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BRAIDED COPRODUCT, ANTIPODE AND ADJOINT ACTION
FOR Uq(sl2)

Pavle Pandžić and Petr Somberg

Abstract. Motivated by our attempts to construct an analogue of the
Dirac operator in the setting of Uq(sln), we write down explicitly the braided
coproduct, antipode, and adjoint action for quantum algebra Uq(sl2). The
braided adjoint action is seen to coincide with the ordinary quantum adjoint
action, which also follows from the general results of S. Majid.

1. Introduction

The motivation for the results in this article comes from our attempts in [10] to
write down a Dirac element D in the tensor product of Uq(sln) and the appropriate
Clifford algebra, at least for n = 3. The properties we would like D to have are the
same ones that its classical analogue has. (See also [11] where this was achieved for
n = 2.)

To recall the classical setting, let G be a real reductive Lie group with a Cartan
involution Θ and the corresponding maximal compact subgroup K = GΘ. Let
g = k ⊕ p be the (Cartan) decomposition of the complexified Lie algebra g of G
into eigenspaces of θ = dΘ, so that k is the complexified Lie algebra of K and p is
the (−1)-eigenspace of θ.

Let B be a non-degenerate invariant symmetric bilinear form on g (e.g. the
Killing form or the trace form). Then B is nondegenerate on p; let C(p) be the
corresponding Clifford algebra. If bi is a basis of p and if di is the dual basis, then
Parthasarathy [12] defined the Dirac operator as

D =
∑

bi ⊗ di ∈ U(g)⊗ C(p) .

Then D is independent of the choice of the basis bi and K-invariant for the adjoint
action on both factors. Moreover, its square is the spin Laplacian

D2 = −Casg + Cas∆(k) +‖ρk‖2 − ‖ρg‖2.
Here ∆: k→ U(g)⊗ C(p) is defined on X ∈ k by

∆(X) = X ⊗ 1 + 1⊗ α(X) ,
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where α : k→ C(p) is defined by

k→ so(p) ∼=
∧2(p) ↪→ C(p) ,

with the first arrow being the action map, and the last arrow being the Chevalley
map (also called the quantization map, or the skew symmetrization map).

For more subtle properties of D and its action on (spinorized) Harish-Chandra
modules, like Vogan’s conjecture, see [2], [3] and [13].

The setting for quantizing the above situation is obtained by replacing U(g) by
Uq(g) and U(k) by Uq(k), and then defining p to be an appropriate subspace of Uq(g)
invariant under the (quantum) adjoint action of Uq(k) ⊂ Uq(g). It turns out that
“quantizing” the Clifford algebra C(p) does not change its algebra structure due to its
rigidity, and we get a map αq : Uq(k)→ C(p) since C(p) is the endomorphism ring
of the spin module S, which is a k-module and thus also a Uq(k)-module. Similarly,
C(p) is also a Uq(k) module, and the map αq is a morphism of Uq(k)-modules.

To obtain a diagonal mapping ∆q : Uq(k)→ Uq(g)⊗C(p) analogous to the above
map ∆, a reasonable idea would be to use the coproduct 4 : Uq(k)→ Uq(k)⊗Uq(k)
followed by id⊗α. This is however problematic, since the coproduct is not a
Uq(k)-module map for the adjoint action. Also, we can define D ∈ Uq(g) ⊗ C(p)
similarly as in the classical situation, but computing D2 := D ◦D does not simplify
nicely as in the classical case if we use the ordinary tensor product algebra structure
on Uq(g)⊗ C(p).

All of the above problems disappear if we use the braided structures. More preci-
sely, we consider the braided tensor product algebras Uq(g)⊗C(p) and Uq(k)⊗Uq(k),
and to define the diagonal map ∆q we use the braided coproduct 4 : Uq(k) →
Uq(k)⊗Uq(k) instead of the ordinary coproduct 4 : Uq(k)→ Uq(k)⊗ Uq(k). These
definitions are due to S. Majid; see [6], and also [5], [7], [8] and [9].

