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A NEW UNCERTAINTY-AWARE SIMILARITY
FOR USER-BASED COLLABORATIVE FILTERING

Khadidja Belmessous, Faouzi Sebbak, M’hamed MAtaoui,
and Walid Cherifi

User-based Collaborative Filtering (UBCF) is a common approach in Recommender
Systems (RS). Essentially, UBCF predicts unprovided entries for the target user by
selecting similar neighbors. The effectiveness of UBCF greatly depends on the selected
similarity measure and the subsequent choice of neighbors. This paper presents a new
Uncertainty-Aware Similarity measure “UASim” which enhances CF by accurately
calculating how similar, dissimilar, and uncertain users’ preferences are. Uncertainty
is a key factor of “UASim” that is managed in the neighborhood selection step of
CF. Extensive experimental evaluation, conducted on Flixter, Movielens-100K, and
Movielens-1M datasets, indicates that “UASim” shows better performance compared
to many representative predefined similarity measures. The proposed measure demon-
strates enhancements across various performance indicators, namely: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), coverage, and the F-score.

Keywords: collaborative filtering, similarity, subjective logic, uncertainty

Classification: 68P10, 68P20, 68T37

1. INTRODUCTION

Recommender Systems (RS) [33] have been developed to provide users with
intelligent automated guidance in the era of information overload. RS have been
successfully used in various domains such as movies (Netflix), music (Spotify),
and social networks (Facebook), as well as in other fields including news [22]
and scientific paper research [28]. Collaborative Filtering (CF) is one of the
most successful recommendation approaches [23]. It is based on the idea that
friends and neighbors frequently influence purchasing decisions.

There are two main classes of CF approaches [1]: model-based approaches
and memory-based approaches. Model-based approaches use user-item rating
data to generate a model that can provide recommendations. Memory-based
approaches, also known as neighborhood-based approaches, work directly on
the rating matrix and include user-based and item-based classes. The UBCF
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algorithm is primarily used for preference prediction and item recommenda-
tion. UBCF achieves this by mining a specific user’s historical behavior data,
identifying similar neighbors in the user’s set, synthesizing their evaluations
of specific items, generating a preference prediction for the items, and finally
recommending interesting items to the target user.

Accurately identifying the neighbors is a crucial element of CF [7, 27]. Neigh-
bor selection deals with two important parameters: the size of the neighborhood
and the similarity measure choice. Generally, the accuracy of predictions im-
proves as the similarity measure provides better results [34]. Since the introduc-
tion of CF, numerous similarity measures have been proposed and investigated
[23]. The similarity measures can be grouped into four main categories: prede-
fined similarities, learned similarities, preference-based similarities, and mixed
similarities [15]. The first category includes measures like Cosine and Pearson,
where similarity is calculated only between users or items that share ratings.
The second category permits the calculation of similarity between users or items
even without common ratings. The third category focuses on optimizing a user
preference assumption as an objective function to calculate similarities, and
the fourth category is a hybrid approach, mixing elements from the first three
categories.

Predefined similarity measures are of greatest importance in CF due to their
simple structure and easy combination [15, 23]. Despite their extensive use and
continuous improvements, predefined similarity measures still present multiple
issues that require further research and enhancement. The recognized issues in-
clude providing high or low similarity scores, ignoring co-rated item proportions,
ignoring rating values, and complex formulations [15, 26]. These challenges are
predominantly pronounced in the context of data sparsity. The problem of spar-
sity is fundamental in CF due to the limited number of items rated by users
compared to the large number of existing items and users [19, 25]. In the context
of sparse datasets, numerous users do not share any items, lowering the effec-
tiveness of predefined similarity measures. Moreover, these measures provide
a limited variety of strategies for filtering appropriate neighbors to aggregate
their preferences in order to provide predictions [1]. This limitation primarily
results from the fact that predefined measures quantify the resemblance between
users via a single-valued numerical score [11], which leads to neighbor selection
strategies that are mainly based on threshold values or the k-nearest neighbors
(k-NN) approaches [37].

Therefore, it’s important to develop a straightforward, predefined similarity
measure that not only addresses the limitations of existing similarity measures
but also permits varied strategies for neighbor selection. In this research, we aim
to transform a simple intuition into a three-valued predefined similarity mea-
sure for UBCF, designed to effectively handle the challenge of data sparsity. We
offer an alternative viewpoint on the similarity of users’ preferences built on the
intuition that users’ preferences simultaneously exhibit characteristics of both
similarity and dissimilarity, along with an inherent uncertainty due to insuffi-
cient ratings. These characteristics change according to the number of shared
ratings. Our Uncertainty-Aware Similarity measure (UASim) offers a more com-
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prehensive and precise representation of the relationship between users’ prefer-
ences by understanding their multifaceted nature. By relying on the flexibility
of binomial subjective logic [21], UASim effectively integrates similarity, dis-
similarity, and uncertainty into a normalized similarity measure. This, in turn,
improves the quality of recommendations, particularly in scenarios where data is
sparse. Considering that each neighbor provides a three-valued UASim, select-
ing the most appropriate neighbors becomes a Multi-Criteria Decision-Making
(MCDM) challenge. To address this complexity, we recommend choosing neigh-
borhoods through the Technique for Order Preference based on Similarity to
the Ideal Solution (TOPSIS), a widely recognized method for decision support.
Our contributions are summarized below:

1. We formally model a simple intuition about the resemblance of users’
preferences into an uncertainty-aware similarity measure by using bino-
mial subjective logic. This method produces a measure that offers three
separate types of knowledge.

2. We propose a new strategy for neighborhood selection in memory-based
collaborative filtering;

3. We experimentally test and compare the performance of the proposed CF
approach with CF based on traditional and recent predefined similarities
on three well-known benchmark datasets.

This article is organized as follows: In Section 2, we review existing literature
mainly related to predefined similarity measures. In section 3 we outline the the-
oretical background of our proposition. Section 4 delves into the components of
our proposition. Section 5 outlines our experimental methodology, presents the
results, and offers a comprehensive discussion of our findings. Lastly, Section 6
concludes the paper, summarizing our key conclusions and proposing avenues
for future investigation.

2. RELATED WORK

Recommender systems (RS) can be categorized into three main approaches:
Content-based filtering (CBF) [6], which provides recommendations based on
user profiles that are generally difficult to acquire; Collaborative filtering (CF)
[30], which generates recommendations by using the preferences of the most
similar users; and hybrid filtering [35], a combination of both CBF and CF.
Along with these primary approaches, there are advanced approaches such as
the Mobile-Based approach (MBRS) [14], which leverages mobile device ca-
pabilities to provide personalized suggestions based on user preferences and
contextual data, and the Context-Aware approach (CARS) [32] which specifi-
cally enhances recommendations by incorporating real-time situational and en-
vironmental information, thus focusing on the relevance and timeliness of the
recommendations.

