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Abstract. Let ∆ be a numerical semigroup. In this work we show that J (∆) =
{I ∪ {0} : I is an ideal of ∆} is a distributive lattice, which in addition is a Frobenius re-
stricted variety. We give an algorithm which allows us to compute the set Ja(∆) = {S ∈
J (∆) : max(∆\S) = a} for a given a ∈ ∆. As a consequence, we obtain another algorithm
that computes all the elements of J (∆) with a fixed genus.
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1. Introduction

Let Z be the set of integer numbers and N = {x ∈ Z : x > 0}. A numerical

semigroup is a subset S of N, which is closed by the sum, 0 ∈ S and N \ S =

{x ∈ N : x /∈ S} is finite.

If A is a nonempty subset of N, we denote by 〈A〉 the submonoid of (N,+) gen-

erated by A, that is, 〈A〉 = {λ1a1 + . . . + λnan : n ∈ N \ {0}, {a1, . . . , an} ⊆ A

and {λ1, . . . , λn} ⊆ N}. By Lemma 2.1 from [12], we know that 〈A〉 is a numerical

semigroup if and only if gcd(A) = 1.
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If S is a numerical semigroup and S = 〈A〉, then we say that A is a system of

generators of S. Moreover, if S 6= 〈B〉 for all B ! A, then we say that A is a minimal

system of generators of S. In [12], Corollary 2.8, it is shown that every numerical

semigroup has a unique minimal system of generators which, in addition, is finite.

We denote by msg(S) the minimal system of generators of S. The cardinality of

msg(S) is called the embedding dimension of S and is denoted by ed(S).

If S is a numerical semigroup, then F(S) = max(Z \ S), g(S) = ♯(N \ S), where

♯A denotes the cardinality of set A, and m(S) = min(S \ {0}). They are three

important invariants of S which we call Frobenius number, genus and multiplicity

of S, respectively.

Let ∆ be a numerical semigroup. An ideal of ∆ is a nonempty subset I of ∆ such

that I +∆ = {a+ b : a ∈ I and b ∈ ∆} ⊆ I.

If I is an ideal of ∆, then I ∪ {0} is a numerical semigroup. This fact induces us

to give the following definition. A numerical semigroup S is an I(∆)-semigroup if

S \{0} is an ideal of ∆. We denote J (∆) = {S : S is an I(∆)-semigroup}. The main

aim of this manuscript is to study the set J (∆).

In Section 2, we recall some basic notions and results of the theory of ideals of

numerical semigroups. In Section 3, we show that J (∆) is closed under union and

intersection, and so it is a distributive lattice. Moreover, we show that if S ∈ J (∆)

and x = max(∆ \ S), then S ∪ {x} ∈ J (∆) and consequentely, we have that J (∆)

is a Frobenius restricted variety.

We say that an ideal I of a numerical semigroup ∆ is principal if there exists

a ∈ ∆ such that I = {a}+∆. A P(∆)-semigroup is a numerical semigroup with the

form ({a}+∆)∪{0} and a ∈ ∆. In Section 4, we illustrate that every I(∆)-semigroup

can be expressed as a finite and irredundant union of P(∆)-semigroups.

By Proposition 2.10 from [12], we know that if S is a numerical semigroup, then

ed(S) 6 m(S). A MED-semigroup is a numerical semigroup S such that ed(S) =

m(S). This class of numerical semigroups has been widely studied, see for instance [3].

In Section 4, we show that if S is an P(∆)-semigroup and S 6= ∆, then S is a MED-

semigroup.

Inspired by [1], Lipman introduces and motivates in [6] the study of Arf rings.

The characterization of these rings via their value semigroups yields the notion of

Arf numerical semigroup. Every Arf numerical semigroup is a MED-semigroup. In

Section 4, we show that ∆ is an Arf numerical semigroup if and only if every P(∆)-

semigroup is an Arf numerical semigroup.

A particularly interesting type of numerical semigroups are called saturated nu-

merical semigroups. The idea of saturation of singularities were introduced in three

different ways by: Zariski in [13]–[15], Pham-Teissier in [9], and Campillo in [4]. As

for the Arf property, saturated numerical semigroups come into scene after a char-
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acterization of saturated rings in terms of their value semigroups (see [5], [8]). In

Section 4, we show that a numerical semigroup ∆ is satured if and only if there is at

least one P(∆)-satured semigroup.