The ordinary quantum adjoint action is also replaced by its braided version,
which however turns out to be the same as the ordinary one. We will demonstrate
this phenomenon explicitly, but it also follows from the general results of Majid,
[5], Appendix. In that article one identifies B = Uq(sln) as the vector space with
braided group BUq(sln), so that the braided adjoint action becomes the usual
quantum adjoint action as a Hopf algebra. The proof of this fact explicitly follows
from general reconstruction theory arguments, and is presented in [5] in terms
of the adjoint coactions rather than the adjoint action, but one can just turn all
diagrams upside down for adjoint actions.

Since our first example is g = sl(3,C), k = gl(2,C), and since gl(2,C) is very
similar to sl(2,C), we set out to understand the braided structure for sl(2,C) in
detail. The result of this endeavor is the present article. Essentially, all the results
we obtain are known by the work of Majid. We however believe that having all
the formulas (including the ones with infinite q-expansion) explicitly written down,
with elementary proofs and gathered in one place, will be of sufficient interest to
the readers to justify writing this article.

Acknowledgement. P. Pandžić was supported by the QuantiXLie Centre of
Excellence, a project cofinanced by the Croatian Government and European Union
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Cohesion Operational Programme (KK.01.1.1.01.0004). P. Somberg was supported
by grant GAČR 22-00091S.

2. Notation and conventions

We follow the conventions and notation from [4]. Let q be a fixed complex
number not equal to 0 or ±1. We also assume q is not a root of unity.

Let Uq(sl2) = Uq(sl(2,C)) be the associative unital algebra over C generated by

K, K−1, E, F ,

with relations

KK−1 = 1 = K−1K;
KE = q2EK, KF = q−2FK;

EF − FE = K−K−1

q−q−1 .

The Hopf algebra structure on Uq(sl2) is given as follows. The coproduct is the
algebra homomorphism

4 : Uq(sl2) −→ Uq(sl2)⊗ Uq(sl2)

given on generators by

4(K±1) = K±1 ⊗K±1,

4(E) = E ⊗K + 1⊗ E ,
4(F ) = F ⊗ 1 +K−1 ⊗ F .

We will use the Sweedler notation and write

4(u) =
∑

u(1) ⊗ u(2)

for any u ∈ Uq(sl2).
The counit is the algebra homomorphism ε : Uq(sl2)→ C given on generators by

ε(K) = ε(K−1) = 1 , ε(E) = ε(F ) = 0 .

The antipode S is the antiautomorphism of the algebra Uq(sl2) given on genera-
tors by

S(K) = K−1, S(K−1) = K ,

S(E) = −EK−1, S(F ) = −KF .

The quasi-triangular structure on Uq(sl2) is given by the R-matrix

R = q
1
2H⊗H

∞∑
n=0

q
n(n+1)

2
(1− q−2)n

[n]q!
(En ⊗ Fn)

=
∞∑
n=0

∞∑
l=0

( ln(q)
2 )l 1

l!q
n(n+1)

2
(1− q−2)n

[n]q!
(H lEn ⊗H lFn) ,(2.1)
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where [n]q! is the q-factorial of n ∈ N, i.e., [n]q! = [n]q[n− 1]q . . . [1]q with [n]q =
qn−q−n
q−q−1 , and [0]q! = 1. In particular, the coefficient q

n(n+1)
2

(1−q−2)n
[n]q ! equals to 1,

q − q−1 and q(q−q
−1)2

q+q−1 for n = 0, n = 1 and n = 2, respectively.
The R-matrix lives in a suitable completion of Uq(sl2), which also contains an

element H = ln(K)/ ln(q) such that qH = K. We can think of H as the standard
element of the Cartan subalgebra of the classical sl2. It satisfies the usual sl2
commutation relations with E and F , and also

4(H) = H ⊗ 1 + 1⊗H ; S(H) = −H .

We denote R =
∑
R1 ⊗ R2 ∈ Uq(sl2) ⊗ Uq(sl2) and use the notation R̂ for the

composition T ◦R, where T is the flip a⊗ b 7→ b⊗ a.
For every quasi-triangular Hopf algebra H one can define its braided group

analogue H, called the transmutation of H, cf. [8]. The transmuted Hopf algebra
H has the same algebra structure and the same counit as H, but the coproduct
4 and antipode S of H are changed to the braided coproduct 4 and the braided
antipode S, respectively:

4(a) =
∑

a(1)S(R2)⊗R1 . a(2) ,(2.2)

Sa =
∑

R2S(R1 . a) .(2.3)

Here b . a denotes the left (quantum) adjoint action of b on a:

b . a = adb(a) =
∑

b(1)aS(b(2)) .

