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QUANTIZATION OF SEMISIMPLE REAL LIE GROUPS

Kenny De Commer

Abstract. We provide a novel construction of quantized universal enveloping
∗-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum
symmetric pairs. We show that these structures can be ‘integrated’, leading to
a quantization of the group C∗-algebra of an arbitrary semisimple algebraic
real Lie group.

Introduction

The theory of quantum groups, as it was initiated through the works of M. Jimbo
[23] and V. Drinfeld [20], is by now an extensive framework with ramifications in
many different areas of mathematics. The main object is a Hopf algebra Uq(g),
depending on a parameter q (either formal or scalar) and a semisimple (complex)
Lie algebra g, with Uq(g) deforming the classical universal enveloping algebra U(g)
of g. Suitably interpreted, one can say that U(g) arises in the limit as q → 1.

One can easily make sense of a compact form of Uq(g). This entails providing
Uq(g) with the structure of a Hopf ∗-algebra, where ∗ is a particular anti-linear,
anti-multiplicative and comultiplicative map on Uq(g). Classically, when q = 1, this
∗-structure will restrict to an anti-multiplicative, anti-linear map g→ g leading to
the compact form

u = {X ∈ g | X∗ = −X} ⊆ g .

The representation theory of Uq(u), meaning ∗-representations on (finite-dimensio-
nal) Hilbert spaces, can then be directly compared to the one of u. For example, in
both cases the irreducible representations can be naturally parametrized by (the
same set of) highest weights. Through duality, it can also be connected directly to
the operator algebraic framework of compact quantum groups [17, 31, 42].

The quantization of other real forms of g has known a much slower progress.
Although there is a direct approach through the consideration of appropriate Hopf
algebra automorphisms of Uq(g) [38], the ensuing representation theory of these
quantized real forms of g, now necessarily on infinite-dimensional Hilbert spaces, has
met with many stumbling blocks and analytical difficulties, see e.g. [24, 28, 41, 44].
This has made it very difficult to build a satisfying theory in arbitrary rank.
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In this paper, we will consider a novel approach towards the quantization
problem for real semisimple Lie groups. This method requires more preparations
on the algebraic side, but has as an immediate payoff that there are no longer any
analytic issues at stake when considering the associated representation theory. The
construction is built on two fundamental principles:
• The maximal compact Lie subalgebra k of our real form l of g should be given

by a symmetric pair coideal subalgebra Uq(k) of Uq(u) [29].
• The associated quantized enveloping algebra Uq(l) should be obtained from
Uq(k) through a generalisation of the Drinfeld double construction to coideal
subalgebras (see Section 3).

This strategy was already explored in [12], where the specific case of l = sl(2,R)
was considered, and in [11], where in more generality the concept of Drinfeld double
coideals was developed in an operator algebraic setting.

Here we take the opportunity to specifically set up the framework and formalism
to consider quantizations of arbitrary semisimple algebraic real Lie groups. Our
scope is rather modest - we will simply gather the necessary ingredients from the
literature to introduce and motivate our definition. Much of the remaining analysis
(and hard work) will be left for future occasions.

This paper is organized as follows: in the first section, we introduce the algebraic
framework of Doi-Koppinen data and Doi-Koppinen modules. In the second section,
we endow such Doi-Koppinen data with a unitary structure, so that the resulting
representation theory on (pre-)Hilbert spaces can be considered. In the third section,
we show how Doi-Koppinen modules can be understood through a generalisation
of the Drinfeld double construction. In the fourth section, we then explain how
Doi-Koppinen data can be obtained from a given Hopf ∗-algebra U with a good
representation theory, and a given left coideal ∗-subalgebra I ⊆ U . In the fifth
section, we explain how such inclusions I ⊆ U arise naturally from the theory of
symmetric pair coideal subalgebras as developed by G. Letzter [29]. In the sixth
section, we then apply the Drinfeld double construction to these latter coideals to
arrive at the quantization of (the convolution algebra of) semisimple algebraic real
Lie groups.
Acknowledgement. Part of these results were presented at the XXXIX Workshop
on Geometric Methods in Physics in Białystok, Poland, in 2022, at the Operator
Algebra seminar at the Université de Caen Normandie in June 2023, and at the
Conference ‘Quantum Groups and Noncommutative Geometry’ in Prague in 2023.
I thank all organizers and participating colleagues for their interest and for the
opportunity to present this work. This research was funded by the FWO grant
G032919N.
Notation: if V is a complex vector space, we denote by LinC(V,C) its linear dual.
We occasionally use

V ◦ = LinC(V,C)

as a short-hand. We write a generic C-valued bilinear pairing as

τ : V ×W → C, (v, w) 7→ τ(v, w) .
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We sometimes use this generic notation also when V ⊆ LinC(W,C) or W ⊆
LinC(V,C). Similarly, when Vi is paired with Wi for i ∈ {1, 2}, we write by default
τ for the unique bilinear pairing between V1 ⊗ V2 and W1 ⊗W2 such that

τ(v1 ⊗ v2, w1 ⊗ w2) = τ(v1, w1)τ(v2, w2) , ∀vi ∈ Vi, wi ∈Wi .

1. Doi-Koppinen modules

We recall some well-known constructions in the setting of Hopf algebras, see e.g.
[10].

We work over the ground field C, although for the moment a greater generality
would be allowed. If A = (A,mA) is a unital algebra, we denote its unit by 1 = 1A,
and if (C,∆C) is a (co-unital) coalgebra, we denote its counit by ε = εC . We then
use the sumless Sweedler notation for the coproduct on C:

∆C(c) = c(1) ⊗ c(2) , c ∈ C .

If (A,∆A) is a Hopf algebra, we denote its antipode by S = SA.
Modules over a unital algebra will always be assumed to be unital, and comodules

over a counital coalgebra will be assumed counital. If δM : M →M ⊗ C is a right
C-comodule and δN : N → C ⊗N a left C-comodule, we accordingly write

δM (m) = m(0) ⊗m(1), δN (n) = n(−1) ⊗ n(0), m ∈M,n ∈ N .

We can construct from the pair (M,N) the cotensor product, which is the vector
space

M
C

�N := {z ∈M ⊗N | (δM ⊗ id)z = (id⊗δN )z} .
We recall that a coalgebra C is cosemisimple if and only if there exist finite-dimen-
sional vector spaces (Vα)α∈I, indexed by some set I, with
(1.1) C ∼= ⊕α∈I EndC(Vα)◦.
Here we consider the direct sum coalgebra on the right, where each EndC(Vα)◦
is equipped with the coalgebra structure dual to the usual algebra structure on
EndC(Vα). If we choose a basis

{eαi | 1 ≤ i ≤ dim(Vα)}
of each Vα, and write eαij for the associated matrix units and ωαij for the dual basis,
the coproduct can be written explicitly as

∆C(ωαij) =
dim(Vα)∑
k=1

ωαik ⊗ ωαkj , α ∈ I, 1 ≤ i, j ≤ dim(Vα) .

The following structures were considered in [19, 27]. We follow the terminology
of [35], although the terminology of Doi-Hopf datum/Doi-Hopf module is also
common [6].

Definition 1.1. A (left-right) Doi-Koppinen datum consists of a triple (A,B,C)
with A = (A,∆A) a Hopf algebra, B = (B, δB) a right A-comodule algebra and
C = (C,∆C) a left A-module coalgebra.
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A Doi-Koppinen module (V, πV , δV ) consists of a right C-comodule V = (V, δV ),
equipped with a left B-module structure V = (V, πV ) such that the following
compatibility condition holds:
(1.2) δV (bv) = (πV ⊗ id)(δB(b))δV (v) , ∀b ∈ B, v ∈ V .
As usual, we drop the notation πV whenever it is clear by the context.

