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Abstract. The aim of this paper is to investigate the orthogonality of vectors to each
other and the Gram-Schmidt method in the Minkowski space R32. Hyperbolic cosine for-
mulas are given for all triangle types in the Minkowski plane R

2

1. Moreover, the Pedoe
inequality is explained for each type of triangle with the help of hyperbolic cosine formu-
las. Thus, the Pedoe inequality allowed us to establish a connection between two similar
triangles in the Minkowski plane. In the continuation of the study, the rotation matrix
that provides both point and axis rotation in the Minkowski plane is obtained by using
the Lorentz matrix multiplication. Also, it is stated to be an orthogonal matrix. More-
over, the orthogonal projection formulas on the spacelike and timelike lines are given in the
Minkowski plane. In addition, the distances of any point from the spacelike or timelike line
are formulated.

Keywords: Gram-Schmidt method; Lorentz triangle; hyperbolic cosine formulas; Pedoe
inequality; Lorentz matrix multiplication; orthogonal projection
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1. Introduction

The angle definition between any two timelike vectors, timelike-pure triangle, area

information of timelike-pure triangle, and hyperbolic cosine rules are given in [4]. In

addition, some properties related to hyperbolic angles are examined in [1], [3]. This

properties for all vector types are detailed and regulated in [15]. The information

of the area spacelike-pure triangle and the non-pure triangle is given in [10]. This

resource also includes hyperbolic cosine rules for spacelike pure triangles and some

non-pure triangle types. The angle measure and some properties of the angle are
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expressed in [9]. This study is given for all possible non-pure triangle types, and

hyperbolic cosine formulas are found for these triangles.

Moreover, in the Minkowski plane, only spacelike and timelike vector can be per-

pendicular to each other (see [4]). The following conditions apply for orthogonality

between vectors in the Minkowski space R3
1:

⊲ A spacelike vector can be perpendicular to a null vector, a spacelike vector, and

a timelike vector.

⊲ A timelike vector can be orthogonal only to a spacelike vector.

⊲ A null vector can be orthogonal only to a spacelike vector. Also, two null vectors

can be orthogonal to each other only if they are linearly dependent (see [7], [13]).

The Gram-Schmidt method is expressed with orthogonality information between

vectors in the Minkowski space R3
1 (see [13]). In this article, it is examined which

vectors can be perpendicular to each other in the Minkowski space R3
2. After that,

the Gram-Schmidt method is applied in the Minkowski space R3
2.

Another title of the study is the Pedoe inequality. The Pedoe inequality in Eu-

clidean space is given with the similarity condition of the two triangles in [8], [12], [14].

In this article, the Pedoe inequality is found for spacelike-pure, timelike-pure and all

non-pure triangle types.

In addition, the rotation matrix is given in the Minkowski plane in [10]. This rota-

tion matrix that provides both axis and point rotation is obtained by the Euclidean

inner product. An orthogonal matrix must satisfy the condition A
−1 = εAtε in

the Minkowski plane (see [11]). So, this rotation matrix is the Lorentz orthogonal

matrix. In this article, the rotation matrix is obtained using the Lorentz inner

product instead of Euclidean inner product. The orthogonal matrix obtained by the

Lorentz matrix multiplication satisfies the condition A−1
L = A

t
L (see [5]). Therefore,

it is stated that the rotation matrix obtained by using the Lorentz inner product is

orthogonal in this study.

Moreover, timelike and spacelike line equations are given with Hesse coordinates

in [2] such that

Lt ≡ x coshASS − y sinhASS − c = 0, Ls ≡ x sinhAST − y coshAST − c = 0

for ASS = 6 (
−→
AB,

−→
AC) = AST and ASS, AST ∈ R, where the point c represents the

distance from the origin in Minkowski plane R2
1. Additionally, in [16], Cauchy-length

formulas to the envelope of a family of lines and the Holditch-type theorems for

the length of the enveloping trajectories are given. In this paper, the orthogonal

projection formulas on the line are examined. The distance between line and point

is formulated for timelike and spacelike lines.
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2. Fundamental notations

A space Rn is called the semi-Euclidean space with the scalar product function

〈~x, ~y〉 =
n−ν
∑

i=1

xiyi −
n
∑

i=n−ν+1

xiyi

where ~x = (xi), ~y = (yi) ∈ R
n, 1 6 i 6 n and ν is an integer with 0 6 ν 6 n. It is

denoted by Rn
ν = (Rn, 〈·, ·〉ν) (see [11]).

Let ~x ∈ R
2
1 then ~x is called the spacelike vector if 〈~x, ~x〉 > 0 or ~x = 0, ~x is

called the timelike vector if 〈~x, ~x〉 < 0, ~x is called the null vector if 〈~x, ~x〉 = 0 and

~x 6= 0 (see [4], [11], [13]). The norm of ~x ∈ R
2
1 is defined as ‖~x‖ =

√

|〈~x, ~x〉|. If
〈~x, ~y〉 = 0, the vectors ~x and ~y are called perpendicular in the Lorentz sense. Let

~x = (x1, x2) ∈ R
2
1 be a timelike vector and ~e = (0, 1). Then, ~x is a future pointing

(positive) timelike vector if 〈~x,~e〉 < 0, ~x is a past pointing (negative) timelike vector

if 〈~x,~e〉 > 0, see [4].

Let ~x = (x1, x2) ∈ R
2
1 be a spacelike vector and

~E = (1, 0). Thus, ~x is called the

vector oriented in the same direction with ~E, if 〈~x, ~E〉 > 0 and ~x is called the vector

oriented in the opposite direction with ~E, if 〈~x, ~E〉 < 0. Let ~x, ~y ∈ R
2
1 be future

pointing (past pointing) timelike vectors with sgnx2 = sgn y2. Then, ~x + ~y is the

future pointing (past pointing) timelike vector (see [4]). Let ~x, ~y ∈ R
2
1 be spacelike

vectors oriented in the same (opposite) direction with ~E = (1, 0) and sgnx1 = sgn y1
(sgnx1 6= sgn y1). Then, ~x + ~y is a spacelike vector oriented in the same (opposite)

direction with ~E = (1, 0).

