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Abstract. The aim of this paper is to investigate the orthogonality of vectors to each
other and the Gram-Schmidt method in the Minkowski space Rg. Hyperbolic cosine for-
mulas are given for all triangle types in the Minkowski plane R%. Moreover, the Pedoe
inequality is explained for each type of triangle with the help of hyperbolic cosine formu-
las. Thus, the Pedoe inequality allowed us to establish a connection between two similar
triangles in the Minkowski plane. In the continuation of the study, the rotation matrix
that provides both point and axis rotation in the Minkowski plane is obtained by using
the Lorentz matrix multiplication. Also, it is stated to be an orthogonal matrix. More-
over, the orthogonal projection formulas on the spacelike and timelike lines are given in the
Minkowski plane. In addition, the distances of any point from the spacelike or timelike line
are formulated.

Keywords: Gram-Schmidt method; Lorentz triangle; hyperbolic cosine formulas; Pedoe
inequality; Lorentz matrix multiplication; orthogonal projection

MSC 2020: 53B30

1. INTRODUCTION

The angle definition between any two timelike vectors, timelike-pure triangle, area
information of timelike-pure triangle, and hyperbolic cosine rules are given in [4]. In
addition, some properties related to hyperbolic angles are examined in [1], [3]. This
properties for all vector types are detailed and regulated in [15]. The information
of the area spacelike-pure triangle and the non-pure triangle is given in [10]. This
resource also includes hyperbolic cosine rules for spacelike pure triangles and some
non-pure triangle types. The angle measure and some properties of the angle are
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expressed in [9]. This study is given for all possible non-pure triangle types, and
hyperbolic cosine formulas are found for these triangles.

Moreover, in the Minkowski plane, only spacelike and timelike vector can be per-
pendicular to each other (see [4]). The following conditions apply for orthogonality
between vectors in the Minkowski space R$:
> A spacelike vector can be perpendicular to a null vector, a spacelike vector, and

a timelike vector.
> A timelike vector can be orthogonal only to a spacelike vector.
> A null vector can be orthogonal only to a spacelike vector. Also, two null vectors

can be orthogonal to each other only if they are linearly dependent (see [7], [13]).

The Gram-Schmidt method is expressed with orthogonality information between
vectors in the Minkowski space R} (see [13]). In this article, it is examined which
vectors can be perpendicular to each other in the Minkowski space R3. After that,
the Gram-Schmidt method is applied in the Minkowski space R3.

Another title of the study is the Pedoe inequality. The Pedoe inequality in Eu-
clidean space is given with the similarity condition of the two triangles in [8], [12], [14].
In this article, the Pedoe inequality is found for spacelike-pure, timelike-pure and all
non-pure triangle types.

In addition, the rotation matrix is given in the Minkowski plane in [10]. This rota-
tion matrix that provides both axis and point rotation is obtained by the Euclidean
inner product. An orthogonal matrix must satisfy the condition A~! = £A’c in
the Minkowski plane (see [11]). So, this rotation matrix is the Lorentz orthogonal
matrix. In this article, the rotation matrix is obtained using the Lorentz inner
product instead of Euclidean inner product. The orthogonal matrix obtained by the
Lorentz matrix multiplication satisfies the condition A;' = A% (see [5]). Therefore,
it is stated that the rotation matrix obtained by using the Lorentz inner product is
orthogonal in this study.

Moreover, timelike and spacelike line equations are given with Hesse coordinates
in [2] such that

Ly = xcosh Ags — ysinh Ags — ¢ =0, Lg=xsinh Agt —ycosh Agtr —c=0

for Ass = A(E,m) = Agrt and Ags, Ast € R, where the point ¢ represents the
distance from the origin in Minkowski plane R?. Additionally, in [16], Cauchy-length
formulas to the envelope of a family of lines and the Holditch-type theorems for
the length of the enveloping trajectories are given. In this paper, the orthogonal
projection formulas on the line are examined. The distance between line and point
is formulated for timelike and spacelike lines.
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2. FUNDAMENTAL NOTATIONS

A space R™ is called the semi-Euclidean space with the scalar product function

n

n—v
@0 =Y wyi— Y, wy
i=1

i1=n—v+1

where & = (z;), ¥ = (y;) € R", 1 < i< n and v is an integer with 0 < v < n. It is
denoted by R} = (R", (-,-),) (see [11]).

Let ¥ € R? then 7 is called the spacelike vector if (#,7) > 0 or & = 0, ¥ is
called the timelike vector if (Z,Z) < 0, & is called the null vector if (Z,Z) = 0 and
# # 0 (see [4], [11], [13]). The norm of # € R} is defined as | 7| = /|(Z,Z)]. If
(Z,7) = 0, the vectors & and ¥ are called perpendicular in the Lorentz sense. Let
¥ = (z1,72) € R? be a timelike vector and & = (0,1). Then, ¥ is a future pointing
(positive) timelike vector if (Z,€) < 0, Z is a past pointing (negative) timelike vector
if (¥,€) > 0, see [4].

