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Abstract. Let R be a prime ring and I a nonzero ideal of R. The purpose of this paper
is to classify generalized derivations of R satisfying some algebraic identities with power
values on I.More precisely, we consider two generalized derivations F and H of R satisfying
one of the following identities:

(1) aF (x)mH(y)m = xnyn for all x, y ∈ I,

(2) (F (x) ◦H(y))m = (x ◦ y)n for all x, y ∈ I,

for two fixed positive integers m > 1, n > 1 and a an element of the extended centroid of R.
Finally, as an application, the same identities are studied locally on nonvoid open subsets
of a prime Banach algebra.
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MSC 2020 : 16N60, 46J10, 16W25

1. Introduction

Let R be a ring with center Z(R). Recall that R is a prime if xRy = 0 implies

x = 0 or y = 0. For any x, y ∈ R we write [x, y] = xy−yx and x◦y = xy+yx for the

Lie product and Jordan product, respectively. An additive mapping d : R → R is

a derivation if d(xy) = d(x)y+xd(y) for all x, y ∈ R. An additive mapping F : R → R

is a generalized derivation associated to a derivation d if F (xy) = F (x)y + xd(y) for

all x, y ∈ R. A ring R is called primitive if it has a faithful simple module. An

ideal P of a ring R is said to be a primitive ideal if P is the annihilator of a simple

R-module. The Jacobson radical of a ring R, denoted by rad(R), is the intersection of

all primitive ideals of R. If R has no primitive ideals (i.e., R has no simple modules),

then we define rad(R) = R. A Banach algebra is a normed algebra whose underlying
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vector space is a Banach space. The closure of a subset X of a Banach algebra A,

denoted by X, is the intersection of all closed subsets of A containing X. The interior

of a subset X of a Banach algebra A, denoted by
◦

X, is the largest open set contained

in X. Equivalently,
◦

X is the union of all open subsets of A contained in X.

During the past few decades, there has been an ongoing interest concerning the

relationship between the structure of a prime (semi-prime) ring R and the behavior

of generalized derivations of R satisfying some specific algebraic identities on an

appropriate subset of R. Motivated by various results in this direction, our aim in

this paper is to describe generalized derivations satisfying certain functional identities

on a nonzero ideal of a prime ring. Moreover, as an application of our results, we

investigate continuous generalized derivations satisfying similar algebraic identities

locally on open subsets of a prime Banach algebra.

2. Functional identities on prime rings

The main purpose of this section is to prove the following theorems.

Theorem 2.1. Let R be a prime ring of characteristic different from 2, Qr its

right Martindale quotient ring, C its extended centroid, I a nonzero ideal of R,

a ∈ C, F and H are generalized derivations of R associated with derivations d and h,

respectively, such that

aF (x)mH(y)m = xnyn ∀x, y ∈ I

for two fixed positive integers m > 1 and n > 1. Then F (x) = αx, H(x) = βx,

for some α, β ∈ C and a(αβ)m = 1. Moreover, if m 6= n, then m + n is even and

char (R) = 2|m−n| − 1.

Theorem 2.2. LetR be a prime ring of characteristic different from 2, Qr its right

Martindale quotient ring, C its extended centroid, I a nonzero ideal of R, F and H

are generalized derivations of R associated with derivations d and h, respectively,

such that

(F (x) ◦H(y))m = (x ◦ y)n ∀x, y ∈ I

for two fixed positive integers m > 1 and n > 1. Then F (x) = αx, H(x) = βx,

for some α, β ∈ C and (αβ)m = 1. Moreover, if m 6= n, then m + n is even and

char (R) = 2|m−n| − 1.

P r o o f of Theorem 2.1. One can suppose that a, F and H are nonzero, other-

wise, the main identity reduces to xnyn = 0 for all x, y ∈ I. Substituting y by x,

we get x2n = 0 for all x ∈ I. Using [4], Lemma 1.1, R has a nonzero nilpotent ideal,

which contradicts the primeness of R.
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Since I and Qr satisfy the same differential identities (see [8], Theorem 2) we may

assume that

(2.1) aF (x)mH(y)m = xnyn ∀x, y ∈ Qr.

Using [9], Theorem 3, there exist α, β ∈ Qr such that F (x) = αx+ d(x) and H(x) =

βx+ h(x). Hence, equation (2.1) becomes

(2.2) a(αx + d(x))m(βy + h(y))m = xnyn ∀x, y ∈ Qr.

