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Abstract. This paper is concerned with the study of a nonlocal nonlinear parabolic
problem associated with the equation ut − M(

∫
Ω
φu dx)div (A(x, t, u)∇u) = g(x, t, u) in

Ω × (0, T ), where Ω is a bounded domain of Rn (n > 1), T > 0 is a positive number,
A(x, t, u) is an n × n matrix of variable coefficients depending on u and M : R → R,
φ : Ω→ R, g : Ω×(0, T )×R → R are given functions. We consider two different assumptions
on g. The existence of a weak solution for this problem is proved using the Schauder fixed
point theorem for each of these assumptions. Moreover, if A(x, t, u) = a(x, t) depends only
on the variable (x, t), we investigate two uniqueness theorems and give a continuity result
depending on the initial data.

Keywords: nonlocal nonlinear parabolic problem; Schauder fixed point theorem; weak
solution; existence; uniqueness

MSC 2020 : 35D30, 35K55, 35Q92

1. Introduction

Let Ω be a bounded domain in Rn (n > 1), T be a positive number, Q = Ω×(0, T )

and φ, u0 ∈ L2(Ω). Let A : Q × R → R
n×n be a vector function such that

(x, t) 7→ A(x, t, s) is measurable for all s ∈ R, s 7→ A(x, t, s) is continuous for

a.e. (x, t) ∈ Q and

∀ ξ ∈ R
n : λ|ξ|2 6 A(x, t, s)ξ · ξ,(1.1)

∀ ξ ∈ R
n : |A(x, t, s)ξ| 6 Λ|ξ|,(1.2)
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for all s ∈ R and a.e. (x, t) ∈ Q, where λ and Λ are positive constants, and let

M : R → R be a continuous function satisfying for some constants m1 > m0 > 0,

(1.3) m0 6 M(s) 6 m1 ∀ s ∈ R.

On the other hand, let g : Q × R → R be a function such that (x, t) 7→ g(x, t, s)

is measurable for all s ∈ R, g(·, ·, 0) ∈ L2(Q) and satisfies one of the two following

assumptions:

(1.4) ∀ s1, s2 ∈ R, a.e. (x, t) ∈ Q :

|g(x, t, s1)− g(x, t, s2)| 6

{

bp(x, t)|s1 − s2|
p, p ∈ (0, 1);

b1(x, t)|s1 − s2|, p = 1,

where bp ∈ L2/(1−p)(Q) for p ∈ (0, 1), b1 ∈ L∞(Q), CΩ(2T/(λm0))
1/2‖b1‖L∞(Q) < 1

with CΩ denoting a Poincaré constant forH
1
0 (Ω), and for a.e. (x, t) ∈ Q, s 7→ g(x, t, s)

is continuous,

(1.5) ∃h ∈ L2(Q) ∀ s ∈ R, a.e. (x, t) ∈ Q : |g(x, t, s)| 6 h(x, t).

We now consider the following weak formulation of nonlocal nonlinear parabolic

problems:

(1.6)



























u ∈ L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)), ut ∈ L2(0, T ;H−1(Ω)),

u(·, 0) = u0 a.e. in Ω,

d

dt
(u, ξ) +M(l(u))

∫

Ω

A(x, t, u)∇u · ∇ξ dx =

∫

Ω

g(x, t, u)ξ dx

in D′(0, T ) ∀ ξ ∈ H1
0 (Ω),

where

(u, ξ) =

∫

Ω

uξ dx and l(u) = l(u)(t) =

∫

Ω

φ(x)u(x, t) dx.

The study of nonlocal problems has attracted the attention of many authors and

several results have been established. These types of problems (1.6) arise in a wide

variety of applications in physics and population dynamics. For instance, the so-

lution u can be used to describe the population density of bacteria in space and

time. Also, this model can address some questions concerning the heat conduction.

See [7], [8], [9], [10], [17] for more details.

In the homogenous case when A(x, t, u) is the identity matrix, the authors in [8]

and [3] established existence theorems for (1.6) by using the Galerkin Method, re-

spectively, for the second term g depending only on (x, t), g(x, t, u) = g(x, t) ∈
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L2(0, T ;H−1(Ω)) and for g(x, t, u) = k(x) − f(u) such that k ∈ L2(Ω) and f is

a continuously differentiable function satisfying f(u)u > −µu2 − c1, f
′(u) > −α,

where c1, α are two positive constants, 0 < µ < m0λ1 with λ1 > 0 is the first

eigenvalue of the operator (−∆, H1
0 (Ω)). Moreover, the uniqueness and the asymp-

totic behavior of solutions and other results have been obtained under some addi-

tional conditions. By means of the Schauder fixed point theorem, the existence of

weak solutions for (1.6) has been proved in [13] for a Lipschitz continuous function

g(x, t, u) = f(u) such that f(0) = 0 and f ′(0) exists. Also, the uniqueness and the re-

sult on existence of periodic solution have been established. If g depends only on the

variable (x, t), g(x, t, u) = g(x, t) ∈ L2(0, T ;H−1(Ω)) and l : L2(Ω) → R is a continu-

ous function, the authors in [10] gave an existence theorem for (1.6) and by imposing

additional conditions, they investigated the uniqueness and asymptotic behavior of

solutions. In [16], the authors considered the following nonlocal parabolic problem:















ut − a

(
∫

Ω

|u|γ dx

)