Let & = (x1,22) € R? be a spacelike vector and E = (1,0). Thus, Z is called the
vector oriented in the same direction with E, if (Z, E) > 0 and Z is called the vector
oriented in the opposite direction with E, if (%, E) < 0. Let Z,7 € R2 be future
pointing (past pointing) timelike vectors with sgnzs = sgnys. Then, Z + ¢ is the
future pointing (past pointing) timelike vector (see [4]). Let Z,% € R? be spacelike
vectors oriented in the same (opposite) direction with E= (1,0) and sgnxy = sgny
(sgnzy # sgnyy). Then, # + ¢ is a spacelike vector oriented in the same (opposite)
direction with E = (1,0).

Theorem 2.1 ([10]). Let & = (z1,22),7 = (y1,y2) € R? be spacelike and timelike
unit vectors with sgnx; = sgn ys, respectively. Then, (Z,¥) = sinh § where 6 be the
oriented angle from ¥ to v.

Theorem 2.2 ([11]). Let # = (z1,72),7 = (y1,y2) € R? be timelike unit vectors.
Then, (Z,4) = cosh § where 0 is the oriented angle from Z to .

Theorem 2.3 ([10]). Let ¥ = (x1,22),7 = (y1,y2) € R? spacelike and timelike
unit vectors with sgnxy # sgnys, respectively. Then, (Z,¢) = — sinh @ where 6 is
the oriented angle from & to y.

Definition 2.1 ([4]). Let A, B, C be three non-collinear points. The triangle

A
ABC is called a timelike pure triangle such that E , B? are future pointing timelike
vectors in the Minkowski plane R?.
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Definition 2.2. Let A, B, C' be three non-collinear points such that E, B? be
spacelike vectors oriented in the same (different) direction with the vector E = (1,0)

and AC be spacelike vectors oriented in the same (different) direction with the vector

—

A
E = (1,0). In this way, the triangle ABC is called a spacelike pure triangle. Triangles
other than the pure timelike triangle and the spacelike pure triangle are called non-

pure triangles.

In this study, the following abbreviations are used to understand between which
vectors are the angles:

T for a future pointing timelike vector,

t for a past pointing timelike vector,

S for a spacelike vector oriented in the same direction with E= (1,0),

s for a spacelike vector oriented in the different direction with E = (1,0).

Definition 2.3 ([4]). Let A, B, C be three non-collinear points and Arp =
A
A(ﬁ , 1@) The area of the timelike pure triangle ABC' is denoted by

o _ IABIAC] sinh Ary
TT — 5 .

Definition 2.4 ([10]). Let AB ) AC be two linearly independent spacelike vec-
A
tors. The area of the spacelike pure triangle ABC' is denoted by

_ | AB|| AC| sinh Ass
2

Sss

where Agg = Z(@,@)
Definition 2.5 ([10]). Let AB be a spacelike vector and AC a timelike vector.
A
The area of the non-pure triangle ABC' is denoted by

_ | AB|IAC] cosh Asr
2

Sst

where Agt = A(/@,B)

Definition 2.6 ([11]). The matrix that provides both the point rotation and

axis rotation in the Lorentz sense is called the Lorentz rotation matrix such that
A(D) = coshf sinh@

. , 0 € R, in the Minkowski plane R?. The Lorentz rotation
sinh® cosh#

1 0
matrix is provided as A~ = eA'e such that € = [O 1 ] . So, the Lorentz rotation
matrix A is orthogonal.
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Definition 2.7. The equation of the timelike line passing through any point
P = (x0,y0) and perpendicular to the normal @ = (a,b) is obtained as <J$(>, iy =
ax — by + ¢ = 0 where ¢ = —(azg — byp) and X = (x,y) is a representative point
on the line.

Definition 2.8. The equation of the spacelike line passing through any point
P = (x0,y0) and perpendicular to the normal @ = (b, a) is obtained as <J7)_(>, iy =
br — ay + ¢ = 0 where ¢ = —(bzg — ayo) and X = (x,y) is a representative point
on the line.

3. ON R3
3.1. Orthogonality in the Minkowski space R3.

Theorem 3.1. Two timelike vectors can be orthogonal in the Minkowski space R3.
Proof. Let Z = (v1,72,23),7 = (y1,¥2,¥3) € R3 be two timelike vectors. In
that case, (7, %) = 23 — 23 — 2% < 0. Thus,
(3.1) r} < 23 + 73
and (7, 7) =y — y5 — y3 < 0. So, we can write
(3.2) i <y +us

Let us assume that Z£L1¢, namely (Z,§) = z1y1 — x2y2 — 23ys = 0. From here, we
obtain

(33) T1Y1 = T2Y2 + T3Y3.