We write the associated linear category of Doi-Koppinen modules as BMC .
An important class of Doi-Koppinen data can be constructed as follows. Let

(A,∆A) be a Hopf algebra, and let C be a quotient left A-module coalgebra of A
via a map

πC : A � C .

If then M,N are resp. right and left A-comodules, we consider the subspaces
MC = {m ∈M | (id⊗πC)δM (m) = m⊗ πC(1A)} ⊆M ,

CN = {n ∈ N | (πC ⊗ id)δN (n) = πC(1A)⊗ n} ⊆ N .

In particular, we obtain the unital subalgebra
B := CA .

Here we think of A as the function algebra on a quantum group, C as the function
algebra on a quantum subgroup, and B as the algebra of functions on the associated
homogeneous space of left cosets. The triple (A,B,C) indeed forms a Doi-Koppinen
datum, since one easily checks that

∆A(B) ⊆ B ⊗A ,
i.e. B ⊆ A is a right coideal subalgebra. So, δB := (∆A)|B turns B into a right
A-comodule algebra.

Definition 1.2. We call a Doi-Koppinen datum of coideal type (A,CA,C, πC) any
Doi-Koppinen datum arising in the above way from a Hopf algebra A with left
A-module coalgebra quotient πC : A � C.

In case of Doi-Koppinen data of coideal type, there is a tighter link between B
and C, leading one to expect more structure on BMC . This is indeed the case, as
exemplified by the following theorem. The version we need is obtained by combining
[32, Corollary 1.5.(1)] with [36, Theorem 2]. We will need the category C

AMC of
C-bicomodules (V, δl, δr) equipped with a compatible left A-module structure, the
compatibility being that
(av)(0) ⊗ (av)(1) = a(1)v(0) ⊗ a(2)v(1), (av)(−1) ⊗ (av)(0) = a(1)v(−1) ⊗ a(2)v(0) ,

∀a ∈ A, v ∈ V .
The latter category naturally carries a monoidal structure through the cotensor
product:

(M,N) 7→ •
•M

C
� •N

• .

The bullets indicate where the relevant structure acts, e.g. the left A-module
structure is the diagonal one.
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Theorem 1.3. Assume that (A,B,C) is a Doi-Koppinen datum of coideal type,
and assume that the antipode SA of A is invertible. Assume moreover that C is
cosemisimple. Then the following hold:

(1) Ker(πC) = AB+, where B+ = Ker((εA)|B).
(2) A is faithfully flat as a left and as a right B-module.
(3) There are quasi-inverse equivalences of categories1

(1.3) BMC
G
�
F

C
AMC , F (V ) = ••A• ⊗B V •, G(M) = C

•M
•.

The equivalence is implemented concretely by the isomorphisms
(1.4) V → G(F (V )), v 7→ 1A ⊗ v, F (G(M))→M, a⊗m 7→ am .

A consequence of (1.3) is that BMC inherits the monoidal structure of CAMC ,
resulting in the following monoidal structure on BMC :

(1.5) V �W := G(F (V )
C

�F (W )) = C((A⊗BV )
C

�(A⊗BW )) ∼= •V
C

�(•A•⊗BW •) .
There seems however to be no general way to implement the resulting tensor

product more directly on BMC , say by endowing the usual vector space tensor
product with an appropriate Doi-Koppinen module structure.

The following example is considered also in [6].

Example 1.4. Let H be a Hopf algebra with invertible antipode. Write Hop for H
with the opposite product, but the original coproduct. Then on the tensor product
Hopf algebra A = H ⊗Hop we can consider

πH : A→ H , h⊗ k 7→ hk ,

realizing C := H as quotient left A-module coalgebra for the A-module structure
(h⊗ k) · c := hck , h, k, c ∈ A .

It is easily checked that we can identify as algebras
(1.6) H ∼= B = HA , h 7→ h(2) ⊗ S−1

H (h(1)) ,
the resulting right A-comodule structure on H being

δB(h) = h(2) ⊗
(
h(3) ⊗ S−1

H (h(1))
)
.

We thus obtain a Doi-Koppinen datum (A,B,C, πH) = (A,H,H, πH) of coideal
type. A Doi-Koppinen module is then nothing but a Yetter-Drinfeld module for H,
i.e. a right H-comodule (V, δ) with left H-module structure interacting via

(hv)(0) ⊗ (hv)(1) = h(2)v(0) ⊗ h(3)v(1)S
−1
H (h(1)) .

Equivalence (1.3) is the well-known equivalence between the category of Yetter-Drin-
feld modules and the category H

HMH
H = H⊗HopHMH of tetramodules (a cosemisimpli-

city assumption on H or A is in this case not needed).

1To be precise, it is trivially verified that F,G form an adjoint pair through (1.4), factorizing
by the (faithful) forgetful functor through adjoint functors between BM and CAM given by the
same formulas. As the latter form an equivalence by [36, Theorem 2], so must the former.
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We also have compatibility of the Doi-Koppinen and Yetter-Drinfeld tensor
product for Yetter-Drinfeld modules under the above correspondence. Indeed, by
the isomorphism
•H ⊗H• ∼= •A• , h⊗ k 7→ hk(2) ⊗ S−1

H (k(1)), xy(1) ⊗ SH(y(2))←[ x⊗ y .
as left H-comodule and right H-module, it is clear that, for V,W Yetter-Drinfeld
modules, we can identify

V ⊗W ∼= •V
H

�(A• ⊗B W •) , v ⊗ w 7→ v(0) ⊗
(
(v(1) ⊗ 1)⊗ w

)
,

the resulting tensor product on V ⊗W indeed coinciding with the Yetter-Drinfeld
one:

h(v ⊗ w) = h(2)v ⊗ h(1)w , δ(v ⊗ w) = v(0) ⊗ w(0) ⊗ v(1)w(1) .

2. Unitary Doi-Koppinen modules

Definition 2.1. A (unital) ∗-algebra is a (unital) algebra B equipped with an
involutive, anti-linear, anti-multiplicative map

∗ : B → B , b 7→ b∗, (ab)∗ = b∗a∗ .

Definition 2.2. LetB be a ∗-algebra. IfH0 is a pre-Hilbert space, a ∗-representation
π0 of B on H0 is a B-module structure π0 on H0 such that

〈v, π0(b)w〉 = 〈π0(b∗)v, w〉 , ∀v, w ∈ H0, ∀b ∈ B .
We say that the ∗-representation is bounded if π0(b) is a bounded operator on

H0 for all b ∈ B.
If (H0, π0) is a bounded ∗-representation, we can uniquely extend π0 to a

∗-representation π of B on the Hilbert space completion H of H0. On the other
hand, any Hilbert space ∗-representation is automatically bounded, by the uniform
boundedness principle.
Definition 2.3. We say that a ∗-algebra B is uniformly C∗-bounded if any ele-
ment of B has a uniform bound for its norm with respect to any Hilbert space
∗-representation.

We say that B is strongly uniformly C∗-bounded if moreover all of its pre-Hilbert
space ∗-representations are bounded.

We say that B is C∗-faithful if the ∗-representations of B on Hilbert spaces
separate the elements of B.

We say that a ∗-representation π of B on a Hilbert space H is non-degenerate if
π(B)H is dense in H.

If B is unital, then non-degeneracy of a ∗-representation is equivalent with π
being a unital ∗-representation, i.e. π(1B) = idH.