Let ∆ be a numerical semigroup. We say that an ideal is irreducible if it cannot

be expressed as the intersection of two ideals properly containing it. If a ∈ ∆, then

we denote B(a) = {s ∈ ∆: a− s ∈ ∆}. As a consequence of Lemma 3.1 from [2] we

have that I is an irreducible ideal of ∆ if and only if I = ∆ or I = ∆ \B(a) for some

a ∈ ∆. A D(∆)-semigroup is a numerical semigroup with the form (∆ \ B(a)) ∪ {0}

for some a ∈ ∆. As a consequence of Theorem 3.3 from [2], we have that every

I(∆)-semigroup can be expressed as a unique, finite and irredundant intersection of

D(∆)-semigroups.

If S ( T are numerical semigroups, then the Frobenius number of S restricted

to T is FT (S) = max(T \ S). If ∆ is a numerical semigroup and a ∈ ∆, then we put

Ja(∆) = {S : S is an I(∆)-semigroup and F∆(S) = a}. In Section 5, we order the

elements of the set Ja(∆) in the form of a tree with root (∆ \B(a))∪ {0}. This fact

allows us in Section 6 to give an algorithm which computes all the elements of the set

Ja(∆). Finally and based on the previous algorithm, we show another one, of different

nature and with complexity not comparable to the algorithm presented in [7], that

allows us to compute the set J (∆, k) = {S : S is an I(∆)-semigroup and g(∆) =

g(∆) + k} for all k ∈ N.

2. Basic concepts and results

Let ∆ be a numerical semigroup. An ideal of ∆ is a nonempty subset I of ∆ such

that I +∆ ⊆ I. The following result has an easy proof.

Proposition 2.1. If I and J are ideals of a numerical semigroup ∆, then I ∪ J

and I ∩ J are also ideals of ∆.

It is clear that if I is an ideal of ∆, then ∆ \ I is finite. Therefore, if I 6= ∆, then

there exists max(∆ \ I).

Proposition 2.2. Let ∆ be a numerical semigroup, let I be an ideal of ∆ such

that I 6= ∆ and x = max(∆ \ I). Then I ∪ {x} is an ideal of ∆.

P r o o f. By maximility of x, we have {x}+∆ ⊆ I∪{x}. Therefore, (I∪{x})+∆ ⊆

I ∪ {x}. �

The following result is Proposition 1 from [7].

Proposition 2.3. If ∆ is a numerical semigroup and X is a nonempty subset

of ∆, then X +∆ is an ideal of ∆. Moreover, every ideal of ∆ has this form.
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If ∆ is a numerical semigroup, then we define over Z the following order relation:

a 6∆ b if and only if b − a ∈ ∆. We say that a nonempty subset X of ∆ is a ∆-

incomparable set if a− b /∈ ∆ for all (a, b) ∈ X ×X such that a 6= b. The following

result is Theorem 5 from [7].

Theorem 2.4. Let ∆ be a numerical semigroup. Then the set

{X +∆: X is a ∆-incomparable set}

is the set formed by all the ideals of S. Moreover, if X and Y are different ∆-

incomparable sets, then X +∆ 6= Y +∆.

If I is an ideal of a numerical semigroup ∆ and I = X +∆, then we say that X

is an ideal system of generators of I. Moreover, if X is a ∆-incomparable set, then

we say that X is the ideal minimal system of generators of I. By Theorem 2.4, we

know that every ideal I of ∆ admits a unique ideal minimal system of generators.

We denote this system by imsg∆(I).

The following result is Proposition 2.6 from [7].

Proposition 2.5. Let ∆ be a numerical semigroup and let I be an ideal of ∆.

Then imsg∆(I) = Minimals6∆
(I).

The following result is Proposition 7 from [7].

Proposition 2.6. If ∆ is a numerical semigroup and let X be a ∆-incomparable

set, then X is finite.

As a consequence of Propositions 2.5 and 2.6, the cardinal of imsg∆(I) is an

integer positive number. This number is called the ideal dimension of I in ∆ and it

is denoted by dim∆(I).

The following result is Proposition 8 from [7].

Proposition 2.7. If I is an ideal of ∆, then:

(1) I = ∆ if and only if 0 ∈ I,

(2) I ∪ {0} is a numerical semigroup.

The following result is Proposition 9 from [7].

Proposition 2.8. Let ∆ be a numerical semigroup and let I be an ideal of ∆

such that I 6= ∆. Then imsg∆(I) = Minimals6∆
(msg(I ∪ {0})).

As an immediate consequence of Proposition 2.8, we have the following result.

