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KYBERNET IKA — VOLUME 6 0 ( 2 0 2 4 ) , NUMBER 6 , PAGES 6 9 4 – 7 2 2

CONDITIONAL DISTRIBUTIVITY OF OVERLAP
FUNCTIONS OVER UNINORMS WITH CONTINUOUS
UNDERLYING OPERATORS

Hui Liu and Wenle Li

The investigations of conditional distributivity are encouraged by distributive logical connec-
tives and their generalizations used in fuzzy set theory and were brought into focus by Klement
in the closing session of Linzs 2000. This paper is mainly devoted to characterizing all pairs
(O,F ) of aggregation functions that are satisfying conditional distributivity laws, where O is
an overlap function, and F is a continuous t-conorm or a uninorm with continuous underlying
operators.
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1. INTRODUCTION

Aggregation functions are being intensively studied because of their essential roles in
many fields and disciplines from mathematics and natural sciences to economics and
social sciences. While a high level of attention in this area is concerned on the character-
izations of pairs of aggregation functions which satisfy the distributive laws. This topic
was derived from [18], and investigations have covered t-norms and t-conorms [12, 20],
quasi-arithmetic means [32], pseudo-arithmetical operations [29], uninorms and null-
norms [10, 19, 39], semi-t-operators and uninorms [31, 40, 41], 2-uninorms [30], Mayor’s
aggregation operators [5]. Afterwards researchers investigated the problem of distribu-
tivity on the restricted domain since this particular approach produced a larger variety
of solutions. This type of distributivity is known as the conditional distributivity or the
restricted distributivity [6,8,11–13]. The significance of this considered topic follows not
only from the theoretical point of view, but also from its applicability in the integration
theory [35–37] and the utility theory [3, 7].

Overlap function [15], as a not necessarily associative binary aggregation function,
was introduced by Bustince et al. in 2009 for the purpose of dealing with the frequent
overlapping problem of classification in image processing, and the main use of overlap
function is to measure the overlapping degree between the two functions standing for
object and background, respectively. Some other interesting applications of overlap
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functions include but not exclusively limited to fuzzy preference modeling [16], decision
making [27] and fuzzy community detection problems [4]. The work on the distributivity
law for overlap functions was started by Qiao in 2019, who proposed the distributivity
equation of uninorm over overlap function in [23], and studied the equation when the
uninorm U belonged to one of the usual classes Umin, Umax [21], the family of idempotent
uninorms, representable uninorms. Afterwards Liu and Zhao gave characterizations of
the distributivity for continuous t-norms and uninorms continuous in (0, 1)2 with respect
to overlap functions [17]. In the meantime, Zhu et al. considered the distributivity of
overlap functions with neutral element 1 over uninorms [25]. Later on, Zhang and
Qin discussed the distributivity between overlap functions and uni-nullnorms [34], null-
uninorms [38] or 2-uninorms [33].

This paper is to extend research towards distributivity equations on the restricted
domain for overlap functions over uninorms. Because of the heated discussions on the
structure of uninorms with continuous underlying operators have been going on for many
years, our concern is on the conditional distributivity equation:

O(x, U(y, z)) = U(O(x, y), O(x, z)), x, y, z ∈ [0, 1], U(y, z) < 1,

where O is an overlap function, and U is a uninorm with continuous underlying operators.
The results presented in this paper will provide characterizations of some new pairs of
aggregation functions that fulfill conditional distributivity. Also, the given results of
conditional distributivity can not be obtained from the classical distributivity, which
illustrates the strength and usefulness of the conditional case. Motivation for this line
of investigation lies in possibility of obtaining new pairs of aggregation functions that
further on can be applied in the utility theory for modeling some specific problems.

The paper is organized as follows. Section 2 contains preliminary notions concerning
overlap functions, t-conorms and uninorms. In the following, two directions on condi-
tional distributivity for overlap functions are investigated. The first one is conditional
distributivity over continuous t-conorms(see Section 3), while the second one is over
the uninorms with continuous underlying t-norms and t-conorms(see Section 4). The
concluding remarks are given in Section 5.

2. PRELIMINARIES

In this section, we will present some main definitions and results which will be used
throughout the paper. For a further reading about such concepts, we recommend [1, 9,
12–14,21,22,28].

