower semimodular. �

3. Essential elements in LPrN(Dicn)

Definition 3.1 ([2]). An element e ∈ L is called essential if e ∧ a 6= 0 holds for

each element a ∈ L, a 6= 0.

In this section we determine a number of essential elements of LPrN(Dicn) and

L(Dicn).

Theorem 3.2. Let LEssPrN(Dicn) be the collection of essential elements of

the lattice LPrN(Dicn). Then |LEssPrN(Dicn)| = d(a) +
∑

4∤d′|a

d′, where a =

2n/(2p1p2 . . . pz) and p1, p2, . . . , pm are mutually different odd primes. Moreover,

LEssPrN(Dicn) is a filter (dual ideal) generated by 〈a
2n/(2p1p2...pz)〉.
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P r o o f. Firstly, we determine essential elements of L(Dicn). Note that if a sub-

group E of Dicn is an essential element in L(Dicn), then by definition E∧A 6= {e} for

any subgroup A 6= {e}, i.e., a subgroup that intersects every subgroup nontrivially.

In particular, E intersects every atom of L(Dicn) and therefore E contains every

atom. Note that a subgroup of Dicn is an atom of L(Dicn) if and only if it is a

cyclic subgroup of a prime order of Type (1) and all these subgroups are pronormal

in Dicn. As LPrN(Dicn) is a sublattice of L(Dicn), lattices LPrN(Dicn) and L(Dicn)

have the same atoms, so these subgroups are also all atoms of LPrN(Dicn). But

then, the join of atoms in L(Dicn) is nothing but

z
∨

m=1

〈a2
α
∏

z
m=1

pαm−1

m 〉 ∨ 〈a2
α−1

∏
z
m=1

pαm
m 〉 = 〈a2

α−1
∏

z
m=1

pαm−1

m 〉.

Consequently, the only essential elements of L(Dicn) and of LPrN(Dicn) are the sub-

groups of respective lattices which contain the subgroup 〈a2
α−1

∏z
m=1

pαm−1

m 〉. There-

fore, Less(Dicn) is a filter in L(Dicn) generated by 〈a2n/(2p1p2...pz)〉. Consequently,

|Less(Dicn)| = d(2n/(2p1p2 . . . pz)) +
∑

d∗|2n/(2p1p2...pz)

d∗.

Secondly, we determine essential elements of LPrN(Dicn). In order to find a num-

ber of essential elements in LPrN(Dicn) it is sufficient to find a number of subgroups

which containK = 〈a2n/(2p1p2...pz)〉. Note that a number of cyclic subgroups contain-

ing K is d(2n/(2p1p2 . . . pz)). In view of Theorem 2.8 we have a number of dicyclic

pronormal subgroups containing K is
∑

4∤d∗|2n/(2p1p2...pz)

d∗. Therefore

|LEssPrN(Dicn)| = d
( 2n

2p1p2 . . . pz

)

+
∑

4∤d∗|2n/(2p1p2...pz)

d∗.

Consequently, LEssPrN(Dicn) is a filter generated by K = 〈a2
α−1

∏
z
m=1

pαm−1

m 〉 =

〈a2n/(2p1p2...pz)〉. �

4. Structure of pronormal subgroups of symmetric

and alternating groups

In this section, the collection of pronormal subgroups of Sn and An, namely,

LPrN(Sn) and LPrN(An), respectively, are studied in respect of formation of sublat-

tices of L(Sn) and L(An).

In what follows, a subgroup H of a group G is strongly pronormal if for all sub-

groups K of H and g ∈ G, the subgroup Kg is a conjugate to a subgroup of H (not

necessarily to K) by an element of 〈H,Kg〉.
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Proposition 4.1 ([16]). Let m,n ∈ N and 1 < m 6 n. Then the following

statements hold:

⊲ A subgroup Sm of Sn is pronormal if and only if m > 1
2n.

⊲ A subgroup Sm of Sn is strongly pronormal if and only if m > n − 2. For
1
2n < m < n − 1, in particular, a subgroup Sm of Sn is pronormal but it is

not strongly pronormal.

Note that LPrN(S4) is not a sublattice of L(S4), where S4 = 〈(1234), (12)〉. Also

M1 = 〈(123), (12)〉 andM2 = 〈(234), (23)〉 are subgroups isomorphic to S3 and being

maximal subgroups, both M1 and M2 are pronormal. However, M1 ∧M2 = 〈(23)〉,

which is not pronormal, therefore LPrN(S4) is not a sublattice of L(S4). In fact, we

have the following result about LPrN(Sn) for n > 4.

Theorem 4.2. LPrN(Sn) is not a sublattice of L(Sn) for n > 4.

P r o o f. Case I: Suppose that n is even. Consider subgroupsM1 = 〈(123 . . . 12 ×

(n + 2)), (12)〉 and M2 = 〈(23 . . . 1
2 (n + 4)), (23)〉. Note that both M1 and M2 are

pronormal being isomorphic to S(n+2)/2 by Proposition 4.1. Moreover, M1 ∧M2 =

〈(23 . . . 12 (n+2)), (23)〉 ∼= Sn/2, which is not pronormal in Sn by Proposition 4.1. As

such, we conclude that whenever n is even we get two pronormal subgroups whose

meet is not pronormal, which proves that in this case LPrN(Sn) is not a sublattice

of L(Sn).