∆u = f(u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω,

where Ω is a sufficiently regular domain, γ ∈ [1,∞), T ∈ (0,∞], u0 ∈ C2+α(Ω),

α ∈ (0, 1), f ∈ C1(R) and a ∈ C1([0,∞)) with inf
t∈[0,∞)

a(t) > a(0) := a0 > 0.

By using the sub-supersolution method, they proved the existence, uniqueness and

long-time behavior of positive solutions.

For the nonlocal problems in the stationary case, we refer to [1], [2], [4], [5], [9],

[11], [15], [18], [19], [20] and the references therein in which various methods have

been used for studying the existence and uniqueness of solutions and other questions.

In this paper, we suppose that (1.1)–(1.3) and one of (1.4) and (1.5) hold. We

prove the existence of a solution for each problem (1.6) by applying the Schauder fixed

point theorem. Moreover, if A(x, t, u) = a(x, t) depends only on the variable (x, t),

we investigate two uniqueness theorems and give a continuity result depending on

the initial data as in [10], Lemma 5.1, assuming that M is a Lipschitz continuous

function. Our first uniqueness theorem is concerned with the case p = 1 in which the

function g satisfies a generalized Lipschitz condition and under the assumption that g

is decreasing with respect to u, we state and prove our second uniqueness theorem.

2. Existence of a solution

In this section, we prove the existence of a solution of (1.6) assuming that the

function g satisfies one of assumptions (1.4) and (1.5).
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Theorem 2.1. If (1.1)–(1.3) and either (1.4) or (1.5) holds, problem (1.6) has

a solution.

P r o o f. We apply the Schauder fixed point theorem to show the existence of

a solution of (1.6). For a fixed element v of L2(Q) and for a.e. t ∈ (0, T ), we define

Av(u, ξ, t) = M(l(v))

∫

Ω

A(x, t, v)∇u · ∇ξ dx ∀u, ξ ∈ H1
0 (Ω),

fv(x, t) = g(x, t, v) a.e. x ∈ Ω.

Observe that Av is a bilinear form on H1
0 (Ω)×H1

0 (Ω) which satisfies

t 7→ Av(u, ξ, t) is measurable ∀u, ξ ∈ H1
0 (Ω),

and by (1.1)–(1.3) and the Cauchy-Schwarz inequality, we have for a.e. t ∈ (0, T ),

|Av(u, ξ, t)| 6 Λm1‖u‖H1
0(Ω)‖ξ‖H1

0 (Ω) ∀u, ξ ∈ H1
0 (Ω),

Av(u, u, t) + λm0‖u‖
2
L2(Ω) > λm0‖u‖

2
H1

0(Ω) ∀u ∈ H1
0 (Ω).

On the other hand, if one of assumptions (1.4) and (1.5) holds, the function fv
belongs to L2(Q). Thus, from [6], Theorem 11.7, we deduce that for each v ∈ L2(Q),

there exists a unique solution of the following problem:

(2.1)



























u ∈ L2(0, T ;H1
0(Ω)), ut ∈ L2(0, T ;H−1(Ω)),

u(·, 0) = u0 a.e. in Ω,

d

dt
(u, ξ) +M(l(v))

∫

Ω

A(x, t, v)∇u · ∇ξ dx =

∫

Ω

g(x, t, v)ξ dx

in D′(0, T ) ∀ ξ ∈ H1
0 (Ω).

Let us now define F : L2(Q) → L2(0, T ;H1
0 (Ω)) by F (v) = u. If we choose ξ = u as

a test function in (2.1), we obtain

(2.2)
1

2

d

dt
‖u‖2L2(Ω) +M(l(v))

∫

Ω

A(x, t, v)∇u · ∇u dx =

∫

Ω

g(x, t, v)u dx.