Definition 2.1. (Klement et al. [12]) A bivariate function T : [0, 1]2 → [0, 1] (or
S : [0, 1]2 → [0, 1]) is called a t-norm(or t-conorm) if it is commutative, associative,
increasing and 1(or 0) is the neutral element.

The following are three basic t-norms, named TM , TP and TL, respectively:

(i) the minimum t-norm: TM (x, y) = min(x, y), x, y ∈ [0, 1];

(ii) the product t-norm: TP (x, y) = xy, x, y ∈ [0, 1];

(iii) the  Lukasiewicz t-norm: TL(x, y) = max(x + y − 1, 0), x, y ∈ [0, 1].
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Dually, the three basic t-conorms SM , SP and SL can be given by, respectively:

(i) the maximum t-conorm: SM (x, y) = max(x, y), x, y ∈ [0, 1];

(ii) the probabilistic sum t-conorm: SP (x, y) = x + y − xy, x, y ∈ [0, 1];

(iii) the  Lukasiewicz t-conorm: SL(x, y) = min(x + y, 1), x, y ∈ [0, 1].

Definition 2.2. (Klement et al. [12], Fodor et al. [21]) A bivariate function U : [0, 1]2 →
[0, 1] is called a uninorm if it is commutative, associative, increasing and e ∈ [0, 1] is a
neutral element.

Write U(e) as the family of uninorms with neutral element e. Note that t-norms and
t-conorms are special cases of uninorms, i. e., the uninorm U becomes a t-norm when
e = 1; the uninorm U becomes a t-conorm when e = 0. With any uninorm U with
neutral element e ∈]0, 1[, we can associate two binary operations TU , SU : [0, 1]2 → [0, 1]
defined by

TU (x, y) =
U(ex, ey)

e
,

and

SU (x, y) =
U(e + (1− e)x, e + (1− e)y)− e

1− e
,

then TU is a t-norm and SU is a t-conorm. In other words, on [0, e]2 any uninorm U is
determined by a t-norm TU , and on [e, 1]2 any uninorm U is determined by a t-conorm
SU ; TU is called the underlying t-norm, and SU is called the underlying t-conorm. U is
always written as U = ⟨T, e, S⟩ and the set of all uninorms with continuous underlying
operators is denoted by COU . Now, let us denote the remaining part of the unit square
by A(e), i. e.,

A(e) = [0, 1]2 \ ([0, e]2
⋃

[e, 1]2).

On the set A(e), any uninorm U is bounded by the minimum and maximum of its
arguments, i. e., for any (x, y) ∈ A(e), it holds that

min(x, y) ≤ U(x, y) ≤ max(x, y).

Definition 2.3. (Baets [1]) Let U be a uninorm, and a ∈ [0, 1]. If U(a, a) = a, then a
is said to be an idempotent element of U . Denote the set of idempotent elements of U
by Id(U). Moreover, if Id(U) = [0, 1], then U is said to be idempotent.

Definition 2.4. (Baets et al. [2]) Let g : [0, 1]→ [0, 1] be a decreasing function and let
G be the graph of g, that is

G = {(x, g(x))|x ∈ [0, 1]}.

For any discontinuity point s of g, let us denote by s− and s+ the corresponding lateral
limits, that are s− = lim

x→s−
g(x) and s+ = lim

x→s+
g(x). Then, we define the completed

graph of g, as the set

Fg = G
⋃
{(0, y)|y > g(0)}

⋃
{(1, y)|y < g(1)}

⋃
Dg,

where Dg = {(s, y)|s is the discontinuity point of g, s− < y < s+}.
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Definition 2.5. (Baets et al. [2]) A decreasing function g : [0, 1] → [0, 1] is called
Id-symmetrical if, for all (x, y) ∈ [0, 1]2, it holds that

(x, y) ∈ Fg ⇔ (y, x) ∈ Fg.