Theorem 2.1 ([10]). Let ~x = (x1, x2), ~y = (y1, y2) ∈ R
2
1 be spacelike and timelike

unit vectors with sgnx1 = sgn y2, respectively. Then, 〈~x, ~y〉 = sinh θ where θ be the

oriented angle from ~x to ~y.

Theorem 2.2 ([11]). Let ~x = (x1, x2), ~y = (y1, y2) ∈ R
2
1 be timelike unit vectors.

Then, 〈~x, ~y〉 = cosh θ where θ is the oriented angle from ~x to ~y.

Theorem 2.3 ([10]). Let ~x = (x1, x2), ~y = (y1, y2) ∈ R
2
1 spacelike and timelike

unit vectors with sgnx1 6= sgn y2, respectively. Then, 〈~x, ~y〉 = − sinh θ where θ is

the oriented angle from ~x to ~y.

Definition 2.1 ([4]). Let A, B, C be three non-collinear points. The triangle
∆

ABC is called a timelike pure triangle such that
−→
AB,

−→
BC are future pointing timelike

vectors in the Minkowski plane R2
1.
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Definition 2.2. Let A, B, C be three non-collinear points such that
−→
AB,

−→
BC be

spacelike vectors oriented in the same (different) direction with the vector ~E = (1, 0)

and
−→
AC be spacelike vectors oriented in the same (different) direction with the vector

~E = (1, 0). In this way, the triangle
∆

ABC is called a spacelike pure triangle. Triangles

other than the pure timelike triangle and the spacelike pure triangle are called non-

pure triangles.

In this study, the following abbreviations are used to understand between which

vectors are the angles:

T for a future pointing timelike vector,

t for a past pointing timelike vector,

S for a spacelike vector oriented in the same direction with ~E = (1, 0),

s for a spacelike vector oriented in the different direction with ~E = (1, 0).

Definition 2.3 ([4]). Let A, B, C be three non-collinear points and ATT =

6 (
−→
AB,

−→
AC). The area of the timelike pure triangle

∆

ABC is denoted by

STT =
‖−→AB‖‖−→AC‖ sinhATT

2
.

Definition 2.4 ([10]). Let
−→
AB,

−→
AC be two linearly independent spacelike vec-

tors. The area of the spacelike pure triangle
∆

ABC is denoted by

SSS =
‖−→AB‖‖−→AC‖ sinhASS

2

where ASS = 6 (
−→
AB,

−→
AC).

Definition 2.5 ([10]). Let
−→
AB be a spacelike vector and

−→
AC a timelike vector.

The area of the non-pure triangle
∆

ABC is denoted by

SST =
‖−→AB‖‖−→AC‖ coshAST

2

where AST = 6 (
−→
AB,

−→
AC).

Definition 2.6 ([11]). The matrix that provides both the point rotation and

axis rotation in the Lorentz sense is called the Lorentz rotation matrix such that

A(θ) =

[

cosh θ sinh θ

sinh θ cosh θ

]

, θ ∈ R, in the Minkowski plane R2
1. The Lorentz rotation

matrix is provided as A−1 = εAtε such that ε =

[

1 0

0 −1

]

. So, the Lorentz rotation

matrix A is orthogonal.
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Definition 2.7. The equation of the timelike line passing through any point

P = (x0, y0) and perpendicular to the normal ~n = (a, b) is obtained as 〈−−→PX,~n〉 =

ax − by + c = 0 where c = −(ax0 − by0) and X = (x, y) is a representative point

on the line.

Definition 2.8. The equation of the spacelike line passing through any point

P = (x0, y0) and perpendicular to the normal ~n = (b, a) is obtained as 〈−−→PX,~n〉 =

bx − ay + c = 0 where c = −(bx0 − ay0) and X = (x, y) is a representative point

on the line.

3. On R
3
2

3.1. Orthogonality in the Minkowski space R
3
2.

Theorem 3.1. Two timelike vectors can be orthogonal in the Minkowski space R3
2.

P r o o f. Let ~x = (x1, x2, x3), ~y = (y1, y2, y3) ∈ R
3
2 be two timelike vectors. In

that case, 〈~x, ~x〉 = x2
1 − x2

2 − x2
3 < 0. Thus,

(3.1) x2
1 < x2

2 + x2
3

and 〈~y, ~y〉 = y21 − y22 − y23 < 0. So, we can write

(3.2) y21 < y22 + y23 .

Let us assume that ~x⊥~y, namely 〈~x, ~y〉 = x1y1 − x2y2 − x3y3 = 0. From here, we

obtain

(3.3) x1y1 = x2y2 + x3y3.

If the equations (3.1) and (3.2) are multiplied, we find x2
1y

2
1 < x2

2y
2
2 + x2

2y
2
3 + x2

3y
2
2 +

x2
3y

2
3 . Also, if the equation (3.3) is squared and substituted into the last equation,

we have

(x3y2 − x2y3)(x2y3 − x2y1) = −(x3y2 − x2y3)
2 < 0.

In this way, there is no contradiction. Therefore, it is shown that two timelike vectors

can be perpendicular to each other in the Minkowski space R3
2. �

E x am p l e 3.1. Let ~x = (1, 1, 1), ~y = (1,−2, 3) be two timelike vectors in the

Minkowski space R3
2. Then,

〈~x, ~y〉 = 〈(1, 1, 1), (1,−2, 3)〉 = 0.