Compared to CBF, CF has made significant progress due to the ease with
which real-world information about users’ preferences on items may be obtained
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[12, 40]. In reality, user preferences are stored as an M ∗ N user-item rating
matrix R, where M represents the total number of users and N represents the
total number of items. Each row of this matrix represents the rating vector of
a particular user u, whereas each column provides ratings received by an item
i from all users. Every entry rui of the user-item matrix represents the rating
given by user u to item i. Table 1 shows an example, in which evaluations of five
users related to four items are captured. When a user has not given a rating to
an item, the missing rating is denoted by the symbol “•”. However, due to the
enormous number of users who only evaluate a small number of available items
in the recommender system, a significant portion of rating inputs are empty. The
proportion of empty entries to the overall rating matrix size indicates the level
of sparsity of the user-item matrix [40]. Despite the high research volume in the
CF domain, sparsity remains a fundamental issue that hinders recommendation
performance. Consequently, several solutions have been proposed to reduce
the negative effects of sparsity, including improving the similarity computation,
which is the heart of CF [5, 19, 36].

i1 i2 i3 i4
u1 4 3 5 4
u2 5 3 • •
u3 4 3 3 4
u4 2 1 • •
u5 4 2 • •

Tab. 1: An example of a User-Item rating matrix.

Type
Numerical

Structural
Rating-based Ratio-based Weighted

Examples COS, MSD,
PCC

RACF JMSD, SPCC, TANJ,
HSMD, PIP, NHSM,
OS, TAN

JACCARD, SMD

Tab. 2: Summary of predefined similarity groups.

Numerical similarity measures depend entirely on shared rating information.
Rating-based similarities use ratings or differences in ratings between users to
determine similarity. The most popular traditional rating-based similarity mea-
sures include Cosine (COS), Pearson Correlation Coefficient (PCC), and Mean
Squared Differences (MSD) [40]. Traditional rating-based measures are cru-
cial in CF but have notable weaknesses largely documented in the literature
[5, 15, 24]. For instance, COS fails to capture a user’s tendency to rate an item
highly (4 or 5) or poorly (1 or 2), while PCC assigns low or high similarity
scores irrespective of how similarly or differently users rate various items [26],
and MSD is unable to consider the proportion of common ratings [26] which
sometimes leads to inconsistent similarity values. Ratio-based similarity mea-
sures, such as the Ratio-based Similarity for Collaborative Filtering (RACF)
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[41], emphasize the proportional relationships in user ratings. These measures
focus on comparing the ratios of ratings between two users. Despite their poten-
tial to address issues of misleading similarity values [26], ratio-based methods
like RACF have not received as much attention as the rating-based measures.
A summary of predefined similarity groups is given in Table 2.

Structural similarity measures account for the proportion of co-rated items.
One such example is JACCARD distance (JACC) [23], which only takes the
number of co-rated items into consideration and disregards rating values. The
Jaccard measure may not have emerged as the most dominant measure, but it
has shown its significance as a valuable factor for enhancing various numerical
measures [5]. To improve the accuracy of prediction in CF, numerical similarity
measures have been weighted using structural measures [38]. In the context of
CF recommender systems, JMSD, SPCC, PIP, NHSM, and Bhattacharyya are
typical examples of weighted measures [40]. JMSD and SPCC were proposed
to address the limitations of MSD and PCC, as mentioned in [15]. The PIP
measure [3], addresses the limitations of rating-based similarity measures. It
calculates the similarity between users u and v by summing up the PIP values
for their shared items. PIP is computed as the product of three components:
proximity, which measures the absolute difference in common ratings and agree-
ment; impact, quantifying users’ preferences for specific items; and popularity,
counting the number of items rated in common. Later came NHSM [26], a sim-
ilarity measure based on PIP and trying to cover its weaknesses. Then came
Bhattacharyya [2, 31] that uses all rating information to improve the reliability
of recommendations in sparse datasets. These measures are popular in the CF
domain even if they have complex formulas and higher complexity [15]. Research
in the field of predefined similarity is continuously evolving, with recent years
witnessing the proposal of simple and highly competitive new measures [5, 15].
Notable among these are the OS and TAN similarity measures. The recent
proposals have effectively transformed basic intuitions into mathematical for-
mulations, resulting in highly effective measures of similarity, primarily focused
on weighted rating-based similarities. However, in the context of ratio-based
measures, there is still some work required for improvement.

Our research introduces a new ratio-based similarity measurement in CF,
where we emphasize the role of uncertainty in assessing the credibility of simi-
larity [26, 39]. This concept is not entirely new and has been a part of weighted
similarity measures in previous studies [23, 42]. However, our contribution lies
in the innovative way we handle this information: we quantify the credibility of
similarity as a measure of uncertainty. By employing the Technique for Order
Preference based on Similarity to the Ideal Solution (TOPSIS) [18], this un-
certainty is strategically incorporated into the neighborhood selection process
in CF, alongside similarity and dissimilarity. Recently, a notable application
of TOPSIS in CARS is demonstrated in [13], where authors integrated TOP-
SIS fuzzy model with an Artificial Bee Colony (ABC) algorithm to optimize
personalized tourism recommendations. This approach utilizes TOPSIS to de-
fine ideal and negative ideal solutions, permitting the systematic evaluation and
ranking of tourist destinations. Furthermore, in [10], authors investigated the
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rank consistency of TOPSIS for mobile-based applications where new data in-
puts frequently occur. The MBRS developed in this research assists users in
selecting sports venues by evaluating multiple criteria, such as location, cost,
and facilities, which are typical considerations for such venues. In addition,
in one of the most representative work about integrating TOPSIS in memory-
based CF [4], authors incorporated the TOPSIS technique, as a new prediction
score method, alongside the similarity values of the top-N users to generate the
top-N recommended items. This approach contrasts with our proposition that
relies on aggregation to predict user ratings, where the emphasis is on devising
new Uncertainty-Aware Similarity measure that permits the use TOPSIS in the
neighborhood selection step.

3. BACKGROUND

In this section, we will expound on the theoretical underpinnings that will help
to understand the formulation and evaluation of our proposition. Specifically,
we will draw upon user-based collaborative filtering, subjective logic and the
TOPSIS approach.

3.1. User-based collaborative filtering

When it comes to UBCF, the objective is to filter the incoming stream of items
based on the ratings given by community members who have previously rated
them. If a user finds an item appealing, it will be automatically recommended
to other similar users. To achieve this goal, the system must create a matrix
that records the similarity scores between users. Hence, the potential rating
given to an item by the target user will be determined based on its similarity
with its neighboring users. This process involves five primary steps, namely:
data preprocessing, similarity computation, neighborhood selection, preference
prediction, and recommendation [8]. In this paper, we focus on similarity com-
putation and neighborhood selection. Similarity computation has been detailed
in the related work section 2.

3.2. Binomial subjective logic

Subjective Logic (SL) is a type of probabilistic logic that incorporates uncer-
tainty. It is particularly useful for modeling and analyzing uncertain and unre-
liable source conditions [20]. In SL, arguments are opinions about propositions,
and there are three types of opinions:

• Binomial opinions, which are applied to a binomial variable and are rep-
resented by a beta probability distribution function;

• Multinomial opinions, which are applied to a state variable with multiple
potential values. They are represented by a Dirichlet probability distribu-
tion function;
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• Hyper opinions, which generalize multinomial opinions and are applied
to hyper-domains consisting of composite values represented by a hyper-
Dirichlet probability distribution function.