Integrating (2.2) from 0 to t, we get

(2.3)
1

2
‖u‖2L2(Ω) +

∫ t

0

M(l(v))

∫

Ω

A(x, s, v)∇u · ∇u dxds

=

∫ t

0

∫

Ω

g(x, s, v)u dxds+
1

2
‖u0‖

2
L2(Ω).
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Using (1.1), (1.3), (1.4), Hölder’s inequality and Poincaré’s inequality, we obtain

from (2.3) for all p ∈ (0, 1),

1

2
‖u‖2L2(Ω) + λm0

∫ t

0

‖u‖2H1
0(Ω) ds

6

∫ t

0

∫

Ω

(bp(x, s)|v|
p + |g(x, s, 0)|)|u| dxds+

1

2
‖u0‖

2
L2(Ω)

6 (‖bp‖L2/(1−p)(Q)‖v‖
p
L2(Q) + ‖g(·, ·, 0)‖L2(Q))‖u‖L2(Ω×(0,t)) +

1

2
‖u0‖

2
L2(Ω)

6 CΩ(‖bp‖L2/(1−p)(Q)‖v‖
p
L2(Q) + ‖g(·, ·, 0)‖L2(Q))

(
∫ t

0

‖u‖2H1
0(Ω) ds

)1/2

+
1

2
‖u0‖

2
L2(Ω),

which, by using Young’s inequality, leads to

(2.4)
1

2
‖u‖2L2(Ω) +

λm0

2

∫ t

0

‖u‖2H1
0(Ω) ds

6
C2

Ω

2λm0
(‖bp‖L2/(1−p)(Q)‖v‖

p
L2(Q) + ‖g(·, ·, 0)‖L2(Q))

2 +
1

2
‖u0‖

2
L2(Ω)

6
C2

Ω

λm0
(‖bp‖

2
L2/(1−p)(Q)‖v‖

2p
L2(Q) + ‖g(·, ·, 0)‖2L2(Q)) +

1

2
‖u0‖

2
L2(Ω).

From (2.4), we derive the following estimates:

(2.5)

‖u‖L2(0,T ;H1
0 (Ω))

6
1

(λm0)1/2

{ 2C2
Ω

λm0
(‖bp‖

2
L2/(1−p)(Q)‖v‖

2p
L2(Q) + ‖g(·, ·, 0)‖2L2(Q)) + ‖u0‖

2
L2(Ω)

}1/2

and

(2.6)

‖u‖L2(Q)

6 T 1/2
{ 2C2

Ω

λm0
(‖bp‖

2
L2/(1−p)(Q)‖v‖

2p
L2(Q) + ‖g(·, ·, 0)‖2L2(Q)) + ‖u0‖

2
L2(Ω)

}1/2

6 T 1/2
{

CΩ

( 2

λm0

)1/2

(‖bp‖L2/(1−p)(Q)‖v‖
p
L2(Q) + ‖g(·, ·, 0)‖L2(Q)) + ‖u0‖L2(Ω)

}

.

Moreover, if p = 1, we arrive at

(2.7) ‖u‖L2(0,T ;H1
0 (Ω))

6
1

(λm0)1/2

{ 2C2
Ω

λm0
(‖b1‖

2
L∞(Q)‖v‖

2
L2(Q) + ‖g(·, ·, 0)‖2L2(Q)) + ‖u0‖

2
L2(Ω)

}1/2

and

(2.8)

‖u‖L2(Q) 6 T 1/2
{

CΩ

( 2

λm0

)1/2

(‖b1‖L∞(Q)‖v‖L2(Q) + ‖g(·, ·, 0)‖L2(Q)) + ‖u0‖L2(Ω)

}

.
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By using (2.5)–(2.8) and the fact that CΩ(2T/(λm0))
1/2‖b1‖L∞(Q) < 1, we deduce

that for all p ∈ (0, 1], there exist positive constantsR1 = R1(p), R2 = R2(p) such that

(2.9) ‖v‖L2(Q) 6 R1 ⇒ (‖u‖L2(Q) 6 R1 and ‖u‖L2(0,T ;H1
0 (Ω)) 6 R2).

In particular, F (B(0, R1)) ⊂ B(0, R1), where B(0, R1) denotes the closed ball in

L2(Q) of center 0 and radius R1. Also, if g satisfies (1.5), we can find another

positive constant R3 independent of v such that F sends L
2(Q) to B(0, R3) and

(2.10) ‖u‖L2(0,T ;H1
0 (Ω)) 6 R3.

Now, we prove that F : B(0, R4) → B(0, R4) is continuous, where R4 = R1 or R3.

Let (vj)j∈N be a sequence in B(0, R4) which converges to v∞ ∈ B(0, R4) and set

uj = F (vj), u∞ = F (v∞). There exists a subsequence jk such that

vjk → v∞ strongly in L2(Q),(2.11)

vjk → v∞ a.e. in Q,(2.12)

l(vjk) → l(v∞) strongly in L2(0, T ).(2.13)

The last equation of (2.1) can be written in L2(0, T ;H−1(Ω)) as

(2.14)
du

dt
−M(l(v)) div(A(x, t, v)∇u) = g(x, t, v).

