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EXACT L1 PENALTY FUNCTION FOR NONSMOOTH
MULTIOBJECTIVE INTERVAL-VALUED PROBLEMS

Julie Khatri and Ashish Kumar Prasad

Our objective in this article is to explore the idea of an unconstrained problem using the
exact l1 penalty function for the nonsmooth multiobjective interval-valued problem (MIVP)
having inequality and equality constraints. First of all, we figure out the KKT-type optimality
conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak
LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVPρ) with the
exact l1 penalty function. The utility of this transformation lies in the fact that it converts
constrained problems to unconstrained ones. To accurately predict the applicability of the
results presented in the paper, meticulously crafted examples are provided.

Keywords: interval-valued problem, multiobjective programming, exact l1 penalty func-
tion, LU-efficient solution

Classification: 49J52, 49M30, 90C29, 90C46

1. INTRODUCTION

Multiobjective programming problems came into existence in order to maximize several
objective functions simultaneously. Such problems are also known as vector program-
ming problems or multi-criteria programming problems. The multiobjective problems
are solved with deterministic coefficient values to get precise results. In real situations,
many economic and engineering problems do not satisfy the deterministic assumptions
since real-life problems are full of uncertainty. Uncertainty can be addressed using the
concepts of fuzzy numbers, stochastic processes, and interval-valued problems. These
techniques make the models closer to real-world applications. In interval-valued prob-
lems, coefficients appearing in the objective function as well as constraints vary over
some closed intervals.

Moore [20] was the first who started the work on interval analysis. Some initial ap-
proaches and applications of interval analysis can be seen in the paper of Moore [21].
Later on, Wu ([26, 27]) derived the KKT optimality conditions and duality theorem for
the Wolfe dual for the differentiable interval-valued programming problem. Jayswal et
al. [16] extracted the sufficiency for functions satisfying generalized invexity and de-
rived the duality results. Zhang [29] proposed the necessary and sufficient conditions for
interval-valued problems along with duality under the extended concept of invexity and
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preinvexity for interval problems. Zhou and Wang [30] worked on a mixed-type dual
problem that connects the Mond Weir as well as Wolfe-type duals and rooted the suffi-
ciency. Consequently, Jayswal and Banerjee [17] introduced an exact l1 penalty function
for interval-valued programming problems and established the equivalence between an
LU -optimal solution of the considered problem as well as a penalized problem using
convexity.

The basic framework of invexity was first conceptualized by Hanson [15] in 1981 but
coined later on by Craven [11]. These functions became a more enjoyable class of func-
tions in optimization theory, as all stationary points for these functions are found to
be global minimizers. Invexity was also found suitable for relaxing necessary optimality
conditions because one can weaken the constraint qualifications expressed in terms of
convexity with the help of invexity. The same has been designed by Ben-Israel and
Mond [9], where they have used modified or generalized Slater constraint qualifications.
Following the research of Hanson and Craven, many authors have utilized invexity in
various generalized forms for establishing many important results in the field of opti-
mization, like Antczak [1], Martin [19], Weir and Jeyakumar [25], and many others.
Recently, Khatri and Prasad [24] used the idea of invexity to derive duality results for
smooth fractional variational problems. Antczak and Farajzadeh [6] studied a class
of nonsmooth semi-infinite programming problems with multiple intervals and formu-
lated the Fritz-John and KKT-type optimality conditions using invexity. Moreover, they
implemented an exact l1 penalty technique for solving the considered nonsmooth semi-
infinite problems and established the equivalence between the considered problem and
its corresponding penalized problem via the exact l1 penalty function under invexity.

Nonlinear optimization problems with an exact penalty approach have been the center
of a number of decent works on optimization problems. Zangwill [28] and Pietrzykowski
[22] were the first to work on exact nondifferentiable penalty functions. An exact penalty
method converts a constrained problem into an unconstrained problem. In this approach,
the objective functions merge with the constraints through the penalty parameter, and it
is necessary to select both the penalty parameter as well as the penalty function in such
a way that the optimal solution to the penalized problem as well as the original problem
are equal. An exact l1 penalty function or the absolute value penalty function is usually
nondifferentiable. The nondifferentiable exact l1 penalty method has been studied by
many researchers like Bazaraa et al. [8], Bertsekas and Koksal-Ozdaglar [10], Fletcher
[13], Mangasarian [18], etc. Recently, Antczak [2] has introduced some pathbreaking
results based on the penalty approach for nonconvex differentiable programming prob-
lems that consists of both inequality as well as equality constraints. Later on, Antczak
[4] extended this work to nonsmooth, convex interval-valued problems using an exact l1
penalty function approach and established the equivalence between the problem and its
penalized problem based on LU-optimal solution. Further, Antczak and Studniarski [7]
gave some properties based on the exactness of the penalization problem for the exact l1
penalty approach for the nonsmooth nonconvex multiobjective programming problems.

The present paper is structured as follows: Section 2 recalls some notations and defi-
nitions that we use in the sequel of the paper. In Section 3, we establish the equivalence
between the set of weak LU-efficient solutions to the considered problem and its corre-
sponding penalization problem. Moreover, we demonstrate the equivalence between the
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weak LU-efficient solutions to the problem and the corresponding penalized solutions
using the Lagrange function under invexity. Also, an example of a nonsmooth multiob-
jective interval-valued problem with the exact l1 penalty function method is forcasted.
Finally, Section 4 summarizes the accomplished work in the form of conclusions.

2. PRELIMINARIES

This section begins with the following convention for inequalities and equalities, which
is utilized in the sequel of the article. For any u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn)
in Rn where Rn stands for n-dimensional Euclidean space, we have

(i) u = v ⇔ ui = vi ∀i = 1, 2, ....n;

(ii) u > v ⇔ ui > vi ∀i = 1, 2, ....n;

(iii) u ≧ v ⇔ ui ≧ vi ∀i = 1, 2, ....n;

(iv) u ≥ v ⇔ u ≧ v, u ̸= v.

Let the set of all bounded and closed intervals of R be represented by I. If A =
[aL, aU ], B = [bL, bU ] ∈ I, we define

(i) A+B = [aL + bL, aU + bU ],

(ii) −A = [−aU ,−aL],

(iii) A−B = {A+ (−B)} = [aL − bU , aU − bL],

(iv) κ+A = [κ+ aL, κ+ aU ],

(v) κA =

{
[κaL, κaU ], κ > 0,

[κaU , κaL], κ ≦ 0,

where κ is any real number. If we take aL = aU = a, then the interval A reduces to
a real number. If F̂ is an interval-valued function, then it can be represented more
appropriately by F̂ (π) = [FL(π), FU (π)], where FL(π) : Rn → R and FU (π) : Rn → R
have the components satisfying conditions FL(π) ≦ FU (π), ∀ π ∈ Rn. In short, we
write [F (π)]L and [F (π)]U in place of FL(π) and FU (π), respectively.

Symbolically, we use the symbol A ≦LU B to denote aL ≦ bL and aU ≦ bU . Similarly,
A <LU B ⇔ A ≦LU B, A ̸= B. That is, A <LU B means any one of the following three
conditions:

aL < bL, aU < bU ,

or,
aL ≦ bL, aU < bU ,

or,
aL < bL, aU ≦ bU .

Throughout the entire article, X signify an open subset (nonempty) of Rn.
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Definition 2.1. (Antczak and Studniarski [7]) A function Ξ defined from Rn to R is
known as locally Lipschitz at a point π ∈ Rn if there exist positive scalars C and ε
satisfying

|Ξ(y)− Ξ(z)| ≦ C∥y − z∥

for every y and z belong to π + εB, B being an open unit ball in Rn.

Definition 2.2. (Clarke [12]) The Clarke generalized directional derivative of a locally
Lipschitz function Ξ : X → R at a point π ∈ X along d ∈ Rn is expressed as

Ξ0(π; d) := lim sup
σ→π,γ↓0

Ξ(σ + γd)− Ξ(σ)

γ
.