We now consider a dual notion [1, 8].
Definition 2.4. A †-structure on a coalgebra C is an involutive, anti-linear,
anti-comultiplicative map

† : C → C , c 7→ c† , ∆C(c†) = c†(2) ⊗ c
†
(1) .
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For example, if H is a finite-dimensional Hilbert space, then EndC(H)◦ is a
†-coalgebra by
(2.1) ω†(x) := ω(x∗), x ∈ EndC(H), ω ∈ EndC(H)◦ .
We will call a †-coalgebra of this form a basic (or simple) C†-coalgebra.

Definition 2.5. If C is a †-coalgebra, a unitary right C-comodule is any pre-Hilbert
space H0 equipped with a right C-comodule structure satisfying the following
condition:
(2.2) 〈v, w(0)〉w(1) = 〈v(0), w〉v†(1) , ∀v, w ∈ H0 .

We then write this element as U(v, w) ∈ C, and refer to it as a matrix coefficient
of H0.

We call H0 locally complete if, for any finite-dimensional subcoalgebra D ⊆ C,
the space

HD = {v ∈ H0 | δ(v) ∈ H0 ⊗D}
is complete, i.e. a Hilbert space.

We call H0 locally finite if moreover the HD above are all finite-dimensional.

In the following, we write HilbC for the category of locally complete unitary
right C-comodules, with adjointable linear maps as morphisms. It is then in fact a
∗-category [8, Definition 3.1].

Definition 2.6. We call C a C†-coalgebra if it equals its set of matrix coefficients
of unitary C-comodules.

It is elementary to show that a †-coalgebra C is a C†-coalgebra if and only if
C is a direct sum of basic †-coalgebras, i.e. there exist finite-dimensional Hilbert
spaces (Hα)α∈I with
(2.3) C ∼= ⊕α∈I EndC(Hα)◦.
In particular, a C†-coalgebra is necessarily cosemisimple.

We write
I = LinC(C,C)

for the full linear dual of C. Then I is a unital algebra under the convolution
product

ωχ := (ω ⊗ χ)∆C ,

and, if C is a †-coalgebra, I becomes a ∗-algebra by means of (2.1).

Definition 2.7. If C is a †-coalgebra, we define its restricted dual to be
I = {x ∈ I | I xI is finite-dimensional}.

The subspace I is an ideal inside I , and hence typically a non-unital ∗-subalgebra
of I . In general, I can be quite small. If however C is a C†-coalgebra, the concrete
identification (2.3) allows us to write

I ∼=
∏
α∈I

EndC(Hα), I ∼= ⊕α∈I EndC(Hα) ,



292 K. DE COMMER

so in particular I is enough to determine I .
Recall that we use τ as a generic notation for a bilinear pairing. Then when C is

a C†-coalgebra, any unitary right C-comodule (H0, δ) leads to a ∗-representation
of I on H0 via
(2.4) π̂0(x)v = (id⊗τ(−, x))δ(v) , x ∈ I , v ∈ H0 .

The following proposition is elementary to prove from the fact that I is isomorphic
to a direct sum of finite-dimensional matrix ∗-algebras.

Proposition 2.8. Let (C,∆C , †) be a C†-coalgebra, and let I be the ∗-algebra
introduced above. We then have that I is strongly uniformly C∗-bounded and
C∗-faithful, and there is a one-to-one correspondence
(2.5) (H0, δ) ↔ (H, π̂)
between locally complete unitary right C-comodules and non-degenerate ∗-represen-
tations of I on Hilbert spaces.

Here (H, π̂) is the completion of (H0, π̂0), and conversely given H we define
(2.6) H0 := π̂(I)H
together with the C-comodule structure dual to the restriction π̂0 of π̂ to operators
H0 → H0.

Note that Proposition 2.8 presents one small subtlety: if we denote I Hilb the
category of non-degenerate I-representations on Hilbert spaces, we do not obtain
an equivalence of ∗-categories
(2.7) HilbC → I Hilb ,
since the morphism spaces of the former are larger than the ones of the latter: norms
of intertwiners need not be uniformly bounded across the different components on
the side of HilbC !

We now recall the notion of CQG (= Compact Quantum Group) Hopf ∗-algebra
[17].

Definition 2.9. A Hopf ∗-algebra is a Hopf algebra A with a ∗-algebra structure
preserving the coproduct:

∆A(a∗) = a∗(1) ⊗ a
∗
(2).

It is called a CQG Hopf ∗-algebra if moreover there exists an invariant state
ΦA : A→ C, so

(id⊗ΦA)∆A(a) = ΦA(a)1 = (ΦA ⊗ id)∆A(a) , ∀a ∈ A ,

ΦA(1A) = 1 , ΦA(a∗a) ≥ 0 , ∀a ∈ A .

We note that the invariant state on a CQG Hopf ∗-algebra is necessarily unique.
We can endow a Hopf ∗-algebra A with its canonical †-structure as a coalgebra,

a† := SA(a)∗, a ∈ A .

Proposition 2.10. The following conditions are equivalent for a Hopf ∗-algebra A:
• A is a CQG Hopf ∗-algebra.
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• The underlying †-coalgebra is a C†-coalgebra.
• The underlying ∗-algebra is C∗-faithful and uniformly C∗-bounded.

The ∗-algebra A is then automatically strongly uniformly C∗-bounded.

Definition 2.11. Let A be a Hopf ∗-algebra.
We call left A-module †-coalgebra a left A-module coalgebra C with a †-structure

satisfying
(ac)† = a†c† , ∀a ∈ A, c ∈ C .

We call right A-comodule ∗-algebra a right comodule algebra B with a ∗-algebra
structure satisfying

δB(b) = b∗(0) ⊗ b
∗
(1), ∀b ∈ B .

We can now introduce unitary Doi-Koppinen data and their unitary modules.

Definition 2.12. A unitary Doi-Koppinen datum consists of a Doi-Koppinen
datum (A,B,C) with A a Hopf ∗-algebra, C a left A-module †-coalgebra, and B a
right A-comodule ∗-algebra.

A unitary Doi-Koppinen module (H0, π0, δ0) for (A,B,C) is a pre-Hilbert space
H0 with a Doi-Koppinen module structure for which its C-comodule is unitary and
its B-module is a ∗-representation.

A unitary Doi-Koppinen module is called
• locally complete if its underlying unitary C-comodule is locally complete,
• admissible if its underlying C-comodule is locally finite, and
• of Harish-Chandra type if its underlying C-comodule is locally finite and

finitely generated as a B-module.
We call two unitary Doi-Koppinen modules H0, G0 weakly equivalent if there exists
an invertible adjointable intertwiner H0 → G0, and strongly equivalent if there
exists a unitary intertwiner H0 → G0.

A locally complete unitary Doi-Koppinen module is called irreducible if there
are no non-trivial B-stable locally complete unitary C-subcomodules.

A special class of unitary Doi-Koppinen data is obtained by looking at quotient
left A-module †-coalgebras C, i.e. the quotient map πC : A � C is †-preserving.
Now B = CA will be a unital ∗-subalgebra of A: If b ∈ B, then
πC(b∗(1))⊗ b∗(2) = πC(S−1

A (b(1)))† ⊗ b∗(2) = πC(S−1
A (b(2))b(1))† ⊗ b∗(3) = πC(1A)⊗ b∗,

where in the second equality we used b(1) ∈ B. It follows in particular that B is a
right A-comodule ∗-algebra.

Definition 2.13. A unitary Doi-Koppinen datum (A,B,C, πC) is of coideal type
if it comes from a quotient A-module †-coalgebra πC : A � C with B = CA.
If moreover A is a CQG Hopf ∗-algebra, we say that (A,B,C, πC) is a CQG
Doi-Koppinen datum of coideal type.

