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Abstract. This work is devoted to analyzing the existence of the Cauchy fractional-type
problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral
sense) of real order n > 1. These kinds of equations are a generalization of the measure
differential equations. Our results extend A.A.Kilbas, H.M. Srivastava, J. J. Trujillo (2006)
and H. Zhou, G.Ye, W.Liu, O.Wang (2015).
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1. Introduction

In this paper, we study the solvability of the Cauchy-type problem for the frac-

tional measure differential equation (FMDE)

(1) Dn
0x(t) = f(x(t), t) + g(x(t), t)Du, lim

t→0+
tm−nx(t) = cm,

where t ∈ [0, 1], n ∈ [1,∞) fixed, m = ⌈n⌉ is defined as the least integer greater than

or equal to n, cm ∈ R,

x ∈ Cm−n[0, 1] = {x : (0, 1] → R : tm−nx(t) ∈ C[0, 1]},

u : [0, 1] → R is a non-decreasing continuous function, f : R× [0, 1] → R is a Denjoy

integrable distribution, g : R × [0, 1] → R is Henstock-Stieltjes (HS) integrable and
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Dn
0 denotes the Riemann-Liouville fractional derivative of order n in the distribu-

tional sense, see below (and also [31]). Note the notation Dn
0x(t) := DmJm−n

0 x(t)

means that it is a distribution that depends on the point t due to the fact that

the distribution J n
0 x depends on the parameter t for any n > 0. In this sense the

equation in (1) is established.

In [12], the authors generalize Carathéodory’s existence theorem for the equation

x′ = f(x, t) by using the Henstock-Kurzweil integral. If n = 1 and (1) is considered

in the distributional sense, since Du generates a Borel measure, the problem (1) is

called measure differential equation (MDE) and reads as

Dx(t) = f(x(t), t) + g(x(t), t)Du, t ∈ [0, 1],(2)

x(0) = c1.

These kinds of equations have been studied by many authors (see [13], [14], [38],

[39], [43], [47]). For example, in [47] the equivalence of MDE (2) and the integral

equation

x(t) = c1 +

∫ t

0

f(x(s), s) ds+

∫ t

0

g(x(s), s) du(s)

is proved as well as the existence of at least one solution for the MDE (2) in the

distributional Denjoy integral sense. In [28], the authors showed the existence of a

solution of the distributional differential equation (DDE)

Dx(t) = g(x(t), t)Du

assuming that u is a regulated function. Later in 2019, the existence and unique-

ness of solutions to the second-order distributional differential equations with Neu-

mann boundary condition were analyzed via Henstock-Kurzweil-Stieltjes integrals

(see [46]). Thus, as the name suggests, FMDE (1) is a generalization of a measure

differential equation, see, e.g., [14].

In particular, if u is an absolutely continuous function, its distributional derivative

is the usual derivative. Assuming that n is an arbitrary noninteger number bigger

than one, we obtain a fractional differential equation (see [7], [20]). For the integer

case, we get an ODE; see, e.g., [14].

The study of fractional integro-differential operators in the classical sense (within

Lebesgue integral theory) and their applications has been developed by many au-

thors, see, e.g., [6], [7], [15], [16], [21], [24], [26], [27], [34], [35], [37]. Here, Dn1

0

and Jn1

0 denote the fractional differential and integral operators in the Lebesgue

sense, respectively. In [23], Kilbas et al. considered the Cauchy problem

Dn1

0 x(t) = F (x(t), t) a.e. on [0, 1],(3)

Dn1−k
0 x(0+) = bk for 1 6 k 6 m,
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where n1 is arbitrary positive, 0 6 m − 1 < n1 6 m, Dn1−m
0 x(t) := Jm−n1

0 x(t),

{bk}
m
k=1 ⊂ R and x(t), F (x(t), t) belong to L1[0, 1], the set of Lebesgue integrable

functions. In [15], Theorem 5.1, Diethelm established the existence and uniqueness

of the solution in C(0, h] for (3) assuming continuity and Lipschitz conditions and

proving the equivalence of (3) and the corresponding Volterra integral equation

(4) x(t) =

m
∑

k=1

bk
Γ(n1 − k + 1)

tn1−k + Jn1

0 F (x(t), t) a.e. on [0, 1].

In [23], the equivalence between (3) and (4) was proved assuming that x and

F (x(t), t) are Lebesgue integrable. Thus, the existence and uniqueness of the Cauchy

problem (3) in L1[0, 1] were shown under a restriction for the Lipschitz constant.

Finally, in [30] the authors proved existence and uniqueness of (3) by using superpo-

sition and Lipschitz operators.

It should be noted that with the intention of solving various problems, there are

new fractional derivatives combining the power law, exponential decay and Mittag-

Leffler kernel; among them Liouville-Caputo, Atanga-Caputo, Atanga-Gómez and

Atanga-Baleanu derivatives, see [2]–[5] and [18]. For example, in [36], a boundary

value problem of fractional type (of order 1 < n 6 2) is studied, considering a pseudo

fractional differential operator and vector-valued Pettis integrable functions. To the

best of our knowledge, there are not enough papers concerning the fractional-order

DDE, see [32].