Definition 2.3. (Clarke [12]) The Clarke generalized subdifferential of a locally Lips-
chitz function Ξ : X → R at a point π ∈ X is expressed mathematically as

∂Ξ(π) :=

{
υ ∈ Rn : Ξ0(π; d) ≧ ⟨υ, d⟩, ∀ d ∈ Rn

}
.

Lemma 2.4. (Clarke [12]) Let π ∈ X be an arbitrary point, and the locally Lipschitz
function Ξ is defined from X to R. Then for any scalar λ ∈ R, one can get

∂
(
λΞ
)
(π) ⊆ λ∂Ξ(π).

Proposition 2.5. (Clarke [12]) Let π ∈ X be an arbitrary point and the locally
Lipschitz functions Ξk, k = 1, . . . , s, defined from X to R. Then

∂

( s∑
k=1

Ξk

)
(π) ⊆

s∑
k=1

∂Ξk(π).

In the above relation, equality holds if all but at most one of the functions Ξk is strictly
differentiable at a point π.

Corollary 2.6. (Clarke [12]) Let π ∈ X be an arbitrary point and the locally Lipschitz
functions Ξk, k = 1, . . . , s, defined from X to R. Then for any scalar value λk ∈ R, k =
1, . . . , s, one has

∂

( s∑
k=1

λkΞk

)
(π) ⊆

s∑
k=1

λk∂Ξk(π).

In the above relation, equality holds if all but at most one of the functions Ξk are strictly
differentiable at a point π.

Theorem 2.7. (Clarke [12]) If the locally Lipschitz function Ξ is defined from Rn to
R and attains its (local) minimum at a point π̄ ∈ Rn, then

0 ∈ ∂Ξ(π̄). (1)
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Proposition 2.8. (Clarke [12]) Let the functions Ξk, k = 1, . . . , s, defined from Rn

to R be locally Lipschitz at point π̄ ∈ Rn. Then Ξ : Rn → R defined by Ξ(π) :=
maxk=1,...,sΞk(π) is also locally Lipschitz at a point π̄. Moreover,

∂Ξ(π̄) ⊂ conv
{
∂Ξk(π̄) : k ∈ K(π̄)

}
,

where K(π̄) :=
{
k ∈ K : Ξ(π̄) = Ξk(π̄)

}
.

Definition 2.9. (Antczak and Studniarski [7]) The functions Ξk, k = 1, . . . , s defined
from X to R is known as invex in connection with η at π̄ ∈ X, if each component is
locally Lipschitz at π̄ ∈ X, and for each π ∈ X, there exists a function η : X × X → Rn

satisfying

Ξk(π)− Ξk(π̄) ≧ ⟨υk, η(π, π̄)⟩, ∀υk ∈ ∂Ξk(π̄). (2)

In the above definition, if we take η(π, π̄) = (π− π̄), then the above definition will reduce
to the definition of convexity. Therefore, invexity incorporates a larger class of functions
compared to the class of convex functions. The term (π− π̄) appearing in the definition
of convexity plays no role in the proof of the sufficiency of Kuhn–Tucker conditions. This
observation motivated Hanson [15] to prove that Kuhn–Tucker necessary conditions are
also sufficient if the objective function and constraints are invex in connection with the
same function η. The centeral attraction of an invex function is that each stationary
point is a global minimizer.

Note:

1. If we consider the scalar case instead of the vectorial case, i. e., Ξ : X → R, then
Definition 2.9 reduces to the definition of an invex function, given by Antzak [3].

2. If we consider Ξ is differentiable, then Definition 2.9 reduces to the definition of a
differentiable invex function, which was given by Reiland [23] and also given in [2].

Remark 2.10. The interval-valued functions ℵk, k = 1, . . . , s, defined from X to I, are
known as invex in connection with η (where η : X × X → Rn) at a point π̄ ∈ X if both
the functions ℵL

k and ℵU
k are invex in connection with η. That is, if it satisfy

ℵL
k (π)− ℵL

k (π̄) ≧ ⟨υLk , η(π, π̄)⟩, ∀υLk ∈ ∂ℵL
k (π̄),

ℵU
k (π)− ℵU

k (π̄) ≧ ⟨υUk , η(π, π̄)⟩, ∀υUk ∈ ∂ℵU
k (π̄).

(3)

Definition 2.11. (Antczak and Studniarski [7]) The functions Ξk, k = 1, . . . , s defined
from X to R are known as strictly invex in connection with η at π̄ ∈ X, if each component
is locally Lipschitz at π̄ ∈ X, and for each π ∈ X, there exists a function η : X×X → Rn

satisfying

Ξk(π)− Ξk(π̄) > ⟨υk, η(π, π̄)⟩, ∀υk ∈ ∂Ξk(π̄). (4)

Remark 2.12. The interval-valued functions ℵk, k = 1, . . . , s, defined from X to I are
known as strictly invex in connection with η (defined by η : X × X → Rn) at a point
π̄ ∈ X if at least one or both the functions ℵL

k and ℵU
k are strictly invex in connection

with η. That is, if it satisfy

ℵk(π)− ℵk(π̄) >LU ⟨υk, η(π, π̄)⟩, ∀υk ∈ ∂ℵk(π̄). (5)
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Note: For (strictly) incave functions, the direction of the inequalities used in (strictly)
invex functions will reverse its direction.

Example 2.13. Let us consider a nonsmooth multiobjective interval-valued functions
ℵk (k = 1, 2) : X → I where ℵk = [ℵL

k ,ℵU
k ] and ℵL

k ,ℵU
k : X → R (k = 1, 2) be given by

ℵL
1 = |π|, ℵU

1 = |π|+ 1, ℵL
2 = |π|+ 2, ℵU

2 = |π|+ 3.
Let us assume π̄ = 0, and the function η : X× X → R be defined by

η(π, π̄) = |π| − |π̄|.

Using the definition of invex function, it can be shown that ℵk (k = 1, 2) are invex
functions with respect to η at a point π̄.

Note: It should be noted that the function η defined in Example 2.13 need not be
unique. Indeed, if we define η by

η(π, π̄) =
|π|+ |π̄|

2
,

then ℵk (k = 1, 2) are invex with respect to η at π̄.

Proposition 2.14. (Antczak and Studniarski [7]) Let π̄ ∈ X be an arbitrary point,
and the locally Lipschitz functions ϕj , j = 1, . . . ,m be defined from X to R. Moreover,
let the functions ϕ+j : X → R be defined by ϕ+j (π) := max

{
0, ϕj(π)

}
. If the functions ϕj

are invex in connection with η (defined by η : X× X → Rn) at a point π̄ ∈ X, then ϕ+j
are locally Lipschitz invex at a point π̄ ∈ X in connection with η.

Theorem 2.15. (Ha and Luu [14]) Let Ξk, k = 1, . . . , s defined from X to R be con-
tinuous at π̄ ∈ X, the vector d that maps to Ξ0

k(π̄; d), ∀d ∈ Rn be upper semicontinuous
at π̄ and the mapping π → ∂Ξk(π) be upper semicontinuous at a point π̄. Moreover,
suppose the functions Ξj are invex in connection with η (where η : X × X → Rn) at a
point π̄ ∈ X. Then Ξ : Rn → R defined by Ξ(π) := maxk=1,...,sΞk(π) is also invex at a
point π̄ ∈ X in connection with η.

Generally, the unconstrained multiobjective interval-valued problem is expressed as

(UMIVP) minimize ℵ(π) =
(
ℵ1(π), . . . ,ℵs(π)

)
=
(
[ℵL

1 (π),ℵU
1 (π)], . . . , [ℵL

s (π),ℵU
s (π)]

)
subject to π ∈ X,

where ℵk : X → I, k ∈ K = {1, . . . , s} are interval-valued functions and ℵL
k , ℵU

k , : X →
R,∀ k ∈ K are locally Lipschitz functions on X ⊆ Rn.
Let us examine the following nonsmooth multiobjective interval-valued problem:

(MIVP) minimize ℵ(π) =
(
ℵ1(π), . . . ,ℵs(π)

)
=
(
[ℵL

1 (π),ℵU
1 (π)], . . . , [ℵL

s (π),ℵU
s (π)]

)
subject to ϕj(π) ≦ 0; j ∈ J = {1, . . . ,m},
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ψl(π) = 0; l ∈ L = {1, . . . , q}; π ∈ X.

where ℵk : X → I, k ∈ K = {1, . . . , s}, are interval-valued functions whereas ℵL
k , ℵU

k ,
ϕj , and ψl : X → R,∀ k ∈ K, ∀ j ∈ J, ∀ l ∈ L, are locally Lipschitz functions on X ⊆ Rn.