Corollary 2.9. Let ∆ be a numerical semigroup and let I be an ideal of ∆. Then

dim∆(I) 6 ed(I ∪ {0}).
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It is well known that if ∆ is a numerical semigroup and x ∈ ∆, then ∆ \ {x} is a

numerical semigroup if and only if x ∈ msg(∆).

The following result is easy to prove.

Proposition 2.10. If I is an ideal of ∆ and x ∈ I, then I \ {x} is an ideal of ∆

if and only if x ∈ imsg∆(I).

3. I(∆)-semigroups

Let ∆ be a numerical semigroup. By Proposition 2.7, we know that if I is an

ideal of ∆, then I ∪{0} is a numerical semigroup. An I(∆)-semigroup is a numerical

semigroup S such that S \ {0} is an ideal of ∆. We put J (∆) = {S : S is an

I(∆)-semigroup}.

E x am p l e 3.1. It is clear thatX is an N-incomparable set if and only ifX = {n}

for every n ∈ N. Hence, by applying Theorem 2.4, J (N) = {{0, n,→} : n ∈ N} (the

symbol→means that every integer greater than n belongs to the set). The numerical

semigroups with the form {0, n,→} are called ordinary numerical semigroups. So

the concepts of I(N)-semigroup and ordinary numerical semigroup are equivalent.

If S and T are numerical semigroups and S ⊆ T, the Frobenius number of S

restricted to T is FT (S) = max(T \ S). By definition FT (T ) = −1.

By applying Propositions 2.1 and 2.2, we can easily deduce the following result.

Theorem 3.2. Let ∆ be a numerical semigroup. Then:

(1) If {S, T } ⊆ J (∆), then {S ∪ T, S ∩ T } ⊆ J (∆).

(2) ∆ is the maximum element (with respect to set inclusion) of J (∆).

(3) If S ∈ J (∆) and S 6= ∆, then S ∪ {F∆(S)} ∈ J (∆).

A lattice is an algebraic structure (L,∨,∧) consisting of a set L and two binary

operations ∨ and ∧ over L satisfying the properties: commutative, associative, idem-

potent and absorption. If, in addition, it verifies the distributive property, then the

lattice is called distributive. As an immediate consequence of Theorem 3.2, we have

the following result.

Corollary 3.3. If ∆ is a numerical semigroup, then (J (∆),∪,∩) is a distributive

lattice.

A Frobenius restricted variety (see [10]) is a nonempty family F of numerical

semigroups verifying the following conditions:
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(1) F has a maximum element (and we denote it ∆(F)).

(2) If {S, T } ⊆ F , then S ∩ T ∈ F .

(3) If S ∈ F and S 6= ∆(F), then S ∪ {F∆(F)(S)} ∈ F .

As an immediate consequence of Theorem 3.2, we have the following result.

Corollary 3.4. If ∆ is a numerical semigroup, then J (∆) is a Frobenius re-

stricted variety.

4. P(∆)-semigroups

In the rest of this work ∆ denotes a numerical semigroup. An ideal I of ∆ is

principal if dim∆(I) = 1. So the set formed by all the principal ideals of ∆ is

{{a}+∆: a ∈ ∆}.

Proposition 4.1. If I is an ideal of ∆, then the next conditions are equivalent:

(1) I is a principal ideal.

(2) I cannot be expressed as the union of two ideals of ∆ strictly contained in I.

P r o o f. (1) ⇒ (2): Let J and K be ideals of ∆ such that J ⊆ I, K ⊆ I

and I = J ∪ K. As I is a principal ideal of ∆, then there exits a ∈ ∆ such that

I = {a} + ∆. Then a ∈ I = J ∪ K and hence a ∈ J or a ∈ K. If a ∈ J , then

I = {a}+∆ ⊆ J +∆ ⊆ J and so I = J.

(2) ⇒ (1): If I is not a principal ideal of ∆, then dim∆(I) = n > 2. Therefore,

there exists {a1, a2, . . . , an} a ∆-incomparable set such that {a1, . . . , an} + ∆ = I.

Let J = {a1} + ∆ and K = {a2, . . . , an} + ∆. Then J and K are ideals of ∆ such

that J ⊆ I, K ⊆ I and I = J ∪ K. Moreover, applying that {a1, a2, . . . , an} is a

∆-incomparable set, we deduce that J ( I and K ( I.

�

A P(∆)-semigroup is a numerical semigroup with the shape ({a} + ∆) ∪ {0} for

some a ∈ ∆. We put P(∆) = {S : S is a P(∆)-semigroup}.

Proposition 4.2. Let ∆ be a numerical semigroup.