Two timelike vectors cannot be orthogonal in the Minkowski space R3
1, see [4].
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Theorem 3.2. A timelike vector and a null vector can be orthogonal in the

Minkowski space R3
2.

P r o o f. Let ~x = (x1, x2, x3), ~y = (y1, y2, y3) ∈ R
3
1 be a timelike and null vector,

respectively. In that case,

〈~x, ~x〉 = x2
1 − x2

2 − x2
3 < 0.

Thus, we have

(3.4) x2
1 < x2

2 + x2
3

and 〈~y, ~y〉 = y21 − y22 − y23 = 0. So, we can write

(3.5) y21 = y22 + y23 .

Let us assume that ~x⊥~y, namely 〈~x, ~y〉 = x1y1 − x2y2 − x3y3 = 0. From here, we

obtain

(3.6) x1y1 = x2y2 + x3y3.

Here, from the inequality (3.4) multiplied by y21 , we find x2
1y

2
1 < y21(x

2
2 + x2

3). Also,

if we substitute in the last equation, we have

(x2y3 − x3y2)(x3y2 − x2y3) = −(x2y3 − x3y2)
2 < 0.

In this way, it is seen that there is no contradiction. Therefore, it is shown that a time-

like vector and a null vector can be perpendicular to each other in the Minkowski

space R3
2. �

E x am p l e 3.2. Let ~x = (1, 1, 3) be a timelike vector and ~y = (1, 1, 0) be the

null vector in the Minkowski space R3
2. Then,

〈~x, ~y〉 = 〈(1, 1, 3), (1, 1, 0)〉 = 0.

A timelike vector and the null vector cannot be orthogonal in the Minkowski

space R3
1, see [4]. Similarly, the following theorems can be proved.

Theorem 3.3. A timelike vector and a spacelike vector can be orthogonal in the

Minkowski space R3
2.

A timelike vector and a spacelike vector can be orthogonal in the Minkowski

space R3
1, see [4].

Theorem 3.4. A spacelike vector and the null vector cannot be orthogonal in

the Minkowski space R3
2.

A spacelike vector and the null vector can be orthogonal in the Minkowski

space R3
1, see [4].
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4. The Gram-Schmidt method for Minkowski space R
3
2

Theorem 4.1. Let ~x1, ~x2 ∈ R
3
2 be timelike vectors and ~x3 ∈ R

3
2 be a spacelike

vector. Let R3
2 = sp{~x1, ~x2, ~x3}. If ~y1 = ~x1,

~y2 = ~x2 −
〈~x2, ~y1〉
〈~y1, ~y1〉

~y1, ~y3 = ~x3 −
〈~x3, ~y1〉
〈~y1, ~y1〉

~y1 −
〈~x3, ~y2〉
〈~y2, ~y2〉

~y2,

then R
3
2 = sp{~y1, ~y2, ~y3}. Also, ~y1, ~y2 are timelike vectors, ~y3 is a spacelike vector.

P r o o f. Let ~x1, ~x2 ∈ R
3
2 be timelike vectors and ~x3 ∈ R

3
2 be a spacelike vector.

Let us define the vectors

(4.1) ~y1 = ~x1,

~y2 = λ′
2~y1 + ~x2,

~y3 = λ′
3~y1 + λ′′

3~y2 + ~x3.

In this case, it is clear that ~y1 is a timelike vector. So, we can write 〈λ′
2~y1 + ~x2, ~y1〉 =

λ′
2〈~y1, ~y1〉+ 〈~x2, ~y1〉 = 0 for 〈~y2, ~y1〉 = 0. Here, since ~y1 is a timelike vector, we have

〈~y1, ~y1〉 < 0. Then, we find

λ′
2 = −〈~x2, ~y1〉

〈~y1, ~y1〉
.

If λ′
2 is written in the equation (4.1), we obtain

~y2 = ~x2 −
〈~x2, ~y1〉
〈~y1, ~y1〉

~y1.

Now, let us show that ~y2 is a timelike vector: We have

〈~y2, ~y2〉 = 〈~x2, ~x2〉 −
〈~x2, ~y1〉
〈~y1, ~y1〉

〈~y1, ~x2〉 −
〈~x2, ~y1〉
〈~y1, ~y1〉

〈~x2, ~y1〉+
( 〈~x2, ~y1〉
〈~y1, ~y1〉

)2

〈~y1, ~y1〉.

If necessary algebraic operations are done, we can write

〈~y2, ~y2〉 = 〈~x2, ~x2〉 −
(〈~x2, ~y1〉)2
〈~y1, ~y1〉

.

Here, we have 〈~x2, ~y1〉2 = ‖~x2‖2‖~y1‖2cosh2θ. Then, we find 〈~x2, ~y1〉2 > ‖~x2‖2 ×
‖~y1‖2 = 〈~x2, ~x2〉〈~y1, ~y1〉 for cosh2θ > 1. It follows that

〈~x2, ~y1〉2
〈~y1, ~y1〉

> 〈~x2, ~x2〉 and 〈~y2, ~y2〉 = 〈~x2, ~x2〉 −
(〈~x2, ~y1〉)2
〈~y1, ~y1〉

6 0.

So, ~y2 is a timelike vector. Moreover, it should be 〈~y3, ~y2〉 = 0 and 〈~y3, ~y1〉 = 0.

Therefore, we found 〈~y3, ~y1〉 = λ′
3〈~y1, ~y1〉+ λ′′

3 〈~y2, ~y1〉+ 〈~x3, ~y1〉 = 0 for 〈~y3, ~y1〉 = 0.
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We have 〈~y2, ~y1〉 = 0. Since ~y1 is a timelike vector, we have 〈~y1, ~y1〉 < 0. Then,

we obtain

λ′
3 = −〈~x3, ~y1〉

〈~y1, ~y1〉
.