Case 1: If d and h are both Qr-inner, then there exist q1, q2 ∈ Qr such that

d(x) = [q1, x], h(x) = [q2, x] for all x ∈ Qr, thus

P (x, y) = a(αx+ [q1, x])
m(βy + [q2, y])

m − xnyn = 0 ∀x, y ∈ Qr.

In view of [3], Theorem 2.5 and Theorem 3.5, we know that both Qr and Qr

⊗

C C

are centrally closed, where C is the algebraic closure of C. We may replace Qr by

itself or Qr

⊗

C C according whether C is finite or infinite. Therefore we may assume

that Qr is centrally closed over C, which is either finite or algebraically closed. By

Martindale’s theorem (see [10]), Qr is a primitive ring having a nonzero socle H

with C the associated division ring. In light of Jacobson’s theorem (see [5], page 75),

Qr is isomorphic to a dense ring of linear transformations on a vector space V over C.

If dimC V = k, then the density of Qr gives Qr
∼= Mk(C).

Assume that dimC V > 2. We want to show that {u, q1u} are linearly C-dependent

for all u ∈ V . Indeed, suppose that u and q1u are linearly C-independent.

If q2u /∈ SpanC{u, q1u}, then {u, q1u, q2u} is C-independent, invoking [2], Defini-

tion 5.11. There exist f, g ∈ Qr such that fu = 0, fq1u = −u, fq2u = u, gu = 0,

gq1u = u, gq2u = −u,

(2.3) P (f, g)u = (a(αf + [q1, f ])
m(βg + [q2, g])

m − fngn)u = 0.

It is obvious that (αf+[q1, f ])
mu = u, (βg+[q2, g])

mu = u and fngnu = 0. Therefore

P (f, g)u = au = 0 for all u ∈ V , a contradiction.

Let now q2u ∈ SpanC{u, q1u}. Then q2u = λu + µq1u for some λ, µ ∈ C, hence

gq2u = λgu + µgq1u = µu, so (βg + [q2, g])
mu = µmu, consequently P (f, g)u =

aµmu = 0 for all u ∈ V, which is absurd.

Then in all cases, {u, q1u} are linearly C-dependent for all u ∈ V, that is,

q1u = λuu for some λu ∈ C. Obviously, for any v ∈ V such that {u, v} are

linearly C-independent, we have q1(u − v) = λuu − λvv = λu−v(u − v), then

(λu−λu−v)u−(λv−λu−v)v = 0, hence λu = λu−v = λv, finally q1u = λu for all u ∈ V.
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On the other hand, for r ∈ R and u ∈ V we get

(rq1)u = r(q1u) = rλu = λ(ru) = q1(ru) = (q1r)u,

then [R, q1]V = 0, thus q1 ∈ C. Similarly, we prove that q2 ∈ C. The main equation

becomes

(2.4) Q(x, y) = a(αx)m(βy)m − xnyn = 0 ∀x, y ∈ Qr.

Now we aim to prove that {w,αw} are linearly C-dependent for all w ∈ V, indeed,

suppose that w and αw are linearly C-independent.

If βw /∈ SpanC{w,αw}, then {w,αw, βw} are C-independent, Qr being a dense

ring of linear transformation of V . It follows that there exist f, g ∈ Qr such that

fw = 0, fαw = w, fβw = w, gw = w, gαw = 0, gβw = w,

(2.5) Q(f, g)w = (a(αf)m(βg)m − fngn)w = 0.

Firstly

(a(αf)m(βg)m − fngn)w = (a(αf)m(βg)m−1(βgw)− fngn−1(gw))

= (a(αf)n−1(αf)βw − fn−1(fw)) = aαw.

Using relation (2.5), we get Q(f, g)w = aαw = 0 for all w ∈ V , a contradiction.

Now, if βw ∈ SpanC{w,αw}, then βw = λ1w+λ2αw for some λ1, λ2 ∈ C. It follows

that gβw = λ1w and fβw = λ2w, thus

Q(f, g)w = (a(αf)m(βg)m−1(βgw)− fngn−1(gw)) = (a(αf)m(βg)m−2βλ1w)

= (λ1)
m−1(a(αf)mβw) = (λ1)

m−1(a(αf)m−1α(fβw))

= (λ1)
m−1λ2(a(αf)

m−1αw) = (λ1)
m−1λ2aαw.