(1) If {S1, S2, . . . , Sn} ⊆ P(∆), then S1 ∪ S2 ∪ . . . ∪ Sn ∈ J (∆).

(2) If S ∈ J (∆) and dim∆(S \ {0}) = n, then there exists {S1, S2, . . . , Sn} ⊆ P(∆)

such that S = S1 ∪ S2 ∪ . . . ∪ Sn.

P r o o f. (1) It is a consequence from Theorem 3.2.

(2) If dim∆(S\{0}) = n, then there exists {x1, x2, . . . , xn} ⊆ ∆ such that S\{0} =

{x1, . . . , xn}+∆. For every i ∈ {1, . . . , n}, let Si = ({xi}+∆)∪ {0}. It is clear that

Si ∈ P(∆) for all i ∈ {1, . . . , n} and S = S1 ∪ . . . ∪ Sn. �
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We say that a union
⋃

i∈{1,...,n}

Ai of the sets Ai is irredundant if for every j ∈

{1, . . . , n}, it is verified that
⋃

i∈{1,...,n}

Ai 6=
⋃

i∈{1,...,n}\{j}

Ai. The following result has

an easy proof.

Proposition 4.3. Every I(∆)-semigroup can be expressed in a unique way as a

finite and irredundant union of P(∆)-semigroups.

The following result is deduced from [11], Proposition 2.

Proposition 4.4. If S is a P(∆)-semigroup and S 6= ∆, then S is a MED-

semigroup.

The following result can be easily deduced from [11], Proposition 9.

Proposition 4.5. If ∆ 6= N, a ∈ ∆ \ {0} and S = ({a}+∆) ∪ {0}, then F(S) =

a+ F(∆), g(S) = a− 1 + g(∆) and m(S) = a.

As an immediate consequence of the previous proposition we have the following

result.

Corollary 4.6. If {S, T } ⊆ P(∆), then the following conditions are equivalent:

(1) S = T ,

(2) m(S) = m(T ),

(3) F(S) = F(T ),

(4) g(S) = g(T ).

Note that as a consequence of Proposition 4.5 and Corollary 4.6, the number of

elements of P(∆) with Frobenius number F, genus g, multiplicity m, respectively, is 1

or 0 depending on whether there exists a ∈ ∆ such that F = F(∆)+a, g = g(∆)+a−1,

m = a, respectively.

A numerical semigroup S is Arf if x + y − z ∈ S for every x, y, z ∈ S such that

z 6 y 6 x. If S is an Arf numerical semigroup, then by [12], Proposition 3.12, we

can deduce that S is a MED-semigroup.

The following result follows from [11], Corollary 38.

Proposition 4.7. ∆ is an Arf numerical semigroup if and only if all the elements

of the set P(∆) are Arf numerical semigroups.

If A ⊆ N and a ∈ A\{0}, then we denote dA(a) = gcd{x ∈ A : x 6 a}. A numerical

semigroup is saturated if s+ dS(s) ∈ S for all s ∈ S \ {0}.

By Lemma 3.31 from [12], we know that every saturated numerical semigroup is

an Arf numerical semigroup. The following result is deduced from [11], Corollary 43.
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Proposition 4.8. ∆ is a saturated numerical semigroup if and only if P(∆)\{∆}

contains at least a saturated numerical semigroup.

5. D(∆)-semigroups

Let ∆ be a numerical semigroup. An ideal is irreducible if it cannot be expressed

as the intersection of two ideals properly containing it. If a ∈ ∆, then we denote

B(a) = {s ∈ ∆: a− s ∈ ∆}. The following result follows from [2], Lemma 3.1.

Proposition 5.1. I is an irreducible ideal of ∆ if and only if I = ∆ \ B(a) for

some a ∈ ∆ or I = ∆.

A D(∆)-semigroup is a numerical semigroup with the form (∆\B(a))∪{0} for some

a ∈ ∆. We put D(∆) = {S : S is a D(∆)-semigroup}. We say that an intersection
⋂

i∈{1,...,n}

Ai of the sets Ai is irredundant if
⋂

i∈{1,...,n}

Ai 6=
⋂

i∈{1,...,n}\{j}

Ai for every

j ∈ {1, . . . , n}.

The following result is deduced from [2], Theorem 3.3.

Proposition 5.2. Every I(∆)-semigroup can be expressed as a unique finite and

irredundant intersection of D(∆)-semigroups.

If ∆ is a numerical semigroup and a ∈ ∆, then we put S(∆, a) = (∆ \ B(a)) ∪

{0} ∈ D(∆).