Proposition 2.14. If (A,B,C, πC) is a CQG Doi-Koppinen datum of coideal type,
the following holds:
• B is strongly uniformly C∗-bounded and C∗-faithful.
• C is a C†-coalgebra.
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Proof. Let b ∈ B. Then b lies in a finite-dimensional subcomodule V ⊆ B.
Choosing an orthonormal basis ei ∈ V with respect to the inner product 〈v, w〉 =
ΦA(v∗w), we find that c =

∑
i eie

∗
i satisfies ∆(c) = c ⊗ 1, hence c is a (positive)

scalar. Then in any pre-Hilbert space ∗-representation (H0, π0), we must have that
each π0(e∗i ) is bounded, with norm ≤ c1/2. But then clearly also ‖π0(b)‖ ≤ Cb for
some π0-independent constant Cb.

The C∗-faithfulness of B is immediate since B ⊆ A and A embeds (say) in its
universal C∗-envelope.

The fact that C is a C†-coalgebra is proven in [8]. �

3. Drinfeld doubles

In the following, we fix a CQG Doi-Koppinen datum (A,B,C, πC) of coideal
type as in Definition 2.13.

Consider the restricted and full dual

I ⊆ I = LinC(C,C) .

If H0 is a unitary Doi-Koppinen module, we obtain in particular a ∗-representation
π̂0 of I on H0. It interacts with the ∗-representation π0 of B as follows:

π̂0(x)π0(b)v = τ(b(1)v(1), x)π0(b(0))v(0) = π0(b(0))π̂0(x� b(1))v ,(3.1)
x ∈ I , b ∈ B, v ∈ V ,

where
τ(c, x� a) = τ(ac, x) , x ∈ I , a ∈ A, c ∈ C .

Note that � is simply the natural right A-module structure on the linear dual I
of C.

This leads us to make the following definition, introduced in [12]. It is a direct
modification of [6, 37] to the case of Hopf ∗-algebras.

Definition 3.1. We define D(B,I ) as the unital ∗-algebra generated by B and
I with interchange relation

xb = b(0)(x� b(1)) , x ∈ I , b ∈ B .

It is easily seen that we then also have

bx = (x� S−1
A (b(1)))b(0), x ∈ I , b ∈ B ,

and that the following multiplication maps are bijective:

B ⊗I → D(B,I ) , b⊗ x 7→ bx , I ⊗B → D(B,I ) , x⊗ b 7→ xb .

Now using that

(xy) � a = (x� a(1))(y � a(2)) , x, y ∈ I , a ∈ A ,

we see that

z(x� a)y = ((z � SA(a(1)))x(y � S−1
A (a(3)))) � a(2), a ∈ A, x, y, z ∈ I .

It follows that I is stable under �A, and so we obtain the following result.
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Proposition 3.2. Define D(B, I) := BI ⊆ D(B,I ). Then D(B, I) is a ∗-subal-
gebra, and moreover the following multiplication maps are bijective:

B ⊗ I → D(B, I) , b⊗ x 7→ bx , I ⊗B → D(B, I) , x⊗ b 7→ xb .

The following theorem states that D(B, I) governs the theory of Doi-Koppinen
modules.

Theorem 3.3. If H0 is a unitary Doi-Koppinen module, then the completion H
of H0 carries a non-degenerate ∗-representation of D(B, I) by

(3.2) πD(bx) := π(b)π̂(x) , b ∈ B, x ∈ I .

Conversely, if (H, πD) is a non-degenerate ∗-representation of D(B, I), then H0 :=
πD(I)H carries a unique structure of unitary Doi-Koppinen module such that (3.2)
holds.

The above sets up a one-to-one correspondence between locally complete unitary
Doi-Koppinen modules and non-degenerate ∗-representations of D(B, I).

Proof. We already know from Proposition 2.8 that this theorem holds on the
level of I-representations. By Proposition 2.14, we also know that indeed a
∗-representation π0 of B on a pre-Hilbert space H0 completes to a bounded
∗-representation on H.

If then H0 is a unitary Doi-Koppinen module, it follows directly from (3.1) that
(3.2) is a well-defined ∗-representation of D(B, I) on H. It is clearly non-degenerate,
since π̂0(I)H0 = H0.

Conversely, ifH is a a non-degenerate ∗-representation, it is only left to verify that
H0 = πD(I)H is stable under π(B). But this is again an immediate consequence
of (3.1). �

In general, we again as in (2.7) have that

(3.3) B HilbC → D(B,I) Hilb

is not an equivalence of ∗-categories. However, if we restrict the left hand side to
the category BH CC of unitary Harish-Chandra Doi-Koppinen modules, we do get
an equivalence upon its image, which we then also refer to as (the ∗-category of)
Harish-Chandra ∗-representations of D(B, I).

We similarly transport the notion of admissibility from Definition 2.12 to the
setting of ∗-representations of D(B, I). As to the notion of irreducibility, we have
the following lemma. Its proof is immediate by the fact that (3.3) respects and
reflects isometric inclusions.

Lemma 3.4. A locally complete unitary Doi-Koppinen module H0 is irreducible if
and only if H is irreducible as a D(B, I)-representation.

Proposition 3.5. There exists a universal C∗-envelope C∗(D(B, I)) of D(B, I),
into which D(B, I) embeds.

Proof. It is sufficient to prove that D(B, I) is uniformally C∗-bounded and
C∗-faithful.
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The uniform C∗-boundedness of D(B, I) is immediate, since both B and I are
(strongly) uniformly C∗-bounded.

To see that D(B, I) is C∗-faithful, we check that D(B, I) has a faithful ∗-represen-
tation on the pre-Hilbert space A with inner product

〈a, b〉 = ΦA(a∗b) , a, b ∈ A .

Indeed, consider on A the unitary Doi-Koppinen module structure

πA(b)a = ba , δA(a) = (id⊗πC)∆A(a) , a ∈ A, b ∈ B .

To verify that the associated ∗-representation πD of D(B, I) is faithful, consider
finitely many bi ∈ B and ωi ∈ I with

(3.4)
∑
i

bi(id⊗ωi)δA(a) = 0 , ∀a ∈ A .

Then since ∆A(A)(A⊗1) = A⊗A, multiplying (3.4) on the right with an arbitrary
a′ ∈ A shows that ∑

i

biaωi(c) = 0 , ∀a ∈ A, c ∈ C ,

hence
∑
i bi ⊗ ωi = 0. This implies the faithfulness of πD. �

Theorem 3.6. Assume every irreducible D(B, I)-representation is admissible.
Then C∗(D(B, I)) is type I.

Proof. It is sufficient to prove that every irreducible ∗-representation π of
C∗(D(B, I)) contains a compact operator (which may be taken as the definition of
being type I). But by admissibility, any element x ∈ I with π(x)H 6= {0} will give
a non-zero finite rank operator π(x) ∈ π(D(B, I)). �

We do not comment here on the monoidal structure that D(B,I) Hilb possesses.
Roughly speaking, it is obtained by upgrading the equivalence of Theorem 1.3 to
the analytic level. See [11, Section 2.2] for more details.

4. A general construction method

A common way to construct CQG Hopf ∗-algebras is as follows (on the abstract
level, this is really just an instance of the Tannaka-Krein duality [43]). We first
introduce the following notion.

Definition 4.1. Let U be a Hopf ∗-algebra. A finite-dimensional unital ∗-represen-
tation π̂ : U → B(Hπ̂) is called S2

U -compatible if there exists an invertible positive
Tπ̂ ∈ B(Hπ̂) such that

π̂(S2
U (x)) = Tπ̂π̂(x)T−1

π̂ , ∀x ∈ U .