In this paper, we show the existence of at least one solution of (1) via its integral

equation

(5) x(t) =

m
∑

k=1

ckt
n−k + J n

0 f(x(t), t) + J n
0 g(x(t), t)Du,

where {ck}
m
k=1 ⊂ R, and by using the fractional differential and integral operators

introduced in [31]. Moreover, the coefficients {ck} can be considered as in the ex-

pression (14). This means that J n
0 denotes the Riemann-Liouville fractional integral

operator of order n in the distributional sense. Defining

J n
0 g(x, ·)Du := J n−1

0 J 1
0 g(x, ·)Du,

by Theorem 6.5.3 in [29], we have that J1
0 g(x, ·)Du ∈ C[0, 1]. Thus J n

0 g(x, ·)Du

is a regular distribution (meaning that there exists a locally integrable function

such that generates the given distribution), in fact, J n
0 g(x, ·)Du is generated by the

continuous function J1
0 g(x, ·)Du. In this case, J

1
0 denotes the Riemann-Liouville

fractional integral operator of order 1 in the Lebesgue sense.
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We apply theoretical implications of the Henstock-Kurzweil theory, see [29],

[41], [42]. This theory is a research topic of great interest in the scientific community

because it offers certain advantages. It is related to many problems not only theo-

retical but also practical in Statistics, Financial Mathematics, and Particle Physics,

see, e.g., [10], [25], [33].

2. Preliminaries

Now we introduce the definition of the distributional Denjoy integral. Recall

that the space of Lebesgue integrable functions on (a, b) is denoted by L1(a, b); the

Lebesgue integral is characterized in terms of absolutely continuous functions AC.

In the case of the Henstock-Kurzweil integral, there is an analogous characteriza-

tion in terms of generalized absolutely continuous functions in the restricted sense

ACG∗. This means, F ∈ ACG∗ if and only if there exists f ∈ HK[a, b] such that

F (x) =
∫ x

a
f+F (a), hence F ′ = f a.e., see [19]. However, if F is any continuous func-

tion, then the generalized function and the distributional derivative are needed be-

cause there exist continuous functions differentiable nowhere. Thus, Talvila (see [41])

introduced a generalized integral called Denjoy distributional integral whose theory

contains Lebesgue and Henstock-Kurzweil integrals. However, there are some refer-

ences that call it Henstock-Kurzweil distributional integral, see, e.g., [45].

2.1. Denjoy distributional integral Ac. Let (a, b) be a bounded open interval

in R, we define

D(a, b) := {ϕ : (a, b) → R : ϕ ∈ C∞ and ϕ has a compact support in (a, b)}.

Moreover, it is said that a sequence (ϕn) ⊂ D(a, b) converges to ϕ ∈ D(a, b) if there

is a compact set K ⊂ (a, b) such that all ϕn have support in K and, for any integer

m > 0, the sequence of derivatives (ϕ
(m)
n ) converges to ϕ(m) uniformly on K, see,

e.g., [22].

The dual space of D(a, b) is denoted by D′(a, b) and it is the space of continuous

linear functionals on (a, b). The elements of D′(a, b) are distributions on (a, b). It is

well known that the distributional derivative of an element T ∈ D′(a, b) is the unique

distribution G that satisfies

〈G,ϕ〉 = −〈T, ϕ′〉 ∀ϕ ∈ D(a, b).

Let

C0 := {F ∈ C[a, b] : F (a) = 0}.
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It is well known that C0 is a Banach space with the supremum norm, ‖F‖∞ :=

sup
t∈[a,b]

|F (t)|. By BV we denote the set of functions u : [a, b] → R with a bounded

variation
b

var
a
u = sup

∑

n

|u(xn)− u(xn−1)| <∞,

where the supremum is taken over all partitions of [a, b]. Recall that, when equipped

with the norm ‖u‖BV = varba u+ |u(a)|, BV becomes a Banach space, see [29].

We follow the notation from [41] to introduce the distributional Denjoy integral.

Definition 2.1. A distribution f ∈ D′(a, b) is said to be a Denjoy integrable

distribution on [a, b] if there exists a continuous function F ∈ C0 such that DF = f

(the distributional derivative of F is f). The distributional Denjoy integral of f on

[a, b] is denoted by
∫ b

a

f := F (b)− F (a).

Moreover, if f ∈ Ac, then f has primitives in C[a, b] differing by a constant. Never-

theless, f has exactly one primitive in C0, see [9], Theorem 6, ii).

We set DF to be the distributional derivative. In other words, if DF = f, then F

is the primitive of f . The space of all the Denjoy integrable distributions on [a, b] is

denoted by Ac. For f ∈ Ac, we define the Alexiewicz norm

‖f‖A := ‖F‖∞,

where DF = f and F ∈ C0. In particular, if f ∈ HK[a, b], then

‖f‖A := sup
t∈[a,b]

∣

∣

∣

∣

∫ t

a

f(s) ds

∣

∣

∣

∣

.

Lemma 2.2. Let f ∈ Ac and (fk) ⊂ HK[a, b] be such that

lim
k→∞

‖fk − f‖A → 0.

Then for any ϕ ∈ D(a, b),

lim
k→∞

〈fk, ϕ〉 = 〈f, ϕ〉.