In SL, the notation ωA
x is used to denote opinions. x represents the target

variable or proposition to which the opinion is applied, and A represents the
subject agent who holds the opinion. The opinion itself is a composite function

that consists of the belief vector
−→
bx , the uncertainty mass ux, and the base

rate vector −→ax. In the case of binary frames, the opinion is binomial. Binomial
opinions correspond to a Beta probability distribution function (Beta pdf) [20].

A binary domain consists of only two values, and it can be formally stated
as X = {x, x}. If a binomial random variable X ∈ X can be set to X =
x, then opinions on a binomial variable are referred to as binomial opinions.
A specific notation is used for their mathematical representation. Let X =
{x, x} be a binary domain with a binomial random variable x ∈ X. A binomial
opinion regarding the truth or presence of the value x is the ordered quadruplet
ωx = (bx, dx, ux, ax) that satisfies the additivity requirement. The respective
parameters are defined as follows:

bx + dx + ux = 1. (1)

The mass of belief in favor of x being true is denoted as bx. The mass of
disbelief in favor of x being false is represented by dx. The mass of uncertainty
representing the emptiness of evidence is ux. Finally, the prior probability of x
without any evidence is called the base rate and is represented by ax.

A binomial opinion can be expressed using the Beta probability distribution
function (pdf), denoted as Beta (p — α, β), where α and β represent the two
evidence parameters. The Beta pdf is given by Equation 2:

Beta(p|α, β) = τ(α+ β)

τ(α) + τ(β)
pα−1(1− p)β−1. (2)

Here, 0 ≤ p ≤ 1, α > 0, β > 0. Let rx denote the number of observations of x,
and sx denote the number of observations of x. The parameters α and β can
be derived from observations (rx, sx), the non-informative prior weight W , and
the base rate ax, as shown in Equation 3:{

α = rx +W (ax)

β = sx +W (1− ax).
(3)

W is typically set to 2, which ensures that the prior Beta pdf (i. e., when rx =
sx = 0) with the default base rate ax = 0.5 is a uniform pdf. The parameters
of a binomial opinion ωx = (bx, dx, ux, ax) can be mapped to the parameters of
a Beta pdf Beta(p|rx, sx, ax) using Equation 4:

bx = rx
rx+sx+W

dx = sx
rx+sx+W

ux = W
rx+sx+W .

(4)
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This method provides a way to quantify a subjective opinion on a binomial
variable in terms of a Beta distribution.

3.3. TOPSIS

The Technique for Order Preference based on Similarity to the Ideal Solution
(TOPSIS) [18] is a Multi-Criteria Decision-Making (MCDM) method that iden-
tifies the best options among a set of alternatives based on the concept of the
ideal solution. The core principle of TOPSIS lies in determining the geometric
distance of each alternative to an ideal solution that maximizes the positive
criteria and minimizes the negative criteria. The TOPSIS method is executed
through a sequence of steps, described as follows:

1. Forming the normalized decision matrix: this initial step transforms the
available options into normalized matrix with alternatives as rows and
criteria as columns, enabling comparable assessment;

2. Weighting the criteria: weights are assigned to each criterion reflecting
their relative importance to the decision-making process. These weights
are subjective and can be derived from expert opinions or other quantita-
tive methods;

3. Identification of ideal and anti-ideal solutions: the ideal solution is the
hypothetical alternative having the best performance on all criteria, while
the anti-ideal solution has the worst;

4. Distance calculation: for each alternative, the Euclidean distance to both
the ideal and anti-ideal solutions is calculated. This step quantifies how
close or far each alternative is from the most and least desirable conditions;

5. Relative closeness to the ideal solution: calculating the relative closeness
of each alternative to the ideal solution is done by dividing the distance to
the anti-ideal solution by the sum of the distances to both the ideal and
anti-ideal solutions;

6. Ranking the alternatives: alternatives are ranked based on their relative
closeness to the ideal solution, with the best option being the one closest
to the ideal solution and furthest from the anti-ideal solution.

TOPSIS enables rapid identification of the optimal choice, is easy to apply,
requires minimal input from decision-makers, and generates easily understand-
able information. Only the weight values associated with each criterion serve
as input parameters [29].

4. PROPOSITION

Before exploring the two key components of our proposition, which are the
formulation of UASim and the neighborhood selection strategy, it is crucial to
highlight the main contributions of our research.
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4.1. Contributions

Our method is unique in incorporating the uncertainty arising from users’ shared
data into the decision-making process. This approach marks a significant ad-
vancement in the field, offering a more realistic way of evaluating user similarities
in CF systems. Our proposed measure aims to provide a more comprehensive
and realistic assessment of similarity by accounting for:

• The inherent uncertainty in assessing user preference resemblance;

• The simultaneous existence of similarity and dissimilarity in user prefer-
ences;

• The complete uncertainty in similarity when no co-rated items exist be-
tween users;

• The potential of using similarity, dissimilarity, and uncertainty to im-
prove the prediction of missing ratings through enhanced neighborhood
selection.

Our work proposes a theoretical foundation based on subjective logic for a
novel similarity measure in user-based collaborative filtering. We opted for user-
based CF because of its effectiveness in dynamically capturing user similarities.
Subjective logic, as described in [21], is employed for its capability to integrate
affirmative, negative, and uncertain judgments within a cohesive framework.

4.2. Formulation of UASim

The proposed Uncertainty-Aware Similarity measure for UBCF is called “UASim”.
The components of UASim are described in depth below.

UASim uses SL to formally define similarity, dissimilarity, and uncertainty
between pairs of users’ preferences in UBCF. To represent the similarity between
pairs of users, UASim employs a binomial opinion ωx = (bx, dx, ux, ax), where
bx represents the degree of similarity (S) between two users’ preferences, dx
represents the degree of dissimilarity (S̄), ux represents the uncertainty about
the similarity of their preferences (U), and ax is the base rate.

A general binomial opinion matches the Beta probability distribution func-
tion expressed in Equation 2. Equation 4 defines the mapping between the
parameters of a binomial opinion ωx = (bx, dx, ux, ax) and the parameters of
a Beta pdf Beta(p|rx, sx, ax). To define the binomial opinion parameters that
correspond to our similarity measure components (S, S̄, U), we introduce the
positive interactions counter rx and the negative interactions counter sx, as
shown in Equation 5. {

rx =
∑

i∈Iuv
( rmin

rmax
)i

sx =
∑

i∈Iuv
(1− ( rmin

rmax
)i).

(5)

Here, rmin and rmax represent the minimum and maximum ratings given
to an item i by users u and v, respectively. Specifically, if rui < rvi, then
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rmax = rvi and rmin = rui, with rmin < rmax and r ∈ {1, 2, 3, 4, 5}. If rui = rvi,
then rmin = rmax.

Example 1. Suppose rui = 3 and rvi = 5. In this case, rmin = rui = 3 and
rmax = rvi = 5.

Example 2. To demonstrate the calculation of these parameters, we use the
example presented in Table 1. To determine the value of the positive interactions
counter rx and the negative interactions counter sx between u1 and u2, we use
Equation 5. The resulting values of rx and sx for each item are shown in Table 3.

i1 i2 i3 i4
rx 0.8 1 • •
sx 0.2 0 • •

Tab. 3: Calculation results of parameters rx and sx between u1 and u2.