Using relation (2.5), we get Q(f, g)w = (λ1)
m−1λ2aαw = 0 for all w ∈ V , which

is absurd. Then in all cases, {w,αw} are linearly C-dependent for all w ∈ V, thus

αw = γww for all w ∈ V and for some γw ∈ C. It is straightforward that αw = γw,

thus [R,α]V = 0 and α ∈ C. Analogously, we prove that β ∈ C. Then the main

equation reduces to

(2.6) a(αβ)mxmym − xnyn = 0 ∀x, y ∈ I.

If m = n, then a(αβ)m = 1 directly follows.
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On the other hand, if m 6= n, invoking [7], Lemma 1, I ⊆ Ms(K) for a field K

and an integer s > 1, then Ms(K) satisfies

(2.7) a(αβ)mxmym − xnyn = 0.

Taking eii instead of x and y in relation (2.7) for a fixed positive integer i 6 s, we

get (a(αβ)m − 1)eii = 0, then a(αβ)m = 1. Now equation (2.7) becomes

(2.8) xmym − xnyn = 0 ∀x, y ∈ Ms(K).

Suppose that m+n is odd, then taking −y instead of y in equation (2.8), we obtain

(2.9) xmym + xnyn = 0 ∀x, y ∈ Ms(K).

Summing relation (2.8) and equation (2.9), we find that xmym = 0. In particular,

for x = y = e11, the last equation yields a contradiction.

Now if m+n is even, taking 2ejj instead of x and ejj instead of y in relation (2.8)

for a fixed positive integer j 6 s, we get 2mejj−2nejj = 0, that is (2|m−n|−1)ejj = 0,

which is impossible unless char (R) = 2|m−n| − 1.

Case 2: If d and h are linearly C-independent modulo inner derivations of Qr(R),

then using [6], Theorem 2 along with relation (2.2), we get

(2.10) a(αx + z1)
m(βy + z2)

m = xnyn ∀x, y, z1, z2 ∈ Qr.

In particular, for x = y = 0, equation (2.10) reduces to azm1 zm2 = 0 for all z1, z2 ∈ Qr,

which contradicts [4], Lemma 1.1.

Case 3: If d and h are linearly C-dependent modulo inner derivations of Qr(R),

then we may suppose that d(x) = δh(x) + [q, x] for all x ∈ R with δ ∈ C \ {0} and

q ∈ Qr(R). Note that h is Qr-outer, otherwise d and h are both Qr-inner, which has

already been treated before in Case 1. The main equation becomes

(2.11) a(αx+ δh(x) + [q, x])m(βy + h(y))m − xnyn = 0 ∀x, y ∈ Qr.

Theorem 2 of [6] yields

a(αx+ δz1 + [q, x])m(βy + z2)
m − xnyn = 0 ∀x, y, z1, z2 ∈ Qr.

Arguing as in Case 2, we also get a contradiction. �
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P r o o f of Theorem 2.2. We may suppose that F and H are nonzero. Indeed,

otherwise the main identity becomes (x ◦ y)n = 0 for all x, y ∈ I. Taking x instead

of y, we get 2nx2n = 0 for all x ∈ I. Invoking char (R) 6= 2 along with [4], Lemma 1.1,

R has a nonzero nilpotent ideal, which contradicts the primeness of R.

Now using [8], Theorem 2, our hypothesis yields

(2.12) (F (x) ◦H(y))m = (x ◦ y)n ∀x, y ∈ Qr.

By view of [9], Theorem 3, there exist α, β ∈ Qr such that F (x) = αx + d(x) and

H(x) = βx + h(x), then relation (2.12) yields

((αx + d(x)) ◦ (βy + h(y)))m = (x ◦ y)n ∀x, y ∈ Qr.

Case 1: d and h are both Qr-inner, then there exist q1, q2 ∈ Qr such that d(x) =

[q1, x], h(x) = [q2, x] for all x ∈ Qr, hence

P (x, y) = ((αx + [q1, x]) ◦ (βy + [q2, y]))
m − (x ◦ y)n = 0 ∀x, y ∈ Qr.

By adopting a similar approach to the one used in Theorem 2.1, it follows that Qr

is isomorphic to a dense ring of linear transformation of vector space V over C.

Assume that dimC V > 2, clearly {v, q1v} are linearly C-dependent for all v ∈ V,

otherwise, we suggest to suppose that v and q1v are linearly C-independent.