For convenience, we use ℵL := (ℵL
1 , . . . ,ℵL

s ) : X → Rs, ℵU := (ℵU
1 , . . . ,ℵU

s ) : X →
Rs, ϕ := (ϕ1, . . . , ϕm) : X → Rm, and ψ := (ψ1, . . . , ψq) : X → Rq to simplify our
representation. Assume that Γ := {π ∈ X : ϕj(π) ≦ 0, j ∈ J, ψl(π) = 0, l ∈ L}
represent the set of feasible solutions to the problem (MIVP). Moreover, the set of
active constraint indices is defined by J(π̄) := {j ∈ J : ϕj(π̄) = 0} at a point π̄.

Definition 2.16. (Antczak [5]) A feasible point π̄ ∈ Γ is known as a LU-efficient solu-
tion (LU-Pareto solution) to (MIVP) if there does not exist any point π ∈ Γ satisfying

ℵk(π) ≦LU ℵk(π̄), for each k ∈ {1, . . . , s}

and

ℵk(π) <LU ℵk(π̄), for at least one k ∈ {1, . . . , s}.

Definition 2.17. (Antczak [5]) A feasible point π̄ ∈ Γ is known as a weak LU-efficient
solution (weak LU-Pareto solution) to (MIVP) if there does not exist any point π ∈ Γ
satisfying

ℵk(π) <LU ℵk(π̄), for each k ∈ {1, . . . , s}.

Theorem 2.18. (KKT-type necessary optimality conditions) Let the feasible point π̄ ∈
Γ be a weak LU-efficient solution to the problem (MIVP), and it satisfies the suitable
constraint qualification. Then there exist Lagrange multipliers µL, µU ∈ Rs, ξ ∈ Rm

and ζ ∈ Rq satisfying

0 ∈
s∑

k=1

µL
k ∂ℵL

k (π̄) +

s∑
k=1

µU
k ∂ℵU

k (π̄) +

m∑
j=1

ξj∂ϕj(π̄) +

q∑
l=1

ζl∂ψl(π̄), (6)

ξj∂ϕj(π̄) = 0, j ∈ J, (7)

µL, µU ≥ 0,

s∑
k=1

(µL
k + µU

k ) = 1, ξ ≧ 0. (8)

Definition 2.19. The feasible point π̄ ∈ Γ is known as the KKT point of the proposed
nonsmooth multiobjective interval-valued problem (MIVP) if the KKT conditions (6) –
(8) are satisfied at a feasible point π̄.

Now, let us formulate the necessary optimality criteria for an unconstrained multi-
objective interval-valued problem (UMIVP).
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Theorem 2.20. The necessary criteria for the feasible point π̄ to be a weak LU-efficient
solution to the unconstrained multiobjective interval-valued problem (UMIVP) is that
the Lagrange multipliers µL ∈ Rs and µU ∈ Rs exist and satisfy

0 ∈
s∑

k=1

µL
k ∂ℵL

k (π̄) +

s∑
k=1

µU
k ∂ℵU

k (π̄),

µL, µU ≥ 0,

s∑
k=1

(µL
k + µU

k ) = 1.

Definition 2.21. The Lagrange function or the Lagrangian L for the proposed nons-
mooth multiobjective interval-valued problem (MIVP) is defined as

L
(
π, µL, µU , ξ, ζ

)
:=

s∑
k=1

µL
kℵL

k (π) +

s∑
k=1

µU
k ℵU

k (π) +

m∑
j=1

ξjϕj(π) +

q∑
l=1

ζlψl(π) (9)

3. EXACT L1 PENALTY METHOD

In this section, we analyze the given nonsmooth multiobjective interval-valued problem
(MIVP) using the penalty function. An exact l1 penalty function transforms the con-
strained problem to an unconstrained problem. The fundamental concept behind an
exact penalty approach is to solve the given extremization problem by choosing a posi-
tive penalty parameter ρ and a penalty function p with the property that there exists a
nonnegative lower bound ρ̄ satisfying ρ > ρ̄ so that the optimal solution π is the same
for both the penalized problem and the original extremization problem.

The usual scalar optimization problem with an exact l1 penalty function is given by

minimize P ◦(π, ρ) := Ξ(π) + ρ

[
m∑
j=1

ϕ+j (π) +

q∑
l=1

|ψl(π)|

]
,

where P ◦(π, ρ) : Rn×R+ → R. The functions Ξ, ϕj(j ∈ J) and ψl(l ∈ L) are real valued
functions defined on Rn. The inequality constraint function ϕj(j ∈ J) in exact l1 penalty
function is defined such that the function ϕ+j : Rn → R is defined by

ϕ+j (π) =

{
0, if ϕj(π) ≦ 0,

ϕj(π), if ϕj(π) > 0.
(10)

Thus, we observe that ϕ+j is zero for the feasible points and positive for the infeasible
points. Next, we focus on the definition of an exact penalty function for a multiobjective
interval-valued problem.

Definition 3.1. If a nonnegative threshold value ρ̄ exists for each ρ > ρ̄ satisfying

arg weak LU-efficient solution of {P (π, ρ) : π ∈ Rn}
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= arg weak LU-efficient solution of {ℵ(π) : π ∈ Γ},

then the function P (π, ρ) is known as multiobjective interval-valued exact penalty func-
tion.

Next, let us explore the penalized problem approach for the multiobjective interval-
valued problem (MIVP) with exact l1 penalty functions:

(MIVPρ) minimize P (π, ρ) =
(
P1(π, ρ), . . . , Ps(π, ρ)

)
=
([
PL
1 (π, ρ), PU

1 (π, ρ)
]
, . . . ,

[
PL
s (π, ρ), PU

s (π, ρ)
])
,

where PL
k (., ρ), PU

k (., ρ), k ∈ K = {1, . . . , s}, are the endpoint functions of the multiple
interval-valued exact l1 penalty function Pk(., ρ) defined by

PL
k (π, ρ) = ℵL

k (π) + ρ

[
m∑
j=1

ϕ+j (π) +

q∑
l=1

|ψl(π)|

]
, ∀ k ∈ K,

and

PU
k (π, ρ) = ℵU

k (π) + ρ

[
m∑
j=1

ϕ+j (π) +

q∑
l=1

|ψl(π)|

]
, ∀ k ∈ K.

Now, we establish the equivalence between the weak LU-efficient solution of the problem
(MIVP) and the penalty problem (MIVPρ). First of all, we prove that the KKT point
for the constructed problem (MIVP) is a weak LU-efficient solution corresponding to
the penalized problem (MIVPρ).

Theorem 3.2. Let π̄ be a feasible point to the considered multiobjective interval-valued
problem (MIVP). Moreover, suppose it satisfies the following assumptions:

(i) π̄ satisfies the KKT-type necessary conditions given by (6) – (8) with the Lagrange
multipliers µL

k , µ
U
k (k ∈ K); ξj(j ∈ J) and ζl(l ∈ L);

(ii) The functions ℵL
k and ℵU

k (k ∈ K) that appear in the objective function are invex
at a feasible point π̄ ∈ X in connection with η;

(iii) The constraints ϕj(j ∈ J), ψl(l ∈ L+(π̄) := {l ∈ L : ζ̄l > 0}) and −ψl(l ∈
L−(π̄) := {l ∈ L : ζ̄l < 0}) are invex at a feasible point π̄ ∈ X in connection with
η.

If we take enough large penalty parameter ρ ≧ max{ξj , ∀ j ∈ J, |ζl|, ∀ l ∈ L}, then
the feasible point π̄ is weak LU-efficient solution to the multiobjective interval-valued
penalized problem (MIVPρ) with exact l1 penalty function.