Writing (2.14) for u = ujk and v = vjk , and multiplying the obtained equation by

ξ ∈ D(0, T ;H1
0 (Ω)), we get

(2.15)

∫

Q

ujkξt dxdt =

∫ T

0

M(l(vjk))

∫

Ω

A(x, t, vjk )∇ujk · ∇ξ dxdt

−

∫

Q

g(x, t, vjk)ξ dxdt.

Using (1.2), (1.3), the Cauchy-Schwarz inequality, Poincaré’s inequality and ei-

ther (1.4) with (2.9) or (1.5) with (2.10), we obtain from (2.15) for a constant c2

independent of jk and ξ,

∀ k ∈ N :

∣

∣

∣

∣

∫

Q

ujkξt dxdt

∣

∣

∣

∣

6 c2‖ξ‖L2(0,T ;H1
0 (Ω)),

which means that

(2.16) ∀ k ∈ N : ‖ujkt‖L2(0,T ;H−1(Ω)) 6 c2.
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We notice that the balls of E = {v ∈ L2(0, T ;H1
0 (Ω))/vt ∈ L2(0, T ;H−1(Ω))}, which

is a Hilbert space when equipped with the norm

{‖v‖2L2(0,T ;H1
0 (Ω)) + ‖vt‖

2
L2(0,T ;H−1(Ω))}

1/2

(see [6]), are relatively compact in L2(0, T ;L2(Ω)) = L2(Q) (see [12]). Then,

by (2.9), (2.10) and (2.16), the set F (B(0, R4)) is relatively compact in B(0, R4).

On the other hand, there exist a subsequence, which we still denote by jk, and

u ∈ L2(0, T ;H1
0(Ω)) such that

ujk ⇀ u weakly in L2(0, T ;H1
0 (Ω)),(2.17)

ujkt ⇀ ut weakly in L2(0, T ;H−1(Ω)),(2.18)

ujk → u strongly in L2(Q).(2.19)

For ϕ ∈ D(0, T ) and ξ ∈ H1
0 (Ω) we have

(2.20)

∫ T

0

ϕ(t)M(l(vjk ))

∫

Ω

A(x, t, vjk )∇ujk · ∇ξ dxdt−

∫

Q

ujkξϕt dxdt

=

∫

Q

g(x, t, vjk)ξϕdxdt.

Observe that from (1.2), (1.3), (2.12), (2.13), (2.17), the continuity of M and

s 7→ A(·, ·, s), and the dominated convergence theorem, we have up to a subsequence

M(l(vjk))∇ξ → M(l(v∞))∇ξ strongly in (L2(Q))n,(2.21)

A(·, ·, vjk)∇ujk ⇀ A(·, ·, v∞)∇u weakly in (L2(Q))n.(2.22)

On the other hand, if (1.4) or (1.5) holds, then

lim
k→∞

∫

Q

g(x, t, vjk )ξ dxdt =

∫

Q

g(x, t, v∞)ξ dxdt.(2.23)

Indeed, if (1.4) is satisfied, Hölder’s inequality gives

∣

∣

∣

∣

∫

Q

(g(x, t, vjk )− g(x, t, v∞))ξϕdxdt

∣

∣

∣

∣

6

{

‖bp‖L2/(1−p)(Q)‖vjk − v∞‖pL2(Q)‖ξϕ‖L2(Q), p ∈ (0, 1);

‖b1‖L∞(Q)‖vjk − v∞‖L2(Q)‖ξϕ‖L2(Q), p = 1,

which leads to (2.23) by passing to the limit as k → ∞ and using (2.11). Also, if g

satisfies (1.5), it is sufficient to use (2.12), the continuity of s 7→ g(·, ·, s) and the
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dominated convergence theorem to get (2.23). Then, passing to the limit in (2.20)

as k → ∞ and using (2.19) and (2.21)–(2.23), we obtain

∫ T

0

ϕ(t)M(l(v∞))

∫

Ω

A(x, t, v∞)∇u·∇ξ dxdt−

∫

Q

uξϕt dxdt =

∫

Q

g(x, t, v∞)ξϕdxdt,

which can be written as

d

dt
(u, ξ) +M(l(v∞))

∫

Ω

A(x, t, v∞)∇u · ∇ξ dx

=

∫

Ω

g(x, t, v∞)ξ dx in D′(0, T ) ∀ ξ ∈ H1
0 (Ω).