Case II: Suppose that n is odd. Consider subgroupsM1 = 〈(123 . . . 12 (n+1)), (12)〉

and M2 = 〈(23 . . . 12 (n + 3)), (23)〉. Note that both M1 and M2 are pronor-

mal being isomorphic to S(n+1)/2 by Proposition 4.1. Moreover, M1 ∧ M2 =

〈(23 . . . 12 (n+1)), (23)〉 ∼= S(n−1)/2, which is not pronormal in Sn by Proposition 4.1.

As such, we conclude that whenever n is odd, we get two pronormal subgroups whose

meet is not pronormal, which proves that in this case LPrN(Sn) is not a sublattice

of L(Sn).

Consequently, a collection of pronormal subgroups of Sn, LPrN(Sn), is not a sub-

lattice of L(Sn) for n > 4. �

Corollary 4.3. LSPrN(Sn) is not a sublattice of L(Sn) for n > 4.

P r o o f. Clearly, for n = 3 every subgroup is pronormal as every subgroup is

maximal. For n > 4, consider the subgroups, say M1 and M2, which are maximal

subgroups of Sn, each one is isomorphic to Sn−1 and so strongly pronormal. Note

that M1 ∧M2
∼= Sn−2, which is not strongly pronormal by Proposition 4.1, i.e., an

intersection of two strongly pronormal subgroups of Sn is not strongly pronormal

in general. �
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We use the following facts, see respectively Benesh [1] and Giovanni [3].

1. In the alternating group A5, all non-cyclic subgroups are pronormal. Moreover,

every subgroup of order 2 of A5 is not pronormal.

2. Every subgroup K of An which is isomorphic to An−1 is a maximal sub-

group of An and that means that K is also a pronormal subgroup of An. We

shall use this fact for K = An−1, which can be naturally considered as a subgroup

of An. Let {a1, a2, . . . , ak} ⊆ {1, 2, . . . n}, S({a1, . . . ak}) be a symmetric group of

the set {a1, . . . , ak}, which can be naturally considered as a subgroup of Sn. For

1 6 i 6 n, let Xi = {1, . . . , n} − {i, n}. For n > 5 every subgroup H of An of

form 〈S(Xi), S({i, n}〉∩An and of the form 〈S({1, 2}), S({3, . . . , n})〉∩An is a max-

imal subgroup of An (isomorphic to Sn−2) and that means H is also a pronormal

subgroup of An.

Theorem 4.4. LPrN(An) is not a sublattice of L(An) for n > 5.

P r o o f. Case 1: Let n = 5. Let K = A4 and Hs = 〈S({1, 2}), S({3, 4, 5})〉 ∩

A5 = 〈(1, 2), (3, 4, 5), (3, 4)〉∩A5. We know that subgroups K and Hs are pronormal

subgroups of A5. Moreover, K ∩ Hs = 〈(1, 2)(3, 4)〉, which is not a pronormal

subgroup of A5, because it has 2 elements. Therefore LPrN(A5) is not a sublattice

of L(A5).

Case 2: Let n = 6. Let K = A5, H5 = 〈S(X5), S({5, 6})〉∩A6 = 〈(1, 2), (1, 2, 3, 4),

(5, 6)〉 ∩ A6, and Hs = 〈S({1, 2}), S({3, 4, 5, 6})〉 ∩ A6 = 〈(1, 2), (3, 4, 5, 6), (3, 4)〉A6.

We know that subgroups K, H5 and Hs are pronormal subgroups of A6. Moreover,

K ∩H5 = A4 and therefore K ∩H5 ∩Hs = A4 ∩Hs = 〈(1, 2)(3, 4)〉, which is not a

pronormal subgroup of A6. Therefore LPrN(A6) is not a sublattice of L(A6).

Case 3: Let n > 7. For 5 6 i 6 n− 1, let Hi = 〈S(Xi), S({i, n})〉 ∩ An = 〈(1, 2),

(1, . . . , i − 1, i + 1, . . . , n − 1), (i, n)〉 ∩ An and let Hs = 〈S({1, 2}), S({3, . . . , n})〉 ∩

An = 〈(1, 2), (3, 4, . . . , n), (3, 4)〉∩An. We know, that subgroupsHn−1, Hn−2, . . . , H5

and Hs are pronormal subgroups of An. It is easy to see that Hn−1 ∩ Hn−2 =

An−3, Hn−1 ∩Hn−2 ∩Hn−3 = An−4, . . . , Hn−1 ∩Hn−2 ∩ . . . ∩H5 = A4. Therefore

Hn−1 ∩ Hn−2 ∩ . . . ∩ H5 ∩ Hs = A4 ∩Hs = 〈(1, 2)(3, 4)〉, which is not a pronormal

subgroup of An and consequently, LPrN(An) is not a sublattice of L(An) for n > 7.

Note that to use the argument of this case we need to intersect at least 2 subgroups,

so that the list Hn−1, . . . , H5 must contain at least 2 groups, which is true for n > 7.

�
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