Also, 〈~y3, ~y2〉 = λ′
3〈~y1, ~y2〉 + λ′′

3 〈~y2, ~y2〉 + λ′′
3 〈~x3, ~y2〉 = 0 for 〈~y3, ~y2〉 = 0. We have

〈~y2, ~y1〉 = 0. Moreover, since ~y2 is a timelike vector, we have 〈~y2, ~y2〉 < 0. Then,

we found

λ′′
3 = −〈~x3, ~y2〉

〈~y2, ~y2〉
.

So, we obtain

~y3 = ~x3 −
〈~x3, ~y1〉
〈~y1, ~y1〉

~y1 −
〈~x3, ~y2〉
〈~y2, ~y2〉

~y2.

Let us show that the vector ~y3 is spacelike. We have

〈~y3, ~y3〉 = 〈~x3, ~x3〉 −
〈~x3, ~y2〉2
〈~y2, ~y2〉

− 〈~x3, ~y1〉2
〈~y1, ~y1〉

.

Since ~x3 is a spacelike vector, ~y1 and ~y2 are timelike vectors, we have 〈~y3, ~y3〉 > 0. So,

~y3 is a spacelike vector. Let us check that 〈~y3, ~y1〉 = 0, 〈~y3, ~y2〉 = 0 and 〈~y2, ~y1〉 = 0.

We have

〈~y3, ~y2〉 = 〈~x3, ~y2〉 −
〈~x3, ~y1〉
〈~y1, ~y1〉

〈~y1, ~y2〉 −
〈~x3, ~y2〉
〈~y2, ~y2〉

〈~y2, ~y2〉.

If necessary algebraic operations are done, 〈~y3, ~y2〉 = 0 is obtained. Similarly, other

equations can be found. �

5. On R
2
1

5.1. Hyperbolic cosine formulas on the Minkowski plane R
2
1.

5.1.1. Hyperbolic cosine formulas for the timelike-pure riangle.

Theorem 5.1 ([4]). Let
−→
AB,

−→
BC,

−→
AC be future pointing timelike vectors and

BTT = 6 (
−→
AB,

−→
BC). Then, the timelike pure triangle

∆

ABC provides b2 = a2 +

2ac coshBTT + c2 where ‖−→AB‖ = c, ‖−→AC‖ = b, ‖−→BC‖ = a.

5.1.2. Hyperbolic cosine formulas for the spacelike-pure triangle.

Theorem 5.2 ([10]). Let
−→
AB,

−→
BC,

−→
AC be three linearly independent spacelike

vectors. Then, the triangle
∆

ABC provides b2 = a2 ± 2ac coshBSS + c2 where BSS =

6 (
−→
AB,

−→
BC) and ‖−→AB‖ = c, ‖−→AC‖ = b, ‖−→BC‖ = a.
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5.1.3. Hyperbolic cosine formulas for the non-pure triangle.

Theorem 5.3. Let
−→
AB be a future pointing (past pointing) timelike vector,

−→
BC

a past pointing (future pointing) timelike vector and
−→
AC be a spacelike vector. Let

ATS = 6 (
−→
AB,

−→
AC), BTt = 6 (

−→
AB,

−→
BC), CSt = 6 (

−→
AC,

−→
BC) and ‖−→AB‖ = c, ‖−→AC‖ = b,

‖−→BC‖ = a. Then, the triangle
∆

ABC provides the following equations:

(1)(i) When
−→
AC is oriented in the same direction with ~E = (1, 0), if

−→
AB is a future

pointing timelike vector, then a2 = −b2 + 2bc sinhAST + c2, if
−→
AB is a past

pointing timelike vector, then a2 = −b2 − 2bc sinhASt − c2.

(ii) When
−→
AC is oriented in a different direction with ~E = (1, 0), if

−→
AB is a future

pointing timelike vector, then a2 = −b2 − 2bc sinhAsT − c2, if
−→
AB is a past

pointing timelike vector, then a2 = −b2 + 2bc sinhAst − c2.

(2)(i) If
−→
AB is a future pointing vector and

−→
BC is a past pointing vector, then

b2 = −a2 + 2ac coshBTt − c2,

(ii) if
−→
AB is a past pointing vector and

−→
BC is a future pointing vector, then

b2 = −a2 + 2ac coshBtT − c2.

(3)(i) When
−→
AC is oriented in the same direction with ~E = (1, 0), if

−→
BC is a past

pointing timelike vector, then c2 = −b2 − 2ab sinhCSt + a2, if
−→
BC is a future

pointing timelike vector, then c2 = −b2 + 2ab sinhCST + a2.

(ii) When
−→
AC is oriented in a different direction with ~E = (1, 0), if

−→
BC is a past

pointing timelike vector, then c2 = −b2 + 2ab sinhCst + a2, if
−→
BC is a future

pointing timelike vector, then c2 = −b2 − 2ab sinhCsT + a2.

P r o o f. (1) Since
−→
AB +

−→
BC =

−→
AC, we can write

〈−→BC,
−→
BC〉 = 〈−→AC −−→

AB,
−→
AC −−→

AB〉 = 〈−→AC,
−→
AC〉 − 2〈−→AC,

−→
AB〉+ 〈−→AB,

−→
AB〉.

Then, we obtain

(5.1) a2 = −b2 + 2〈−→AC,
−→
AB〉+ c2

where 〈−→BC,
−→
BC〉 = −‖−→BC‖2, 〈−→AC,

−→
AC〉 = ‖−→AC‖2, 〈−→AB,

−→
AB〉 = −‖−→AB‖2 and

‖−→AB‖ = c, ‖−→AC‖ = b, ‖−→BC‖ = a.