For the definition of the binomial opinion through the parameters rx, sx, and
W , we can map these parameters of a binomial opinion ωx = (bx, dx, ux, ax) to
those of a Beta probability density function, denoted by Beta(p|rx, sx, ax), as
presented in equation 4. After substituting the parameters rx, sx and W in the
equation 4, we obtain the following equations:

S =
∑

i∈Iuv
(
rmin
rmax

)i

|Iuv|+W

S̄ = |Iuv|
|Iuv|+W −

∑
i∈Iuv

(
rmin
rmax

)i

|Iuv|+W

U = W
|Iuv|+W .

(6)

The proposed formalization of UASim transforms an intuitive explanation of
the relationship between users’ preferences into a consistent measure of similar-
ity that can closely approximate reality.

The application of UASim to the data in Table 1 yields the results presented
in Table 4. In accordance with [21], we set the non-informative prior weight (W )
to 2 during the calculations. This value guarantees that the Beta probability
density function with a default base rate of 0.5 and rx = sx = 0 corresponds to
a uniform pdf.

u2 u3 u4 u5
u1 [0.45, 0.05, 0.5] [0.66, 0.07, 0.33] [0.2, 0.3, 0.5] [0.41, 0.09, 0.5]
u2 - [0.45, 0.05, 0.5] [0.18, 0.31, 0.5] [0.36, 0.13, 0.5]
u3 - - [0.2, 0.3, 0.5] [0.41, 0.09, 0.5]
u4 - - - [0.25, 0.25, 0.5]

Tab. 4: Example outcome of UASim.
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UASim is a normalized similarity measure that can be easily combined with
other similarity measures. Additionally, in the absence of common items, UASim
generates complete uncertainty that describes the resemblance of users’ prefer-
ences. Moreover, in contrast to the ratio-based method utilized by RACF [41],
UASim recognizes the complementary value of both similarity and dissimilarity
as sources of knowledge. By considering this tangled viewpoint, UASim is able
to identify the most suitable neighbors, whose evaluations can be trusted to
improve the accuracy of predictions made through collaborative filtering.

The use of the uncertainty function in computing similarity values primarily
serves to increase the precision of similarity measures. Previous research has
implicitly examined the credibility of similarity but has not attempted to mea-
sure it for any specific purpose. In this work, the representative function of
uncertainty in the computation of UASim is based on the non-informative prior
weight W and |Iuv| the number of items co-rated by two users u and v. The
uncertainty value U is determined using the formula in Equation 7.

U =
W

|Iuv|+W
=

1
|Iuv|
W + 1

. (7)

Since W is a constant value, the variation of U is only dependent on the
proportion of common items.

• if |Iuv| = 0 then U → 1 since W ̸= 0.

• |Iuv|
W → ∞, therefore U → 0. Since W is a fixed value, |Iuv| → ∞. If the

number of co-rated items increases, U decreases.

By modeling this uncertainty, UASim represents the full range of credibility
associated with assessing the similarity of other users. Pairs of users with the
same number of common items have the same degree of uncertainty.

4.3. Selection of neighbors

In this section, we propose two methods for selecting the most suitable neighbors
based on the three pieces of information. These pieces of information are sim-
ilarity S, dissimilarity S̄, and uncertainty U . The aim is to identify neighbors
who can provide the best predicted ratings. The suggested methods are:

1. Basic KNN algorithm: typically, the best KNN are those with a high
degree of similarity with the target user. Using our novel measure UASim,
we can diversify the neighbor selection process. This includes options such
as prioritizing neighbors with high similarity scores, selecting those with
minimal uncertainty, choosing neighbors with the least dissimilarity, or
even identifying those with significant differences between similarity and
dissimilarity (S − S̄), as well as those with mean values of similarity and
dissimilarity (S, S̄);
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2. TOPSIS neighborhood selection: since every neighbor provides three pieces
of information, utilizing TOPSIS in this context transition of neighbor se-
lection from a traditional approach to a robust MCDM paradigm. This
methodology allows for a systematic and objective comparison of potential
neighbors based on multiple criteria simultaneously, namely: similarity S,
dissimilarity S̄, and uncertainty U . This inherently adapts neighborhood
selection in CF to the complex and often contradictory nature of user
preferences.

Employing TOPSIS, a well-established method recognized for its simplicity
and effectiveness in ranking alternatives based on multiple criteria, allows us to
fully utilize the potential of UASim by incorporating its three key components:
similarity S, dissimilarity S̄, and uncertainty U . By applying TOPSIS, we sys-
tematically optimize our neighborhood selection process, which in turn enhances
the accuracy of our predictions and the quality of our recommendations by se-
lecting neighbors who can provide the most relevant ratings, which are essential
for generating reliable predictions and consequently recommendations.

In the TOPSIS neighborhood selection strategy, we construct a normalized
decision matrix where each row represents a target user’s neighbor and each
column corresponds to their normalized values of similarity, dissimilarity, and
uncertainty, which are the predefined criteria for ranking neighbors. The weights
assigned to these criteria are primarily dependent on the provided data. The
resulting process ranks potential neighbors according to their proximity to an
ideal solution, defined as an abstract neighbor who exhibits maximal similarity,
minimal dissimilarity, and least uncertainty.

In the example of applying TOPSIS for neighborhood selection within a
collaborative filtering framework, we consider results of Table 4, user 1 (u1)
looking to select the most suitable neighbor from Users u2, u3, u4, and u5, based
on their UASim scores. We assign weights of 0.7, 0.2, and 0.1 to S, S̄, and U
respectively. Applying the weights on normalized scores, the ideal solution is
identified as the scenario with the highest weighted similarity, lowest weighted
dissimilarity, and lowest weighted uncertainty, whereas the anti-ideal solution is
the exact opposite. Calculating the Euclidean distance from each user’s score
to these ideal and anti-ideal points and then determining the relative closeness
to the ideal solution, u3 emerges as the most suitable neighbor due to its high
similarity and low dissimilarity and uncertainty, closely aligning with the ideal
profile, followed by u2, u5, and u4 in descending order of suitability.

To sum up, UASim is a comprehensive similarity measure that can evalu-
ate similarity, dissimilarity, and uncertainty in relation to users’ preferences in
UBCF. The uncertainty parameter is critical in UASim, as it indicates the cred-
ibility of similarity. Uncertainty is primarily determined by the proportion of
co-rated items between each pair of users. UASim offers new alternatives for
neighborhood selection.
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5. EXPERIMENTAL EVALUATION

This section discusses every aspect of the conducted experiments, including the
experimental datasets, evaluation metrics, and results. When evaluating RS, the
most commonly used method is offline analysis due to its accessibility [9]. This
method is based on common practices in machine learning algorithm evaluation.
The data is split into two parts: training and testing, and k-fold cross-validation
is used for testing, as shown in Figure 1.

Dataset

Raw data (User_Id,
Item_Id, Rating,

additionnal attributes)

User-Item Matrix

Splitting data for 5
cross validation

20% test_data
80% train_data

Movielens 100K : ML-100K
Movielens 1M: ML-1M

FilmTrust

Test

Weighted Average User-based CF Prediction formula 

CF_UASim  using Knn
Variants VS CF_UASim using TOPSIS for 

Neighborhood Selection: Knn+, Knn-, Knn+-,
Knn_U, Knn_Mean, TOPSIS

Evaluation

Prediction Recommendation

PrecisionMAE RMSE RecallCoverage F-Score

Best CF_UASim variant VS
CF_(Other similarity

measures)

Fig. 1: Overall methodology for the experimental evaluation.