The following result has an easy proof.

Proposition 5.3. If ∆ is a numerical semigroup and a ∈ ∆ \ {0}, then

F∆(S(∆, a)) = a and g(S(∆, a)) = g(∆) + #B(a)− 1.

R em a r k 5.4.

⊲ Observe that S(∆, 0) = ∆ and so F∆(S(∆, 0)) = F∆(∆) = −1. Therefore,

{F∆(S(∆, a)) : a ∈ ∆} = (∆ \ {0}) ∪ {−1}.

⊲ We propose the study of the set {#B(a) : a ∈ ∆} as an open problem.

Theorem 5.5. Let S be a numerical semigroup. Then S is a D(∆)-semigroup

if and only if S is a maximal element (with respect to set inclusion) of the set

{T : is an I(∆)-semigroup and F∆(T ) = F∆(S)}.

P r o o f. Necessity. If S is not maximal, then there exists an I(∆)-semigroup T

such that S ( T and F∆(T ) = F∆(S). By Theorem 3.2, we know that S ∪ {F∆(S)}

is an I(∆)-semigroup. Then S = (S ∪ {F∆(S)}) ∩ T and so we have been able to

write S as an intersection of two I(∆)-semigroups properly containing S. Hence, S

is not a D(∆)-semigroup.
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Sufficiency. Let T = (∆\B(F∆(S)))∪{0}. It is clear that T is an I(∆)-semigroup,

S ⊆ T and F∆(T ) = F∆(S). By applying the maximility of S, we obtain that S = T.

Therefore, S is a D(∆)-semigroup. �

As a consequence of Propositions 5.1 and 5.3, we deduce the following result.

Proposition 5.6. If S is an I(∆)-semigroup, then there exists a unique D(∆)-

semigroup T such that S ⊆ T and F∆(T ) = F∆(S). Moreover, T = S(∆,F∆(S)) if

S 6= ∆ and T = ∆ if S = ∆.

If ∆ is a numerical semigroup and a ∈ ∆ \ {0}, then we put Ja(∆) = {S :

S is an I(∆)-semigroup and F∆(S) = a}.

Proposition 5.7. Let S be an I(∆)-semigroup such that S 6= ∆ and F∆(S) = a.

Then S = S(∆, a) if and only if {h ∈ ∆ \ S : h /∈ B(a)} = ∅.

P r o o f. If S = S(∆, a), then S = (∆ \ B(a)) ∪ {0} and so {h ∈ ∆ \ S :

h /∈ B(a)} = ∅. Conversely, if {h ∈ ∆ \ S : h /∈ B(a)} = ∅, then it is clear that

S = S(∆, a). �

If S ∈ Ja(∆) and S 6= S(∆, a), then we put α(S) = max{h ∈ ∆ \ S : h /∈ B(a)}.

By definition, α((S, a)) = 0.

Proposition 5.8. If a ∈ ∆ and S ∈ Ja(∆), then S ∪ {α(S)} ∈ Ja(∆).

P r o o f. By the maximality of α(S), we deduce that {α(S)}+∆ ⊆ S ∪ {α(S)}.

From this result one easily deduces that S ∪ {α(S)} ∈ Ja(∆). �

If S ∈ Ja(∆), then the previous proposition can be used to define recursively the

following sequence of elements of Ja(∆):

⊲ S0 = S,

⊲ Sn+1 = Sn ∪ {α(Sn)} for all n ∈ N.

As a consequence of Propositions 5.7 and 5.8, we have the following result.

Proposition 5.9. If a ∈ ∆ and S ∈ Ja(∆), then there is p ∈ N such that

S = S0 ( S1 ( . . . ( Sp = S(∆, a).

A graph G is a pair (V,E) where V is a nonempty set and E ⊆ {(u, v) ∈ V × V :

u 6= v}. The elements of V and E are called vertices and edges, respectively. A path

of length n connecting the vertices x and y of graph G is a sequence of different edges

of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) such that v0 = x and vn = y.

A graph is a tree if G = (V,E), where there exists a vertex r (known as the root

of G) such that for any other vertex x of G there exists a unique path connecting x

and r. If (u, v) is an edge of a tree, then we say that u is a child of v.
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If a ∈ ∆, then we define the graph G(∆, a) as follows: Ja(∆) is its set of vertices

and (S, T ) ∈ Ja(∆)× Ja(∆) is an edge if T = S ∪ {α(S)} and S 6= T.

The following result is deduced from Proposition 5.9.