If the equations (3.1) and (3.2) are multiplied, we find 23y? < z3y3 + 23y3 + 23y3 +
x3y3. Also, if the equation (3.3) is squared and substituted into the last equation,
we have

(23y2 — T2y3) (T2ys — T2y1) = — (232 — T2y3)? < 0.

In this way, there is no contradiction. Therefore, it is shown that two timelike vectors
can be perpendicular to each other in the Minkowski space R3. O

Example 3.1. Let ¥ = (1,1,1), ¥ = (1,—2,3) be two timelike vectors in the
Minkowski space R3. Then,

(@9 =((1,1,1),(1,-2,3)) = 0.
Two timelike vectors cannot be orthogonal in the Minkowski space R?, see [4].
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Theorem 3.2. A timelike vector and a null vector can be orthogonal in the
Minkowski space R3.

Proof. Let ¥ = (z1,%2,73),7 = (y1,%2,y3) € R} be a timelike and null vector,
respectively. In that case,

(T,7) =27 — 25 — 235 <0
Thus, we have
(3.4) r} < 23 + 73

and (7,7) = y% - y% — y§ = 0. So, we can write

(3.5) i =5+

Let us assume that L1, namely (Z,4) = x1y1 — Z2y2 — x3y3 = 0. From here, we
obtain

(3.6) T1Y1 = T2y + T3Ys.

Here, from the inequality (3.4) multiplied by y%, we find 23y? < yi(23 + 23). Also,
if we substitute in the last equation, we have
(22ys — w3ya)(w3y2 — Tays) = —(v2ys — w3y2)° < 0.

In this way, it is seen that there is no contradiction. Therefore, it is shown that a time-
like vector and a null vector can be perpendicular to each other in the Minkowski
space R3. (]

Example 3.2. Let & = (1,1,3) be a timelike vector and ¢ = (1,1,0) be the

null vector in the Minkowski space R3. Then,
@7 =((1,1,3),(1,1,0)) = 0.

A timelike vector and the null vector cannot be orthogonal in the Minkowski
space R$, see [4]. Similarly, the following theorems can be proved.

Theorem 3.3. A timelike vector and a spacelike vector can be orthogonal in the
Minkowski space R3.

A timelike vector and a spacelike vector can be orthogonal in the Minkowski
space R, see [4].

Theorem 3.4. A spacelike vector and the null vector cannot be orthogonal in
the Minkowski space R3.

A spacelike vector and the null vector can be orthogonal in the Minkowski

space R$, see [4].

554



4. THE GRAM-SCHMIDT METHOD FOR MINKOWSKI SPACE R3

Theorem 4.1. Let ¥1, 7> € R3 be timelike vectors and ¥3 € R3 be a spacelike
vector. Let RS = sp{Z1, %o, T3}. If ifs = &1,

(T3,71) . (¥3,%2) .,

— <3_3’27:l71>—.
>y2;

Yo==%T2 — 51, PB=T3— 55—V — ==
(1, 7) (1, 71) (Y2, 2

then R = sp{#1, %2, U3} Also, 71, 2 are timelike vectors, i3 is a spacelike vector.

Proof. Let #1,72 € R} be timelike vectors and #3 € R3 be a spacelike vector.
Let us define the vectors

(4.1) = T1,
o = Nath + Ta,
U3 = N3gh + N30 + Ts.
In this case, it is clear that ¢ is a timelike vector. So, we can write (\y¢; + T2, 71) =

Xy (41, 1) + (@2, 91) = 0 for (y2,91) = 0. Here, since ; is a timelike vector, we have
(¢1,71) < 0. Then, we find

)\/ _ <fz7 :’71>
9 — S S
<y15 y1>
If X, is written in the equation (4.1), we obtain
S o T2, 1)
Y2 = T2 — <42 :lil> .
(¥1, 1)

Now, let us show that > is a timelike vector: We have

o) = (@0, 72) — 2P g, gy 0 gy (2B g

— ———\Z e
(1, 1) (1, 7) (1, 1)
If necessary algebraic operations are done, we can write
L (@)
(2, J2) = (T2, T2) — ~ ==
> > (1, 1)
Here, we have (%, 71)%? = ||#2?||#1||?cosh?d. Then, we find (Zo,71)? > ||Za|? x
71112 = (&2, Z2) (71, 71) for cosh®d > 1. Tt follows that
S o2 S o2
(T2, 91) > = o o - = (%2, 1))
o 2 (T2, 72) and  (y2,y2) = (T2, 72) — —=5—=— <0
(y1,71) (2. T2) .2} = (E2, B2) (Y1, 71)

So, ¥ is a timelike vector. Moreover, it should be (¥5,72) = 0 and (y5,%1) = 0.
Therefore, we found (73, 71) = N5{(th, 1) + A5 (G, 1) + (&3, 91) = O for (¥5,71) = 0.
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We have (¢, %1) = 0. Since ¢ is a timelike vector, we have (¢1,%1) < 0. Then,
we obtain oL
N = — (@5, 91)