P r o o f. Let for every k ∈ N, Fk be the primitive of fk (F
′

k(t) = fk(t) a.e.).

Since (fk) ⊂ HK[a, b], then for all ϕ ∈ D(a, b)

〈fk, ϕ〉 :=

∫ b

a

fk(t)ϕ(t) dt = −

∫ b

a

Fk(t)ϕ
′(t) dt.
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On the other hand, since ‖f − fk‖A → 0 as k → ∞, (Fk) is a Cauchy sequence in

C[a, b]. Therefore, there exists F ∈ C[a, b] such that Fk(t) → F (t) and for every

ϕ ∈ D(a, b),

lim
k→∞

〈fk, ϕ〉 = − lim
k→∞

∫ b

a

Fk(t)ϕ
′(t) dt = −

∫ b

a

F (t)ϕ′(t) dt = −〈F, ϕ′〉 = 〈DF, ϕ〉.

Thus, (fk) converges (weakly) to DF in the distributional sense. Now, by the Hölder

inequality (see [41], Theorem 7),

∣

∣

∣

∣

∫ b

a

(fk − f)ϕ(t) dt

∣

∣

∣

∣

6 2‖fk − f‖A‖ϕ‖BV for any ϕ ∈ D(a, b).

Hence, if fk → f in the distributional sense, then f = DF . This completes the proof.

�

R em a r k 2.3. Note that it does not depend on the Cauchy sequence because

the set of continuous functions with the uniform norm is a Banach space.

By [41], Theorems 2–3, Ac is a separable Banach space with respect to the Alex-

iewicz norm. On the other hand, in [8] and [9] it is shown that the completion of the

Henstock-Kurzweil integrable functions space, ĤK[a, b], is isomorphic to Ac. Thus,

L1[a, b] ( HK[a, b] ( ĤK[a, b] ≃ Ac,

where HK[a, b] denotes the space of Henstock-Kurzweil integrable real-valued func-

tions on [a, b]. Furthermore, in [9], [41] and [45] the following result is proved.

Theorem 2.4. Ac is isomorphic to the space C
0.

This result inherits the partial order defined in [44], for elements f, g ∈ Ac, we say

that f � g if and only if
∫

J

f 6

∫

J

g

for any subinterval J in [a, b]. In particular,

f � g ⇒

∫ x

a

f 6

∫ x

a

g ∀x ∈ [a, b].

Also, there exists a version of the Fundamental Theorem of Calculus in the distri-

butional Denjoy integral sense.

Theorem 2.5 ([41], Theorem 4).

(i) Let f ∈ Ac and F (t) :=
∫ t

a
f. Then F ∈ C0 and DF = f .

(ii) Let F ∈ C[a, b]. Then
∫ t

a
DF = F (t)− F (a) for all x ∈ [a, b].
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In [41], the following integration by parts result was presented.

Lemma 2.6. Let f ∈ Ac and g ∈ BV. Put fg = DH , where H(t) = F (t)g(t) −
∫ t

a
F (s) dg. Then fg ∈ Ac and

∫ b

a

fg = F (b)g(b)−

∫ b

a

F (s) dg.

In [1], a convergence theorem on Ac was proved.

Theorem 2.7. Let (fn) be a sequence in Ac such that fn → f ∈ D′(a, b). Suppose

there exist f−, f+ ∈ Ac satisfying f− � fn � f+ for all n ∈ N. Then f ∈ Ac and

lim
n→∞

∫ b

a
fn =

∫ b

a
f.

In [42], Talvila defined the convolution f ∗ g for the pair (f, g) ∈ Ac × BV(R) as

f ∗ g(t) =

∫

∞

−∞

(f ◦ rt)g,

where rt(s) = (t− s). It is clear that the convolution operator is commutative. The

composition of f ◦ rt for f ∈ Ac is defined by

〈f ◦ rt, ψ〉 = 〈f, (ψ ◦ r−1
t )/(r′t ◦ r

−1
t )〉

for all ψ ∈ D(a, b). Clearly r−1
t (s) 6= 0 due to s < t and rt is a bijection. The

convolution f ∗ g, (f, g) ∈ Ac ×L1(R) is defined as a limit, see Definition 3.2 in [42].

One can see that f ∗ g = g ∗ f. Moreover, he proved the following result.

Theorem 2.8. If (f, g) ∈ Ac × L1(R) then

(i) g ∗ f ∈ Ac,

(ii) ‖g ∗ f‖A 6 ‖f‖A‖g‖1, ‖g‖1 =
∫

R |g(t)| dt.

2.2. Riemann-Liouville fractional integral operator on Ac. First, the set

of natural numbers is denoted by N := {1, 2, . . .}. In this paragraph, we recall

the Riemann-Liouville fractional integral operator (fractional integral operator, for

short) in the distributional Denjoy integral sense and some fundamental properties;

for more details, see [31].