For a given Hopf algebra H, the coproduct 4 : H → H ⊗ H is an algebra map
which is however not an H-module map for the adjoint action ad. On the other
hand, the braided coproduct 4 : H → H⊗H is an H-module algebra map for the
braided adjoint action ad. Here the braided tensor product algebra structure on
H⊗H (which is equal to H ⊗H as a vector space) is given by

(a1⊗b1) · (a2⊗b2) = a1R̂(b1 ⊗ a2)b2 , a1, a2, b1, b2 ∈ H ,

and the braided adjoint action of H on itself is given by
adX(Y ) = ·2 ◦ (Id⊗R̂) ◦ (Id⊗S ⊗ Id) ◦ (4⊗ Id)(X ⊗ Y ) ,(2.4)

where ·2 denotes the multiplication map of the triple tensor product, ·2(X⊗Y ⊗Z) =
XY Z, X, Y , Z ∈ H.

We note that while 4 is a homomorphism of algebras, S is not an anti-homomor-
phism. Instead, it satisfies the relation

S(ab) = ·2 ◦ R̂
(
S(a)⊗ S(b)

)
, a, b ∈ H .(2.5)

For computations in the following sections we will need the following lemma (cf.
[4], Section 3.1.1, equation (5)).

Lemma 2.1. Let n ∈ N. There is an identity

EnF − FEn = qn−1 [n]q
q − q−1E

n−1K − q−n+1 [n]q
q − q−1E

n−1K−1 .
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Proof. The proof goes by induction on n by multiplying the formula for n− 1 by
E from the left and applying the relation [E,F ] = K−K−1

q−q−1 . �

3. The braided coproduct 4

Theorem 3.1. The braided coproduct of Uq(sl2) generators is given by
(1)

4(E) = E ⊗K +K−1 ⊗ E + q−1(q − q−1)2EF ⊗ E ,

(2)
4(K) = K ⊗K + q−1(q − q−1)2KF ⊗ E ,

(3)

4(K−1) =
∞∑
n=0

(−1)nq−n
2−2n(q − q−1)2nK−1Fn ⊗ EnK−n−1 ,

(4)

4(F ) = 1⊗ F +
∞∑
n=1

(−1)n+1q−n
2+1(q − q−1)2n−2Fn ⊗ En−1K−n−1 .

Proof. (1) Since4(E) = E⊗K+1⊗E, and since adE(E) = 0, adE(K) = (1−q2)E,
the only non-trivial contributions to the R-matrix (2.1) in this case correspond to
n = 0, 1. We easily compute

adHl(K) = δl,0K, adHlE(K) = 2l(1− q2)E ,
adHlEn(K) = 0 for n ≥ 2, adHl(E) = 2lE ,(3.1)

and substitute into (2.2) to get the claim.
(2) Since adE(K) = (1 − q2)E (hence adE2(K) = 0), the only non-trivial

contributions to the R-matrix (2.1) in this case correspond to n = 0, 1. In particular,
an easy computation gives the result.

(3) Since 4(K−1) = K−1 ⊗K−1, we have to compute∑
K−1S(R2)⊗R1 . K

−1 ,

where R is given by (2.1). One sees
S(H lFn) = (−1)n+l(KF )nH l ,

and
(3.2) (H lEn) . K−1 = (2n)l(1− q−2n)(1− q−2(n−1)) . . . (1− q−2)EnK−n−1.