Let us prove that u(·, 0) = u0 a.e. in Ω. For a.e. t ∈ (0, T ) and ξ ∈ H1
0 (Ω), we have

(2.24)

∫ t

0

〈ujkt, ξ〉ds = (ujk(·, t), ξ)− (ujk(·, 0), ξ) = (ujk(·, t), ξ)− (u0, ξ),

where 〈·, ·〉 denotes the duality product between H−1(Ω) and H1
0 (Ω). We notice that

from (2.19) we have up to a subsequence

(2.25) ujk → u strongly in L2(Ω), a.e. in (0, T ),

then, passing to the limit in (2.24) as k → ∞, we obtain by using (2.18) and (2.25),

∫ t

0

〈ut, ξ〉ds = (u(·, t), ξ)− (u0, ξ),

which can be written as (u(·, t), ξ)− (u(·, 0), ξ) = (u(·, t), ξ)− (u0, ξ). Therefore,

u(·, 0) = u0 a.e. in Ω.

Now, we see that u satisfies


























u ∈ L2(0, T ;H1
0(Ω)), ut ∈ L2(0, T ;H−1(Ω)),

u(·, 0) = u0 a.e. in Ω,

d

dt
(u, ξ) +M(l(v∞))

∫

Ω

A(x, t, v∞)∇u · ∇ξ dx =

∫

Ω

g(x, t, v∞)ξ dx

in D′(0, T ) ∀ ξ ∈ H1
0 (Ω),

and by uniqueness we have u = u∞. In view of the above, we observe that

every subsequence of (uj)j∈N has a sub-subsequence that converges to the same

limit u∞. So, the sequence (F (vj))j∈N converges to F (v∞) in B(0, R4), and then,

F : B(0, R4) → B(0, R4) is continuous. Thus, by the Schauder fixed point the-

orem, there exists a fixed point u of F in E which is a solution of (1.6) since

E ⊂ C([0, T ];L2(Ω)). �
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3. Uniqueness and continuity results of solutions

In this section, we assume that A(x, t, u) = a(x, t) depends only on the variable

(x, t). We investigate two uniqueness theorems of solutions for (1.6) and give a conti-

nuity result depending on the initial data assuming thatM is a Lipschitz continuous

function,

(3.1) ∃m2 > 0: |M(s1)−M(s2)| 6 m2|s1 − s2| ∀ s1, s2 ∈ R.

In the following first uniqueness theorem, we are concerned with the case p = 1 in

which the function g satisfies a generalized Lipschitz condition.

Theorem 3.1. Assume that (1.1)–(1.3), (3.1) hold and that g satisfies (1.4) with

p = 1. Then the solution of (1.6) is unique.

P r o o f. Let u1 and u2 be two solutions of (1.6) corresponding to the same initial

data u0 ∈ L2(Ω). Then for all ξ ∈ H1
0 (Ω) we have

d

dt
(u1, ξ) +M(l(u1))

∫

Ω

a(x, t)∇u1 · ∇ξ dx =

∫

Ω

g(x, t, u1)ξ dx,

d

dt
(u2, ξ) +M(l(u2))

∫

Ω

a(x, t)∇u2 · ∇ξ dx =

∫

Ω

g(x, t, u2)ξ dx

in the distributional sense in D′(0, T ). Choosing ξ = u1 − u2 and subtracting the

two equations from each other, we arrive at

1

2

d

dt
‖u1 − u2‖

2
L2(Ω) +M(l(u1))

∫

Ω

a(x, t)∇u1 · ∇(u1 − u2) dx

−M(l(u2))

∫

Ω

a(x, t)∇u2 · ∇(u1 − u2) dx

=

∫

Ω

(g(x, t, u1)− g(x, t, u2))(u1 − u2) dx,

which can be written as

(3.2)
1

2

d

dt
‖u1 − u2‖

2
L2(Ω) +M(l(u1))

∫

Ω

a(x, t)∇(u1 − u2) · ∇(u1 − u2) dx

= (M(l(u2))−M(l(u1)))

∫

Ω

a(x, t)∇u2 · ∇(u1 − u2) dx

+

∫

Ω

(g(x, t, u1)− g(x, t, u2))(u1 − u2) dx.
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Using (1.1)–(1.3), (1.4) for p = 1, (3.1) and Cauchy-Schwarz inequality, we obtain

from (3.2),

1

2

d

dt
‖u1 − u2‖

2
L2(Ω) + λm0

∫

Ω

|∇(u1 − u2)|
2 dx

6 m2Λ|l(u2)− l(u1)|

∫

Ω

|∇u2||∇(u1 − u2)| dx+

∫

Ω

|b1(x, t)||u1 − u2|
2 dx

6 m2Λ‖φ‖L2(Ω)‖u1 − u2‖L2(Ω)‖u2‖H1
0(Ω)‖u1 − u2‖H1

0 (Ω)

+ ‖b1‖L∞(Q)‖u1 − u2‖
2
L2(Ω),

which, by using Young’s inequality, leads to

(3.3)
1

2

d

dt
‖u1 − u2‖

2
L2(Ω) + λm0‖u1 − u2‖

2
H1

0 (Ω)

6

{ (m2Λ‖φ‖L2(Ω)‖u2‖H1
0 (Ω))

2

2λm0
+ ‖b1‖L∞(Q)

}

‖u1 − u2‖
2
L2(Ω)

+
λm0

2
‖u1 − u2‖

2
H1

0(Ω).