Definition 2.9. Let n ∈ [0,∞), f ∈ Ac and

(6) ϕn(u) :=

{

un−1/Γ(n) if 0 < u 6 b− a,

0 otherwise,

where Γ: (0,∞) → R is the Euler gamma function

Γ(s) :=

∫

∞

0

ts−1e−t dt.
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Then for n > 1, the Riemann-Liouville fractional integral operator of order n is

defined by

J n
a f(t) := ϕn ∗ f(t),

where f ∈ Ac and t ∈ (a, b). For 0 < n < 1,

ϕn ∗ f(t) := lim
k→∞

1

Γ(n)

∫ t

a

(t− s)n−1fk(s) dts,

where a 6 t 6 b, (fk) ⊂ L1[a, b] such that ‖fk − f‖A → 0 as k → ∞. For n = 0, we

set J 0
a f := I, the identity operator.

R em a r k 2.10. Note that if n > 1, then ϕn is increasing, non-negative and

bounded on [0, b − a]. Thus, ϕn is a function of bounded variation on R. When

0 < n < 1, the function ϕn belongs to L
1(R), but it does not have a bounded

variation. Observe that if f is in L1[a, b] and n > 0, then J n
a f(t) = Jn

a f(t) (this is,

J n
a f is a regular distribution induced by J

n
a f , the fractional integral operator of f in

the Lebesgue sense), since the distributional Denjoy integral contains the Lebesgue

integral. Using the Hölder inequality, [41] and [45], it is easy to see that J n
a f is a

temperate distribution for any f ∈ Ac and n > 0 (see [17]).

Now, we recall some fundamental properties of Riemann-Liouville fractional inte-

grals, see [31].

Theorem 2.11. Let n ∈ [0,∞), f ∈ Ac and J
n
a f(t) be as in Definition 2.9. Then:

(i) J n
a : Ac → Ac.

(ii) J n
a is a bounded linear operator with respect to the Alexiewicz norm. In other

words, for (fk) ⊂ Ac which convergs in the Alexiewicz norm to f , we have that

(J n
a fk) convergences in the Alexiewicz norm to J

n
a f .

(iii) Moreover, if n > 1 and (fk) ⊂ L1[a, b] such that ‖fk − f‖A → 0 as k → ∞, then

J n
a f(t) = lim

k→∞

ϕn ∗ fk(t)

in Ac and in C[a, b].

Theorem 2.12. Let m,n ∈ [0,∞) and f ∈ Ac. Then Jm
a J n

a f = Jm+n
a f in Ac.

Moreover, if m > 1 or n > 1, then the identity holds everywhere in C[a, b].

2.3. Riemann-Liouville fractional differential operator on Ac. Now, we

consider an extension of the Riemann-Liouville differential operator (see [15], [37])

in a more general sense, this means in the distributional Denjoy integral sense; this

study was developed in [31].
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Definition 2.13. Let n ∈ [0,∞), m := ⌈n⌉ and f ∈ Ac. The Riemann-Liouville

fractional differential operator of order n is

Dn
af := DmJm−n

a f,

where Dm denotes the m-fold iterates of the distributional derivative. For n = 0, we

set D0
a := I, the identity operator. Also, D−n

0 f := J n
0 f .

R em a r k 2.14. Observe that the operatorDn
a is well defined, since J

m−n
a f ∈Ac,

and the distributional derivative of a distribution is a distribution, see [22]. There-

fore, for any n ∈ R+,

Dn
a : Ac → D′(a, b).

The following two results can be consulted [31].

Theorem 2.15. Let n ∈ [0,∞). Then, for every f ∈ Ac,

Dn
aJ

n
a f = f.

Theorem 2.16. Let n ∈ [0,∞). Then, for f ∈ Ac,

J n
a f = D(J n

a F ),

where F ∈ C0 is the primitive of f . In consequence, for j ∈ N and ϕ ∈ D(a, b), then

(7) 〈Dj(J n
a f), ϕ〉 = (−1)j+1〈J n

a F, ϕ
(j+1)〉.

Proposition 2.17. The fractional integral operator of arbitrary order n > 0 keeps

the partial order in Ac.

P r o o f. Let f, g ∈ Ac such that f � g (meaning that F 6 G, where DF = f

and DG = g). Clearly,

J n
a F (t) 6 J n

a G(t) ∀ t ∈ [a, b].

Applying Theorems 2.12 and Theorem 2.16, we have
∫ t

a
J n
0 f 6

∫ t

a
J n
0 g for all t ∈

[a, b]. It implies that

J n
0 f � J n

0 g.

�
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3. Main results

Let γ > 0 and

Cγ [a, b] = {f : (a, b] → R : (t− a)γf(t) ∈ C[a, b]},

where the norm is given by

‖f‖γ = sup
t∈[a,b]

|(t− a)γf(t)|.

Clearly, the space Cγ [a, b] endowed with the norm ‖·‖γ is a Banach space. For γ = 0,

C0[a, b] := C[a, b]. Without loss of generality, we will consider [a, b] = [0, 1]. Let

{ck}
m
k=1 ⊂ R and

x0(t) =

m
∑

k=1

ckt
n−k for t ∈ [0, 1].

Then x0 ∈ Cm−n[0, 1]. Further, for r > 0, set

Br(x0) = {x ∈ Cm−n[0, 1] : ‖x− x0‖m−n 6 r}.

Now we impose some assumptions on f , u and g from (1). For the following

conditions, there is r > 0 such that:

(C1) f(x(·), ·) is in Ac for any x ∈ Br.

(C2) f(·, t) is continuous for all t ∈ [0, 1].