Here, let us examine the orientation cases of the spacelike vector
−→
AC in the same

or different direction with the vector ~E = (1, 0):
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(i) Let
−→
AC be a spacelike vector oriented in the same direction with ~E = (1, 0). If

−→
AB is a future pointing timelike vector, we have

sinhAST =
〈−→AC,

−→
AB〉

‖−→AC‖‖−→AB‖
according to Theorem 2.1. If this last equation is written in the equation (5.1), we

found a2 = −b2+2bc sinhAST+ c2. If
−→
AB is a past pointing timelike vector, we have

sinhASt = − 〈−→AC,
−→
AB〉

‖−→AC‖‖−→AB‖
according to Theorem 2.3. If this last equation is written in equation (5.1), we found

a2 = −b2 − 2bc sinhASt − c2.

(ii) Let
−→
AC be a spacelike vector oriented in a different direction with the vector

~E = (1, 0). If
−→
AB is a future pointing timelike vector, we can write

sinhAsT = − 〈−→AC,
−→
AB〉

‖−→AC‖‖−→AB‖
according to Theorem 2.3. If this last equation is written in equation (5.1), we found

a2 = −b2 − 2bc sinhAsT − c2. If
−→
AB is a past pointing vector,

sinhAst =
〈−→AC,

−→
AB〉

‖−→AC‖‖−→AB‖
according to Theorem 2.1. If this last equation is written in equation (5.1), we found

a2 = −b2 + 2bc sinhAst − c2. Other conditions are proved similarly. �

Theorem 5.4 ([10]). Let
−→
AB,

−→
AC be two linearly independent spacelike vectors

and
−→
BC be timelike vector. Then, the non-pure triangle

∆

ABC provides b2 = −a2 ±
2ac sinhBST + c2 where B = 6 (

−→
AB,

−→
BC) and ‖−→AB‖ = c, ‖−→AC‖ = b, ‖−→BC‖ = a.

Theorem 5.5. Let
−→
AB,

−→
AC be future pointing (past pointing) timelike vectors

and
−→
BC be a past pointing (future pointing) timelike vector. Let ATT = 6 (

−→
AB,

−→
AC),

BTt = 6 (
−→
AB,

−→
BC), CTt = 6 (

−→
AC,

−→
BC). Then, the non-pure triangle

∆

ABC provides

the following equations:

(1) a2 = b2 − 2bc coshATT + c2,

(2) b2 = a2 − 2ac coshBTt + c2,

(3) c2 = a2 + 2ab coshCTt + b2,

where ‖−→AB‖ = c, ‖−→AC‖ = b, ‖−→BC‖ = a.
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Theorem 5.6. Let
−→
AB be a spacelike vector oriented in the same (different)

direction with ~E = (1, 0),
−→
BC be a spacelike vector oriented in the different (same)

direction with ~E = (1, 0) and
−→
AC be a timelike vector. Let AST = 6 (

−→
AB,

−→
AC),

BSs = 6 (
−→
AB,

−→
BC), CTs = 6 (

−→
AC,

−→
BC) and ‖−→AB‖ = c, ‖−→AC‖ = b, ‖−→BC‖ = a. Then,

the non-pure triangle
∆

ABC provides the following equations:

(1) (i) When
−→
AC is a future pointing timelike vector, if

−→
AB is a spacelike vector ori-

ented in the same direction with ~E = (1, 0), then a2 = −b2+2bc sinhATS+c2,

if
−→
AB is a spacelike vector oriented in a different direction with ~E = (1, 0),

then a2 = −b2 − 2bc sinhATs + c2.

(ii) When
−→
AC is a past pointing timelike vector, if

−→
AB is a spacelike vector oriented

in the same direction with ~E = (1, 0), then a2 = −b2 − 2bc sinhAtS + c2, if
−→
AB is a spacelike vector oriented in a different direction with ~E = (1, 0), then

a2 = −b2 + 2bc sinhAts + c2.

(2) (i) If
−→
AB is a spacelike vector oriented in a same direction with ~E = (1, 0) and

−→
BC is a spacelike vector oriented in a different direction with ~E = (1, 0), then

b2 = −a2 + 2ac coshBSs − c2.

(ii) If
−→
AB is a spacelike vector oriented in a different direction with ~E = (1, 0)

and
−→
BC is a spacelike vector oriented in the same direction with ~E = (1, 0),

then b2 = −a2 + 2ac coshBsS − c2.

(3) (i) When
−→
AC is a future pointing timelike vector, if

−→
AB is a spacelike vector ori-

ented in a different direction with ~E = (1, 0), then c2 = −b2−2ab sinhCTs+a2,

if
−→
AB is a spacelike vector oriented in the same with ~E = (1, 0), then c2 =

−b2 + 2ab sinhCTS + a2.

(ii) When
−→
AC is a past pointing timelike vector, if

−→
AB is a spacelike vector oriented

in a different direction with ~E = (1, 0), then c2=−b2+2ab sinhCts+a2, if
−→
AB

is a spacelike vector oriented in the same direction with ~E = (1, 0), then

c2 = −b2 − 2ab sinhCtS + a2.

Theorem 5.7. Let
−→
AB,

−→
AC be future pointing (past pointing) timelike vectors

and
−→
BC be a spacelike vector. Let ATT = 6 (

−→
AB,

−→
AC), BTS = 6 (

−→
AB,

−→
BC), CTS =

6 (
−→
AC,

−→
BC) and ‖−→AB‖ = c, ‖−→AC‖ = b, ‖−→BC‖ = a. Then, the non-pure triangle

∆

ABC provides the following equations:

(1) a2 = −b2 + 2bc coshATT − c2.