Our research undertakes a rigorous experimental evaluation of memory-based
UBCF using UASim. Our tests were carefully organized into two main stages,
which can be seen in Figure 1. The purpose of these stages is to compare different
neighborhood selection strategies. In the initial phase, we explored multiple
neighborhood selection strategies for UBCF using UASim. This stage is crucial
for determining the most effective neighborhood selection approach. Advancing
to the second phase, the best UBCF using UASim version was benchmarked
against UBCF using representative traditional and recent similarity measures
[5, 11, 26, 31, 39]. In this research, we used the weighted average prediction
formula for UBCF. It is defined as folows:

pui = ru +

∑
v∈Ni

u
Simuv ∗ (rvi − rv)∑
v∈N i

u
|Simuv|

. (8)

In Eq.8, Simuv is the similarity between users u and v. N i
u refers to the group

of the k-nearest neighbors to the target user u, specifically those who have rated
item i. Here, v is one of the users in this nearest neighbors set. Additionally, ru
and rv represent the average ratings given by user u and user v, respectively.
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In our experimental results, the nomenclature for each UBCF system is des-
ignated by the similarity measure it employs. For example, a UBCF utilizing
cosine similarity is referred to as ’COS’. This naming convention facilitates a
clear and systematic discussion of the various tested methods.

5.1. Datasets

For our experiments, we utilized three benchmark datasets: FilmTrust [16],
MovieLens 100K (ML-100K), and MovieLens 1 Million (ML-1M) [17]. Each
user in these datasets has rated at least 20 movies. These datasets are popular
in the CF domain and are frequently used by academics and developers for
their research and applications. The main characteristics of these datasets are
summarized in Table 5.

To demonstrate the effectiveness of UASim, each dataset was split into two
parts: 20% of all ratings were designated as testing ratings, while the remaining
80% were designated as training ratings. We determined the accuracy of our
predictions by performing 5-fold cross-validation, in which we randomly selected
5 different training and test sets.

Dataset Ratings Users Items Sparsity

FilmTrust 35,497 1,508 2,071 98.86%
ML-100K 100,000 943 1,682 93.7%
ML-1M 1,000,209 6,040 3,900 95.8%

Tab. 5: Summary of datasets used in experiments.

5.2. Evaluation metrics

We employ several widely-used evaluation metrics in the research and practice
of the RS domain, namely the Mean Absolute Error (MAE), the Root Mean
Squared Error (RMSE), F1-score, and coverage. A lower MAE and RMSE
value, as well as higher values for F1-score and coverage, are indicative of better
algorithmic performance.

The MAE and RMSE metrics are typically used to measure the similarity
between the predicted ratings pui and the actual ratings rui. They are expressed
as follows:

MAE =

∑
(ui)∈T |rui − pui|

|T |

RMSE =

√∑
(ui)∈T (rui − pui)

2

|T |
.

(9)

Here, T represents the total number of test users involved in the prediction
step, rui is the actual rating provided by user ui, and pui is the predicted rating
for the same user ui.
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F1-score is a comprehensive metric that combines both Precision and Recall,
where Precision and Recall are defined by Equation (10):

Precision =
|L ∩ Lrec|
|Lrec|

, Recall =
|L ∩ Lrec|

|L|
. (10)

Precision represents the proportion of items in the recommendation list Lrec

that were correctly predicted as liked by the users, compared to the total number
of items in Lrec. Conversely, Recall measures the proportion of items that were
correctly predicted as liked by the users in Lrec relative to the total number
of liked items in L [39]. According to the approach described in [5, 27], the
ratings for items recommended by the system fall within the upper half of the
rating scale. For instance, on a scale from 1 to 5, the ratings for recommended
items would range from 3 to 5, encompassing the median to the highest possible
rating.

The F1-score, which combines precision and recall, is calculated as follows:

F1-score =
2× Precision× Recall

Precision + Recall
. (11)

Coverage, another important metric, measures the proportion of items for
which a RS is capable of providing recommendations. It is calculated as the
proportion of the number of predicted ratings |Ipu

| relative to the total number
of ratings to be predicted present in the test set T :

Coverage =

∑m
u=1 |Ipu

|
|T |

. (12)

5.3. Methods of comparison

We conducted a comparative analysis using UBCF based on both traditional
and recent representative predefined similarity measures. Table 6 presents these
methods, detailing their formulations and including references for the recent
measures.

In this context, I is the set of items rated by both users u and v. The sets
of items that user u and user v have rated are called Iu and Iv, respectively.
The ratings user u gives to an item i are shown as rui, and the ratings user v
gives to the same item are shown as rvi. The symbols r̄u and r̄v represent the
average ratings given by user u and user v, respectively. Additionally, N refers
to the set of items rated by only one of the two users, and rm stands for the
median of all ratings.
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Category Method Formula

Traditional

COS COS(u, v) =

∑
i∈I ruirvi√∑

i∈Iu
r2ui

√∑
i∈Iv

r2vi

MSD MSD(u, v) = 1−
∑

i∈I (rui−rvi)
2

|I|

JMSD

JMSD(u, v) = JACC(u, v) ·MSD(u, v)

where JACC(u, v) =
|Iu ∩ Iv|
|Iu ∪ Iv|

SPCC

SPCC(u, v) = PCC(u, v) · 1

1 + exp(− |I|
2
)

where PCC(u, v) =

∑
i∈I(rui − r̄u)(rvi − r̄v)√∑

i∈I(rui − r̄u)2
√∑

i∈I(rvi − r̄v)2

Recent

RACF [41] Sim(u, v) =

∑
i∈I

min(rui,rvi)
max(rui,rvi)

|I|

OS [15]

simOS
uv = simPNCR

uv · simADF
uv

where simPNCR
uv = exp

(
−N − |Iu ∩ Iv|

N

)

and simADF
uv =

∑
i∈I exp

(
− |rui−rvi|

max{rui,rvi}

)
|Iu ∩ Iv|

TAN [5]

TAN(u, v) = TA(u, v)

u · v =
∑

i∈I1∩I2

(rui − rm)(rvi − rm), where

|u| =
√ ∑

i∈I1∩I2

(rui − rm)2, and |v| =
√ ∑

iinI1∩I2

(rvi − rm)2

Tab. 6: Summary of methods of comparison for the experimental evaluation.

5.4. Results and discussion

The experimental tests were structured into two main phases. Initially, we
focused on identifying best neighborhood selection strategy utilizing UASim
within UBCF framework. This was followed by a comparative analysis of UASim
against both traditional and recent similarity measures within the framework
of UBCF. We experimented with different neighborhood sizes for prediction,
specifically k = [40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200].

5.4.1. Neighborhood selection strategies

To assess the efficacy of different neighborhood selection strategies within the
UBCF framework employing UASim, an ablation study was conducted on the
TOPSIS variants. This study was crucial for identifying the most effective
variant, which was then included in the comprehensive comparison of selection
strategies.