(C3) There exist f−, f+ ∈ Ac such that f−(·) � f(x, ·) � f+(·).

(C4) g(x(·), ·) is Henstock-Stieljes integrable for any x ∈ Br with respect to u.

(C5) g(·, t) is continuous for all t ∈ [0, 1].

(C6) There exist Henstock-Stieljes integrable functions g−, g+ such that g−(·) 6

g(x, ·) 6 g+(·).

(C7) u is a non-decreasing continuous function on [0, 1].

Note that these conditions are analogous to those used in [47].

Definition 3.1. A solution of the Cauchy problem (1) is a real-valued function

x ∈ C(0, 1] such that there exists the finite limit

lim
t→0+

tm−nx(t), i.e., x ∈ Cm−n[0, 1],

and x satisfies (1).

R em a r k 3.2. Clearly x ∈ Ac and Dn
0x is a distribution depending on t due to

the fact that the distribution J n
0 x depends on the parameter t for any n > 0.

Lemma 3.3. Let n ∈ [1,∞) be fixed. Assume that (C1)–(C7) hold. Then x

satisfies (5) if and only if x is a solution to the Cauchy problem (1).
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P r o o f. Let 1 6 n < ∞ be fixed. Note that J n
0 f(x(t), t) exists by (C1), (C3)

and Theorem 2.11 (iii). Since C[0, 1] ⊂ Ac, J
n
0 g(x(t), t) makes sense due to (C4),

(C6), (C7) and Theorem 6.5.3 of [29].

Suppose that there exists x satisfying (5). Clearly x satisfies that

lim
t→0+

tm−nx(t) = cm.

Applying Dn
0 to (5), by the linearity of D

n
0 (see [31], Theorem 4.7), Theorem 2.15

and Example 2.4 in [15] we have that

Dn
0J

n
0 f(x(t), t) = f(x(t), t), Dn

0x0(t) = 0.

Clearly if n = 1, the solvability of (5) implies that (1) holds. Now assume that n > 1.

By the relation (7) proved in Theorem 2.16, for any ϕ ∈ D(0, 1) we obtain

〈DmJm−n
0 J n−1

0 J 1
0 g(x(t), t)Du,ϕ〉

= (−1)m+1〈Jm−n
0 J 1

0 J
n−1
0 J 1

0 g(x(t), t)Du,ϕ
(m+1)〉.

By the semigroup property (Theorem 2.12), we have

(−1)m+1〈Jm−n
0 J 1

0 J
n−1
0 J 1

0 g(x(t), t)Du,ϕ
(m+1)〉(8)

= (−1)m+1〈Jm
0 J 1

0 g(x(t), t)Du,ϕ
(m+1)〉

= (−1)m+1

∫ 1

0

Jm
0 J 1

0 g(x(t), t)Du(t)ϕ
(m+1)(t) dt.

Applying the integration by parts, i.e., Lemma 2.6, to (8), and Theorem 6.6.1

from [29] we obtain

(−1)m+1

∫ 1

0

Jm
0 J 1

0 g(x(t), t)Du(t)ϕ
(m+1)(t) dt(9)

= (−1)2m+1

∫ 1

0

J 1
0 g(x(t), t)Du(t)ϕ

(1)(t) dt

=

∫ 1

0

ϕ(t) d

(
∫ t

0

g(x(s), s) du(s)

)

(t) =

∫ 1

0

g(x(t), t)ϕ(t) du(t).

Thus, by (8) and (9), we get that Dn
0J

n
0 g(x(t), t)Du is identified with g(x(t), t)Du.

Therefore,

Dn
0x(t) = f(x(t), t) + g(x(t), t)Du.

Now, assume that x is a solution to the Cauchy problem (1). By definition,

DmJm−n
0 x(t) = f(x(t), t) + g(x(t), t)Du.
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Note that x ∈ L1(0, 1), then by Theorem 2.16

DmJm−n
0 x = Dm+1Jm−n

0 X,

where DX = x. Applying J 1
0 to both sides of the equality, we have

(10) Dm−1Jm−n
0 x(t) = DmJm−nX(t) = J 1

0 f(x(t), t) + J 1
0 g(x(t, t))Du.

According to (C4) and (C7), and by Theorem 6.5.3 from [29],

J 1
0 g(x(t), t)Du(t) =

∫ t

0

g(x(s), s) du(s)

is continuous. Since (C1) holds, we have that J 1
0 f(x(t), t) is continuous, too. There-

fore, Dk−1Jm−n
0 x is induced by a continuous function for k = 1, . . . ,m. Apply the

operator to Jm−1
0 to (10). Then by Theorem 2.5 (ii) and Theorem 2.12,

Jm−2
0 Dm−2(Jm−n

0 x(t)− Jm−n
0 x(0)) = Jm

0 (f(x(t), t) + g(x(t), t)Du).

One can apply Theorem 2.5 (ii) m + 2 times to the left hand side of the above

expression,

(11) Jm−n
0 x(t)−

m−1
∑

i=0

Jm−n
0 x(0)ti = Jm

0 (f(x(t), t) + g(x(t), t)Du).