(2) (i) When
−→
BC is a spacelike vector oriented in the same direction with ~E = (1, 0),

if
−→
AB is a future pointing timelike vector, then b2 = c2 +2ac sinhBTS − a2, if

−→
AB is a past pointing timelike vector, then b2 = c2 − 2ac sinhBtS − a2.
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(ii) When
−→
BC is a spacelike vector oriented in a different direction with ~E = (1, 0),

if
−→
AB is a future pointing timelike vector, then b2 = c2 − 2ac sinhBTs − a2, if

−→
AB is a past pointing timelike vector, then b2 = c2 − 2ac sinhBts − a2.

(3) (i) When
−→
BC is a spacelike vector oriented in the same direction with ~E = (1, 0),

if
−→
AC is a future pointing timelike vector, then c2 = b2 − 2ab sinhCTS − a2, if

−→
AC is a past pointing timelike vector, then c2 = b2 + 2ab sinhCtS − a2.

(ii) When
−→
BC is a spacelike vector oriented in a different direction with ~E = (1, 0),

if
−→
AC is a future pointing timelike vector, then c2 = b2 + 2ab sinhCTs − a2, if

−→
AC is a past pointing timelike vector, then c2 = b2 − 2ab sinhCts − a2.

5.2. Pedoe inequality for triangle in Minkowski plane R
2
1.

5.2.1. Pedoe inequality for timelike pure triangle.

Theorem 5.8. Let
∆

ABC be a timelike pure triangle with side lengths a = ‖−→BC‖,
b = ‖−→CA‖, c = ‖−→AB‖and the area S. Let

∆

XY Z be a timelike pure triangle with side

lengths x = ‖−→Y Z‖, y = ‖−→ZX‖, z = ‖−−→XY ‖ and the area T. Then, the timelike trian-
gles

∆

ABC and
∆

XY Z are similar if and only if the following inequality are satisfied:

a2(3z2 + x2 − y2) + b2(y2 − x2 − z2) + c2(3x2 + z2 − y2) > 16ST.

P r o o f. The sides are homogeneous in the timelike pure triangle
∆

XY Z. In

this case, the inequality is invariant under any transformation in the timelike pure

triangle
∆

XY Z. For this, the points Y = B and Z = C can be selected on the line X,

with the point A in the same hemisphere as the line BC.

B= Y C =Z

AX

Figure 1. Pedoe inequality for two triangle.

We have
−→
AB +

−−→
BX =

−→
AX (see Figure 1). Then,

−→
AX is a timelike vector. Thus, the

timelike pure triangle
∆

ABX is obtained. From Theorem 5.1, we have

(5.2) ‖−→AX‖2 = ‖−→AB‖2 + ‖−−→XB‖2 + 2‖−→AB‖‖−−→XB‖ cosh(∢ABX)
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for triangle
∆

ABX . Since ‖−→AB‖ = c, B = Y and Z = C, we obtain ‖−−→XB‖ =

‖−−→XY ‖ = z and
∆

XBC =
∆

XY Z. Also, we have ∢ABX = ∢ABC − ∢XBC. It

follows that

(5.3) cosh(∢ABX) = cosh(∢ABC − ∢XBC) = cosh(∢ABC − ∢XY Z)

= cosh(∢ABC) cosh(∢XY Z)− sinh(∢ABC) sinh(∢XY Z).

According to Theorem 5.1, we have

b2 = c2 + a2 + 2ac coshB, y2 = x2 + z2 + 2xz coshY

and we can write

S =
1

2
ac sinhB, T =

1

2
xz sinhY

from Theorem 2.4. If these equations are written in equation (5.3), we found

cosh(∢ABX) =
(b2 − c2 − a2)

2ac

(y2 − x2 − z2)

2xz
− 2S

ac

2T

xz
.

If this last equation is written in equation (5.2), we obtain

‖−→AX‖2 = a2(3z2 + x2 − y2) + b2(y2 − x2 − z2) + c2(3x2 + z2 − y2)− 16ST

2ax
.

Since
−→
AX is a timelike vector, we have ‖−→AX‖2 > 0. Thus, we obtain

a2(3z2 + x2 − y2) + b2(y2 − x2 − z2) + c2(3x2 + z2 − y2)− 16ST > 0.

�

Similarly, Pedoe inequalities for spacelike triangle and non-pure triangle types are

as follows.

5.2.2. Pedoe inequality for spacelike pure triangle.

Theorem 5.9. Let
∆

ABC be a spacelike pure triangle with side lengths a = ‖−→BC‖,
b = ‖−→CA‖, c = ‖−→AB‖ and the area S. Let

∆

XY Z be a spacelike pure triangle with side

lengths x = ‖−→Y Z‖, y = ‖−→ZX‖, z = ‖−−→XY ‖ and the area T. Then, the spacelike trian-
gles

∆

ABC and
∆

XY Z are similar if and only if the following inequalities are satisfied:

(1) a2(3z2 + x2 − y2) + b2(y2 − x2 − z2) + c2(3x2 + z2 − y2) > 16ST,

(2) a2(−x2 + y2 + z2) + b2(x2 + z2 − y2) + c2(x2 − z2 + y2) > 16ST.
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5.2.3. Pedoe inequality for non-pure triangle.

(1) Let
∆

ABC be a non-pure triangle such that
−→
AB,

−→
CA are spacelike vectors and

−→
BC is a timelike vector with side lengths a = ‖−→BC‖, b = ‖−→CA‖, c = ‖−→AB‖
and area SS. Let

∆

XYZ be a non-pure triangle such that
−−→
XY ,

−→
ZX are spacelike

vectors and
−→
Y Z is a timelike vector with side lengths x = ‖−→Y Z‖, y = ‖−→ZX‖,

z = ‖−−→XY ‖ and area T. Then, the non-pure triangles
∆

ABC and
∆

XY Z are similar

if and only if the following inequality is satisfied:

a2(3z2 − y2 − x2) + b2(z2 − x2 − y2) + c2(3x2 + y2 − z2) + 16ST > 0.