Theorem 5.10. If a ∈ ∆, then G(∆, a) is a tree with root S(∆, a).

A tree can be recurrently built starting from its root and connecting the vertex

already built with its children, and this would be done with the help of an edge.

Therefore, it is very interesting to know who are the children of an arbitrary vertex

of a tree.

The following result is deduced from Proposition 2.10.

Lemma 5.11. Let S be a I(∆)-semigroup and x ∈ S. Then S \ {x} is an I(∆)-

semigroup if and only if x ∈ imsg∆(S \ {0}).

Proposition 5.12. Let a ∈ ∆ and S ∈ Ja(∆). Then the set formed by the

children of S, in the tree G(∆, a), is the set {S \ {x} : x ∈ imsg∆(S \ {0}) and

α(S) < x < a}.

P r o o f. We have that: If T is a child of S, then S = T ∪ {α(T )} and so

T = S \ {α(T )}. By applying Lemma 5.11, we have that α(T ) ∈ imsg∆(S). And

applying now the definition of α(T ) and the fact that S = T ∪ {α(T )}, we easily

deduce that α(S) < α(T ) < a.

If x ∈ imsg∆(S \ {0}), then by Lemma 5.11, we know that T = S \ {x} is an I(∆)-

semigroup. As α(S) < x < a, then F∆(T ) = a and α(T ) = x. Therefore, T ∈ Ja(∆)

and S = T ∪ {α(T )}. Hence, T is a child of S. �

E x am p l e 5.13. Let ∆ = 〈4, 5〉 = {0, 4, 5, 8, 9, 10, 12,→}, (the symbol→ means

that every integer greater than 12 belongs to the set) and a = 15. We are go-

ing recurrently to build the tree G(∆, 15). By Theorem 5.10, we know that the

root of this tree is S(∆, 15) = (∆ \ B(15)) ∪ {0} = (∆ \ {0, 5, 10, 15}) ∪ {0} =

{0, 4, 8, 9, 12, 13, 14, 16,→}.By applying Proposition 5.12 and the previous comments

of Theorem 5.10, we have following diagram (see Diagram 1).

Observe that

P

Q

x

OO

means that Q = P \ {x} and in addition α(Q) = x.
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}
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q
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q
q
q
q
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6
,→
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1
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❖
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❖
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{0
,1
4
,1
6
,→

}1
3

::

✉
✉
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✉
✉
✉
✉
✉
✉
✉
✉

{0
,1
3
,1
6
,→

}

1
4

ff▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼
▼

{0
,1
2
,1
6
,→

}

1
4

OO

{0
,1
6
,→

}

1
4

OO

Diagram 1.
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6. Algorithms to compute Ja(∆) and J (∆, k)

Let ∆ be a numerical semigroup and let a ∈ ∆. Our first objective in this section

is to give an algorithm which allows us to compute all the elements of the set Ja(∆).

The idea of this algorithm is the construction of the tree G(∆, a), as we have done

in the previous section.

Algorithm 1

Input: A numerical semigroup ∆ and a ∈ ∆ \ {0}.

Output: The set Ja(∆).

1: Compute S(∆, a).

2: A = {S(∆, a)}.

3: B = {S(∆, a)}.

4: For each S ∈ A compute C(S) = {T : T is a child of S}.

5: D =
⋃

S∈A

C(S).

6: If D = ∅, then return B.

7: B = B ∪D.

8: A = D and go to 4.

We proceed to illustrate how the previous algorithm works with an example.

E x am p l e 6.1. Let ∆ = 〈4, 5〉.We are going to built J15(∆) using Algorithm 1.

⊲ S(∆, 15) = {0, 4, 8, 9, 12, 13, 14, 16,→}.

⊲ A = {{0, 4, 8, 9, 12, 13, 14, 16,→}} and B = {{0, 4, 8, 9, 12, 13, 14, 16,→}}.

⊲ C({0, 4, 8, 9, 12, 13, 14, 16,→}) = {{0, 8, 9, 12, 13, 14, 16,→}}.

⊲ D = {{0, 8, 9, 12, 13, 14, 16,→}}.

⊲ B = {{0, 4, 8, 9, 12, 13, 14, 16,→}, {0, 8, 9, 12, 13, 14, 16,→}}.

⊲ A = {{0, 8, 9, 12, 13, 14, 16,→}}.

⊲ C({0, 8, 9, 12, 13, 14, 16,→}) = {{0, 9, 12, 13, 14, 16,→}, {0, 8, 12, 13, 14, 16,→}}.