Proposition 4.2. Let U be a Hopf ∗-algebra. Let F = {π̂} be a collection of
S2
U -compatible finite-dimensional unital ∗-representations of U . Then the unital
∗-algebra A = AF ⊆ LinC(U,C) generated by the matrix coefficients

Uπ̂(ξ, η) ∈ Lin(U,C) , x 7→ 〈ξ, π̂(x)η〉
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is a CQG Hopf ∗-algebra for the convolution ∗-algebra structure
τ(ab, x) = τ(a⊗ b,∆U (x)), τ(a∗, x) = τ(a, SU (x)∗) , a, b ∈ A, x ∈ U ,

and with the coproduct uniquely determined by
τ(∆A(Uπ̂(ξ, η)), x⊗ y) = 〈ξ, π̂(xy)η〉 , ξ, η ∈ Hπ̂ .

Definition 4.3. Under the assumptions of Proposition 4.2, a finite-dimensional
unital ∗-representation π̂ of U is said to be of F -type if Uπ̂(ξ, η) ∈ A for each
ξ, η ∈ Hπ̂. More generally, we call a ∗-representation π̂0 of U on a pre-Hilbert space
H0 of F -type if
• Hξ := π̂0(U)ξ is finite-dimensional for each ξ ∈ H0, and
• the restriction of π̂0 to each Hξ is of F -type.

We call A the Hopf ∗-algebra of F -type matrix coefficients.

There is then a one-to-one correspondence between F -type ∗-representations
(H0, π̂0) of U and unitary A-comodules (H0, δ0), the correspondence being that
(4.1) π̂0(x)ξ = (id⊗τ(−, x))δ0(ξ) , x ∈ U, ξ ∈ H0.

Alternatively, if we denote U the full dual of A, then we obtain a unital ∗-algebra
homomorphism
(4.2) U → U , x 7→ τ(−, x) ∈ LinC(A,C) ,
and it is easily seen that (4.1) is just the factorisation through this ∗-homomorphism
of the U -representation determined by (2.4).

The above set-up also gives a convenient way to construct unitary Doi-Koppinen
data of coideal type [8, 32].

Proposition 4.4. Assume that U is a Hopf ∗-algebra, and assume A = AF is a
CQG Hopf ∗-algebra as above. Assume that I is a left coideal ∗-subalgebra of U .
Then the coimage πC : A � C of
(4.3) A→ LinC(I,C), a 7→ τ(a,−)|I
defines a left A-module quotient †-coalgebra (C, πC) of A. Moreover, if B = CA,
then
(4.4) B = {b ∈ A | ∀x ∈ I : τ(b(1), x)b(2) = εU (x)b} .

Remark 4.5. By the second part of Proposition 2.14, we know that C is in
particular cosemisimple, allowing us to apply Theorem 1.3. Hence we can identify
C with A/AB+ through the natural quotient map.

We can also lift the construction of the Drinfeld double to this setting.

Definition 4.6. Assume the set-up of Proposition 4.4. We define D(B, I) to be
the universal ∗-algebra generated by copies of B, I with interchange relations

xb = τ(b(1), x(−1))b(0)x(0) , x ∈ I, b ∈ B .

We then have again bijectivity of the multiplication maps
B ⊗ I ∼= D(B, I) , I ⊗B ∼= D(B, I) .
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Definition 4.7. A ∗-representation π̂0 of I on a pre-Hilbert space H0 is of F -type
if
• Hξ := π̂0(I)ξ is finite-dimensional for each ξ ∈ H0, and
• Each resulting restriction π̂0,ξ : I → B(Hξ) is isomorphic to an I-subrepresen-

tation of an F -type ∗-representation (G0, θ̂0) of U :

Hξ ⊆ G0 , π̂0,ξ(x) = θ̂0(x) , ∀x ∈ I .

We call a ∗-representation of D(B, I) on a pre-Hilbert space of F -type if the
underlying I-representation is of F -type.

Theorem 4.8. Assume U is a Hopf ∗-algebra, and F = {π̂} a collection of
S2
U -compatible finite-dimensional unital ∗-representations of U . Assume I is a

left coideal ∗-subalgebra of U , and let (AF , B,C, πC) be the associated unitary
Doi-Koppinen datum of coideal type as above.

Then there is a one-to-one correspondence between
• F -type ∗-representations of D(B, I), and
• unitary Doi-Koppinen modules for (AF , B,C, πC).

Proof. Let us first note that there is a one-to-one correspondence between F -type
∗-representations (H0, π̂0) of I and unitary right C-comodules (H0, δ0). Indeed,
starting from the latter, we obtain by definition of C a well-defined ∗-representation
of I through

(4.5) π̂0(x)ξ =
(

id⊗τ(−, x)
)
δ0(ξ) , x ∈ I ξ ∈ H0 .

Then clearly each Hξ = π̂0(I)ξ is finite-dimensional.
To see that π̂0 is of F -type, it is enough to consider the case where (H0, δ0) is

finite-dimensional and irreducible. Then by virtue of C being a quotient coalgebra
of A, we can find a finite-dimensional F -type ∗-representation ρ̂ of U such that

{(ξ∗ ⊗ id)δ0(η) | ξ, η ∈ V } ⊆ {πC(Uρ̂(ξ, η)) | ξ, η ∈ Hρ̂} .

But this means that π̂0 factors throught ρ̂(I), which by irreducibility of π̂0 is the
same as π̂0 being a ∗-subrepresentation of ρ̂|I .

Conversely, we note that if π̂0 is an F -type ∗-representation of I, we get by
definition that there exists for each ξ ∈ H0 a unitary right C-comodule structure
δξ : Hξ → Hξ ⊗ C such that

π̂0(x)π̂0(y)ξ =
(

id⊗τ(−, x)
)
δξ
(
π̂0(y)ξ

)
, ∀x, y ∈ I .

However, by definition of C this comodule structure is then uniquely determined
by this condition. It is then straightforward to conclude that

δ0 : H0 → H0 ⊗ C , ξ 7→ δξ(ξ)

is a well-defined unitary C-comodule structure, related to π̂0 via (4.5).
The theorem is now easily concluded by noticing that if (H0, π̂0) is an F -type

∗-representation of I with associated C-comodule δ0 : H0 → H0⊗C, and π0 : B →
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End(H0) is a unital ∗-representation, then

π̂0(x)π0(b)ξ = τ(b(1), x(−1))π0(b(0))π̂0(x(0))ξ for all x ∈ I, b ∈ B, ξ ∈ H0

⇐⇒ (bξ)(0) ⊗ (bξ)(1) = b(0)ξ(0) ⊗ b(1)ξ(1) for all b ∈ B, ξ ∈ H0 .

�

Let us now say that a D(B, I)-representation of F -type is locally complete if its
associated unitary Doi-Koppinen module is locally complete. Then by combining
Theorem 4.8 with Theorem 3.3, we obtain the following corollary.

Corollary 4.9. There is a one-to-one correspondence between locally complete
F -type ∗-representations of D(B, I), and non-degenerate ∗-representations of
D(B, I).

Similarly, let us say that an F -type ∗-representation of D(B, I) is admissible if
each of its irreducible I-subrepresentations has finite multiplicity. Then we have
the following compatibility between a priori different notions of irreducibility.

Proposition 4.10. Assume that (H0, θ0) is an admissible F -type D(B, I)-repre-
sentation. Then the associated D(B, I)-representation (H, θ) is irreducible if and
only if (H0, θ0) is irreducible as a D(B, I)-module.