(2) Let
∆

ABC be a non-pure triangle such that
−→
AB is a future pointing (past point-

ing) timelike vector,
−→
BC is a past pointing (future pointing) vector and

−→
CA is

a spacelike vector with side lengths a = ‖−→BC‖, b = ‖−→CA‖, c = ‖−→AB‖ and area S.
Let

∆

XY Z be a non-pure triangle such that
−−→
XY is a future pointing (past

pointing) timelike vector,
−→
Y Z is a past pointing (future pointing) vector and

−→
ZX is a spacelike vector with side lengths x = ‖−→Y Z‖, y = ‖−→ZX‖, z = ‖−−→XY ‖
and area T. Then, the non-pure triangles

∆

ABC and
∆

XY Z are similar if and

only if the following inequality is satisfied:

a2(y2 + x2 + 3z2) + b2(x2 + y2 + z2) + c2(y2 + z2 + 3x2) > 16ST.

(3) Let
∆

ABC be a non-pure triangle such that
−→
AB is a spacelike vector oriented in

the same (different) direction with ~E = (1, 0),
−→
BC is a spacelike vector oriented

in the different (same) direction with ~E = (1, 0) and
−→
CA is a timelike vector

with side lengths a = ‖−→BC‖, b = ‖−→CA‖, c = ‖−→AB‖ and the area S.
Let

∆

XY Z be a non-pure triangle such that
−−→
XY is a spacelike vector oriented

in the same (different) direction with ~E = (1, 0),
−→
Y Z is a spacelike vector

oriented in the different (same) direction with ~E = (1, 0) and
−→
ZX is a timelike

vector with side lengths x = ‖−→Y Z‖, y = ‖−→ZX‖, z = ‖−−→XY ‖ and area T. Then,
the non-pure triangles

∆

ABC and
∆

XY Z are similar if and only if the following

inequality is satisfied:

a2(y2 + x2 + 3z2) + b2(x2 + y2 + z2) + c2(y2 + z2 + 3x2) > 16ST.

(4) Let
∆

ABC be a non-pure triangle such that
−→
AB,

−→
CA are future pointing (past

pointing) timelike vectors and
−→
BC is a spacelike vector with side lengths a =

‖−→BC‖, b = ‖−→CA‖, c = ‖−→AB‖ and area S.
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Let
∆

XY Z be a non-pure triangle such that
−−→
XY ,

−→
ZX are future pointing

(past pointing) timelike vectors and
−→
Y Z is a spacelike vector with side lengths

x = ‖−→Y Z‖, y = ‖−→ZX‖, z = ‖−−→XY ‖ and area T. Then, the non-pure triangles
∆

ABC and
∆

XY Z are similar if and only if the following inequality is satisfied:

a2(3z2 − y2 − x2) + b2(z2 − x2 − y2) + c2(3x2 + y2 − z2) + 16ST > 0.

5.3. Rotation matrix under Lorentz matrix multiplication in Minkowski

plane R
2
1.

Definition 5.1 ([6]). Let A1, A2, . . . , Am ∈ R
n
1 be the row vectors of the ma-

trices A = [aij ] ∈ Mm×n(R) and B1, B2, . . . , Bp ∈ R
m
1 be the column vectors of the

matrix B = [bjk] ∈ Mn×p(R) in the space R
n
1 . The Lorentz matrix multiplication is

indicated by “·L”,

A ·L B =











〈A1, B1〉L 〈A1, B2〉L . . . 〈A1, Bp〉L
〈A2, B1〉L 〈A2, B2〉L . . . 〈A2, Bp〉L
...

...
...

〈Am, B1〉L 〈Am, B2〉L . . . 〈Am, Bp〉L











=

[n−1
∑

j=1

aijbjk − ainbnk

]

m×n

.

The set of m× n-type matrices is represented as Mm×n(R) with the Lorentz multi-

plication in space Rn
1 .

5.3.1. Point rotation under Lorentz matrix multiplication. Let the point

A = (x, y), which makes an angle β with the axis be rotated to the point A′ = (x′, y′)

by angle θ in the Minkowski plane R2
1. Then, we can write x

′ = r cosh(β + θ) and

y′ = r sinh(β + θ) where x = r coshβ and y = r sinhβ. By using the trigonometric

property of hyperbolic functions, we have

x′ = r cosh(β + θ) = r(coshβ cosh θ + sinhβ sinh θ) = x cosh θ + y sinh θ

and

y′ = r sinh(β + θ) = r(sinh β cosh θ + coshβ sinh θ) = y cosh θ + x sinh θ.

These equations are written in matrix form as

[

x′

y′

]

=

[

cosh θ − sinh θ

sinh θ − cosh θ

]

·L
[

x

y

]

.

Thus, the matrix that provides the point rotation obtained by the Lorentz matrix

multiplication is found as

(5.4) AL =

[

cosh θ − sinh θ

sinh θ − cosh θ

]

.
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5.3.2. Axis rotation under Lorentz matrix multiplication. Let l1 = (1, 0)

be spacelike vector, l2 = (0, 1) be a timelike vector and l′1 = (a, b), l′2 = (c, d). Let

us rotate the axis l1 = (1, 0) by the angle θ and get the axis l′1 = (a, b). Also, let us

rotate the axis l2 = (0, 1) by the angle θ and get the axis l′2 = (c, d). Here, we have

l′1 = al1 + bl2, l′2 = cl1 + dl2.

By using the matrix (5.4) we find

[

a

b

]

=

[

cosh θ − sinh θ

sinh θ − cosh θ

]

·L
[

1

0

]

for l′1 = (a, b).