Extensive experiments were conducted using five-fold cross-validation across
different neighborhood sizes on three datasets. This approach helped determine
the best weights for the criteria employed in our TOPSIS variants. The average
performance across different neighborhood sizes is summarized in Table 7. In the
TOPSIS variant, weights were set as follows: for FilmTrust, weights were set at
[0.3, 0.4, 0.3] for similarity, dissimilarity, and uncertainty respectively; for ML-
100K and ML-1M, the weights were [0.7, 0.2, 0.1]. For the TOPSIS Sim Dissim
variant, which considers only similarity and dissimilarity, weights were [0.7, 0.3]
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for FilmTrust and [0.8, 0.2] for both ML-100K and ML-1M. Similarly, in the
TOPSIS Sim Uncertainty variant, where only similarity and uncertainty are
considered, the same weighting scheme was applied.

Dataset TOPSIS TOPSIS Sim Dissim TOPSIS Sim Uncertainty

MAE RMSE MAE RMSE MAE RMSE

FilmTrust 0.6055 0.7951 0.6077 0.7991 0.6088 0.8008
ML-100K 0.7447 0.9484 0.7501 0.9573 0.7491 0.9561
ML-1M 0.7320 0.9372 0.7539 0.9609 0.7576 0.9654

Tab. 7: Average MAE and RMSE performance of TOPSIS variants across
FilmTrust, ML-100K and ML-1M datasets.

The experiments demonstrated that the model using all three criteria (simi-
larity, dissimilarity, and uncertainty) achieves the best performance, as indicated
by the values in Table 7, which are bolded and underlined. This model not
only aligns with theoretical expectations but also empirically outperforms mod-
els with two criteria.

The average MAE and RMSE values for different neighborhood sizes, as men-
tionned above, reported in Table 8 reflect the performance of various neighbor-
hood selection strategies implemented within UBCF framework using UASim.
The strategies include: Knn+, which selects neighbors based on the highest
similarity values; Knn-, which opts for neighbors with the lowest dissimilarity
values; Knn+-, focusing on minimizing the difference between similarity and
dissimilarity; Knn U, which prioritizes minimal uncertainty in neighbor selec-
tion; Knn Mean, that considers an average of similarity and dissimilarity for
neighbor selection; and TOPSIS, applying the TOPSIS method that integrates
simultanuously similarity, dissimilarity, and uncertainty.

Dataset Knn+ Knn- Knn+- Knn U Knn Mean TOPSIS

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

FilmTrust 0.6083 0.8000 0.7053 0.9175 0.6067 0.7966 0.6932 0.8895 0.7811 1.1029 0.6055 0.7951
ML-100K 0.7497 0.9569 0.8738 1.1128 0.7610 0.9708 0.7528 0.9632 0.9823 1.2471 0.7447 0.9484
ML-1M 0.7559 0.9633 0.9426 1.1959 0.7900 1.0060 0.7343 0.9395 1.0072 1.2805 0.7320 0.9372

Tab. 8: Knn Variants VS TOPSIS for neighborhood selection in UBCF using
UASim.

Performance rankings in the table are indicated by the formatting: bold and
underlined for the best values, bold for the second-best, and underlined for the
third-best. The TOPSIS neighborhood selection strategy consistently showed
the best performance across all three datasets. The optimal weight for each
experiment was determined empirically based on the best performance outcomes
observed; they are detailed in Table 9. The top three performing variants for
each dataset are depicted in Figure 2 for FilmTrust, Figure 3 for ML-100K, and
Figure 4 for ML-1M.



A new uncertainty-aware similarity for user-based collaborative filtering 463

Dataset Similarity weight Dissimilarity weight Uncertainty weight

FilmTrust 0.3 0.4 0.3
ML-100K 0.7 0.2 0.1
ML-1M 0.7 0.2 0.1

Tab. 9: TOPSIS weights for experimental evaluation.

Figure 2 presents a comparison of neighborhood selection strategies using
MAE and RMSE metrics across various neighborhood sizes for the FilmTrust
dataset. Three strategies are compared: Knn+, Knn+-, and TOPSIS. In terms
of MAE, all strategies exhibit slight increase as neighborhood size expands, sug-
gesting a decrease in prediction accuracy with larger neighborhoods. Notably,
TOPSIS outperforms the other methods for neighborhood sizes up to 130, af-
ter which its performance converges with that of Knn+-. For RMSE, a similar
trend is observed, with a gradual increase in error rates as the neighborhood size
increases. TOPSIS demonstrates superior performance across all neighborhood
sizes, particularly evident at k=130 where it closely aligns with Knn+-.
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Fig. 2: Performance comparison of neighborhood selection variants for UBCF
based on UASim for FilmTrust dataset.

Figure 3 presents the MAE and RMSE variation for three neighborhood
selection strategies, namely: Knn+, Knn U, and TOPSIS across various neigh-
borhood sizes for the ML-100K dataset. The figure demonstrates a decline in
both MAE and RMSE with increasing neighborhood sizes, suggesting enhanced
prediction accuracy as more neighbors are included. Notably, TOPSIS consis-
tently achieves the lowest error rates, underscoring its effectiveness in balancing
similarity, dissimilarity, and uncertainty.
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Fig. 3: Performance comparison of neighborhood selection variants for UBCF
based on UASim for ML-100K dataset.

Figure 4 showcases the variations in MAE and RMSE across different neigh-
borhood sizes for the ML-1M dataset, comparing three neighborhood selection
strategies: Knn+, Knn U, and TOPSIS. The graph reveals a general trend of
decreasing MAE and RMSE as the neighborhood size increases, suggesting im-
proved prediction accuracy with a larger pool of neighbors. Notably, TOPSIS
exhibits consistently lower error rates.
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Fig. 4: Performance comparison of neighborhood selection variants for UBCF
based on UASim for ML-1M dataset.

Based on the results obtained for the different neighborhood selection strate-
gies across the three datasets, the TOPSIS strategy effectively employs the dis-
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criminative power of the UASim measure, which distinctly separates similarity
from dissimilarity while incorporating uncertainty. Consequently, it yields the
best results in predicting user ratings. In the second part of the experimental
evaluation, we will compare the UBCF based on UASim and using TOPSIS
for neighborhood selection, designed as “UASim TOPSIS”, with various other
UBCF that utilize representative traditional and recent predefined similarity
measures.

5.4.2. UASim VS other similarity measures

In terms of MAE and RMSE metrics, in both Table 10 and Table 11, the UBCF
using UASim TOPSIS consistently demonstrates superior performance when
compared against UBCF using both traditional and recent similarity measures.
UASim TOPSIS achieves the lowest values in both MAE and RMSE metrics
across all considered datasets, namely: FilmTrust, ML-100K, and ML-1M. This
trend is consistent across the entire spectrum of neighborhood sizes, ranging
from k=40 to k=180. Furthermore, Table 11 quantitatively underscores the
improvement percentage of UASim TOPSIS in relation to other methods [7].
These figures further confirm the position of UASim TOPSIS as a highly effec-
tive approach, yielding significant enhancements in recommendation accuracy,
as evidenced by its consistent outperformance across varying neighborhood sizes
and datasets.
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Fig. 5: Coverage results for the FimTrust dataset.