P r o o f . Assume that π̄ satisfies the KKT-type necessary conditions given by (6) – (8)
with the Lagrange multipliers µL

k , µ
U
k (k ∈ K); ξj(j ∈ J) and ζl(l ∈ L). Suppose that the
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point π̄ is not weak LU-efficient solution to the multiobjective interval-valued penalized
problem (MIVPρ) with exact l1 penalty functions, then there exist π̂ ∈ X satisfying

Pk(π̂, ρ) <LU Pk(π̄, ρ), ∀k ∈ K,

that is,

PL
k (π̂, ρ) < PL

k (π̄, ρ) or, PL
k (π̂, ρ) ≦ PL

k (π̄, ρ) or, PL
k (π̂, ρ) < PL

k (π̄, ρ)

PU
k (π̂, ρ) < PU

k (π̄, ρ) PU
k (π̂, ρ) < PU

k (π̄, ρ) PU
k (π̂, ρ) ≦ PU

k (π̄, ρ).

The above inequalities can be rewritten as
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵL

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵU

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

or,
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
≦ ℵL

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵU

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

(11)

or,
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵL

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
≦ ℵU

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

for each k ∈ K. As given, π̄ is a feasible point to the constructed multiobjective interval-
valued programming problem (MIVP). Therefore, using the feasibility of π̄ and (10), the
above inequalities reduce to

ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵL

k (π̄),

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵU

k (π̄),
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or, 
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
≦ ℵL

k (π̄),

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵU

k (π̄),

(12)

or, 
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵL

k (π̄),

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
≦ ℵU

k (π̄),

for each k ∈ K. Multiplying the lower bounded inequalities of (12) by µL ≥ 0, the upper
bounded inequalities by µU ≥ 0, and then, summing up from k = {1, . . . , s}, we get

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) + ρ

s∑
k=1

(
µL
k + µU

k

)[ m∑
j=1

ϕ+j (π̂) +

q∑
l=1

|ψl(π̂)|

]

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄).

Using (8) in the above inequality, we obtain

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +

q∑
l=1

|ψl(π̂)|

]

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄). (13)

Since the penalty parameter ρ ≧ max{ξj , ∀ j ∈ J, |ζl|, ∀ l ∈ L}, therefore inequality
(13) can be written as

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕ
+
j (π̂) +

q∑
l=1

|ζl||ψl(π̂)|

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄).
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Using condition (10), the above inequality gives

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄).

With the help of equation (7), it can be rewritten as

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) +

m∑
j=1

ξjϕj(π̄) +

q∑
l=1

ζlψl(π̄). (14)

Due to invexity of ℵL
k and ℵU

k at a feasible point π̄ ∈ X in connection with η, we see that

ℵL
k (π)− ℵL

k (π̄) ≧ ⟨αL
k , η(π, π̄)⟩, ∀αL

k ∈ ∂ℵL
k (π̄), ∀k ∈ K,

ℵU
k (π)− ℵU

k (π̄) ≧ ⟨αU
k , η(π, π̄)⟩, ∀αU

k ∈ ∂ℵU
k (π̄), ∀k ∈ K,

hold for each π ∈ X. Moreover, the constraints ϕj(j ∈ J), ψl(l ∈ L+(π̄)) and −ψl(l ∈
L−(π̄)) are invex at a feasible point π̄ ∈ X in connection with η. So,

ϕj(π)− ϕj(π̄) ≧ ⟨βj , η(π, π̄)⟩, ∀βj ∈ ∂ϕj(π̄), ∀j ∈ J,

ψl(π)− ψl(π̄) ≧ ⟨δl, η(π, π̄)⟩, ∀δl ∈ ∂ψl(π̄), ∀l ∈ L+(π̄),

−ψl(π) + ψl(π̄) ≧ ⟨−δl, η(π, π̄)⟩, ∀δl ∈ ∂ψl(π̄), ∀l ∈ L−(π̄),

hold for all π ∈ X. Taking π = π̂ in the above inequalities and using (8), we obtain

µL
kℵL

k (π̂)− µL
kℵL

k (π̄) ≧ ⟨µL
kα

L
k , η(π̂, π̄)⟩, ∀αL

k ∈ ∂ℵL
k (π̄), ∀k ∈ K, (15)

µU
k ℵU

k (π̂)− µU
k ℵU

k (π̄) ≧ ⟨µU
k α

U
k , η(π̂, π̄)⟩, ∀αU

k ∈ ∂ℵU
k (π̄), ∀k ∈ K, (16)

ξjϕj(π̂)− ξjϕj(π̄) ≧ ⟨ξjβj , η(π̂, π̄)⟩, ∀βj ∈ ∂ϕj(π̄), ∀j ∈ J, (17)

ζlψl(π̂)− ζlψl(π̄) ≧ ⟨ζlδl, η(π̂, π̄)⟩, ∀δl ∈ ∂ψl(π̄), ∀l ∈ L+(π̄) ∪ L−(π̄). (18)



664 J. KHATRI AND A.K. PRASAD

On summing up the inequalities (15) – (18), we have

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

−

(
s∑

k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) +

m∑
j=1

ξjϕj(π̄) +

q∑
l=1

ζlψl(π̄)

)

≧

〈
s∑

k=1

µL
kα

L
k +

s∑
k=1

µU
k α

U
k +

m∑
j=1

ξjβj +

q∑
l=1

ζlδl, η(π̂, π̄)

〉
,

for all αL
k ∈ ∂ℵL

k (π̄), α
U
k ∈ ∂ℵU

k (π̄)(k ∈ K); βj ∈ ∂ϕj(π̄)(j ∈ J) and δl ∈ ∂ψl(π̄)(l ∈ L).
Using the KKT condition (6), we get

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

≧

(
s∑

k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) +

m∑
j=1

ξjϕj(π̄) +

q∑
l=1

ζlψl(π̄)

)

which contradicts the inequality (14). Hence, the proof is complete. □

Next, we will derive the Theorem 3.2 under the Lagrange type assumptions.

Theorem 3.3. Let π̄ be a feasible point to the multiobjective interval-valued program-
ming problem (MIVP) and the stationary condition

0 ∈ L
(
π̄, µL, µU , ξ, ζ

)
(19)

be satisfied at a feasible point π̄ with the Lagrange multipliers µL, µU , ξ and ζ. More-
over, suppose that the Lagrange function L

(
∗, µL, µU , ξ, ζ

)
is invex at a point π̄ ∈ X.

If we take enough large penalty parameter ρ ≧ max{ξj , ∀ j ∈ J, |ζl|, ∀ l ∈ L}, then
the feasible point π̄ is weak LU-efficient solution to the multiobjective interval-valued
penalized problem (MIVPρ) with exact l1 penalty function.

P r o o f . Let the point π̄ be not weak LU-efficient solution to the multiobjective interval-
valued penalized problem (MIVPρ) with exact l1 penalty function. Then, there exists
π̂ ∈ X satisfying

Pk(π̂, ρ) <LU Pk(π̄, ρ), ∀k ∈ K

that is,

PL
k (π̂, ρ) < PL

k (π̄, ρ) or, PL
k (π̂, ρ) ≦ PL

k (π̄, ρ) or, PL
k (π̂, ρ) < PL

k (π̄, ρ)
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PU
k (π̂, ρ) < PU

k (π̄, ρ) PU
k (π̂, ρ) < PU

k (π̄, ρ) PU
k (π̂, ρ) ≦ PU

k (π̄, ρ).

The above inequalities can be rewritten as
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵL

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵU

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

or,
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
≦ ℵL

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵU

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

(20)

or,
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵL

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
≦ ℵU

k (π̄) + ρ

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

for each k ∈ K. As given, π̄ is a feasible point to the multiobjective interval-valued
problem (MIVP). Therefore, using (10) together with the feasibility of π̄, the above
inequalities reduce to

ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵL

k (π̄),

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵU

k (π̄),

or, 
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
≦ ℵL

k (π̄),

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵU

k (π̄),

(21)
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or, 
ℵL
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
< ℵL

k (π̄),

ℵU
k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +
q∑

l=1

|ψl(π̂)|

]
≦ ℵU

k (π̄),

for each k ∈ K. Multiplying the lower bounbed inequalities of (12) by µL ≥ 0, the upper
bounbed inequalities by µU ≥ 0, and then, summing up from k = {1, . . . , s}, we get

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) + ρ

s∑
k=1

(
µL
k + µU

k

)[ m∑
j=1

ϕ+j (π̂) +

q∑
l=1

|ψl(π̂)|

]

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄).