From (3.3), we obtain for a function θ ∈ L1(0, T ),

(3.4)
d

dt
‖u1 − u2‖

2
L2(Ω) 6 θ(t)‖u1 − u2‖

2
L2(Ω).

Multiplying (3.4) by exp(−
∫ t

0
θ(s) ds), we get

d

dt

(

exp

(

−

∫ t

0

θ(s) ds

)

‖u1 − u2‖
2
L2(Ω)

)

6 0.

Finally, integrating from 0 to t and taking into account that u1(·, 0) = u2(·, 0) a.e.

in Ω, we find u1 = u2 a.e. in Q. �

With the assumption that the function g is decreasing with respect to u, we state

and prove our second uniqueness theorem.

Theorem 3.2. Assume that (1.1)–(1.3), (3.1) and either (1.4) (with p ∈ (0, 1))

or (1.5) hold. In addition, for a.e. (x, t) ∈ Q,

(3.5) the function s 7→ g(x, t, s) is decreasing on R.

Then the solution of (1.6) is unique.
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P r o o f. Let u1 and u2 be two solutions of (1.6) corresponding to the same initial

data u0 ∈ L2(Ω). Setting w = u1 − u2, we can see that the function w satisfies

(3.6)



































d

dt
(w, ξ) +M(l(u1))

∫

Ω

a(x, t)∇w · ∇ξ dx+

∫

Ω

G(x, t)ξ dx

= (M(l(u2))−M(l(u1)))

∫

Ω

a(x, t)∇u2 · ∇ξ dx+

∫

Ω

wξ dx,

in D′(0, T ) ∀ ξ ∈ H1
0 (Ω),

w(·, 0) = 0 a.e. in Ω,

where G(x, t) = g(x, t, u2) − g(x, t, u1) + w. Choosing ξ = w as test function in the

first equation of (3.6) and integrating from 0 to t, we obtain

(3.7)
1

2
‖w‖2L2(Ω) +

∫ t

0

M(l(u1))

∫

Ω

a(x, s)∇w · ∇w dxds+

∫ t

0

∫

Ω

G(x, s)w dxds

=

∫ t

0

(M(l(u2))−M(l(u1)))

∫

Ω

a(x, s)∇u2 · ∇w dxds+

∫ t

0

‖w‖2L2(Ω) ds.

Using (1.1)–(1.3), (3.1), (3.5), the Cauchy-Schwarz inequality and Young’s inequality,

we get
∫ t

0

M(l(u1))

∫

Ω

a(x, s)∇w · ∇w dxds > m0λ

∫ t

0

‖w‖2H1
0(Ω) ds,(3.8)

∣

∣

∣

∣

∫ t

0

(M(l(u2))−M(l(u1)))

∫

Ω

a(x, s)∇u2 · ∇w dxds

∣

∣

∣

∣

(3.9)

6 m2Λ

∫ t

0

∫

Ω

|φ||w| dx

∫

Ω

|∇u2||∇w| dxds

6 m2Λ‖φ‖L2(Ω)

∫ t

0

‖w‖L2(Ω)‖u2‖H1
0 (Ω)‖w‖H1

0 (Ω) ds

6
m0λ

2

∫ t

0

‖w‖2H1
0 (Ω) ds

+
(m2Λ‖φ‖L2(Ω))

2

2m0λ

∫ t

0

‖w‖2L2(Ω)‖u2‖
2
H1

0 (Ω) ds

and

(3.10)

∫ t

0

∫

Ω

G(x, s)w dxds =

∫ t

0

∫

Ω

(g(x, s, u2)− g(x, s, u1) + w)w dxds > 0.

Combining (3.8)–(3.10), we obtain from (3.7),

1

2
‖w‖2L2(Ω) +

m0λ

2

∫ t

0

‖w‖2H1
0(Ω) ds

6
(m2Λ‖φ‖L2(Ω))

2

2m0λ

∫ t

0

‖w‖2L2(Ω)‖u2‖
2
H1

0 (Ω) ds+

∫ t

0

‖w‖2L2(Ω) ds,
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which leads to

‖w‖2L2(Ω) 6

∫ t

0

{ (m2Λ‖φ‖L2(Ω))
2

m0λ
‖u2‖

2
H1

0(Ω) + 2
}

‖w‖2L2(Ω) ds.