Proof. This follows from the fact that, by admissibility, any D(B, I)-submodule
of H0 is automatically locally complete, leading to a one-to-one correspondence
between closed D(B, I)-stable subspaces V ⊆ H and D(B, I)-stable subspaces
V0 ⊆ H0 through

V 7→ V0 := V ∩H0 . �

Example 4.11. We can fit Example 1.4 into the setting of this section as follows.
Let U be a Hopf ∗-algebra, and let F = {π̂} be a collection of S2

U -compatible
finite-dimensional unital ∗-representations of U . Let H = HF be the associated
CQG Hopf ∗-algebra of matrix coefficients.

If U cop is U with the opposite coproduct, its antipode is given by SUcop = S−1
U .

Hence F := {π̂} is still a collection of SUcop-compatible ∗-representations. The
associated CQG Hopf ∗-algebra of matrix coefficients is given by the same vector
space H ⊆ LinC(U,C), but now endowed with the opposite product and the new
∗-structure

h? := S2
H(h)∗, h ∈ H .

We denote this CQG Hopf ∗-algebra as Hop.
Consider now the tensor product Hopf ∗-algebra T = U ⊗ U cop, together with

its family of S2
T -compatible ∗-representations G := {π̂ ⊗ θ̂ | π̂, θ̂ ∈ F}. Then the

associated CQG Hopf ∗-algebra of matrix coefficients is the tensor product Hopf
∗-algebra A := H ⊗Hop, together with its natural pairing with T .

If we now consider

∆: U → T , x 7→ x(1) ⊗ x(2) ,
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it is easily seen that I := ∆(U) is a left coideal ∗-subalgebra of T . The associated
quotient A-module C†-coalgebra is still given through the map

πH : A→ H , h⊗ k 7→ hk , h, k ∈ H ,

where H is endowed with its natural C†-structure
h† = SH(h)∗, h ∈ H .

Through (1.6), we can then again realize H as a right coideal subalgebra of A, now
with compatible ∗-structure.

If we compute the associated Drinfeld double coideal D(H,U) as in Definition
4.6, we see that it is generated by the ∗-algebras H,U with commutation relations

xh = τ(h(3) ⊗ S−1
H (h(1)), x(1) ⊗ x(3))h(2)x(2)

= τ(S−1
H (h(1)), x(3))h(2)x(2)τ(h(3), x(1)) , x ∈ U, h ∈ H .

So, D(H,U) coincides with the usual Drinfeld double between the paired Hopf
∗-algebras H,U .

5. Quantization of symmetric pairs

Let g be a complex semisimple Lie algebra. By the fundamental work of [20, 23],
the universal enveloping algebra U(g) of g can be quantized, leading to a Hopf
algebra Uq(g) depending on a parameter q. For our purposes, we already fix the
condition that

q real with 0 < q < 1 ,
as this will be important later on when considering associated ∗-structures. (The
condition 1 < q would also be allowed, but can be reduced to the case q < 1 by
symmetry.)

The precise form of Uq(g) that we will consider is as follows: we fix a Cartan
subalgebra and Borel subalgebra

h ⊆ b ⊆ g ,

and we let Q be the associated root lattice with
• associated root system ∆ ⊆ Q,
• associated positive roots ∆+ ⊆ ∆, and
• associated positive simple roots I = {α1, . . . , α`} ⊆ ∆+.

We denote the associated weight lattice by P ⊇ Q, and we fix a positive-definite
form (−,−) on Q ⊗Z R which is invariant under the Weyl group W and such
that short roots α satisfy (α, α) = 2. We then write dr = (αr, αr)/2, and write
α∨ = 2α/(α, α) for the associated coroots. We let A = (ars)rs be the associated
Cartan matrix under the convention

ars = (α∨r , αs) , 1 ≤ r, s ≤ ` .
We also write

qr = qdr , [n]qr = qnr − q−nr
qr − q−1

r

, [n]qr ! = [1]qr . . . [n]qr ,
(
m

n

)
qr

= [m]qr !
[n]qr ![m− n]qr !

.
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The precise conventions that we follow are then:

Definition 5.1. We define Uq(g) as the universal algebra generated by elements
Kω for ω ∈ P , as well as elements Er, Fr for 1 ≤ r ≤ `, satisfying:
• KωKχ = Kω+χ and K0 = 1 for ω, χ ∈ P ,
• KωEr = q(ω,αr)ErKω and KωFr = q−(ω,αr)KωFr for ω ∈ P and 1 ≤ r ≤ `.

• ErFs − FsEr = δrs
Kαr−K

−1
αr

qr−q−1
r

for 1 ≤ r, s ≤ `, and
• The quantum Serre relations for all 1 ≤ r 6= s ≤ `:

1−ars∑
t=0

(−1)t
(

1− ars
t

)
qr

EtrEsE
1−ars−t
r = 0 ,

1−ars∑
t=0

(−1)t
(

1− ars
t

)
qr

F trFsF
1−ars−t
r = 0 .

We endow it with the unique Hopf algebra structure such that

∆(Kω) = Kω⊗Kω , ∆(Er) = Er⊗1+Kαr ⊗Er , ∆(Fr) = Fr⊗K−1
αr +1⊗Fr ,

with counit and antipode determined by

ε(Kω) = 1 , ε(Er) = ε(Fr) = 0 ,

S(Kω) = K−ω , S(Er) = −K−1
αr Er , S(Fr) = −FrKαr .

We write
• Uq(h) for the algebra generated by the Kω,
• Uq(b) for the algebra generated by the Kω and Er, and
• Uq(b−) for the algebra generated by the Kω and Fr.

These subalgebras are again universal with respect to the relations above involving
them, and define natural Hopf subalgebras of Uq(g).

We can turn Uq(g) into a Hopf ∗-algebra by putting

K∗ω = Kω, E∗r = FrKαr , F ∗r = K−1
αr Er .

We write this Hopf ∗-algebra as Uq(u). Indeed, in the classical limit one has that ∗
determines an anti-linear Lie algebra involution ∗ : g→ g such that the real Lie
algebra

u := {X ∈ g | X∗ = −X}
is a compact real form of g. We then also write t = u ∩ h.

Definition 5.2. A finite-dimensional unital ∗-representation π̂ : Uq(u)→ B(Hπ̂)
is called type 1 if π(Kω) is a positive operator for all ω ∈ P .

It is immediate that type 1-representations are S2-compatible, since S2 =
Ad(K−2ρ) with

ρ = 1
2
∑
α∈∆+

α .
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Now if Hπ̂ is a type 1-representation, there exists a joint eigenbasis for the π̂(Kω).
If ξ is such an eigenvector, we can uniquely write

π̂(Kω)ξ = q(χ,ω)ξ , ∀ω ∈ P ,

for some χ ∈ R⊗Z Q. We call χ = wt(ξ) the weight of ξ.

Definition 5.3. Assume Q ⊆ F ⊆ P is a lattice. We say that a finite-dimensional
unital ∗-representation of Uq(u) is of F -type if any of its weight vectors has weight
in F .

For example, it can be shown that any type 1-representation is of type P . In
general, we write

A := Oq(UF )
for the Hopf ∗-algebra of F -type matrix coefficients, see Definition 4.3.

Note that this definition has a natural classical analogue, in which O(UP ) is the
algebra of regular functions on the unique connected, simply connected compact
Lie group UP = Usc integrating u, while O(UQ) ⊆ O(UP ) is the one attached to
the quotient UQ = Uad = Usc/Z(Usc), the adjoint Lie group associated to u.

We use the same notations for the complexification GF of UF , where Oq(GF ) is
simply viewed as Oq(UF ) with the ∗-structure forgotten.

Continuing our notation from (4.2), we will then also write the linear dual of
Oq(UF ) as

U F
q (u) = Lin(Oq(UF ),C) .