Noting that
∞∑
l=0

(
ln q
2

)l 1
l! (−1)l(2n)lH l = K−n

and (KF )nK−n = q−n(n+1)Fn, we arrive at the result after simplifying the coeffi-
cients.
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(4) This formula can be obtained either by a similar computation as above, or
by making a finite computation to see

4(KF ) = K ⊗KF +KF ⊗K−1 + q−1(q − q−1)2KF ⊗ EF ,

and then compute 4(F ) = 4(K−1)4(KF ) using the formula (3). �

4. The braided antipode S

Recall that the quantum Casimir element of Uq(sl2) is defined as

Casq := EF + qK−1 + q−1K

(q − q−1)2 ∈ Z
(
Uq(sl2)

)
.(4.1)

Casq is a generator of the free algebra Z(Uq(sl2)), the center of Uq(sl2). Notice
that Casq can be modified by a rational function of q to make it regular in the
classical limit q → 1.

Theorem 4.1. The braided antipode, cf. (2.3), of Uq(sl2) generators is given by
(1)

S(E) = −q2E ,

(2)

S(K) = K−1 + q(q − q−1)2FE = −q2K + q(q − q−1)2 Casq ,

(3)

S(K−1) =
∞∑
n=0

(−1)nqn
2+2n(q − q−1)2nKn+1FnEn .

(4)

S(F ) =
∞∑
n=0

(−1)n+1qn
2+4n+4(q − q−1)2nKn+2Fn+1En ,

Proof. (1) The claim follows easily from adE(E) = 0.

(2) Since adHl(K) = 0 for all non-zero l ∈ N and adHlE(K) = 2l(1− q2)E, it
follows that

S(K) = S(K) + (q − q−1)(1− q2)KF (−E)K−1 = K−1 + q(q − q−1)2FE .

(3) We use the formula (3.2) to get

S((H lEn) . K−1) = (−1)n(2n)lqn
2+n(1− q−2n)(1− q−2(n−1)) . . . (1− q−2)KEn.

The claim now follows by summing over l in (2.1).

(4) To compute S(F ), we first compute

S(KF ) = −q2KF
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similarly as above. Then S(F ) can be expressed as

S(F ) = S(K−1KF ) = ·2 ◦ R̂
(
S(K−1)⊗ S(KF )

)
= −q2 ·2 ◦R̂

(
S(K−1)⊗KF

)
.

Because F . (KF )=0, we get R̂(S(K−1)⊗KF ) = S(K−1)⊗KF , and so

S(F ) = −q2 ·2 ◦R̂
(
S(K−1)⊗KF

)
= −q2

∞∑
n=0

(−1)nqn
2+2n(q − q−1)2nKFKn+1FnEn

=
∞∑
n=0

(−1)n+1qn
2+4n+4(q − q−1)2nKn+2Fn+1En . �

The reader is invited to directly verify the structural relations in Uq(sl2) by
applying (2.5), e.g. KEK−1 = q2E; we give one such example in the following
lemma.

Lemma 4.2. The formula (2.5) implies

1 = ·2 ◦ R̂
(
S(K)⊗ S(K−1)

)
.(4.2)

Proof. As we know S(K), cf. Theorem 4.1, the formulas adE(K) = (1 − q2)E,
adE2(K) = 0, adE(Casq) = 0 imply

R
(
− q2K + q(q − q−1)2 Casq, S(K−1)

)
=
(
− q2K + q(q − q−1)2 Casq

)
⊗ S(K−1)

+ q−2(q − q−1)
(
− q2(1− q2)E ⊗ F . S(K−1)

)
.(4.3)

The key computation is then based on the left adjoint action of F and Lemma 2.1:

F . Kn+1FnEn = (q2n+2 − 1)Kn+1Fn+1En

− qn+1 q
n − q−n

(q − q−1)2K
n+2FnEn−1 + q−n−1 q

n − q−n

(q − q−1)2K
nFnEn−1(4.4)

Therefore (4.2) is equivalent, based on S(K−1), cf. (4.2), to

1 =
∞∑
n=0

(−1)n+1qn
2+2n+2(q − q−1)2nKn+2FnEn

+
∞∑
n=0

(−1)nqn
2+2n+1(q − q−1)2n+2Kn+1FnEn

(
FE + qK + q−1K−1

(q − q−1)2

)
+
∞∑
n=0

(−1)nqn
2+2n+1(q − q−1)2n+2(q2n+2 − 1)Kn+1Fn+1En+1
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+
∞∑
n=0

(−1)n+1qn
2+3n+2(q − q−1)2n(qn − q−n)Kn+2FnEn

+
∞∑
n=0

(−1)nqn
2+n(q − q−1)2n(qn − q−n)KnFnEn .(4.5)

We use Lemma 2.1 in the second sum above, and then observe that all contribu-
tions to the monomials Kn+2FnEn collect to zero as well as contributions to the
monomials KnFnEn collect to zero with the only exception, n = 0. This then
compares with the left hand side of the last equality, and the proof is complete. �

As a demonstration of the use of our formulas, we compute the braided coproduct
and the braided antipode of the quantum Casimir operator.