Using (8) in the above inequality, we obtain

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) + ρ

[
m∑
j=1

ϕ+j (π̂) +

q∑
l=1

|ψl(π̂)|

]

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄). (22)

Since the penalty parameter ρ ≧ max{ξj , ∀ j ∈ J, |ζl|, ∀ l ∈ L}, therefore inequality
(22) can be written as

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕ
+
j (π̂) +

q∑
l=1

|ζl||ψl(π̂)|

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄).

Using condition (10), the above inequality gives

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄).
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With the help of equation (7), it can be written as

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

<

s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) +

m∑
j=1

ξjϕj(π̄) +

q∑
l=1

ζlψl(π̄). (23)

As the Lagrange function L
(
∗, µL, µU , ξ, ζ

)
is invex at a point π̄ ∈ X on X, therefore,

L
(
π̂, µL, µU , ξ, ζ

)
− L

(
π̄, µL, µU , ξ, ζ

)
≧ ⟨ς, η(π̂, π̄)⟩, ∀ς ∈ ∂L

(
π̄, µL, µU , ξ, ζ

)
.

Using the properties of the Lagrange function L
(
∗, µL, µU , ξ, ζ

)
, we obtain

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

−

(
s∑

k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) +

m∑
j=1

ξjϕj(π̄) +

q∑
l=1

ζlψl(π̄)

)

≧ ⟨ς, η(π̂, π̄)⟩,

for all ς ∈ ∂

(
s∑

k=1

µL
kℵL

k (π̄) +
s∑

k=1

µU
k ℵU

k (π̄) +
m∑
j=1

ξjϕj(π̄) +
q∑

l=1

ζlψl(π̄)

)
. Moreover, with

the help of (19), we get

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

−

(
s∑

k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) +

m∑
j=1

ξjϕj(π̄) +

q∑
l=1

ζlψl(π̄)

)

≧ ⟨0, η(π̂, π̄)⟩,

that can be written as

s∑
k=1

µL
kℵL

k (π̂) +

s∑
k=1

µU
k ℵU

k (π̂) +

m∑
j=1

ξjϕj(π̂) +

q∑
l=1

ζlψl(π̂)

≧
s∑

k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) +

m∑
j=1

ξjϕj(π̄) +

q∑
l=1

ζlψl(π̄),

which contradicts the inequality (23). Hence, the proof is complete. □
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Corollary 3.4. Let the feasible point π̄ be a weak LU-efficient solution to the multi-
objective interval-valued problem (MIVP) and satisfies all the assumptions of Theorem
3.2. If we take enough large penalty parameter ρ ≧ max{ξj , ∀ j ∈ J, |ζl|, ∀ l ∈ L}, then
the feasible point π̄ is weak LU-efficient solution to the multiobjective interval-valued
penalized problem (MIVPρ) with exact l1 penalty function.

Next, we demonstrate the relation between the KKT point to the considered multiob-
jective interval-valued problem (MIVP) and an LU-efficient solution to the penalized
problem (MIVPρ) with an exact l1 penalty function.

Theorem 3.5. Let the feasible point π̄ be a solution to the considered multiobjective
interval-valued programming problem (MIVP). Moreover, suppose it satisfies the follow-
ing assumptions:

(i) π̄ satisfies the KKT-type necessary conditions given by (6) – (8) with the Lagrange
multipliers µL

k , µ
U
k (k ∈ K); ξj(j ∈ J) and ζl(l ∈ L);

(ii) The Lagrange multipliers µL
k , µ

U
k (k ∈ K) corresponding with the objective functions

ℵL
k and ℵU

k are considered as a positive real value;

(iii) The objective functions ℵL
k and ℵU

k (k ∈ K) are strictly invex at a feasible point
π̄ ∈ X in connection with η;

(iv) The constraints ϕj(j ∈ J), ψl(l ∈ L+(π̄) := {l ∈ L : ζ̄l > 0}) and −ψl(l ∈ L−(π̄) :=
{l ∈ L : ζ̄l < 0}) are invex at a feasible point π̄ ∈ X in connection with η.

If we take enough large penalty parameter ρ ≧ max{ξj , ∀ j ∈ J, |ζl|, ∀ l ∈ L}, then the
feasible point π̄ is LU-efficient solution to the multiobjective interval-valued penalized
problem (MIVPρ) with exact l1 penalty function.

P r o o f . It’s proof is similar to that of Theorem 3.2. Hence, the proof is omitted. □

Next, using the properties of the Lagrange functions, we demonstrate the result stated
in Theorem 3.5.

Theorem 3.6. Let the feasible point π̄ be a solution to the problem (MIVP) and satisfy
the stationary condition (19) at point π̄ with the Lagrange multipliers µL, µU , ξ and
ζ. Moreover, suppose that the Lagrange function L

(
∗, µL, µU , ξ, ζ

)
is strictly invex at

π̄ ∈ X. If we take enough large penalty parameter ρ ≧ max{ξj , ∀ j ∈ J, |ζl|, ∀ l ∈ L},
then the feasible point π̄ is LU-efficient solution to the multiobjective interval-valued
penalized problem (MIVPρ) with exact l1 penalty function.

P r o o f . It’s proof is similar to that Theorem 3.3. Hence, the proof is omitted. □

Corollary 3.7. Let the feasible point π̄ be an LU-efficient solution to the problem
(MIVP) and satisfies all the assumptions of Theorem 3.5. If we take enough large
penalty parameter ρ ≧ max{ξj , ∀ j ∈ J, |ζl|, ∀ l ∈ L}, then the feasible point π̄ is an
LU-efficient solution to the penalized problem (MIVPρ) with exact l1 penalty function.
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Now, we proceed to prove the converse of the above result.

Theorem 3.8. Let Γ ⊆ Rn be a compact set and the feasible point π̄ be a weak LU-
efficient solution to the penalized problem (MIVPρ) with exact l1 penalty function.
Moreover, suppose it satisfies the following additional assumptions:

(i) The components of the objective functions ℵL
k and ℵU

k are invex at a feasible point
π̄ ∈ X in connection with η;

(ii) The constraints ϕj(j ∈ J), ψl(l ∈ L+(π̄) := {l ∈ L : ζ̄l > 0}) and −ψl(l ∈ L−(π̄) :=
{l ∈ L : ζ̄l < 0}) are invex at a feasible point π̄ ∈ X in connection with η.

If we take enough large penalty parameter ρ̄, then the feasible point π̄ is weak LU-efficient
solution to the problem (MIVP).

P r o o f . Let the feasible point π̄ is a weak LU-efficient solution to the penalized problem
(MIVPρ) with an exact l1 penalty function. We discuss the two cases, one if π̄ ∈ Γ and
the other if π̄ /∈ Γ. Let us assume that the feasible point π̄ ∈ Γ. By definition of weak
LU-efficient solution, no π ∈ X exists that satisfy

Pk(π, ρ̄) <LU Pk(π̄, ρ̄), ∀k ∈ K,

that is,

PL
k (π, ρ̄) < PL

k (π̄, ρ̄) or, PL
k (π, ρ̄) ≦ PL

k (π̄, ρ̄) or, PL
k (π, ρ̄) < PL

k (π̄, ρ̄)

PU
k (π, ρ̄) < PU

k (π̄, ρ̄) PU
k (π, ρ̄) < PU

k (π̄, ρ̄) PU
k (π, ρ̄) ≦ PU

k (π̄, ρ̄).