Then applying Dm−n
0 to the expression (11), by Theorem 2.15, Example 2.4 in [15]

and Theorem 2.12, we obtain that the integral equation (5) holds, where

ck = Dn−k
0 x(0)/Γ(n− k + 1)

for k = 1, . . . ,m. �

Theorem 3.4. Let n ∈ [1,∞) be a fixed number. Assume f , u, g satisfy the con-

ditions (C1)–(C7). Then there exists at least one solution of the Cauchy problem (1)

given by (5).

P r o o f. Let 1 6 n <∞ be fixed. Let us further fix h1 and h2 in R by

h1 = max
t∈[0,1]

{|J n
0 f−(t)|, |J

n
0 f+(t)|}, h2 = max

t∈[0,1]
{|J n

0 g−(t) du(t)|, |J
n
0 g+(t) du(t)|}.

By the conditions (C3), (C6) and Proposition 2.17 we have

|J n
0 f(x(t), t)| 6 h1 and |J n

0 g(x(t), t)Du(t)| 6 h2.

Let r = h1 + h2,

Br = {x ∈ Cm−n[0, 1] : ‖x− x0‖m−n 6 r}.
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Now we define an operator T on Br to Cm−n[0, 1] by

Tx(t) = J n
0 f(x(t), t) + J n

0 g(x(t), t)Du + x0(t).

First, we prove that T : Br → Br.

‖Tx− x0‖m−n = sup
t∈[0,1]

tm−n|J n
0 f(x(t), t) + J n

0 g(x(t), t)Du|

6 sup
t∈[0,1]

tm−n[|J n
0 f(x(t), t)| + |J n

0 g(x(t), t)Du|] 6 h1 + h2 = r.

This implies that T (Br) ⊂ Br.

As a second step, we show that T is a continuous operator with respect to the

norm in Cm−n[0, 1]. Let x ∈ Br and (xj) be a sequence in Br such that xj converges

to x in the norm of Cm−n[0, 1]. By the condition (C2), for all t ∈ [0, 1],

f(xj(t), t) → f(x(t), t) as j → ∞.

By (C3) and Proposition 2.17, we have for all j ∈ N,

J n−1
0 f−(·) � J n−1

0 f(xj(·), ·) � J n−1
0 f+(·).

Moreover, by (C1) we have J n−1
0 f(xj(·), ·),J

n−1
0 f(x(·), ·) ∈ Ac for j ∈ N. By the

continuity of the fractional integral operator, Theorem 2.11,

J n−1
0 (f(xj(·), ·)− f(x(·), ·)) → 0 as j → ∞.

Thus, applying Theorem 2.7,

lim
j→∞

J n
0 f(xj(·), ·) = J n

0 f(x(·), ·).

Further, by Theorem 2.11 (iii), J n
0 f(xj(·), ·),J

n
0 f(x(·), ·) ∈ C[0, 1] for j ∈ N.

On the other hand, by (C5),

g(xj(t), t) → g(x(t), t) as j → ∞.

Due to the fact that (C4), (C6), and (C7) hold, applying Theorem 6.8.11 of [29] we

have

lim
j→∞

∫ t

0

g(xi(s), s) du(s) =

∫ t

0

g(x(s), s) du(s).

Clearly, for any j ∈ N, J 1
0 g(x(·), ·) du,J

1
0 g(xj(·), ·) du ∈ C[0, 1], by Theorem 6.5.3

of [29]. Since L1[1, 0] ( Ac for any j ∈ N,

J n
0 g(x(·), ·) du,J

n
0 g(xj(·), ·) du ∈ C[0, 1],
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see [15]. Again, by (C5)

J n
0 g(xj(·), ·) du→ J n

0 g(x(·), ·) du

uniformly as j → ∞. Thus, (Txj(t)) converges to Tx(t) in the norm of Cm−n[0, 1].

Finally, we prove that the operator T is compact. It means, we show that there

exists a compact set K ′ ⊂ Br such that T (Br) ⊂ K ′. It is clear by (C3) and (C6)

that T (Br) is uniformly bounded with respect to the norm ‖·‖m−n. Thus, T
′x(t) :=

tm−nTx(t) is uniformly bounded in C[0, 1]. We show that T ′ is equicontinuos in

C[0, 1]. Let ε > 0 and 0 < t1 < t2 < 1,

|tm−n
1 J n

0 f(x, ·)(t1)− tm−n
2 J n

0 f(x, ·)(t2)|

=
1

Γ(n)

∣

∣

∣

∣

∫ t1

0

tm−n
1 (t1 − s)n−1f(x, s) ds−

∫ t2

0

tm−n
2 (t2 − s)n−1f(x, s) ds

∣

∣

∣

∣

6
1

Γ(n)

∣

∣

∣

∣

∫ t1

0

(tm−n
1 (t1 − s)n−1 − tm−n

2 (t2 − s)n−1)f(x, s) ds

∣

∣

∣

∣

+
1

Γ(n)

∣

∣

∣

∣

∫ t2

t1

tm−n
2 (t2 − s)n−1f(x, s) ds

∣

∣

∣

∣

.

Note that by the condition (C3), we have that

‖f(x, ·)‖A 6 max
t∈[0,1]

{
∣

∣

∣

∣

∫ t

0

f−

∣

∣

∣

∣

,

∣

∣

∣

∣

∫ t

0

f+

∣

∣

∣

∣

}

.