For any such F , we obtain an embedding of ∗-algebras

Uq(u) ⊆ U F
q (u) .

Assume now that we are given a subset of the simple roots,

X ⊆ I .

Then we can consider gX ⊆ g as the Lie algebra generated by the root vectors
associated to X. We denote ∆X ⊆ ∆ for the roots obtained from the root vectors
of g inside gX . Then ∆X provides a copy of the root system of gX . We denote
∆+
X = ∆X ∩∆+. We denote by WX ⊆W the Weyl group generated by the simple

roots in X, and by wX its longest word. Finally, we denote

δ∨X = 1
2
∑
α∈∆+

X

α∨.

Definition 5.4. A Satake diagram for g (with fixed root data) consists of
• a subset X ⊆ I and
• an involution τ : I → I, αr 7→ τ(αr) = ατ(r),

such that
• τ preserves the bilinear form on I ⊆ Q,
• τ preserves X, and coincides on it with the action of −wX , and
• (α, δ∨X) ∈ Z for all α ∈ I \X with τ(α) = α.
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Satake diagrams are encoded on top of a Dynkin diagram by indicating the
nodes in X as black dots, and by indicating which nodes in I \X get swapped
under τ . An example of such a Satake diagram with underyling Dynkin diagram of
type A is given by

(5.1)

1 p

`

Satake diagrams allow one to construct involutive Lie algebra automorphisms of
u. More precisely, if we linearly extend τ and consider

Θ: Q→ Q, α 7→ −wXτ(α) ,

then there exists an involutive automorphism θ = θ(X, τ) of u whose complex
linear extension to g permutes the root spaces as

θ(gα) = gΘ(α) .

Moreover,
• any other such θ′ is inner conjugate to θ by an element of T = exp(t) ⊆ Gsc,

so
θ′ = Ad(t) ◦ θ ◦Ad(t)−1 , t ∈ T ,

and
• any involutive Lie algebra automorphism of u is inner conjugate to θ(X, τ)

for a unique (X, τ).
We will refer to any such θ(X, τ) as a Satake automorphism of u (with respect to
the fixed root data).

Definition 5.5. If k is any Lie subalgebra of u, we call k ⊆ u a symmetric pair if
there exists a Lie algebra involution θ : u→ u such that

k = uθ = {X ∈ u | θ(X) = X} .

We call k ⊆ u a symmetric pair of Satake type if θ is a Satake automorphism.

For example, the Satake diagram in (5.1) encodes the inclusion

s(u(p)⊕ u(q)) ⊆ su(p+ q), p+ q = `+ 1.

As any Lie algebra involution of u will preserve the associated inner product
coming from the Killing form on g, it follows that k completely remembers θ, with
the −1-eigenspace u−θ = k⊥. When quantizing, the primary focus will then be on
the quantization of k ⊆ u, while the role of θ becomes less pronounced.

The quantization of arbitrary symmetric pair Lie algebras was established by
G. Letzter [29], with prior approaches for the classical types considered in e.g.
[4, 16, 18, 33, 34]. Subsequently, a generalisation to the Kac-Moody case was
established in [25] (see also the introduction of that paper for more details on the
history of these concepts).
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The main new feature that arises in these constructions, is that the subsequent
quantization Uq(k) ⊆ Uq(u) is no longer a Hopf ∗-subalgebra, but only a left or
right coideal ∗-subalgebra - the choice of left vs. right is purely one of convention.
Moreover, at least in the case where k has non-trivial center, there are some extra
parameters that can be introduced in the quantization of Uq(k), corresponding to
moving k away from its Satake position in a particular specified direction [14].

Before we move on to the precise construction of Uq(k), we make the following
comments:
• As mentioned, one has a version of Uq(k) as a left or as a right coideal
∗-subalgebra. One can canonically pass between the two choices using the
unitary antipode R : Uq(u)→ Uq(u), which is a ∗-preserving anti-multiplicative,
anti-comultiplicative involution determined by

R(Kω) = K−ω , R(Er) = −qrK−1
αr Er , R(Fr) = −q−1

r FrKαr .

The unitary antipode is simply a rescaling of the usual antipode S as to become
compatible with the ∗-structure. If then I is a left coideal ∗-subalgebra, we
obtain J = R(I) as a right coideal ∗-subalgebra, and vice versa.

• In the original works on quantum symmetric pairs, the ∗-structure does not
play any significant role, and compatibility with it was not considered, or not
an essential requirement. However, it is crucial that our coideals are ∗-invariant
to make the connection to the operator algebraic framework. We refer to [13,
Section 4] for a discussion on this.

Let us now introduce the particular form of Uq(k) that we will be interested in,
following [13, Section 4] (in particular, we do not consider the extra deformation
parameters). Fix a Satake diagram (X, τ), and choose a function
z : I → {±1} , zr = 1 when (αr, δ∨X) ∈ Z , zrzτ(r) = −1 when (αr, δ∨X) /∈ Z .

Such a function always exists, and its precise choice is not essential: different choices
will create coideal ∗-subalgebras which can be transformed into each other under a
Hopf ∗-algebra isomorphism of Uq(u) rescaling the generators Er, Fr by unimodular
numbers.

Recall further that the Lusztig braid operators are particular elements Tr ∈
U P
q (u) for r ∈ I, determined by

Trξ =
∑

a,b,c≥0
−a+b−c=(wt(ξ),α∨r )

(−1)bqb−acr

[a]qr ![b]qr ![c]qr !
EarF

b
rE

c
rξ, ξ ∈ Hπ̂ a type 1 ∗-representation.

They are invertible, and determine algebra automorphisms of Uq(u) through

Ad(Tr)(x) = TrxT
−1
r , x ∈ Uq(u) ⊆ U P

q (u) .
If then X ⊆ I and wX = sr1 . . . srn is the longest element in the Weyl group WX ,
we can form the automorphism

Ad(TwX ) = Ad(Tr1) ◦ . . . ◦Ad(Trn)
of Uq(g), which turns out to be independent of the choice of decomposition of wX .
We can now state:
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Definition 5.6. We define Uq(k) ⊆ Uq(u) to be the unital subalgebra of Uq(u)
generated by
• the elements Er, Fr for r ∈ X,
• the elements Kω for ω ∈ P with ω = Θ(ω), and
• the elements2

Br = Er + q(α+
r ,α

+
r )YrKαr , r ∈ I \X ,

where

Yr = −zτ(r) Ad(TwX )(Fτ(r)) , α+ = 1
2
(
α+ Θ(α)

)
.

Proposition 5.7. The subalgebra Uq(k) ⊆ Uq(u) is a left coideal ∗-subalgebra.

Proof. The coideal property can be proven along the lines of e.g. [25, Proposition
5.2], see also the discussion in [13, Section 4]. The ∗-invariance follows from [13,
Lemma 4.23], see also [5, Proposition 4.6]. �

Example 5.8. Consider g = sl(2,C). Then we have associated to this the Satake
diagram (∅, id), giving the symmetric pair so(2) ⊆ su(2), with so(2) generated by
E − F . The associated quantized enveloping algebra is given by

Uq(so(2)) = C[B] , B = E − FK = E − E∗.

The first detailed study of this case was carried out in [26].

Example 5.9. If we consider u⊕ u with simple roots labeled by I t I ′, then we
can associate to it the Satake diagram (∅, τ) with τ flipping the nodes:

τ(r) = r′, τ(r′) = r .

Classically, the resulting inclusion is the diagonal inclusion

u ⊆ u⊕ u .