From Lemma 3.1 of [14] we have ‖w‖L2(Ω) = 0 in [0, T ], which implies that w = 0

a.e. in Q, and then, u1 = u2 a.e. in Q. �

Our continuity result is now presented.

Theorem 3.3. Suppose either Theorem 3.1 or 3.2 holds. Then for all t ∈ [0, T ],

the mapping

T : L2(Ω) → L2(Ω), u0 7→ u(·, t),

where u is the unique solution of (1.6) corresponding to the initial data u0, satisfies

the following continuity result:

uj
0 ⇀ u0 weakly in L2(Ω) ⇒ T (uj

0) → T (u0) strongly in L2(Ω).

Particularly, T is weakly continuous.

P r o o f. Let (uj
0)j∈N ⊂ L2(Ω) be a sequence of initial data which converges to u0

weakly in L2(Ω), and let uj , u be, respectively, the solutions of (1.6) corresponding

to uj
0, u0, j ∈ N. For all j ∈ N and all p ∈ (0, 1) we have

‖uj‖L2(Q) 6 T 1/2
{

CΩ

( 2

λm0

)1/2

(‖bp‖L2/(1−p)(Q)‖u
j‖pL2(Q) + ‖g(·, ·, 0)‖L2(Q))(3.11)

+ ‖uj
0‖L2(Ω)

}

,

‖uj‖L2(Ω) 6

{ 2C2
Ω

λm0
(‖bp‖

2
L2/(1−p)(Q)‖u

j‖2pL2(Q) + ‖g(·, ·, 0)‖2L2(Q))(3.12)

+ ‖uj
0‖

2
L2(Ω)

}1/2

and

(3.13)

‖uj‖L2(0,T ;H1
0 (Ω)) 6

1

(λm0)1/2

{ 2C2
Ω

λm0
(‖bp‖

2
L2/(1−p)(Q)‖u

j‖2pL2(Q) + ‖g(·, ·, 0)‖2L2(Q))

+ ‖uj
0‖

2
L2(Ω)

}1/2

,

and if p = 1,

‖uj‖L2(Q) 6 T 1/2
{

CΩ

( 2

λm0

)1/2

(‖b1‖L∞(Q)‖u
j‖L2(Q) + ‖g(·, ·, 0)‖L2(Q))(3.14)

+ ‖uj
0‖L2(Ω)

}

,

‖uj‖L2(Ω) 6

{ 2C2
Ω

λm0
(‖b1‖

2
L∞(Q)‖u

j‖2L2(Q) + ‖g(·, ·, 0)‖2L2(Q)) + ‖uj
0‖

2
L2(Ω)

}1/2

(3.15)
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and

(3.16) ‖uj‖L2(0,T ;H1
0 (Ω)) 6

1

(λm0)1/2

{ 2C2
Ω

λm0
(‖b1‖

2
L∞(Q)‖u

j‖2L2(Q) + ‖g(·, ·, 0)‖2L2(Q))

+ ‖uj
0‖

2
L2(Ω)

}1/2

.

On the other hand, for all ξ ∈ D(0, T ;H1
0 (Ω)),

(3.17)

∫

Q

ujξt dxdt =

∫ T

0

M(l(uj))

∫

Ω

a(x, t)∇uj · ∇ξ dxdt−

∫

Q

g(x, t, uj)ξ dxdt.

Observe that the sequence (uj
0)j∈N is bounded in L

2(Ω) since it is a weakly convergent

sequence in L2(Ω). Then, by taking into account that CΩ(2T/(λm0))
1/2‖b1‖L∞(Q)<1

(in the case p = 1), we deduce from (3.11) and (3.14) that (uj)j∈N is bounded

in L2(Q). Hence, using (3.12), (3.13) and (3.15)–(3.17), we can find a constant

c3 = c3(p) independent of j such that for all j ∈ N,

‖uj‖L∞(0,T ;L2(Ω)) 6 c3,(3.18)

‖uj‖L2(0,T ;H1
0 (Ω)) 6 c3,(3.19)

‖uj
t‖L2(0,T ;H−1(Ω)) 6 c3.(3.20)

Similarly, if g satisfies (1.5), we arrive at

∀ j ∈ N : ‖uj‖2L2(Ω) + λm0

∫ t

0

‖uj‖2H1
0 (Ω) ds 6

(CΩ‖h‖L2(Q))
2

λm0
+ ‖uj

0‖
2
L2(Ω),

which leads us to saying that inequalities (3.18)–(3.20) are satisfied for another con-

stant independent of j. Therefore, there exists a subsequence jk and u ∈ E such that

ujk → u strongly in L2(Q),(3.21)

ujk → u a.e. in Q,(3.22)