If q2v /∈ SpanC{v, q1v}, then {v, q1v, q2v} is C-independent. Using the density

of Qr, there exist f, g ∈ Qr such that fv = 0, fq1v = −v, fq2u = v, gv = 0,

gq1v = −v, gq2v = v,

(2.13) P (f, g)v = (((αf + [q1, f ]) ◦ (βg + [q2, g]))
m − (f ◦ g)n)v = 0.

The only nonzero terms are [q1, f ][q2, g]v = −v and [q2, g][q1, f ]v = −v.

P (f, g)v = (([q1, f ][q2, g] + [q2, g][q1, f ])
m − (f ◦ g)n)v

= ([q1, f ][q2, g] + [q2, g][q1, f ])
mv

= ([q1, f ][q2, g] + [q2, g][q1, f ])
m−1(−2v) = (−2)mv.

Invoking equation (2.13), P (f, g)v = (−2)mv = 0 for all v ∈ V, a contradiction.

Now if q2v /∈ SpanC{v, q1v}, then q2v = λv + µq1v for some λ, µ ∈ C, thus gq2v =

λgv + µgq1v = −µv, accordingly P (f, g)u = (2µ)mv = 0 for all w ∈ V , which is also

impossible.

Then generally {v, q1v} are linearly C-dependent for all v ∈ V. Simple arguments

lead to q1v = λv for all v ∈ V with λ ∈ C, which, as in the proof of Theorem 2.1,

forces q1 ∈ C. Using a similar argument, we get q2 ∈ C.
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We propose to prove that {w,αw} are linearly C-dependent for anyw ∈ V. Suppose

that {w,αw} are linearly C-independent.

If βw /∈ SpanC{w,αw}, then {w,αw, βw} are C-independent, Qr being a dense

ring of linear transformation of V, it follows that there exist f, g ∈ Qr such that

fw = w, fαw = 0, fβw = w, gw = 0, gαw = w, gβw = 0,

(2.14) Q(f, g)w = (((αf) ◦ (βg))m − (f ◦ g)n)w = 0.

Firstly, (αfβg+βgαf)w = βgαw = βw and (αfβg+βgαf)βw = βw. Consequently,

Q(f, g)w = βw = 0 for all w ∈ V , which is impossible.

Let now βw ∈ SpanC{w,αw}, then βw = µ1w + µ2αw for some µ1, µ2 ∈ C,

accordingly, we get (αfβg + βgαf)βw = µ1(µ2α+ β)w. It is obvious that

(αfβg + βgαf)µ1(µ2α+ β)w = µ1(µ2α+ β)w.

Then

Q(f, g)w = µ1(µ2α+ β)w

for any w ∈ V , which is impossible. Then {w,αw} are linearly C-dependent for any

w ∈ V. Simple computations lead to αw = γw for some γ ∈ C, thus [R,α]V = 0,

then α ∈ C. Likewise, we get β ∈ C. Returning to the main equation, we find that

(2.15) (αβ)m(x ◦ y)m = (x ◦ y)n ∀x, y ∈ I.

If m = n, then (αβ)m = 1 follows immediately.

Regarding the case where m 6= n, in light of [7], Lemma 1, Ms(K) satisfies

(2.16) (αβ)m(x ◦ y)m = (x ◦ y)n

for a field K and an integer s > 1. Taking eij instead of x and eji instead of y in rela-

tion (2.16) for some fixed positive integers i, j 6 s, we get ((αβ)m − 1)(eii + ejj) = 0,

which implies (αβ)m = 1. Now relation (2.16) reduces to

(2.17) (x ◦ y)m − (x ◦ y)n = 0 ∀x, y ∈ Ms(K).

If m+ n is odd, then substituting y by −y in equation (2.17), we obtain

(2.18) (x ◦ y)m + (x ◦ y)n = 0 ∀x, y ∈ Ms(K).

The summation of relation (2.17) and equation (2.18) gives (x ◦ y)m = 0 for all

x, y ∈ Ms(K). Setting x = y = Is with Is the matrix identity of Ms(K), we get to

2mIs = 0 so that Is = 0, a contradiction.
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Now if m+ n is even, for x = y = eii, equation (2.17) yields

(2eii)
m − (2eii)

n = 0.

That is, (2|m−n| − 1)eii = 0, which is impossible unless char (R) = 2|m−n| − 1.

Case 2: If d and h are linearly C-independent modulo inner derivations of Qr(R),

then the main identity along with [6], Theorem 2 give

(2.19) ((αx + z1) ◦ (βy + z2))
m = (x ◦ y)n ∀x, y, z1, z2 ∈ Qr.