3= 75 o\

<ylay1>
Also, (g3, 42) = As(U1, ¥2) + A3 (2, U2) + A5 (T3, 2) = 0 for (3, 52) = 0. We have
(¥2,71) = 0. Moreover, since ¥ is a timelike vector, we have (72, %2) < 0. Then,

we found Lo
" __ <m3a y2>

2T (o, th)

So, we obtain
L L @) . (Ts00) -
Yz = T3 — <_,‘3’Zi1>y1 - <q37312> 2.
(Y1, 1) (Y2, J2)

Let us show that the vector ¥3 is spacelike. We have

(U3, 3) = (T3, T3) — (T3, 70)° _ (T3, 71)°
| T ) (o)

Since '3 is a spacelike vector, ¢ and ¢» are timelike vectors, we have (g3, 73) > 0. So,
75 is a spacelike vector. Let us check that (75, 71) = 0, (75, 72) = 0 and (¢, 71) = 0.
We have (i) (. 0)
. R 3, Y1), - r3,Y2) 15 -
Y3, Y2) = (T3,Y2 g - s - 2,Y2)-
(U3, 2) = (Z3,1]2) A (71, 92) o o) (12, 2)

If necessary algebraic operations are done, (3, %2) = 0 is obtained. Similarly, other

equations can be found. O

5. ON R%
5.1. Hyperbolic cosine formulas on the Minkowski plane R?.
5.1.1. Hyperbolic cosine formulas for the timelike-pure riangle.

Theorem 5.1 ([4]). Let E, B?, AC be future pointing timelike vectors and
A
Bpp = Z(/@,B?) Then, the timelike pure triangle ABC provides b> = a® +
2ac cosh Brr + ¢ where ||E|| =g, Hm” =0, HB?H =a.

5.1.2. Hyperbolic cosine formulas for the spacelike-pure triangle.

Theorem 5.2 ([10]). Let f@, B?, 1@ be three linearly independent spacelike
A
vectors. Then, the triangle ABC' provides b*> = a® + 2ac cosh Bgg + ¢ where Bsg =

L(AB,BC) and |AB| = ¢, |AC| = b, ||BC| = .
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5.1.3. Hyperbolic cosine formulas for the non-pure triangle.

Theorem 5.3. Let 1@ be a future pointing (past pointing) timelike vector, B?’
a past pointing (future pointing) timelike vector and jﬁ be a spacelike vector. Let

Ars = L(AB, AC), By = L(AB, BC), Cs, = L(AC, BC) and | AB|| = ¢, || AC| = b,

A
HB?’H = a. Then, the triangle ABC provides the following equations:

(1) (i) When AC is oriented in the same direction with B = (1,0), if AB is a future
pointing timelike vector, then a?> = —b? + 2bcsinh Agt + ¢2, if ﬁ is a past
pointing timelike vector, then a?> = —b? — 2bcsinh Ag; — 2.

(ii) When B is oriented in a different direction with F = (1,0), if E is a future
pointing timelike vector, then a®> = —b? — 2bcsinh Agr — ¢2, if 1@ is a past

pointing timelike vector, then a? = —b® + 2bcsinh Ay, — 2.
(2)(1) If /@ is a future pointing vector and B? is a past pointing vector, then
b? = —a? + 2accosh By, — 2,

(ii) if 1@ is a past pointing vector and B? is a future pointing vector, then
b? = —a? + 2accosh Byp — 2.
(3) (i) When AC is oriented in the same direction with E = (1,0), if BC is a past

pointing timelike vector, then ¢ = —b? — 2absinh Cg; + a2, if B? is a future
pointing timelike vector, then ¢? = —b? + 2absinh Cst + a?.

(ii) When @ is oriented in a different direction with E = (1,0), if B? is a past

pointing timelike vector, then ¢ = —b? + 2absinh Cy; + a2, if B? is a future
pointing timelike vector, then ¢* = —b* — 2absinh Cy + a?.

Proof. (1) Since AB —|—B? = /ﬁ, we can write
(BC,BC) = (AC — AB, AC — AB) = (AC, AC) — 2(AC, AB) + (AB, AD).

Then, we obtain
(5.1) a? = —b* + 2<B,E> +c?
where (BC,BC) = —||BC|?, (AC,AC) = |AC|?, (AB,AB) = —|AB|? and

|AB| = ¢, [AC|| = b, | BC| = a.
Here, let us examine the orientation cases of the spacelike vector jﬁ in the same
or different direction with the vector E = (1,0):
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(i) Let AC be a spacelike vector oriented in the same direction with E = (1,0). If

/@ is a future pointing timelike vector, we have

(AC, AB)
IAC||AB)|

according to Theorem 2.1. If this last equation is written in the equation (5.1), we

sinh Agt =

found a? = —b% 4 2besinh Agr + 2. If 1@ is a past pointing timelike vector, we have

 (AC,4B)
IAC| AB|

according to Theorem 2.3. If this last equation is written in equation (5.1), we found
a? = —b%® — 2bcsinh Agy — 2.