Lemma 4.3. Let Casq be the quantum Casimir operator defined in (4.1). Then

4Casq = E ⊗KF + q−2KF ⊗ E + q−1(q − q−1)2 Casq ⊗Casq

− q−2 Casq ⊗K − q−2K ⊗ Casq +q−2 q + q−1

(q − q−1)2K ⊗K ,(4.6)

and

(4.7) S(Casq) = Casq .

Proof. We have

(4.8) 4Casq = 4E · 4F + q

(q − q−1)24K
−1 + q−1

(q − q−1)24K

with 4E · 4F the braided tensor product in Uq(sl2)⊗Uq(sl2). The following
calculation is based on the use of

(4.9) adE(K) = (1− q2)E , adF (Fn) = (1− q2n)Fn+1

together with the R-matrix (2.1):

R(K ⊗ 1) = K ⊗ 1 ,

R(K ⊗ Fn) = K ⊗ Fn + (q − q−1)(1− q2)(1− q2n)q−2n−2E ⊗ Fn+1 ,

R(E ⊗ 1) = E ⊗ 1 ,

R(E ⊗ Fn) = q−2nE ⊗ Fn(4.10)

for all n ∈ N. Then the braided tensor product of 4E and 4F is

4E · 4F = E ⊗KF

+
∞∑
n=1

(−1)n+1q−n
2+1(q − q−1)2n−2EFn ⊗KEn−1K−n−1
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+
∞∑
n=1

(−1)nq−n
2−2n(q − q−1)2n(1− q2n)EFn+1 ⊗ EnK−n−1

+K−1 ⊗ EF

+
∞∑
n=1

(−1)n+1q−n
2−2n+1(q − q−1)2n−2K−1Fn ⊗ EnK−n−1

+ q−1(q − q−1)2EF ⊗ EF

+
∞∑
n=1

(−1)n+1q−n
2−2n(q − q−1)2nEFn+1 ⊗ EnK−n−1.(4.11)

The first, second and fourth infinite sum cancel out, while the third cancels with
the contribution of 4K−1 to the Casimir element Casq. In conclusion,

4Casq = E ⊗KF + EF ⊗K−1

+K−1 ⊗ EF + q−1(q − q−1)2EF ⊗ EF + q−2KF ⊗ E

+ q

(q − q−1)2K
−1 ⊗K−1 + q−1

(q − q−1)2K ⊗K

= E ⊗KF + q−2KF ⊗ E + q−1(q − q−1)2 Casq ⊗Casq

− q−2 Casq ⊗K − q−2K ⊗ Casq +q−2 q + q−1

(q − q−1)2K ⊗K .(4.12)

As for the action of braided antipode, we have

S(Casq) = S(EF ) + q

(q − q−1)2S(K−1) + q−1

(q − q−1)2S(K)

= ·2 ◦ R̂
(
S(E)⊗ S(F )

)
+ q

(q − q−1)2

∞∑
n=0

(−1)nqn
2+2n(q − q−1)2nKn+1FnEn

+ q−1

(q − q−1)2 (q(q − q−1)2Casq − q2K)(4.13)

and because the first terms evaluates to −S(F )E, we get

=
∞∑
n=0

(−1)nqn
2+4n+4(q − q−1)2nKn+2Fn+1En+1

+
∞∑
n=0

(−1)nqn
2+2n+1(q − q−1)2n−2Kn+1FnEn

+ Casq −
q

(q − q−1)2K = Casq . �
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5. The braided adjoint action ad

We recall that the elements E, FE − q−2EF , KF span a subrepresentation of
the adjoint representation of Uq(sl2), cf. [1]:

adF (E) = FE − q−2EF , adF (FE − q−2EF ) = −(q + q−1)KF ,
adE(KF ) = −(FE − q−2EF ) , adE(FE − q−2EF ) = (q + q−1)E .(5.1)

The following proposition is a special case of a general result of S. Majid [5].