Method Dataset k=40 k=50 k=60 k=70 k=80 k=90
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

COS
FilmTrust 0.7187 0.9212 0.7098 0.911 0.702 0.9025 0.694 0.8926 0.686 0.8823 0.6778 0.8729
ML-100K 0.9389 1.2037 0.9198 1.1773 0.9034 1.1569 0.887 1.1351 0.8725 1.1156 0.8554 1.0937
ML-1M 0.9768 1.2453 0.9687 1.2349 0.9608 1.2257 0.9529 1.2166 0.9443 1.2053 0.9369 1.1959

MSD
FilmTrust 0.7928 1.005 0.7665 0.9768 0.7302 0.9305 0.7062 0.9059 0.6874 0.8839 0.6726 0.8671
ML-100K 0.8975 1.1485 0.8805 1.1271 0.8651 1.106 0.8546 1.0923 0.8417 1.0739 0.8303 1.0587
ML-1M 0.9647 1.2132 0.9559 1.2024 0.9441 1.1892 0.9376 1.1825 0.9291 1.1713 0.9242 1.167

JMSD
FilmTrust 0.7067 0.9187 0.7182 0.9271 0.7099 0.9168 0.6993 0.9029 0.6853 0.8849 0.6744 0.8749
ML-100K 0.9415 1.2041 0.9212 1.1777 0.9092 1.1613 0.9004 1.1495 0.8932 1.1409 0.8837 1.1277
ML-1M 0.8251 1.0508 0.8138 1.0365 0.8046 1.0244 0.7971 1.0147 0.7923 1.0084 0.7886 1.004

SPCC
FilmTrust 0.6869 0.8939 0.6791 0.8849 0.672 0.8773 0.6629 0.8667 0.6575 0.8593 0.652 0.8524
ML-100K 0.933 1.194 0.9139 1.1701 0.8943 1.1439 0.8732 1.1183 0.8554 1.0949 0.842 1.0782
ML-1M 0.9647 1.2322 0.9544 1.2183 0.9487 1.21 0.9418 1.1998 0.9342 1.1897 0.9272 1.1814

RACF
FilmTrust 0.6921 0.8964 0.6823 0.8834 0.6731 0.8718 0.6639 0.8631 0.6555 0.852 0.6484 0.8427
ML-100K 0.8972 1.1433 0.8764 1.116 0.86 1.0944 0.8455 1.0757 0.8325 1.059 0.823 1.0464
ML-1M 0.9609 1.2202 0.9527 1.2093 0.9441 1.1985 0.9368 1.1903 0.9304 1.1809 0.9236 1.1711

OS
FilmTrust 0.6866 0.8921 0.6756 0.877 0.6649 0.8631 0.6568 0.8552 0.6462 0.8406 0.6398 0.8324
ML-100K 0.8365 1.0732 0.8198 1.0503 0.8058 1.0309 0.795 1.0163 0.7871 1.0058 0.78 0.9962
ML-1M 0.8835 1.1326 0.8793 1.126 0.8724 1.1174 0.8678 1.1107 0.8638 1.1052 0.8578 1.0971

TAN
FilmTrust 0.6907 0.8936 0.6704 0.8681 0.6564 0.8517 0.6443 0.8379 0.6351 0.8262 0.6284 0.8199
ML-100K 0.8642 1.1026 0.8418 1.0731 0.8245 1.0504 0.811 1.0331 0.8023 1.0226 0.7943 1.0119
ML-1M 0.9507 1.2087 0.9401 1.1936 0.9322 1.1823 0.9235 1.1719 0.9155 1.162 0.9076 1.1516

UASim
TOPSIS

FilmTrust 0.6033 0.792 0.6034 0.7923 0.6034 0.7921 0.6034 0.792 0.6038 0.7927 0.6048 0.7942
ML-100K 0.7532 0.9659 0.7503 0.9612 0.7482 0.958 0.7465 0.9555 0.7456 0.954 0.7449 0.9523
ML-1M 0.7416 0.9518 0.738 0.9466 0.7356 0.943 0.7343 0.941 0.7328 0.9389 0.7318 0.9372

MAE and RMSE of different similarity measures for different neighborhood sizes.
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Method Dataset k=100 k=120 k=140 k=160 k=180 Mean
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

COS
FilmTrust 0.6711 0.8652 0.6575 0.8493 0.6456 0.8352 0.636 0.825 0.6292 0.8177 0.6752 0,8704
ML-100K 0.8423 1.0774 0.8176 1.0453 0.7981 1.0199 0.7831 1.0007 0.7719 0.9866 0.8536 1.0920
ML-1M 0.9309 1.1872 0.9228 1.176 0.9132 1.164 0.9041 1.152 0.8952 1.1397 0.9369 1.1947

MSD
FilmTrust 0.6613 0.8554 0.6468 0.8384 0.638 0.8275 0.6296 0.8176 0.6242 0.8118 0.6868 0.8836
ML-100K 0.8208 1.0461 0.8028 1.0229 0.7888 1.0051 0.7789 0.9919 0.7729 0.9841 0.8303 1.0596
ML-1M 0.9176 1.1596 0.9078 1.1453 0.8965 1.1321 0.8889 1.1236 0.8818 1.1151 0.9225 1.1637

JMSD
FilmTrust 0.6722 0.8711 0.6619 0.8584 0.6536 0.85 0.654 0.8508 0.6481 0.8452 0.6803 0.8818
ML-100K 0.8757 1.117 0.8632 1.1008 0.8534 1.0881 0.843 1.0738 0.8341 1.0625 0.8835 1.1275
ML-1M 0.785 0.9999 0.7787 0.9916 0.775 0.9867 0.7705 0.9801 0.7674 0.9758 0.79073 1.0066

SPCC
FilmTrust 0.6455 0.8449 0.6342 0.83 0.6256 0.8198 0.619 0.8129 0.6153 0.809 0.65 0.8500
ML-100K 0.8279 1.0599 0.8063 1.0317 0.7905 1.0106 0.7768 0.9921 0.7677 0.9809 0.8437 1.0795
ML-1M 0.9224 1.1751 0.9112 1.1602 0.9008 1.1477 0.8893 1.1326 0.8799 1.1207 0.9249 1.1788

RACF
FilmTrust 0.644 0.8365 0.6333 0.823 0.6269 0.8154 0.6231 0.8119 0.621 0.8096 0.6512 0.8459
ML-100K 0.8136 1.0346 0.798 1.0138 0.7857 0.9982 0.7773 0.9873 0.7712 0.9802 0.8254 1.0499
ML-1M 0.918 1.1643 0.909 1.1507 0.8995 1.1388 0.8913 1.1283 0.8823 1.1163 0,9226 1,1698

OS
FilmTrust 0.6347 0.8261 0.6263 0.8157 0.6221 0.8106 0.6184 0.8074 0.6163 0.8051 0.6443 0.8386
ML-100K 0.7748 0.9889 0.7666 0.9774 0.7605 0.9688 0.7573 0.9649 0.7543 0.9606 0,7852 1,0030
ML-1M 0.8533 1.0905 0.846 1.0797 0.8385 1.0694 0.8313 1.0591 0.8235 1.0484 0.8561 1.0941