By Theorem 2.8,

∣

∣

∣

∣

∫ t2

t1

tm−n
2 (t2 − s)n−1f(x, s) ds

∣

∣

∣

∣

6 ‖f(x, ·)‖A

∫ t2

t1

τn−1
t2

(s) ds.

Clearly, the map t1 →
∫ t2

t1
τn−1
t2

(s) ds defines a function in AC, where τt2(s) = (t2−s)

when 1 > t2 > s > 0 and zero otherwise. Then given ε > 0, there exists δ such that

if |t1 − t2| < δ, then
∣

∣

∫ t2

t1
τn−1
t2

(s) ds
∣

∣ < ε.

On the other hand, applying the Hölder inequality and Theorem 7 from [42],

∣

∣

∣

∣

∫ t1

0

(tm−n
1 (t1 − s)n−1 − tm−n

2 (t2 − s)n−1)f(x, s) ds

∣

∣

∣

∣

6 2‖f(x, ·)‖A‖τ
n−1
t1

− τn−1
t2

‖BV,

where τt1(s) is defined analogously to τt2(s). Thus, there exists δ > 0 such that

‖τn−1
t1

− τn−1
t2

‖BV < ε when |t1 − t2| < δ. Applying linearity of the integral, and by
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(C4), (C5), (C6), and (C7), we have

|tm−n
1 J n

0 g(x, ·) du(t1)− tm−n
2 J n

0 g(x, ·) du(t2)|

6
1

Γ(n− 1)

∣

∣

∣

∣

∫ t1

0

(tm−n
1 (t1 − s)n−2 − tm−n

2 (t2 − s)n−2)J 1
0 g(x, τ) du(τ)(s) ds

∣

∣

∣

∣

+
1

Γ(n− 1)

∣

∣

∣

∣

∫ t2

t1

tm−n
2 (τ2 − s)n−2J 1

0 g(x, τ) du(τ)(s) ds

∣

∣

∣

∣

6
h

Γ(n− 1)

(

‖τn−2
t1

− τn−2
t2

‖1,[0,1] +

∫ t2

t1

τn−2
t2

(s) ds

)

,

where

h = max
t

{|J 1
0 g−(t) du(t)|, |J

1
0 g+(t) du(t)|}.

In general, τn−2
ti

∈ L1[0, 1] for i = 1, 2. The map t1 →
∫ t2
t1
τn−2
t2

(s) ds ∈ AC. And

lim
t2→t1

τn−2
t2

(s) = τn−2
t1

(s), s ∈ (0, t1].

Thus, by Lebesgue’s dominated convergence theorem, ‖τn−2
t1

− τn−2
t2

‖1,[0,1] < ε as

|t2 − t1| < δ. Therefore, we prove that the set

{tm−nJ n
0 g(x, ·)Du(t) : x ∈ Br}

is equicontinuous in C[0, 1]. Thus, we obtain that T ′(Br) is equicontinuous. Apply-

ing the Arzelà-Ascoli theorem, T ′(Br) is relatively compact. Hence, there exists a

compact set K ⊂ C[0, 1] such that

T (Br) ⊂ {tn−mf : f ∈ K}.

We denote the set {tn−mf : f ∈ K}∩Br asK
′. It is easy to show thatK ′ is a compact

set in Br and T (Br) ⊂ K ′. Consequently, T is a compact continuous operator. By

Theorem 4.1.1 from [40], there exists a fixed point x of the operator T . Applying

Lemma 3.3, the Cauchy problem (1) has at least one solution given by (5). �

Lemma 3.3 and Theorem 3.4 can be extended for the case f : Rr × [0, 1] → Rr

and g : Rr × [0, 1] → Rr, assuming that any component of f(x(·), ·) is in Ac, any

component of g(x, (·), ·) is Henstock-Kurzweil integrable for any x ∈ Br and the

corresponding suitable changes for the conditions (C1)–(C7).

Corollary 3.5. Under the assumptions of Theorem 3.4, then Cauchy problem

Dn
0x(t) = f(x(t), t) + g(x(t), t)Du,(12)

lim
t→0+

Dn−k
0 x(t) = bk for 1 6 k 6 m− 1,

lim
t→0+

Jm−n
0 x(t) = bm
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has at least one solution given by the integral equation

(13) x(t) =

m
∑

k=1

bk
Γ(n− k + 1)

tn−k + J n
0 f(x(t), t) + J n

0 g(x(t), t)Du.

R em a r k 3.6. Note that if the equation (13) holds, then x ∈ Cm−n[0, 1] under

the assumptions of Theorem 3.4.

P r o o f. By arguments similar to those of the first part in the proof of Lemma 3.3,

one can easily verify that (13) is a solution to the Cauchy problem (12). Thus, it is

enough to show that (13) holds.

By Theorem 3.4, the integral equation (5) holds. Applying Dn−k
0 to (5), by Ex-

ample 2.4 from [15], Theorem 2.12, Theorem 2.15, and Theorem 2.16, we have that

for k ∈ {1, 2, 3, . . . ,m− 1},

Dn−k
0 x(t) =

k
∑

i=1

ci
Γ(n− k + 1)

Γ(k − i+ 1)
tk−i + J k

0 f(x(t), t) + J k
0 g(x(t), t)Du.