Setting x = y = 0, equation (2.19) reduces to (z1 ◦ z2)
m = 0 for all z1, z2 ∈ Qr;

a contradiction follows directly from [4], Lemma 1.1.

Case 3: If d and h are linearly C-dependent modulo inner derivations of Qr(R),

then one can show that d(x) = δh(x) + [q, x] for some δ ∈ C \ {0}, q ∈ Qr(R) and h

is necessarily Qr-outer. The main equation becomes

(2.20) ((αx + δh(x) + [q, x]) ◦ (βy + h(y)))m − (x ◦ y)n = 0 ∀x, y ∈ Qr.

Theorem 2 of [6] yields

((αx + δz1 + [q, x]) ◦ (βy + z2))
m − (x ◦ y)n = 0 ∀x, y, z1, z2 ∈ Qr.

An approach similar to that adopted in Case 2 leads to a contradiction. �

3. Application on prime Banach algebras

Throughout this section, A denotes a real or complex Banach algebra. To prove

our main results we need the following lemma.

Lemma 3.1 ([1]). Let A be a Banach algebra. If P (t) =
n
∑

k=0

bkt
k is a polynomial

in the real variable t with coefficients in A, and if for an infinite set of real values

of t, P (t) ∈ M, where M is a closed linear subspace of A, then every bk lies in M.

Theorem 3.1. Let A be a Banach algebra, QA its right Martindale quotient ring,

CA its extended centroid, F = Lα + d, H = Lβ + h are two continuous generalized

derivations with Lα (or Lβ) the left multiplication by an element α ∈ A (or β ∈ A),

d, h derivations of A, a ∈ CA, m > 1 and n > 1 are two fixed positive integers

such that

aF (x)mH(y)m − xnyn ∈ rad(A) ∀x, y ∈ A,

then d(A) ⊆ rad(A) and h(A) ⊆ rad(A).Moreover, ifA is primitive, then F (x) = αx,

H(x) = βx, for some α, β ∈ CA with a(αβ)m = 1 and m = n.
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P r o o f. Let P be a primitive ideal, set FP , HP : A/P → A/P with FP (x) =

FP (x + P ) = F (x) + P and HP (x) = HP (x + P ) = H(x) + P for all x ∈ A/P.

Invoking [11], Theorem 2.2 primitive ideals are invariant under F and H, then FP

and HP are well defined. P being primitive, Lemma 5.36 of [2] implies that A/P is

a primitive ring and thus prime by [2], Lemma 5.4. The main identity becomes

aFP (x)
mHP (y)

m − xnyn = 0 ∀x, y ∈ A/P.

Using Theorem 2.1, we get dP = 0 and hP = 0, that is, d(A) ⊆ P and h(A) ⊆ P for

any primitive ideal P. Then d(A) ⊆ rad(A) or h(A) ⊆ rad(A).Moreover, if A is prim-

itive, then rad(A) = (0). Invoking again Theorem 2.1, we get the required results. �

Using the same arguments as above, with a suitable modification, application of

Theorem 2.2 yields the following result.

Theorem 3.2. Let A be a Banach algebra, F = Lα + d, H = Lβ + h be two

continuous generalized derivations with Lα (or Lβ) the left multiplication by an

element α ∈ A (or β ∈ A), d, h derivations of A, m > 1 and n > 1 be two fixed

positive integers such that

(F (x) ◦H(y))m − (x ◦ y)n ∈ rad(A) ∀x, y ∈ A,

then d(A) ⊆ rad(A) and h(A) ⊆ rad(A).Moreover, ifA is primitive, then F (x) = αx,

H(x) = βx, for some α, β ∈ CA with (αβ)m = 1 and m = n.

Theorem 3.3. Let A be a prime Banach algebra, O1, O2 nonvoid open subsets

on A, QA its right Martindale quotient ring, CA its extended centroid, a ∈ CA, F

and H are two continuous generalized derivations of A associated with derivations d

and h, respectively, such that

aF (x)mH(y)m − xnyn = 0 ∀ (x, y) ∈ O1 ×O2

for two fixed positive integers m > 1 and n > 1. Then F (x) = αx, H(x) = βx for

some α, β ∈ CA. Moreover, m = n and a(αβ)m = 1.

P r o o f. By assumption

(3.1) F (x)mH(y)m − xnyn = 0 ∀ (x, y) ∈ O1 ×O2.