⊲ D = {{0, 9, 12, 13, 14, 16,→}, {0, 8, 12, 13, 14, 16,→}}.

⊲ B = {{0, 4, 8, 9, 12, 13, 14, 16,→}, {0, 8, 9, 12, 13, 14, 16,→},

{0, 9, 12, 13, 14, 16,→}, {0, 8, 12, 13, 14, 16,→}}.

⊲ A = {{0, 9, 12, 13, 14, 16,→}, {0, 8, 12, 13, 14, 16,→}}.

⊲ C({0, 9, 12, 13, 14, 16,→}) = {{0, 12, 13, 14, 16,→}, {0, 9, 13, 14, 16,→}}

and C({0, 8, 12, 13, 14, 16,→}) = {{0, 8, 12, 13, 16,→}}.

⊲ D = {{0, 12, 13, 14, 16,→}, {0, 9, 13, 14, 16,→}, {0, 8, 12, 13, 16,→}}.

⊲ B = {{0, 4, 8, 9, 12, 13, 14, 16,→}, {0, 8, 9, 12, 13, 14, 16,→},

{0, 9, 12, 13, 14, 16,→}, {0, 8, 12, 13, 14, 16,→}, {0, 12, 13, 14, 16,→},

{0, 9, 13, 14, 16,→}, {0, 8, 12, 13, 16,→}}.
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⊲ A = {{0, 12, 13, 14, 16,→}, {0, 9, 13, 14, 16,→}, {0, 8, 12, 13, 16,→}}.

⊲ C({0, 12, 13, 14, 16,→}) = {{0, 13, 14, 16,→}, {0, 12, 14, 16,→}},

C({0, 9, 13, 14, 16,→}) = ∅ and C({0, 8, 12, 13, 16,→}) = ∅.

⊲ D = {{0, 13, 14, 16,→}, {0, 12, 14, 16,→}}.

⊲ B = {{0, 4, 8, 9, 12, 13, 14, 16,→}, {0, 8, 9, 12, 13, 14, 16,→},

{0, 9, 12, 13, 14, 16,→}, {0, 8, 12, 13, 14, 16,→}, {0, 12, 13, 14, 16,→},

{0, 9, 13, 14, 16,→}, {0, 8, 12, 13, 16,→}, {0, 13, 14, 16,→}, {0, 12, 14, 16,→}}.

⊲ A = {{0, 13, 14, 16,→}, {0, 12, 14, 16,→}}.

⊲ C({0, 13, 14, 16,→}) = {{0, 14, 16,→}, {0, 13, 16,→}} and C({0, 12, 14, 16,→}) =

{{0, 12, 16,→}}.

⊲ D = {{0, 14, 16,→}, {0, 13, 16,→}, {0, 12, 16,→}}.

⊲ B = {{0, 4, 8, 9, 12, 13, 14, 16,→}, {0, 8, 9, 12, 13, 14, 16,→}, {0, 9, 12, 13, 14, 16,→},

{0, 8, 12, 13, 14, 16,→}, {0, 12, 13, 14, 16,→}, {0, 9, 13, 14, 16,→},

{0, 8, 12, 13, 16,→}, {0, 13, 14, 16,→}, {0, 12, 14, 16,→}, {0, 14, 16,→},

{0, 13, 16,→}, {0, 12, 16,→}}.

⊲ A = {{0, 14, 16,→}, {0, 13, 16,→}, {0, 12, 16,→}}.

⊲ C({0, 14, 16,→}) = {{0, 16,→}}, C({0, 13, 16,→}) = ∅ and C({0, 12, 16,→}) = ∅.

⊲ D = {{0, 16,→}}.

⊲ B = {{0, 4, 8, 9, 12, 13, 14, 16,→}, {0, 8, 9, 12, 13, 14, 16,→}, {0, 9, 12, 13, 14, 16,→},

{0, 8, 12, 13, 14, 16,→}, {0, 12, 13, 14, 16,→}, {0, 9, 13, 14, 16,→},

{0, 8, 12, 13, 16,→}, {0, 13, 14, 16,→}, {0, 12, 14, 16,→}, {0, 14, 16,→},

{0, 13, 16,→}, {0, 12, 16,→}, {0, 16,→}}.

⊲ A = {{0, 16,→}}.

⊲ C = ({0, 16,→}) = ∅.

⊲ D = ∅.