The above inequalities can be rewritten as
ℵL
k (π) + ρ̄

[
m∑
j=1

ϕ+j (π) +
q∑

l=1

|ψl(π)|

]
< ℵL

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π) + ρ̄

[
m∑
j=1

ϕ+j (π) +
q∑

l=1

|ψl(π)|

]
< ℵU

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

or,
ℵL
k (π) + ρ̄

[
m∑
j=1

ϕ+j (π) +
q∑

l=1

|ψl(π)|

]
≦ ℵL

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π) + ρ̄

[
m∑
j=1

ϕ+j (π) +
q∑

l=1

|ψl(π)|

]
< ℵU

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

(24)
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or,
ℵL
k (π) + ρ̄

[
m∑
j=1

ϕ+j (π) +
q∑

l=1

|ψl(π)|

]
< ℵL

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

ℵU
k (π) + ρ̄

[
m∑
j=1

ϕ+j (π) +
q∑

l=1

|ψl(π)|

]
≦ ℵU

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

]
,

for each k ∈ K. Applying condition (10) in the above inequalities, we conclude that there
does not exist π ∈ Γ satisfying

ℵL
k (π) < ℵL

k (π̄), or, ℵL
k (π) ≦ ℵL

k (π̄), or, ℵL
k (π) < ℵL

k (π̄)

ℵU
k (π) < ℵU

k (π̄), ℵU
k (π) < ℵU

k (π̄), ℵU
k (π) ≦ ℵU

k (π̄).

That is,

ℵk(π) <LU ℵk(π̄), for each k ∈ K. (25)

Therefore, we can say that the feasible point π̄ is a weak LU-efficient solution to the
problem (MIVP). Using inequality (25), one can conclude that for any ρ ≧ ρ̄, the feasible
point π̄ is a weak LU-efficient solution to the penalized problem (MIVPρ) with exact l1
penalty function, which, in turn, is also a weak LU-efficient solution to the considered
multiobjective interval-valued programming problem (MIVP).

Next, let us consider the other possibility that the feasible point π̄ /∈ Γ. As the feasible
point π̄ is a weak LU-efficient solution to the penalized problem (MIVPρ) with exact l1
penalty function, then by Theorem 2.20, there exist the Lagrange multipliers µL

k , µ
U
k ≧ 0

for all k ∈ K (not all being zero simultanously) satisfying
∑s

k=1 µ
L
k +µU

k = 1, along with

0 ∈
s∑

k=1

µL
k ∂P

L
k (π̄, ρ̄) + µU

k ∂P
U
k (π̄, ρ̄). (26)

Using the exact l1 penalty function, we write the above inclusion as

0 ∈
s∑

k=1

µL
k ∂

ℵL
k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]

+

s∑
k=1

µU
k ∂

ℵU
k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

] . (27)

As the functions ϕj(j ∈ J) are locally Lipschitz on X, we conclude that the functions
ϕ+j (j ∈ J) are also locally Lipschitz. Moreover, the Lagrange multipliers µL

k and µU
k are
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nonnegative. Using Corollary 2.6, we have

0 ∈
s∑

k=1

µL
k ∂ℵL

k (π̄) +

s∑
k=1

µL
k ∂

ρ̄[ m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]

+

s∑
k=1

µU
k ∂ℵU

k (π̄) +

s∑
k=1

µU
k ∂

ρ̄[ m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

] .

Hence, the above condition yields

0 ∈
s∑

k=1

µL
k ∂ℵL

k (π̄) + ∂

ρ̄[ m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

] s∑
k=1

µL
k

+

s∑
k=1

µU
k ∂ℵU

k (π̄) + ∂

ρ̄[ m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

] s∑
k=1

µU
k ,

which imply that

0 ∈
s∑

k=1

µL
k ∂ℵL

k (π̄) +

s∑
k=1

µU
k ∂ℵU

k (π̄)

+∂

ρ̄[ m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

] s∑
k=1

(
µL
k + µU

k

)
.

Applying the result
∑s

k=1 µ
L
k + µU

k = 1 in the above relation, we obtain

0 ∈
s∑

k=1

µL
k ∂ℵL

k (π̄) +

s∑
k=1

µU
k ∂ℵU

k (π̄) + ∂

ρ̄[ m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

] .

Using Lemma 2.4, the above relation simplifies to

0 ∈
s∑

k=1

µL
k ∂ℵL

k (π̄) +

s∑
k=1

µU
k ∂ℵU

k (π̄) + ρ̄∂

[ m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

] ,

which, due to Proposition 2.5 gives

0 ∈
s∑

k=1

µL
k ∂ℵL

k (π̄) +

s∑
k=1

µU
k ∂ℵU

k (π̄) + ρ̄

[ m∑
j=1

∂ϕ+j (π̄) +

q∑
l=1

|∂ψl(π̄)|

] . (28)
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Since ℵL
k and ℵU

k are invex at a feasible point π̄ ∈ X in connection with η, we see that

ℵL
k (π)− ℵL

k (π̄) ≧ ⟨αL
k , η(π, π̄)⟩, ∀αL

k ∈ ∂ℵL
k (π̄), ∀k ∈ K, (29)

ℵU
k (π)− ℵU

k (π̄) ≧ ⟨αU
k , η(π, π̄)⟩, ∀αU

k ∈ ∂ℵU
k (π̄), ∀k ∈ K. (30)

hold for each π ∈ X. Moreover, the constraints ϕj(j ∈ J), ψl(l ∈ L+(π̄)) and −ψl(l ∈
L−(π̄)) are invex at a feasible point π̄ ∈ X in connection with η and locally Lipschitz
on X. Using Proposition 2.14, we can say that ϕ+j (j ∈ J) are also invex functions at a
feasible point π̄ in connection with η. Therefore, the following inequalities hold for all
π ∈ X :

ϕ+j (π)− ϕ+j (π̄) ≧ ⟨β+
j , η(π, π̄)⟩, ∀β

+
j ∈ ∂ϕj(π̄), ∀j ∈ J, (31)

ψl(π)− ψl(π̄) ≧ ⟨δl, η(π, π̄)⟩, ∀δl ∈ ∂ψl(π̄), ∀l ∈ L+(π̄), (32)

−ψl(π) + ψl(π̄) ≧ ⟨−δl, η(π, π̄)⟩, ∀δl ∈ ∂ψl(π̄), ∀l ∈ L−(π̄). (33)

Multiplying the inequality (29) by µL
k ≥ 0 and the inequality (30) by µU

k ≥ 0, we get

µL
kℵL

k (π)− µL
kℵL

k (π̄) ≧ ⟨µL
kα

L
k , η(π, π̄)⟩, ∀αL

k ∈ ∂ℵL
k (π̄), ∀k ∈ K, (34)

µU
k ℵU

k (π)− µU
k ℵU

k (π̄) ≧ ⟨µU
k α

U
k , η(π, π̄)⟩, ∀αU

k ∈ ∂ℵU
k (π̄), ∀k ∈ K. (35)

Multiplying the inequalities (31) – (33) with the penalty parameter ρ̄ > 0, we have

ρ̄ϕ+j (π)− ρ̄ϕ+j (π̄) ≧ ρ̄⟨β+
j , η(π, π̄)⟩, ∀β

+
j ∈ ∂ϕj(π̄), ∀j ∈ J, (36)

ρ̄|ψl(π)| − ρ̄|ψl(π̄)| ≧ ρ̄⟨δl, η(π, π̄)⟩, ∀δl ∈ ∂|ψl(π̄)|, ∀l ∈ L, (37)

On summing up both sides of the inequalities (34) – (37), we get

s∑
k=1

µL
kℵL

k (π) +

s∑
k=1

µU
k ℵU

k (π) + ρ̄

[
m∑
j=1

ϕ+j (π) +

q∑
l=1

|ψl(π)|

]

−

 s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]

≧

〈
s∑

k=1

µL
kα

L
k +

s∑
k=1

µU
k α

U
k + ρ̄

m∑
j=1

β+
j + ρ̄

q∑
l=1

δl, η(π, π̄)

〉
,
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for all αL
k ∈ ∂ℵL

k (π̄), α
U
k ∈ ∂ℵU

k (π̄)(k ∈ K); β+
j ∈ ∂ϕj(π̄)(j ∈ J) and δl ∈ ∂|ψl(π̄)|(l ∈ L).