(ii) Let AC be a spacelike vector oriented in a different direction with the vector

sinh Ag; =

E= (1,0). If AB is a future pointing timelike vector, we can write

(AC, AB)
IAC||AB|

according to Theorem 2.3. If this last equation is written in equation (5.1), we found

a? = —b? — 2bcsinh Agr — 2. If AB is a past pointing vector,

(AC,AB)
IAC|| AB)|

according to Theorem 2.1. If this last equation is written in equation (5.1), we found

sinh Agr = —

sinh Ay =

a? = —b% + 2bcsinh Ay, — c?. Other conditions are proved similarly. O

Theorem 5.4 ([10]). Let E, AC be two linearly independent spacelike vectors
A
and B? be timelike vector. Then, the non-pure triangle ABC provides b*> = —a? +

2acsinh Bgr + ¢ where B = /(AB, BC) and | AB|| = ¢, | AC| = b, || BC|| = a.

Theorem 5.5. Let /@ , /ﬁ be future pointing (past pointing) timelike vectors

and B? be a past pointing (future pointing) timelike vector. Let Art = A(ﬁ , B),
A

Bty = Z(@,@), Cry = A(B,B?) Then, the non-pure triangle ABC' provides
the following equations:
(1) a® = b%® — 2bccosh Apr + 2,
(2) b = a® — 2accosh Bty + ¢?,
(3) ¢ = a® + 2abcosh Oy, + b2,

where | AB|| = ¢, |AC| = b, || BC|| = a.
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Theorem 5.6. Let AB be a spacelike vector oriented in the same (different)
direction with E = (1,0), BC be a spacelike vector oriented in the different (same)
direction with E = (1,0) and AC be a timelike vector. Let Ast = z(ﬁ,,ﬁ),
Bs, = L(AB, BC), Crs = £(AC, BC) and |AB| = ¢, |AC| = b, | BC|| = a. Then,
the non-pure triangle Aé C provides the following equations:

(1) i) When AC is a future pointing timelike vector, if AB is a spacelike vector ori-
ented in the same direction with E = (1,0), then a? = —b?+2bcsinh Arg+c?,
if 1@ is a spacelike vector oriented in a different direction with E = (1,0),
then a? = —b% — 2besinh A + 2.

(i) When ﬁ is a past pointing timelike vector, if 1@ is a spacelike vector oriented
in the same direction with E = (1,0), then a? = —b* — 2besinh As + 2, if
E is a spacelike vector oriented in a different direction with E = (1,0), then
a? = —b% + 2bcsinh A + 2.

(2) (1) If AB is a spacelike vector oriented in a same direction with E = (1,0) and
B? is a spacelike vector oriented in a different direction with E = (1,0), then
b2 = —a? + 2accosh By — 2.

(i) If ﬁ is a spacelike vector oriented in a different direction with E = (1,0)
and B?’ is a spacelike vector oriented in the same direction with E = (1,0),
then b? = —a? + 2accosh Byg — 2.

(3) (i) When AC is a future pointing timelike vector, if AB isa spacelike vector ori-
ented in a different direction with E = (1,0), then ¢? = —b?—2absinh Cs+a?,
if AB is a spacelike vector oriented in the same with E = (1,0), then ¢* =
—b2 + 2absinh Crs + a2.

(ii) When ﬁ is a past pointing timelike vector, if E is a spacelike vector oriented
in a different direction with E = (1,0), then ¢ = —b®+2absinh Cis+a?, if AB
is a spacelike vector oriented in the same direction with E = (1,0), then
2 = —b% — 2absinh Cis + a?.

Theorem 5.7. Let 1@, jﬁ be future pointing (past pointing) timelike vectors
and B? be a spacelike vector. Let Arr = A(/@,R), Brg = A(@,B?), Crs =
z(ﬁ, B?’) and H/@H = ¢, ||ﬁ|\ = b, HB?’H = a. Then, the non-pure triangle
AéC provides the following equations:

(1)  a® = —b? + 2bccosh Apr — 2.