Let u ∈ A and x ∈ O1, then x + tu ∈ O1 for a sufficiently small real t. F, H being

continuous, one can obviously see that F (ru) = rF (u) and H(ru) = rH(u) for all

u ∈ A, r ∈ R. Taking x+ tu instead of x in equation (3.1), we get

(3.2) Q(t) = a(F (x) + F (u)t)mH(y)m − (x+ tu)nyn = 0.
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Setting Q(t) =
max(m,n)

∑

k=0

qk(u, x, y)t
k, if m = n, invoking Lemma 3.1, we obtain

qk(u, x, y) = 0 for all k ∈ {0, . . . ,m}. In particular, qm(u, x, y) = 0, thus

aF (u)mH(y)m − umym = 0 ∀ (u, y) ∈ A×O2.

Similarly, by acting on y instead of x, one can easily get to

aF (u)mH(v)m − umvm = 0 ∀u, v ∈ A.

By Theorem 2.1, we get the required results.

Suppose now that m < n, the right choice of the coefficient yields

pn(u, x, y) = unyn = 0 ∀ (u, y) ∈ A×O2.

At the end, we get unvn = 0 for all u, v ∈ A. Substituting v by u and invoking [4],

Lemma 1.1, it follows that A has a nonzero nilpotent ideal, absurd.

Now if m > n, it follows that pm(u, x, y) = aF (u)mH(v)m = 0 for all u, v ∈ A.

The main equation leads to unvn = 0 for all u, v ∈ A and we obtain the same

contradiction. Then necessarily m = n. �

Theorem 3.4. Let A be a prime Banach algebra, O1, O2 nonvoid open subsets

on A, QA its right Martindale quotient ring, CA its extended centroid, F and H

be two continuous generalized derivations of A associated with derivations d and h,

respectively, such that

(F (x) ◦H(y))m − (x ◦ y)n = 0 ∀ (x, y) ∈ O1 ×O2

withm > 1 and n > 1 be two fixed positive integers. Then F (x) = αx andH(x) = βx

for some α, β ∈ CA. Moreover, m = n and (αβ)m = 1.

P r o o f. Assume that

(3.3) (F (x) ◦H(y))m − (x ◦ y)n = 0 ∀ (x, y) ∈ O1 ×O2.

Let u ∈ A. For a sufficiently small real s, one can replace x by x+su in equation (3.3)

(3.4) P (s) = (F (x) ◦H(y) + (F (u) ◦H(y))s)m − (x ◦ y + (u ◦ y)s)n = 0.

Set P (s) =
max(m,n)

∑

k=0

pk(u, x, y)s
k. Ifm = n, a direct application of Lemma 3.1 leads to

pm(u, x, y) = (F (u) ◦H(y))m − (u ◦ y)m = 0 ∀ (u, y) ∈ A×O2.
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By adopting a similar approach, we get

(F (u) ◦H(v))m − (u ◦ v)m = 0 ∀u, v ∈ A

and application of Theorem 2.2 gives the required conclusion.

Now if m < n, a suitable choice of the right coefficient yields

pn(u, x, y) = (u ◦ y)n = 0 ∀ (u, y) ∈ A×O2.

Then (u ◦ v)n = 0 for all u, v ∈ A. Replacing v by u and using [4], Lemma 1.1, we

get a contradiction.

Regarding the case where m > n, we get pm(u, x, y) = (F (u) ◦H(v))m = 0 for all

u, v ∈ A. The main equation becomes (x ◦ y)n = 0 for all (x, y) ∈ O1 ×O2. Arguing

as in the last case, we obtain the same contradiction. Accordingly, m = n. �

The following example shows that the primeness hypothesis in Theorems 2.1–2.2

is not superfluous.

E x am p l e 3.1. Let us consider the ring R =











0 x y

0 0 z

0 0 0



 : x, y, z ∈ Z







and I =











0 x y

0 0 0

0 0 0



 : x, y ∈ Z







an ideal of R. Define F,H : R → R with

F





0 x y

0 0 z

0 0 0



 =





0 0 yx

0 0 0

0 0 0



 and H





0 x y

0 0 z

0 0 0



 =





0 0 x

0 0 z

0 0 0



 . Obviously F

and H are generalized derivations on R. Fix a ∈ C \ {0}. It is straightforward

that aF (X)mH(Y )m = XnY n and (F (X) ◦ H(Y ))m = (X ◦ Y )n for all X,Y ∈ I.

However, conclusions of Theorems 2.1 and 2.2 are not satisfied.
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