Proposition 5.1. The braided adjoint action of Uq(sl2) on itself is the same as
the ordinary quantum adjoint action. In other words, for any X ∈ Uq(sl2),

(1) adE(X) = (EX −XE)K−1,
(2) adK(X) = KXK−1,
(3) adK−1(X) = K−1XK,
(4) adF (X) = FX −K−1XKF .

Proof. (1) By (2.4), we have

adE(X) = ·2 ◦ (Id⊗R̂) ◦ (E ⊗K−1 ⊗X + q(q − q−1)2E ⊗ FE ⊗X
− q2K−1 ⊗ E ⊗X − q(q − q−1)2EF ⊗ E ⊗X) .

The middle components in the last two terms are trivial for the action of E,
adE(E) = 0. As for the middle terms of the first two terms, we have

adE(K−1 + q(q − q−1)2FE) = (1− q−2)EK−2 + q(q − q−1)2 q2

q − q−1 (E −K−2E)

= q3(q − q−1)2E ,(5.2)

and in particular (adE)2(K−1 + q(q − q−1)2FE) = 0. Then the action of the
R-matrix results in

adE(X) = EXK−1 + q(q − q−1)2EXFE + q3(q − q−1)2E adKF (X)E
− q2K−1adK(X)E − q(q − q−1)2EFadK(X)E .

The substitition of adK(X) = KXK−1 and adKF (X) = q−2FKXK−1 − q−2XF
results in

adE(X) = EXK−1 + q(q − q−1)2EXFE − q(q − q−1)2EXFE − q2XK−1E

= (EX −XE)K−1

which completes the proof of (1).
(2) We again use (2.4) to conclude

adK(X) = ·2 ◦ (Id⊗R̂) ◦
(
K ⊗K−1 ⊗X + q(q − q−1)2K ⊗ FE ⊗X

− q(q − q−1)2KF ⊗ E ⊗X
)
.
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The first two contributions combine together, and we use (5.2) when we apply R̂
to K−1 + q(q− q−1)2FE. The action of R̂ on the third term is easy to see, because
we apply adE to E again. Altogether,

adK(X) = KXK−1 + q(q − q−1)2KXFE + q(q − q−1)2KFKXK−1E

− q(q − q−1)2KXFE − q(q − q−1)2KFKXK−1E(5.3)
and the last four contributions do cancel out to yield

adK(X) = KXK−1 = adK(X) .
(3) Since u 7→ adu is a representation, it follows from (2) that adK−1 = (adK)−1

is conjugation by K−1.
(4) We first compute adKF (X); then it is easy to get adF (X) as it is equal to

adK−1(adKF (X)). We assume, as we may, that adK(X) = qkX for some k ∈ Z.
Since

adF (X) = FX −K−1XKF = FX − q−kXF
and

adF 2(X)F 2X − q−k(q2 + 1)FXF + q2−2kXF 2,

we have
adKF (X) = − q2−2kK2XF

+ q2(q − q−1)(KFX − q−kKXF )
(
q−1(q − q−1) Casq −q−1 q + q−1

q − q−1K
)

+ qk−1(q − q−1)2(KF 2XE − q−k(q2 + 1)KFXFE + q2−2kKXF 2E
)

+ q−k+2K2FX − (q − q−1)2qk−1KF 2XE +KFXFE

+ q−1(q − q−1)2KFXFE = qk−2FX − q−2XF .

Hence
adF (X) = adK−1

(
adKF (X)

)
= K−1(qk−2FX − q−2XF )K

= FX − q−kXF = adF (X) . �

We remark that the straightforward computation of adK−1 based on (2.4) is
rather lengthy and tedious, cf. the formula for 4(K−1) from which it follows that
the braided antipode S is applied to a combination of monomials EnK−n−1, n ∈ N,
and this yields another nested infinite sum. The readers are invited to work this
line of reasoning on their own.
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