(2) (i) When BCisa spacelike vector oriented in the same direction with E = (1,0),
if 1@ is a future pointing timelike vector, then b® = ¢? + 2acsinh Brg — a?, if
/@ is a past pointing timelike vector, then b?> = ¢ — 2acsinh Byg — a?.
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(ii) When BCisa spacelike vector oriented in a different direction with E = (1,0),
if @ is a future pointing timelike vector, then b?> = ¢ — 2acsinh Bry — a2, if
/@ is a past pointing timelike vector, then b?> = ¢? — 2acsinh By — a?.
(3) i) When BC isa spacelike vector oriented in the same direction with E = (1,0),
if B is a future pointing timelike vector, then c? = b?> — 2absinh Cpg — a?, if
@ is a past pointing timelike vector, then c? = b% 4 2absinh Cig — a?.
(ii) When BCisa spacelike vector oriented in a different direction with E = (1,0),
if /ﬁ is a future pointing timelike vector, then c? = b 4 2absinh Ctg — a2, if
/ﬁ is a past pointing timelike vector, then ¢? = b?> — 2absinh Cys — a®.

5.2. Pedoe inequality for triangle in Minkowski plane R?.

5.2.1. Pedoe inequality for timelike pure triangle.

A
Theorem 5.8. Let ABC be a timelike pure triangle with side lengths a = HB?H,

— A
b=|CA|, c= ||£Hand the area S. Let XY Z be a timelike pure triangle with side
lengths x = Hﬁ”, y= ||27()H, z= ||)ﬁ/>'|| and the area T. Then, the timelike trian-
A A

gles ABC' and XY Z are similar if and only if the following inequality are satisfied:

a?(32% + 2% — ) + 02 (y? — 2? — 2%) + (32 + 22 — ¢?) > 169T.

A
Proof. The sides are homogeneous in the timelike pure triangle XY Z. In
this case, the inequality is invariant under any transformation in the timelike pure

A
triangle XY Z. For this, the points Y = B and Z = C' can be selected on the line X,
with the point A in the same hemisphere as the line BC.
X A

B=Y C=Z7

Figure 1. Pedoe inequality for two triangle.

We have E + B—)(Z = ZXZ (see Figure 1). Then, Z? is a timelike vector. Thus, the

A
timelike pure triangle ABX is obtained. From Theorem 5.1, we have
(5.2) |AX|? = [|AB|? + | X B + 2| AB|| X B cosh(«ABX)
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A
for triangle ABX. Since H/@H =¢, B =Y and Z = C, we obtain HEH =
A A

IXY|| = » and XBC = XYZ. Also, we have <ABX = <ABC — <XBC. It
follows that

(5.3) cosh(<ABX) = cosh(<«ABC — <X BC') = cosh(<ABC — <XY 7Z)
= cosh(<ABC) cosh(«XY Z) — sinh(<ABC) sinh(« XY Z).

According to Theorem 5.1, we have
b? = +a®+2accosh B, y? =22+ 2%+ 2xzcoshY

and we can write

1 1
S = §acsinhB, T = ixzsinhY
from Theorem 2.4. If these equations are written in equation (5.3), we found

b2 22 2 2 2 28 2T
cosh(<ABX) = ( coa)ly e =2 —S—
2ac 2xz ac rz

If this last equation is written in equation (5.2), we obtain

HZXZHQ _ a®(32% +2% —y?) + 02 (y? —a® — 2%) + 2(32% + 2° —y?) — 165T
2ax '

Since AX is a timelike vector, we have HB |2 > 0. Thus, we obtain
a?(322 + 2% — y?) + V2 (y? — 2® — 22) + A(32® + 2% — y?) — 16ST > 0.

O
Similarly, Pedoe inequalities for spacelike triangle and non-pure triangle types are

as follows.

5.2.2. Pedoe inequality for spacelike pure triangle.

Theorem 5.9. Let AgC be a spacelike pure triangle with side lengths a = HB?H ,
b= HCT>4||, c= ||EH and the area S. Let X?/Z be a spacelike pure triangle with side
lengths x = ||ﬁ||, y= ||Zj()|\, z= H)?}_}H and the area T. Then, the spacelike trian-
gles Aé C and X }AfZ are similar if and only if the following inequalities are satisfied:

(1) a?(32%2 + 22 — y?) + b?(y?® — 2% — 22) + 2(322 + 22 — y?) > 16ST,
(2) a®(—2% +y? + 22) + b2(22 + 22 — y?) + 2 (22 — 2% + y?) > 16ST.
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5.2.3. Pedoe inequality for non-pure triangle.

(1)

562

Let AéC be a non-pure triangle such that 1@ , Cﬁi are spacelike vectors and
BC is a timelike vector with side lengths a = HB?H, b= ||CT/>1H, c = H@H
and area SS. Let X ?/Z be a non-pure triangle such that )75_/) , 2? are spacelike
vectors and Y7 is a timelike vector with side lengths = = Hﬁ”, Yy = HE?H,

A A
z= ||)?}_>f || and area T. Then, the non-pure triangles ABC and XY Z are similar
if and only if the following inequality is satisfied:

a?(32% — y? — 2?) + V(2% — 2% — y?) + A (32 + y* — 2?) + 16ST > 0.

Let AéC be a non-pure triangle such that 1@ is a future pointing (past point-

ing) timelike vector, B? is a past pointing (future pointing) vector and Cﬁ is

a spacelike vector with side lengths a = HB?’H, b= ||CT/>1H, c= H/@H and area S.