By Theorem 2.11 (iii) and Theorem 6.5.3 in [29], we have that J k
0 f(x(t), t) and

J k
0 g(x(t), t)Du are continuous for any k ∈ {1, 2, 3, . . . ,m− 1}, respectively. Thus,

(14) lim
t→0+

Dn−k
0 x(t) = ckΓ(n− k + 1).

Then bk = ckΓ(n− k + 1) for k ∈ {1, 2, 3, . . . ,m− 1}.

Similarly, applying the fractional operator Jm−n
0 to (5), by Example 2.4 in [15],

Theorem 2.12 and Theorem 2.16, we have

Jm−n
0 x(t) =

m
∑

i=1

ci
Γ(n− i+ 1)

Γ(m− i+ 1)
tm−i + Jm

0 f(x(t), (t)) + Jm
0 g(x(t), t)Du.

Thus,

lim
t→0+

Jm−n
0 x(t) = cmΓ(n−m+ 1).

Since cm = lim
t→0+

tm−nx(t) exists, the integral equation (13) holds and is a solution

of (12). �

R em a r k 3.7. For the case n = 1, our results (Lemma 3.3 and Theorem 3.4)

are particular cases of Lemma 3.1 and Theorem 3.3 in [47], respectively. However,

Lemma 3.3 and Theorem 3.4 proved here generalize the order of the Cauchy prob-

lem (1) to any arbitrary real number n > 1. In particular, for the integer case n ∈ N,

a solution x of (1) is given by (5) belonging to C[0, 1] and x(0) = cn. Finally, Corol-

lary 3.5 is a generalization of [24], Theorem 3.3 where the existence of the Cauchy

problem (3) has been proved in the Lebesgue integral sense, without considering the

extra term g(x(t), t)Du.
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Finally, we present an example to illustrate to scope of our results.

E x am p l e 3.8. Let n ∈ [1,∞) be a fixed number. We consider the Cauchy

problem

(15) Dn
0x(t) = w + tm−nx(t) +

tm−n

t+ 1
x(t)Du, lim

t→0+
tm−nx(t) = cm,

and t ∈ [0, 1], where u(t) = C(t), C denotes the Cantor ternary function on [0, 1],

see [11]. Clearly,

u ∈ C[0, 1] \AC[0, 1]

and u is non-decreasing, thus (C7) holds. Observe that Dn
0 x is a distribution that

depends on x and the point t.

The function w is the distributional derivative of the Weierstrass function

W (t) =

∞
∑

n=1

sin(n2
πt)/n2.

Since W ∈ C[0, 1] but is differentiable nowhere on [0, 1], w ∈ Ac. For n = 1

the Cauchy problem (15) is a particular case of the equation (1.1) in [47]. If

n > 1, then (15) can be considered as a particular case of FMDEs. In fact,

‖tm−nx(t)‖∞ 6M and w ∈ Ac, then w ±M ∈ Ac as well. We set

f(x(t), t) = w + tm−nx(t) and g(x(t), t) =
tm−n

t+ 1
x(t).

Thus,

w −M � f(x, t) � w +M, t ∈ [0, 1],

and (C1)–(C3) hold.

Clearly, g(x(t), t) is continuous with respect to x and t, hence, (C4)–(C6) hold.

Then applying Theorem 3.4, the Cauchy problem (15) has at least one solution

given by

x(t) = x0(t) + J n
0 [w + (·)m−nx(·)](t) + J n

0

[ (·)m−n

(·) + 1
x(·)Du

]

(t),

where x ∈ Cm−n[0, 1]. For the case n ∈ N, clearly x ∈ C[0, 1].

Perspectives.

(1) An essential issue to analyse is the uniqueness of the Cauchy problems (1)

and (12).

(2) It is an open problem to extend Lemma 3.3 and Theorem 3.4 for the Cauchy

problem (1) of order 0 < n < 1.
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More precisely, for the point (2) a mathematical meaning to the fractional integral

of g(x(·), ·)Du of order n, J n
0 g(x(·), ·)Du(t) is needed. For this purpose, for example,

we require that for any t ∈ [0, 1] and x ∈ Br, the function

((t− s)+)n−1g(x(s), s)

depending on s be Henstock-Stieltjes integrable with respect to u ∈ BV on [0, 1]. To

the best of our knowledge, one of the more general results to prove the existence of

the Henstock-Stieltjes integral is Theorem 6.3.11 of [29]. According to this result,

since u ∈ BV, the function ((t − s)+)n−1g(x(s), s) must be regulated (it means, its

left and right limits exist for all s ∈ [0, 1]). Nevertheless, it might have a singularity.

Another approach to solve (2) is the following. Let us assume that the Lebesgue-

Stieltjes integral
∫

(0,1)

((t− s)+)n−1g(x(s), s) dµu

exists, where dµu
is the generated measure given by u. By Theorem 6.12.3 of [29],

J n
0 g(x, ·)Du(t) =

1

Γ(n)

∫

(0,1)

((t− s)+)n−1g(x(s), s) dµu
.

However, the conditions (C4) and (C6) for g have to change according to Lebesgue

integral theory.
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