In the quantized setting, we get that

Uq((u⊕ u)θ) ⊆ Uq(u⊕ u) = Uq(u)⊗ Uq(u)

is generated by all

Kω ⊗K−1
ω , Er ⊗ 1− qrKαr ⊗ Fr , 1⊗ Er − qrFr ⊗Kαr .

If we now apply to this the Hopf ∗-algebra isomorphism

id⊗κ : Uq(u)⊗ Uq(u)→ Uq(u)⊗ Uq(u)cop ,

κ(Kω) = K−1
ω , κ(Er) = −qrFr , κ(Fr) = −q−1

r Er ,

we see that we are back in the situation of Example 4.11.

2Note that in [13], these elements were denoted as Cr.
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6. Quantization of semisimple algebraic real Lie groups

Resume the setting of the previous section. Given an involution θ of u, we can
construct a new real Lie subalgebra of g by putting

l = lθ := {X ∈ g | X∗ = −θ(X)} .
Then l will be a semisimple real Lie algebra, and any semisimple real Lie algebra
arises in this way. In fact, we see immediately that

k = l ∩ u ⊆ g ,

and this results into bijections
∗-stable real semisimple Lie subalgebras l ⊆ g ↔ symmetric pairs k ⊆ u ,

known as Cartan duality. In particular, real semisimple Lie algebras can also be
encoded by Satake diagrams (although some care is needed in stating equivalences
between Satake diagrams). The diagram in (5.1) for example encodes the real Lie
algebra su(p, q).

Assume now that we have chosen a lattice Q ⊆ F ⊆ P , and let UF ⊆ GF be the
associated Lie groups. If θ = θ(X, τ) is a Satake involution such that τ(F ) = F ,
then θ can be integrated to a (complex) Lie group involution

θ : GF → GF , θ(UF ) = UF .

In particular, we can consider
LF = LθF := {g ∈ GF | g∗ = θ(g)−1} ,

which will be a Lie subgroup of GF with l as its Lie algebra. If F = P , then LP
will be connected, but this need not be the case in general, e.g. one can consider
(with respect to the properly chosen Cartan system) the inclusion SO(m,n) ⊆
SO(m+ n,C) for m,n ≥ 1, arising from the involution

θ : x 7→
(
Im 0
0 −In

)
x

(
Im 0
0 −In

)
.

Following now the notations of (4.3) and (4.4), we have associated to Uq(k) the
quotient left Oq(UF )-module coalgebra

πKF : Oq(UF )→ Oq(KF )
arising as the coimage of the map
πKF : Oq(UF )→ LinC(Uq(k),C), Uπ̂(ξ, η) 7→ (x 7→ 〈ξ, π̂(x)η〉) ,

π̂ of F -type, ξ, η ∈ Hπ̂, x ∈ Uq(k) ,
and the associated right coideal ∗-subalgebra

Oq(KF \UF ) =
{Uπ(ξ, η) ∈ Oq(UF ) | π̂ of F -type, ξ, η ∈ Hπ̂, xξ = ε(x)ξ for all x ∈ Uq(k)} .

We also write
Uq(KF ) := restricted dual of Oq(KF ) ,

cf. Definition 2.7.
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Recall now Definition 4.6 and the definitions given in Proposition 3.2 and
Proposition 3.5.

Definition 6.1. We define the quantized enveloping algebra of l to be
(6.1) Uq(l) := D

(
Oq(KP \UP ), Uq(k)

)
.

We define the quantized convolution algebra of LF to be
(6.2) Uq(LF ) = D

(
Oq(KF \UF ),Uq(KF )

)
.

We define the universal group C∗-algebra of LF to be
(6.3) C∗q (LF ) = C∗

(
Uq(LF )

)
.

This requires a word of explanation. Recall that if we consider g as a real Lie
algebra and put

g = u⊕ a⊕ n

for the associated Iwasawa decomposition, then (g, u, a⊕ n) has the structure of a
Manin triple (see e.g. [7]). We can then view the associated Iwasawa decomposition

GF = UFAFNF

of GF as a particular integrated version (GF , UF , AFNF ) of this Manin triple. By
Drinfeld duality [20, 22], this means that we should interpret Oq(UF ) as a quantized
enveloping algebra of a⊕n, or more accurately as a quantized convolution ∗-algebra
Uq(AFNF ) of AFNF (meaning a quantization of the convolution ∗-algebra of
compact support functions on AFNF ).

Now as l ⊆ g was chosen to be in Satake form, it follows that the Iwasawa
decomposition of l is obtained immediately from the one for g:

l = k⊕ a0 ⊕ n0 , k = u ∩ l , a0 = a ∩ l , n0 = n ∩ l .

If we then consider the associated integrated Iwasawa decomposition
LF = KFA

0
FN

0
F ,

another instance of Drinfeld duality, this time for the coisotropic Lie subalgebra
k ⊆ u [9, 21], allows us to view

Oq(KF \UF ) = Uq(A0
FN

0
F ) .

It is now clear that (6.1) and (6.2) may be seen more precisely as quantizations of
U(l), resp. U(LF ), together with their Iwasawa decomposition. Here U(LF ) is to be
seen as those functions in the convolution ∗-algebra of compact support functions
on LF that generate a finite-dimensional subspace when translated from the left
(or right) with UF .

The precise way in which Uq(LF ) gives rise to U(LF ) in the classical limit will
not be dealt with here.

We believe the above setup to be the appropriate one for the quantization
of (linear, algebraic) semisimple real Lie groups. For example, when viewing the
constructions of Definition 2.12 for the triple(

Oq(UF ),Oq(KF \UF ),Oq(KF )
)
,
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one immediately gets the appropriate notions for the corresponding ones in the
classical setting of semisimple real Lie groups. We also stress that, although Uq(l) or
Uq(LF ) do not have any Hopf algebra structure themselves (for example Uq(l) is only
a left coideal inside the Drinfeld double D(Oq(UP ), Uq(u))), there is nevertheless a
monoidal structure on the representation category

Repq(LF ) := Rep∗
(
C∗q (LF )

)
,

as elaborated on in [11, Section 2.2].
At the moment, there are still some natural extensions of the classical theory to

be considered:
• A theory of induction from quantum parabolic subalgebras needs to be

developed. Here there are two questions to address:
– What are the appropriate general quantum parabolic subalgebras to

consider in the case of Uq(l)?
– How to correctly implement the associated induction of ∗-representations

on the operator algebraic level? This question can already be addressed
directly for the quantum parabolic subalgebra Oq(KF \UF ) (i.e. the
construction of principal series representations).

• Through the formalism of [11], a natural weight should become available on
C∗q (LF ). It should then be feasible to obtain an associated Plancherel formula
for C∗q (LF ). The case of LF = SL(2,R) is currently being examined by the
author and J. Dzokou Talla.

• A classification, or at least a construction of large classes of irreducible repre-
sentations of the C∗q (L) should be feasible through either classical techniques,
or by constructions accessible only in the quantum realm. For LF = SL(2,R),
a full classification was achieved in [12].

One question that should be feasible to answer quite directly, is whether any
irreducible ∗-representation of Uq(l) is admissible. Unfortunately, a resolution of
this problem could not be obtained in time for the submission of this article.

Note that for the diagonal inclusion considered in Example 5.9, we find through
Example 4.11 that the above considerations become the ordinary ones for the usual
Drinfeld double of Uq(g) and Oq(UP ). In this case, the resulting ∗-algebra Uq(gR)
will quantize the complex Lie algebra g as a real Lie algebra, and will be equipped
with a coproduct (as a Drinfeld double of Hopf ∗-algebras). In this case, the above
questions have been almost fully answered through the works of [2, 3, 39, 40].
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