Let X }AfZ be a non-pure triangle such that )ﬁ)’ is a future pointing (past

pointing) timelike vector, ﬁ is a past pointing (future pointing) vector and

ZX is a spacelike vector with side lengths x = HﬁH, Yy = ||27()H, z = ||)ﬁ/>'||
A A

and area T. Then, the non-pure triangles ABC and XY Z are similar if and
only if the following inequality is satisfied:

a?(y? + 2% 4+ 32%) + b? (2 + y* + 22) + A(y? + 2% + 32%) > 16ST.

Let AéC be a non-pure triangle such that E is a spacelike vector oriented in
the same (different) direction with £ = (1,0), BCisa spacelike vector oriented
in the different (same) direction with E = (1,0) and CA is a timelike vector
with side lengths a= ||B?|| b= ||Cﬁl|| c= ||ﬁ|| and the area S.

Let X YZ be a non-pure triangle such that X Y is a spacelike vector oriented
in the same (different) direction with E = (1,0), ﬁ is a spacelike vector
oriented in the different (same) direction with E = (1,0) and ZX is a timelike
vector with side lengths x = ||ﬁ||, y = ||Zj(>||, z = ||)?}_>’|| and area T. Then,

A A
the non-pure triangles ABC and XY Z are similar if and only if the following
inequality is satisfied:

a?(y® +2? +322) + b2 (22 + y® + 2 + A(y? + 22 + 32%) > 16ST.

A
Let ABC be a non-pure triangle such that E , @i are future pointing (past
pointing) timelike vectors and B? is a spacelike vector with side lengths a =

||B?'||7 b= ||C—/>1||, c= ||f@|| and area S.



A
Let XY Z be a non-pure triangle such that X ?, Z‘X2 are future pointing
(past pointing) timelike vectors and ﬁ is a spacelike vector with side lengths
- -
x = Hﬁ”, Yy = ||Zj(>|\, z = | XY and area T. Then, the non-pure triangles

A A
ABC and XY Z are similar if and only if the following inequality is satisfied:

a?(32% —y? — 2?) + V(2% — 2% — y?) + A (32 + y* — 2?) + 16ST > 0.

5.3. Rotation matrix under Lorentz matrix multiplication in Minkowski
plane R?.

Definition 5.1 ([6]). Let Ai, As,..., A, € R} be the row vectors of the ma-
trices A = [ai;] € Myxn(R) and By, Bs, ..., B, € R be the column vectors of the
matrix B = [bji] € Mypxp(R) in the space RT. The Lorentz matrix multiplication is
indicated by “”,

(A1,Bi) (A1, B2)r ... (A1, By)r
<A2,Bl>L <A2,BQ>L <A2,B >L n—1
AL B= ) ) r = [Z a;jbjk — ainbnk]
. . . j=1 mXxn
<Am;B1>L <Am,7BQ>L <Amva>L

The set of m x n-type matrices is represented as My, xn(R) with the Lorentz multi-
plication in space RY.

5.3.1. Point rotation under Lorentz matrix multiplication. Let the point
A = (z,y), which makes an angle § with the axis be rotated to the point A’ = (2, 3/)
by angle @ in the Minkowski plane R?. Then, we can write 2/ = r cosh(j3 + 6) and
y' = rsinh(8 + 6) where x = rcosh 8 and y = rsinh 8. By using the trigonometric
property of hyperbolic functions, we have

2’ = rcosh(B + 0) = r(cosh 3 cosh 6 + sinh B sinh ) = x cosh § + ysinh §
and

y’' = rsinh(B + 0) = r(sinh 8 cosh 6 + cosh B sinh §) = y cosh 6 + z sinh 6.

. . . . ! coshf —sinhf x
These equations are written in matrix form as = i ‘L .
sinh® —coshf y

Thus, the matrix that provides the point rotation obtained by the Lorentz matrix
multiplication is found as

coshf —sinh6
(5.4) _ [ ] |

sinh® —coshé
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5.3.2. Axis rotation under Lorentz matrix multiplication. Let [y = (1,0)
be spacelike vector, lo = (0,1) be a timelike vector and I} = (a,b), I, = (¢,d). Let
us rotate the axis [; = (1,0) by the angle 6 and get the axis I] = (a,b). Also, let us
rotate the axis lo = (0,1) by the angle 6 and get the axis l5 = (¢,d). Here, we have

/1 = aly + bly, l/2 =cly + dls.

hé —sinhd 1
By using the matrix (5.4) we find {Z] = {Z?jhe —:;r;he} ‘L {0] for I} = (a,b).