TAN
FilmTrust 0.6234 0.8137 0.6184 0.8081 0.6169 0.8064 0.6154 0.8043 0.6145 0.8028 0.6376 0.8302
ML-100K 0.7886 1.0046 0.7799 0.992 0.7736 0.9844 0.7678 0.9763 0.7643 0.9718 0.8011 1.020
ML-1M 0.8988 1.1398 0.8868 1.1239 0.8747 1.1093 0.8623 1.0936 0.8529 1.0817 0.9041 1.1471

UASim
TOPSIS

FilmTrust 0.6055 0.7949 0.6062 0.7962 0.6071 0.7977 0.6079 0.7985 0.6087 0.7993 0.6052 0.7947
ML-100K 0.7445 0.9512 0.7437 0.9492 0.7438 0.9487 0.7437 0.948 0.744 0.948 0.7462 0.9538
ML-1M 0.7307 0.9355 0.7291 0.9327 0.7286 0.9318 0.728 0.9308 0.7271 0.9293 0.7325 0.9380

Tab. 10: MAE and RMSE of different similarity measures for different neighborhood sizes.
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Metric Dataset COS MSD JMSD SPCC RACF OS TAN

MAE
FilmTrust 10.37% 11.89% 11.04% 6.89% 7.06% 6.07% 5.08%
ML-100K 12.58% 10.13% 15.54% 11.56% 9.60% 4.97% 6.85%
ML-1M 21.82% 20.60% 7.36% 20.81% 20.60% 14.44% 18.98%

RMSE
FilmTrust 8.70% 10.06% 9.88% 6.51% 6.06% 5.24% 4.28%
ML-100K 12.66% 9.99% 15.41% 11.64% 9.15% 4.91% 6.51%
ML-1M 21.49% 19.39% 6.81% 20.40% 19.82% 14.27% 18.23%

Tab. 11: Percentage of improvement in MAE and RMSE for UASim TOPSIS
compared to different methods.
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Fig. 6: Coverage results for the ML-100K dataset.

Figures 5, 6, and 7 depict the coverage analysis across the three datasets:
FilmTrust, ML-100K, and ML-1M. Notably, UASim TOPSIS stands out in all
datasets, exhibiting the highest coverage and demonstrating its comprehensive
ability to offer accurate recommendations across a wide array of items. In
the FilmTrust dataset, JMSD and SPCC also show strong coverage, indicating
their suitability for this particular dataset. However, MSD’s coverage remains
notably lower, suggesting a more selective recommendation scope. In the ML-
100K dataset (Figure 6), while UASim TOPSIS maintains its leading position,
the SPCC and OS methods show significant improvement. Conversely, TAN
and COS, despite their moderate performance, still contribute valuable insights.
The ML-1M dataset (Figure 7), being the largest, underscores the dominance
of UASim TOPSIS with a very hight coverage, closely followed by JMSD. This
dataset also exposes the most pronounced disparities in performance, with MSD
trailing significantly. Overall, UASim TOPSIS consistently offers broad cover-
age in the three experimental datasets.
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Fig. 7: Coverage results for the ML-1M dataset.
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Fig. 8: Average F-score results for the FimTrust, ML-100K and ML-1M datasets.

Analyzing Figure 8 that shows the F1-scores across three datasets, our pro-
posed method UASim TOPSIS consistently emerges as the top-performing method,
achieving the highest scores in the FilmTrust, ML-100K, and ML-1M datasets.
This underlines its robustness and effectiveness in balancing precision and re-
call. Other methods like TAN, SPCC, and OS also demonstrate good perfor-
mance. Notably, JMSD shows a significant improvement in the ML-1M dataset
compared to others. In contrast, methods like COS and MSD exhibit varying
degrees of effectiveness, with particularly lower scores in the ML-1M dataset.

5.4.3. Discussion

Our UASim measure employs subjective logic to effectively model user inter-
actions within CF systems, capturing not only similarity and dissimilarity but
also the inherent uncertainty in user preferences. Unlike traditional similar-
ity measures, UASim excels in differentiating between various aspects of user
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preferences, which significantly enhances the adaptability and accuracy of neigh-
borhood selection strategies. This capability is particularly showcased in our
implementation of the TOPSIS-based strategy for neighborhood selection, which
systematically integrates similarity, dissimilarity, and uncertainty to select the
most suitable neighbors.

UASim stands out as a ratio-based method that takes into account both the
proportion of common ratings and individual user preferences. This is evident
from our experimental results, where UASim surpasses the performance of es-
tablished ratio-based similarity measures like RACF. This confirms the efficacy
of UASim in selecting more appropriate neighborhoods by simultaneously con-
sidering the similarity, dissimilarity, and uncertainty aspects of user preferences.

However, the dependency of our approach on precise parameter tuning within
the TOPSIS framework poses a limitation, as the performance significantly
depends on the specific weights assigned to similarity, dissimilarity, and un-
certainty, which are currently determined empirically based on the best per-
formance outcomes observed. To address this, future research should explore
adaptive methods for weight determination, aiming to enhance the robustness
and applicability of UASim in diverse CF scenarios.

Regarding the computational efficiency of our proposed method, it is gov-
erned by two primary components: the similarity measure computation and
the TOPSIS-based neighborhood selection process. Our similarity measure in-
volves identifying co-rated items and calculating their similarity and dissimilar-
ity, which leads to a computational complexity of O(n) per user pair, where n
is the number of items co-rated by both users. This complexity is comparable
to traditional methods such as COS and PCC, which also operate with O(n)
complexity. The TOPSIS method employed for neighborhood selection intro-
duces further steps such as: weight application, ideal solution determinations,
and distance calculations, resulting in a complexity of O(m × c), where m is
the number of users and c is the number of criteria. Although this is higher
than basic KNN algorithm, the additional computational overhead is justified
by the enhanced decision-making capability provided by considering multiple
criteria, which is especially valuable in handling the complex dynamics of user
preferences in recommender systems.

In summary, UASim provides a nuanced and sophisticated similarity mea-
sure for UBCF, marking a significant advancement over ratio-based similarity
measures. The success of UASim in our experiments highlights its potential
to refine recommendation systems further, offering a promising direction for
subsequent research in this field.

6. CONCLUSION

In this study, we introduced a new Uncertainty-Aware Similarity (UASim) mea-
sure, which effectively integrates similarity, dissimilarity, and uncertainty under
the framework of subjective logic.

UASim provides various strategies for neighborhood selection within the
UBCF framework. Among these methods, the TOPSIS strategy proved to
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be the most effective, consistently surpassing other approaches across multi-
ple datasets, including FilmTrust, ML-100K, and ML-1M. The superiority of
TOPSIS was clear for both MAE and RMSE metrics, underscoring its ability
to leverage the comprehensive capabilities of UASim to effectively select the
most appropriate neighbors. Our comparative analysis further highlighted the
robustness of UASim TOPSIS against both traditional and recent predefined
similarity measures, demonstrating its significant potential to enhance predic-
tion accuracy and recommendation quality.

Looking forward, the reliance of UASim TOPSIS on precise parameter tuning
within the TOPSIS method presents an essential area for future research. Devel-
oping adaptive methods for weight determination could substantially improve
the robustness and applicability of our approach across various collaborative
filtering scenarios, offering promising directions for enhancing the performance
of recommendation systems.
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