⊲ Return J15(〈4, 5〉) = {{0, 4, 8, 9, 12, 13, 14, 16,→}, {0, 8, 9, 12, 13, 14, 16,→},

{0, 9, 12, 13, 14, 16,→}, {0, 8, 12, 13, 14, 16,→}, {0, 12, 13, 14, 16,→},

{0, 9, 13, 14, 16,→}, {0, 8, 12, 13, 16,→}, {0, 13, 14, 16,→}, {0, 12, 14, 16,→},

{0, 14, 16,→}, {0, 13, 16,→}, {0, 12, 16,→}, {0, 16,→}}.

Let ∆ be a numerical semigroup and k ∈ N. We now propose to give an algorithm

that allows us to calculate J (∆, k). The following result appears in [12], Lemma 2.14.

Lemma 6.2. If S is a numerical semigroup, then F(S) + 1 6 2 g(S).

Proposition 6.3. Let ∆ be a numerical semigroup and k ∈ N \ {0}. If S ∈

J (∆, k), then S ∈ Ja(∆) for some a ∈ ∆ such that a 6 2 g(∆) + 2k − 1 and

#B(a) 6 k + 1.
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P r o o f. If S ∈ J (∆, k), then g(S) = g(∆) + k and applying Lemma 6.2, we

have that F(S) 6 2g(∆) + 2k − 1. As F∆(S) 6 F(S), then F∆(S) 6 2g(∆) +

2k− 1. As S ∈ JF∆(S)(∆), then S ⊆ S(∆,F∆(S)) and so g(S(∆,F∆(S))) 6 g(S). By

applying Proposition 5.3, we have that g(∆) +#B(F∆(S))− 1 6 g(∆)+ k and thus

#B(F∆(S)) 6 k + 1. �

If G = (V,E) is a tree and v ∈ V, then the depth of v, denoted by d(v), is the

length of the only path connecting v with the root of the tree. The following result

is easily deduced from Proposition 5.9 and Theorem 5.10.

Lemma 6.4. If S is a vertex of G(∆, a), then g(S) = g(S(∆, a)) + d(S).

Proposition 6.5. Let ∆ be a numerical semigroup, k ∈ N \ {0} and a ∈ ∆. Then

S ∈ J (∆, k) ∩ Ja(∆) if and only if S is a vertex of the tree G(∆, a) with depth

k + 1−#B(a).

P r o o f. We have that S ∈ J (∆, k)∩Ja(∆) if and only if S is a vertex of G(∆, a)

and g(S) = g(∆)+k. By applying Lemma 6.4, we deduce that this occurs if and only

if g(S(∆, a)) + d(S) = g(∆) + k. The proof concludes applying Proposition 5.3. �

If G = (V,E) is a tree, we denote by N(G,n) = {v ∈ V : d(v) = n}. The following

result has an immediate proof.

Proposition 6.6. If G = (V,E) is a tree and r is its root, then N(G, 0) = {r}

and N(G,n+ 1) = {v ∈ V : v is a child of an element of N(G,n)} for all n ∈ N.

We are already able to provide the algorithm to compute J (∆, k).

Algorithm 2

Input: A numerical semigroup ∆ and k ∈ N \ {0}.

Output: The set J (∆, k).

1: Compute A = {a ∈ ∆: a 6 2(g(∆) + k)− 1} and #B(a) 6 k + 1.

2: For all a ∈ A compute N(a) = N(G(∆, a), k + 1−#B(a)).

3: Return J (∆, k) =
⋃

a∈A

N(a).

We proceed to illustrate how the previous algorithm works with an example.

E x am p l e 6.7. Let ∆ = 〈4, 5〉 and k = 2. We are going to compute J (〈4, 5〉, 2)

using Algorithm 2.
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(1) A = {a ∈ ∆: a 6 15 and #B(a) 6 3} = {0, 4, 5, 8, 10}.

(2) N(0) = N(G(∆, 0), 2) = ∅, N(4) = N(G(∆, 4), 1) = ∅, N(5) = N(G(∆, 5), 1) =

{{0, 8, 9, 10, 12,→}}, N(8) = N(G(∆, 8), 0) = {S(∆, 8)} = {{0, 5, 9, 10, 12,→}},

N(10) = N(G(∆, 10), 0) = {S(∆, 10)} = {{0, 4, 8, 9, 12,→}}.

(3) J (〈4, 5〉, 2) = {{0, 8, 9, 10, 12,→}, {0, 5, 9, 10, 12,→}, {0, 4, 8, 9, 12,→}}.

A c k n ow l e d gm e n t. The authors are grateful to the anonymous referee whose

valuable remarks helped to increase the quality of the paper.
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