Thus, a = cosh § and b = sinh § can be obtained with the Lorentz matrix multiplica-

c coshf —sinhd 0
ion. Similarl i h i A4 fi = . f
tion. Similarly, using the matrix (5.4) we find [d] [sinhe 3 coshe} L [1] or

5 = (¢,d). Thus, ¢ = sinh # and d = cosh # can be obtained with the Lorentz matrix

1 hf —sinhf l
multiplication. Therefore, we can write [lﬂ = [Zi()r?hﬂ —(SzloI;hQ] ‘L [l;] The

matrix that provides the axis rotation obtained by the Lorentz matrix multiplication
coshf —sinh@ }

in the L tz pl is Ap =
in the Lorentz plane is A, Linh@ — cosh

Notation 5.1. The matrix Ay, provides both point rotation and axis rotation
obtained by the Lorentz matrix multiplication in the Minkowski plane. The inverse

of the matrix obtained by the Lorentz matrix multiplication is found as Azl =
cosh 6 sinh 6

—sinhf —coshf
Lorentz matrix multiplication is the orthogonal matrix.

} Here, since Azl = A | the rotation matrix obtained by the

5.4. Orthogonal projection point on timelike and spacelike line.

Definition 5.2. Let [ be a line, & be the directive vector of the line [ in the
Minkowski plane. Then, if @ is a timelike vector, [ is called a timelike line, if « is
a spacelike vector, [ is called a spacelike line, if « is a lightlike vector, [ is called
a lightlike line.

Let 77 be normal vector of the line [. The normal vector 77 of the timelike line is
a spacelike vector. The normal vector 71 of the spacelike line is a timelike vector.

Theorem 5.10. Let ax — by + ¢ = 0 be a timelike line equation. Let S be an
orthogonal projection of the point P on the line. Then,

s=p- 2 05

where 71 is a normal vector of the timelike line.
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Proof. PS = A can be written where PS || 7 for A € R. Let O be the
starting point of the coordinate system where the line is located. Then, we have
O? = O? + P—é or § = p'+ M. Since the projection point of P is the point S, it
is located on the line and provides the line equation. Thus, (3,7) + ¢ = 0. If the
equation § = '+ A is used, we obtain (p'+ A, %) + ¢ = (p,7) + A (@i, @) + ¢ = 0.
Then, we can write A = —((p, 7y + ¢)/(7, 7). Thus, the orthogonal projection point
is obtained as v

S=p+Xi=p-— <’ >+cn.

7i)

i
,
O

Theorem 5.11. Let ax — by + ¢ = 0 be spacelike line equation. Let S be an
orthogonal projection of the point P on the line. Then,

L L Py Fc
5= ML T E

PTG
where 71 is a normal vector of the line.

Proof. The proof can be done in a similar way according to the Theorem 5.10.
O

5.5. The formula for distance of any point to a timelike and space-

like line.

Theorem 5.12. Let S be an orthogonal projection point of the point P = (g, yo)
on the timelike line ax — by + ¢ = 0. Let d be the distance of the point P from the
line. Then, the distance formula is expressed as

lazo — byo + ¢|
d=||P3| = =

Proof. Sinced= HP—§H and §=p— (((p,7) + ¢)/ (7, 71))7l, we obtain

d= 173 = 5 - 71 = - Lt g = |- Tl = i,

We have (p, 1) = axo — byo. Since the normal vector is spacelike, we have ||(7I, 7)|| =
Va? — b2. Then, we obtain d = Hﬁ” = lazg — byo + ¢|/Va? — b>. O

Example 5.1. Find the distance between the point P = (1, —2) and the time-
like line Lt =3x — 2y + 5 = 0.
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The distance between the point and timelike line is found as

B-()—(=2)-2+5 _ 12

d= — 7

according to Theorem 5.12.

Theorem 5.13. Let S be orthogonal projection point of the point P = (¢, yo)
on the spacelike line ax — by + ¢ = 0. Let d be distance of point P from the line.
Then, the distance formula is expressed as

|bxo — ayo + ¢|
d=|[PS) = P2,
b — a?|

Proof. The proof can be done in a similar way according to the Theorem 5.12.
O

6. CONCLUSIONS

In this article, orthogonality conditions are given in the Minkowski space R3.
Accordingly, a different situation is obtained from the Minkowski space R$. This
difference was also used in the Gram-Schmidt method. Moreover, all non-pure tri-
angle types were studied. Thus, it has been seen that the hyperbolic cosine formulas
change according to the state of the vectors. In this study, the Pedoe inequality
was obtained for all Lorentz triangle types. Thanks to this inequality, a connection
was obtained between two similar triangles in the Lorentz space. Thus, it is under-
stood that the inequalities obtained change as the types of triangles change. The
importance of the inner product in obtaining the rotation matrix was stated. It was
emphasized that the rotation matrix obtained by the Lorentz matrix multiplication
is orthogonal. Finally, distance and projection formulas were examined on timelike
and spacelike lines. The distance and projection of timelike or spacelike points to
the lines are given with separate examples.
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