Using condition (28), the above ineuuality yields

s∑
k=1

µL
kℵL

k (π) +

s∑
k=1

µU
k ℵU

k (π) + ρ̄

[
m∑
j=1

ϕ+j (π) +

q∑
l=1

|ψl(π)|

]

−

 s∑
k=1

µL
kℵL

k (π̄) +

s∑
k=1

µU
k ℵU

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

] ≧ 0, (38)

for all π ∈ X. Since π ∈ Γ, so with the help of (10), the inequality (38) reduces to

s∑
k=1

(
µL
kℵL

k (π)− µL
kℵL

k (π̄)
)
+

s∑
k=1

(
µU
k ℵU

k (π)− µU
k ℵU

k (π̄)
)

≧ ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]
, (39)

for all π ∈ Γ. Since π̄ is not feasible to the problem (MIVP), therefore, by (10), one can
conclude that

m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)| > 0. (40)

Let us take the penalty parameter ρ̄ large enough for all π ∈ Γ defined by

ρ̄ > max


µL
kℵL

k (π) + µU
k ℵU

k (π)− µL
kℵL

k (π̄)− µU
k ℵU

k (π̄)[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

] : k ∈ K

 . (41)

Using (25) and (41), we can say ρ̄ > 0. Moreover, the feasible point π̄ is a weak LU-
efficient solution to the penalized problem (MIVPρ) with exact l1 penalty functions.
Therefore, by the definition of weak LU-efficient solution, there does not exist π ∈ X
satisfying

Pk(π, ρ̄) <LU Pk(π̄, ρ̄), ∀ k ∈ K,

which can be rephrased as

ℵk(π) + ρ̄

[
m∑
j=1

ϕ+j (π) +

q∑
l=1

|ψl(π)|

]
<LU ℵk(π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]
, ∀ k ∈ K.
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As Γ ⊂ X, there does not exist π ∈ Γ satisfying

ℵk(π) + ρ̄

[
m∑
j=1

ϕ+j (π) +

q∑
l=1

|ψl(π)|

]
<LU ℵk(π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]
, ∀ k ∈ K,

and if π ∈ Γ, then

ℵk(π) + ρ̄

[
m∑
j=1

ϕ+j (π) +

q∑
l=1

|ψl(π)|

]
≧LU ℵk(π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]
, ∀ k ∈ K.

If π ∈ Γ, we use (10) to get

ℵk(π) ≧LU ℵk(π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]
, ∀ k ∈ K,

for all π ∈ Γ, that is,

ℵL
k (π) ≧ ℵL

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]
, ∀ π ∈ Γ, ∀ k ∈ K, (42)

and

ℵU
k (π) ≧ ℵU

k (π̄) + ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]
, ∀ π ∈ Γ, ∀ k ∈ K. (43)

Multiplying the inequality (42) by µL
k , (43) by µ

U
k , and summing up, we get

µL
kℵL

k (π) + µU
k ℵU

k (π) ≧ µL
kℵL

k (π̄) + µU
k ℵU

k (π̄)

+ ρ̄

[
m∑
j=1

ϕ+j (π̄) +

q∑
l=1

|ψl(π̄)|

]
, ∀ π ∈ Γ, ∀ k ∈ K. (44)

With the help of inequality (44), we get

ρ̄ ≦
µL
kℵL

k (π) + µU
k ℵU

k (π)− µL
kℵL

k (π̄)− µU
k ℵU

k (π̄)[
m∑
j=1

ϕ+j (π̄) +
q∑

l=1

|ψl(π̄)|

] , ∀ π ∈ Γ, ∀ k ∈ K,

which contradicts (41). Hence π̄ /∈ Γ is not possible. Therefore, if π ∈ Γ, then the
feasible point π̄ is a weak LU-efficient solution to the problem (MIVP). Hence, the proof
is complete. □

Theorem 3.9. Let Γ ⊆ Rn be a compact set and the feasible point π̄ be an LU-efficient
solution to the penalized problem (MIVPρ) with exact l1 penalty function. Moreover,
suppose it satisfies the following two additional assumptions:
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(i) The components of the objective functions ℵL
k and ℵU

k (k ∈ K) are strictly invex at
a feasible point π̄ ∈ X in connection with η;

(ii) The constraints ϕj(j ∈ J), ψl(l ∈ L+(π̄) := {l ∈ L : ζ̄l > 0}) and −ψl(l ∈ L−(π̄) :=
{l ∈ L : ζ̄l < 0}) are invex at a feasible point π̄ ∈ X in connection with η.

If we take enough large penalty parameter ρ̄, then the feasible point π̄ is an LU-efficient
solution to the problem (MIVP).

P r o o f . The proof of this theorem, being similar to that of Theorem 3.8, is omitted.
□

Next, let us formulate an example of the nonsmooth multiobjective interval-valued
problem based on the results established in the article and interpret it using the concept
of the exact l1 penalty function.

Example 3.10. Let us construct the nonsmooth multiobjective interval-valued pro-
gramming problem:

(MIVP′) minimize ℵ(π) =
(
ℵ1(π),ℵ2(π)

)
,

=
(
[ℵL

1 (π),ℵU
1 (π)], [ℵL

2 (π),ℵU
2 (π)]

)
,

=

([
π2
1 + π2

2 + |π2| − π2, 4π
2
1 + 4π2

2 + |π2|
]
,[

π4
1 + π2

2 + eπ1 + |π1| − π1, 6π
4
1 + 4π2

2 + eπ1

])
,

subject to ϕ1(π) = π2
1 − π1 ≦ 0,

ϕ2(π) = π2
2 − π2 ≦ 0,

ψ1(π) = π2 − π1 = 0; π ∈ R2.

The set of all feasible solutions is given by Γ = {π = (π1, π2) ∈ R2 : 0 ≦ π1 ≦ 1 and 0 ≦
π2 ≦ 1} whereas π̄ = (0, 0) is an LU-efficient solution of the problem (MIVP′). Moreover,
we see that ℵ1 and ℵ2 are strictly invex functions at a point π̄ ∈ R2 in connection with
η : R2 × R2 → R2 defined by

η(π, π̄) =

[
π1 + π̄2
π̄1 + π2

]
.

We also observe that the functions ϕ1, ϕ2, and ψ1 are invex at a point π̄ ∈ R2 in
connection with the same η.
To deal with the unconstrained interval-valued multiobjective problem, let us construct
the penalized problem (MIVPρ) with exact l1 penalty functions

(MIVP′
ρ) minimize P (π, ρ) =

(
P1(π, ρ), P2(π, ρ)

)
=
([
PL
1 (π, ρ), PU

1 (π, ρ)
]
,
[
PL
2 (π, ρ), PU

2 (π, ρ)
])
,
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=

([
π2
1 + π2

2 + |π2| − π2

+ ρ
(
max{0, π2

1 − π1}+max{0, π2
2 − π2}+ |π2 − π1|

)
,

4π2
1 + 4π2

2 + |π2|

+ ρ
(
max{0, π2

1 − π1}+max{0, π2
2 − π2}+ |π2 − π1|

)]
,[(

π4
1 + π2

2 + eπ1 + |π1| − π1

+ ρ
(
max{0, π2

1 − π1}+max{0, π2
2 − π2}+ |π2 − π1|

)
,

6π4
1 + 4π2

2 + eπ1

+ ρ
(
max{0, π2

1 − π1}+max{0, π2
2 − π2}+ |π2 − π1|

)])
.

Moreover, there exist Lagrange multipliers µ = (µL, µU ) ∈ R2, ξ = (ξL, ξU ) ∈ R2,
and ζ ∈ R satisfying the KKT necessary conditions (6) – (8) at a point π̄ satisfying
αL
1 µ

L
1 + αU

1 µ
U
1 − ξ2 + ζ1 = 0, αL

2 µ
L
2 + µU

2 − ξ1 − ζ1 = 0, and µL
1 + µU

1 + µL
2 + µU

2 = 1,
where αL

1 = {−2, 0}, αU
1 = {−1, 1} and αL

2 = {−1, 1}. From the above equations, we see
that max{ξ1, ξ2, |ζ1|} = 1. Therefore, using Theorem 3.5, we conclude that if we take
enough large penalty parameter ρ ≧ 1, then the feasible point π̄ = (0, 0) is LU-efficient
solution to the penalized problem (MIVP′

ρ) with exact l1 penalty function.