M(l(ujk)) → M(l(u)) strongly in L2(0, T ),(3.23)

ujk(·, t) → u(·, t) strongly in L2(Ω), a.e. t ∈ (0, T ),(3.24)

ujk ⇀ u weakly in L2(0, T ;H1
0(Ω)),(3.25)

ujk
t ⇀ ut weakly in L2(0, T ;H−1(Ω)),(3.26)

ujk ⇀∗ u weakly star in L∞(0, T ;L2(Ω)),(3.27)

ujk
0 → u0 weakly in L2(Ω).(3.28)
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We have

(3.29)

∫ T

0

ϕ(t)M(l(ujk))

∫

Ω

a(x, t)∇ujk · ∇ξ dxdt−

∫

Q

ujkξϕt dxdt

=

∫

Q

g(x, t, ujk)ξϕdxdt ∀ k ∈ N, ∀ϕ ∈ D(0, T ), ∀ ξ ∈ H1
0 (Ω).

We notice that if one of assumptions (1.4) and (1.5) holds, we obtain

(3.30) lim
k→∞

∫

Q

g(x, t, ujk)ξϕdxdt =

∫

Q

g(x, t, u)ξϕdxdt

by using, respectively, (3.21) and (3.22), then, letting k → ∞ in (3.29) we get by

taking into account (1.2), (3.21), (3.23), (3.25) and (3.30),

∫ T

0

ϕ(t)M(l(u))

∫

Ω

a(x, t)∇u · ∇ξ dxdt−

∫

Q

uξϕt dxdt =

∫

Q

g(x, t, u)ξϕdxdt.

So, the limit u is a solution to















u ∈ L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)), ut ∈ L2(0, T ;H−1(Ω)),

d

dt
(u, ξ) +M(l(u))

∫

Ω

a(x, t)∇u · ∇ξ dx =

∫

Ω

g(x, t, u)ξ dx

in D′(0, T ) ∀ ξ ∈ H1
0 (Ω).

Moreover,

∀ ξ ∈ H1
0 (Ω), a.e. t ∈ (0, T ) :

∫ t

0

〈ujk
t , ξ〉ds = (ujk(·, t), ξ)− (ujk

0 , ξ).

Passing to the limit as k → ∞ and using (3.24), (3.26) and (3.28),

∫ t

0

〈ut, ξ〉ds = (u(·, t), ξ)− (u0, ξ),

which leads to

(u(·, t), ξ)− (u(·, 0), ξ) = (u(·, t), ξ)− (u0, ξ).

Hence, u(·, 0) = u0 a.e. in Ω. Therefore, due to the uniqueness of the limit, we have

u = u a.e. in Q. Thus, by (3.27),

ujk ⇀∗ u weakly star in L∞(0, T ;L2(Ω)).

Particularly, if ξ ∈ H1
0 (Ω), it follows that

(3.31) (ujk(·, t), ξ) ⇀∗ (u(·, t), ξ) weakly star in L∞(0, T ).
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Now, let t1 and t2 be elements of [0, T ] such that t2 > t1. We have

(3.32) (ujk(·, t2), ξ)− (ujk(·, t1), ξ) =

∫ t2

t1

〈ujk
t , ξ〉dt 6

∫ t2

t1

‖ujk
t ‖H−1(Ω)‖ξ‖H1

0(Ω) dt

6 (t2 − t1)
1/2‖ξ‖H1

0 (Ω)‖u
jk
t ‖L2(0,T ;H−1(Ω))

6 c‖ξ‖H1
0(Ω)(t2 − t1)

1/2.

Due to (3.32), the sequence of functions (ujk(·, t), ξ) is equicontinuous, and then, it

is relatively compact in C([0, T ]). By (3.31) and the uniqueness of the limit, we have

up to a subsequence

∀ ξ ∈ H1
0 (Ω): (ujk(·, t), ξ) → (u(·, t), ξ) in C([0, T ]).

Thanks to the density of H1
0 (Ω) in L2(Ω),

∀ ξ ∈ L2(Ω): (ujk(·, t), ξ) → (u(·, t), ξ) strongly in R ∀ t ∈ [0, T ],

which means that

ujk(·, t) → u(·, t) strongly in L2(Ω) ∀ t ∈ [0, T ].

Since every subsequence of (uj(·, t))j∈N has a sub-subsequence that converges to the

same limit u(·, t), we deduce that

T (uj
0) = uj(·, t) → T (u0) = u(·, t) strongly in L2(Ω) ∀ t ∈ [0, T ],

which completes the proof of the theorem. �
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