Thus, a = cosh θ and b = sinh θ can be obtained with the Lorentz matrix multiplica-

tion. Similarly, using the matrix (5.4) we find

[

c

d

]

=

[

cosh θ − sinh θ

sinh θ − cosh θ

]

·L
[

0

1

]

for

l′2 = (c, d). Thus, c = sinh θ and d = cosh θ can be obtained with the Lorentz matrix

multiplication. Therefore, we can write

[

l′1
l′2

]

=

[

cosh θ − sinh θ

sinh θ − cosh θ

]

·L
[

l1
l2

]

. The

matrix that provides the axis rotation obtained by the Lorentz matrix multiplication

in the Lorentz plane is AL =

[

cosh θ − sinh θ

sinh θ − cosh θ

]

.

N o t a t i o n 5.1. The matrix AL provides both point rotation and axis rotation

obtained by the Lorentz matrix multiplication in the Minkowski plane. The inverse

of the matrix obtained by the Lorentz matrix multiplication is found as A−1
L =

[

cosh θ sinh θ

− sinh θ − cosh θ

]

. Here, since A−1
L = A

t
L, the rotation matrix obtained by the

Lorentz matrix multiplication is the orthogonal matrix.

5.4. Orthogonal projection point on timelike and spacelike line.

Definition 5.2. Let l be a line, ~u be the directive vector of the line l in the

Minkowski plane. Then, if ~u is a timelike vector, l is called a timelike line, if ~u is

a spacelike vector, l is called a spacelike line, if ~u is a lightlike vector, l is called

a lightlike line.

Let ~n be normal vector of the line l. The normal vector ~n of the timelike line is

a spacelike vector. The normal vector ~n of the spacelike line is a timelike vector.

Theorem 5.10. Let ax − by + c = 0 be a timelike line equation. Let S be an

orthogonal projection of the point P on the line. Then,

~s = ~p− 〈~p, ~n〉+ c

〈~n, ~n〉 ~n

where ~n is a normal vector of the timelike line.
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P r o o f.
−→
PS = λ~n can be written where

−→
PS ‖ ~n for λ ∈ R. Let O be the

starting point of the coordinate system where the line is located. Then, we have
−→
OS =

−→
OP +

−→
PS or ~s = ~p + λ~n. Since the projection point of P is the point S, it

is located on the line and provides the line equation. Thus, 〈~s, ~n〉 + c = 0. If the

equation ~s = ~p + λ~n is used, we obtain 〈~p+ λ~n, ~n〉 + c = 〈~p, ~n〉 + λ〈~n, ~n〉 + c = 0.

Then, we can write λ = −(〈~p, ~n〉+ c)/〈~n, ~n〉. Thus, the orthogonal projection point
is obtained as

~s = ~p+ λ~n = ~p− 〈~p, ~n〉+ c

〈~n, ~n〉 ~n.

�

Theorem 5.11. Let ax − by + c = 0 be spacelike line equation. Let S be an

orthogonal projection of the point P on the line. Then,

~s = ~p− 〈~p, ~n〉+ c

〈~n, ~n〉 ~n

where ~n is a normal vector of the line.

P r o o f. The proof can be done in a similar way according to the Theorem 5.10.

�

5.5. The formula for distance of any point to a timelike and space-

like line.

Theorem 5.12. Let S be an orthogonal projection point of the point P = (x0, y0)

on the timelike line ax − by + c = 0. Let d be the distance of the point P from the

line. Then, the distance formula is expressed as

d = ‖−→PS‖ =
|ax0 − by0 + c|√

a2 − b2
.

P r o o f. Since d = ‖−→PS‖ and ~s = ~p− ((〈~p, ~n〉+ c)/〈~n, ~n〉)~n, we obtain

d = ‖−→PS‖ = ‖~s− ~p‖ =
∥

∥

∥
~p− 〈~p, ~n〉+ c

〈~n, ~n〉 ~n− ~p
∥

∥

∥
=

∥

∥

∥
−〈~p, ~n〉+ c

〈~n, ~n〉 ~n
∥

∥

∥
=

|〈~p, ~n〉+ c|
‖〈~n, ~n〉‖ .

We have 〈~p, ~n〉 = ax0 − by0. Since the normal vector is spacelike, we have ‖〈~n, ~n〉‖ =
√
a2 − b2. Then, we obtain d = ‖−→PS‖ = |ax0 − by0 + c|/

√
a2 − b2. �

E x am p l e 5.1. Find the distance between the point P = (1,−2) and the time-

like line LT ≡ 3x− 2y + 5 = 0.
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The distance between the point and timelike line is found as

d =
|3 · (1)− (−2) · 2 + 5|

√

32 − (−2)2
=

12√
5
.

according to Theorem 5.12.

Theorem 5.13. Let S be orthogonal projection point of the point P = (x0, y0)

on the spacelike line ax − by + c = 0. Let d be distance of point P from the line.

Then, the distance formula is expressed as

d = ‖−→PS‖ =
|bx0 − ay0 + c|
√

|b2 − a2|
.

P r o o f. The proof can be done in a similar way according to the Theorem 5.12.

�

6. Conclusions

In this article, orthogonality conditions are given in the Minkowski space R
3
2.

Accordingly, a different situation is obtained from the Minkowski space R3
1. This

difference was also used in the Gram-Schmidt method. Moreover, all non-pure tri-

angle types were studied. Thus, it has been seen that the hyperbolic cosine formulas

change according to the state of the vectors. In this study, the Pedoe inequality

was obtained for all Lorentz triangle types. Thanks to this inequality, a connection

was obtained between two similar triangles in the Lorentz space. Thus, it is under-

stood that the inequalities obtained change as the types of triangles change. The

importance of the inner product in obtaining the rotation matrix was stated. It was

emphasized that the rotation matrix obtained by the Lorentz matrix multiplication

is orthogonal. Finally, distance and projection formulas were examined on timelike

and spacelike lines. The distance and projection of timelike or spacelike points to

the lines are given with separate examples.
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