Remark 3.11. Note that the exact l1 penalty method transforms a constrained nons-
mooth multiobjective interval-valued problem (MIVP′) to a simple unconstrained interval-
valued problem (MIVP′

ρ). Also, the solutions to both the constrained and unconstrained
problems are equal under certain assumptions. Hence, it can be seen that the complexity
of the problem can be reduced for some classes of constraint problems using the exact
l1 penalty method, and the interrelation between two problems can give many valuable
informations.

Let us look at an example of a nonsmooth multiobjective interval-valued programming
problem when at least one function appearing in the objective function is not invex. Note
that the set of LU-efficient solutions to the original constrained problem (MIVP) and
its associated unconstrained optimization problem (MIVPρ) using the exact l1 penalty
functions are not equivalent.

Example 3.12. Consider the following nonsmooth multiobjective interval-valued prob-
lem:

(MIVP′′) minimize ℵ(π) =
(
ℵ1(π),ℵ2(π)

)
,

=
(
[ℵL

1 (π),ℵU
1 (π)], [ℵL

2 (π),ℵU
2 (π)]

)
,

=
([
π3, π3 + 1

]
,
[
π3 + 1, π3 + 2

])
,

subject to ϕ1(π) = |π| − π − 2 ≦ 0; π ∈ R.
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Here, Γ = {π ∈ R : π ≧ −1} is the set of all feasible solutions, and π̄ = −1 is an
LU-efficient solution of the problem (MIVP′′). Moreover, using Theorem 1 of Ben-Israel
and Mond [9], it follows that the objective functions are not invex in connection with the
real-valued function η defined on R×R. However, using the exact l1 penalty method, we
obtain the following unconstrained interval-valued problem associated with the original
problem (MIVP′′):

(MIVP′′
ρ) minimize P (π, ρ) =

(
P1(π, ρ), P2(π, ρ)

)
=
([
PL
1 (π, ρ), PU

1 (π, ρ)
]
,
[
PL
2 (π, ρ), PU

2 (π, ρ)
])
,

=

([
π3 + ρ

(
max{0, |π| − π − 2}

)
,

π3 + 1 + ρ
(
max{0, |π| − π − 2}

)]
,[

π3 + 1 + ρ
(
max{0, |π| − π − 2}

)
,

π3 + 2 + ρ
(
max{0, |π| − π − 2}

)])
.

It is not difficult to show that (MIVP′′
ρ) does not have a minimizer at π̄ = −1 for any ρ >

0. It is evident from the fact that the downward order of growth of the objective functions
ℵL
1 , ℵU

1 , ℵL
2 , and ℵU

2 exceed the upward growth of the constraint ϕ1 at π̄ when moving
from π̄ towards smaller values. Indeed, infπ∈R P

L
1 (π, ρ) → −∞, infπ∈R P

U
1 (π, ρ) →

−∞, infπ∈R P
L
2 (π, ρ) → −∞, and infπ∈R P

U
2 (π, ρ) → −∞ when π → −∞ for any

ρ > 0. Hence, for the penalty parameter ρ > 0, the equivalence between the set of LU-
efficient solutions of the original problem (MIVP′′) and the associated penalized problem
(MIVP′′

ρ) does not hold.
It follows from the above example that invexity is essential to prove the equivalence

between the set of LU-efficient solutions in the original nonsmooth interval-valued mul-
tiobjective optimization problem and its associated penalized problem with the exact l1
penalty function.

Next, we explore the application of the interval-valued vector exact l1 penalty function
method to solve the following optimization problem.

Example 3.13. An owner operates two car dealerships, both selling identical cars. The
annual inventory expenses at each dealership are determined by the number of cars sold,
yearly storage costs, and fixed expenses associated with ordering new vehicles from the
manufacturer. It can be assumed that, on average, half of the π cars are stored in
each of the two car dealerships. In this scenario, the yearly inventory expenses at each
dealership are represented by the function considered at intervals as follows:

ℵ(π) =
([

25π +
10000

π
+ 8000, 25π +

10000

π
+ 10000

]
,[

15π +
12000

π
+ 12000, 15π +

12000

π
+ 18000

])
.
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Moreover, each order size must meet the following requirement:

ϕ(π) = |π − 10| − 10.

The question is: In what quantity will the cars be ordered for both dealerships to
minimize their costs? The mathematical representation of this challenging problem
gives rise to a nonsmooth multiobjective interval-valued problem as follows:

(MIVP′′′) minimize ℵ(π) =
(
ℵ1(π),ℵ2(π)

)
,

=
(
[ℵL

1 (π),ℵU
1 (π)], [ℵL

2 (π),ℵU
2 (π)]

)
,

=

([
25π +

10000

π
+ 8000, 25π +

10000

π
+ 10000

]
,[

15π +
12000

π
+ 12000, 15π +

12000

π
+ 18000

])
,

subject to ϕ1(π) = |π − 10| − 10 ≦ 0,

X = {π ∈ R : π > 0}.

Here, Γ = {π ∈ R : |π − 10| − 10 ≦ 0} represents the set of all feasible solutions
and π̄ = 20 is an LU -efficient solution to the considered multiobjective interval-valued
problem (MIVP′′′). Further, it can be easily verified that the considered interval-valued
objective functions are strictly invex and the constraint is invex at a point π̄ in connection
with η : R2 × R2 → R defined by

η(π, π̄) = π − π̄.

We implement the exact l1 penalty function method to address the considered multiob-
jective interval-valued problem (MIVP′′′). First of all, we construct the interval-valued
penalized problem (MIVP′′

ρ) with exact l1 penalty functions as follows:

(MIVP′′′
ρ ) minimize P (π, ρ) =

(
P1(π, ρ), P2(π, ρ)

)
=
([
PL
1 (π, ρ), PU

1 (π, ρ)
]
,
[
PL
2 (π, ρ), PU

2 (π, ρ)
])
,

=

([
25π +

10000

π
+ 8000 + ρ

(
max{0, |π − 10| − 10}

)
,

25π +
10000

π
+ 10000 + ρ

(
max{0, |π − 10| − 10}

)]
,[

15π +
12000

π
+ 12000 + ρ

(
max{0, |π − 10| − 10}

)
,

15π +
12000

π
+ 18000 + ρ

(
max{0, |π − 10| − 10}

)])
.

With the help of KKT conditions (6) – (8), we can show that there exist Lagrange multi-
pliers µ = (µL, µU ) ∈ R2 and ξ1 ∈ R with ξ1 = 15. Therefore, by Theorem 3.5, if we take
enough large penalty parameter, say ρ ≧ 15, then the feasible point π̄ = 20 being an
LU -efficient solution to the considered multiobjective interval-valued problem (MIVP′′′)
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becomes an LU -efficient solution to the corresponding penalized problem (MIVP′′
ρ) with

exact l1 penalty function. Since all the assumptions of Theorem 3.8 are satisfied, then the
feasible point π̄ = 20 being an LU -efficient solution to the penalized problem (MIVP′′′

ρ )
for any ρ ≧ 15, is also a solution to the problem (MIVP′′′). Hence, in order to minimize
the cost, at least 15 cars should be ordered for both dealerships.

4. CONCLUSIONS

In this article, we studied a nonsmooth nonlinear multiobjective interval-valued pro-
gramming problem (MIVP) having both equality and inequality constraints using an
exact l1 penalty function. Further, we derived the equivalence relation between weak
LU-efficient solutions of the problem (MIVP) and the penalized problem (MIVPρ) with
the exact l1 penalty approach by assuming the functions to be invex in connection with η.
Moreover, we constructed the Lagrange function for the interval-valued multiobjective
problem and established the equivalence relation between the set of weak LU-efficient
solutions of the problem (MIVP) and the penalized problem (MIVPρ) with the exact l1
penalty function for the Lagrange function. Also, the converse of the above theorem is
derived in the paper. Examples were given to demonstrate the application of the exact
l1 penalty method and the resulting outcome in this paper.

(Received July 31, 2023)
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