Theorem 2.6. (Ruiz et al. [9]) Let U ∈ U(e) with e ∈ (0, 1). Then U is idempotent
if and only if there exists an Id-symmetrical decreasing function g : [0, 1] → [0, 1] with
fixed point e such that

U(x, y) =


min(x, y), y < g(x) or (y = g(x) and x < g(g(x))),

max(x, y), y > g(x) or (y = g(x) and x > g(g(x))),

x or y, otherwise,

(1)

and U is commutative on the set {(x, g(x))|x = g(g(x))}. Such function g is usually
called the associated function of U .

We denote the idempotent uninorm U with neutral element e and associated function
g by U = ⟨e, g⟩ide, and the set of all idempotent uninorms is denoted by Uide throughout
our paper.

Here are two special idempotent uninorms, named Umin
e and Umax

e :

Umin
e (x, y) =

{
max(x, y) (x, y) ∈ [e, 1]2,

min(x, y) otherwise,

Umax
e (x, y) =

{
min(x, y) (x, y) ∈ [0, e]2,

max(x, y) otherwise.

Definition 2.7. (Mart́ın et al. [22]) A uninorm U : [0, 1]2 → [0, 1] is called locally
internal if it satisfies U(x, y) ∈ {x, y} for all x, y ∈ [0, 1].

Any idempotent uninorm is locally internal.

Theorem 2.8. (Baets et al. [2], Mart́ın et al. [22]) Let U ∈ U(e) be locally internal on
A(e) with e ∈ (0, 1), then there exists an Id-symmetrical decreasing function g : [0, 1]→
[0, 1] with g(e) = e such that for all (x, y) ∈ A(e), U has the form of Eq.(1).

The uninorm, which is locally internal on A(e), with associated function g is denoted
by U = ⟨e, g⟩loc, and write the set of uninorms locally internal on A(e) as Uloc.

Proposition 2.9. (Li et al. [13]) Let U ∈ COU with neutral element e ∈ (0, 1), then
the following statements hold:

(1) If TU = (⟨ak, bk, Tk⟩)k∈K and SU = SM , then U(x, y) ∈ {x, y} for all (x, y) ∈ A(e),
i. e., U is locally internal in A(e).

(2) If TU = TM and SU = (⟨cj , dj , Sj⟩)j∈J , then U(x, y) ∈ {x, y} for all (x, y) ∈ A(e),
i. e., U is locally internal in A(e).
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Definition 2.10. (Bustince et al. [14]) A bivariate function O : [0, 1]2 → [0, 1] is called
an overlap function if, for all x, y ∈ [0, 1], the following conditions hold:

(O1) O is commutative;

(O2) O(x, y) = 0 iff xy = 0;

(O3) O(x, y) = 1 iff xy = 1;

(O4) O is increasing;

(O5) O is continuous.

In some contexts, the positivity of boundary conditions in Definition 2.10 is not an
indispensable property, especially in behavior classification problems. The papers [24,26]
introduced the concept of 0-overlap function, 1-overlap function and 2-dimensional gen-
eral overlap function, which differed in the boundary conditions, allowing the functions
to have zero or one divisors. The bivariate function O : [0, 1]2 → [0, 1] is called a
0-overlap function if only condition (O2) in Definition 2.10 is downgraded to

(O2)′ if xy = 0 then O(x, y) = 0.

O is called a 1-overlap function if only (O3) in Definition 2.10 is replaced by

(O3)′ if xy = 1 then O(x, y) = 1.

O is called 2-dimensional general overlap function if (O2) and (O3) in Definition 2.10 is
reduced to (O2)′ and (O3)′.

Here are some conclusions related to Cauchy function equation used in solving equa-
tions.

Definition 2.11. (Kuczma [28]) The function f : R→ R is called the additive function
if, for any x, y ∈ R, f satisfies the following Cauchy equation:

f(x + y) = f(x) + f(y). (2)

Theorem 2.12. (Kuczma [28]) Let f : R→ R be a continuous function. If f satisfies
Eq. (2), then there exists c ∈ R such that f(x) = cx for all x ∈ R.

3. CONDITIONAL DISTRIBUTIVITY OF OVERLAP FUNCTIONS OVER
CONTINUOUS T-CONORMS

Since it always requires more sophisticated approaches while solving conditional distribu-
tivity equations, the first concern of this paper is to solve the conditional distributivity
of overlap functions over continuous t-conorms. As is well-known, the distributivity of
overlap function over t-conorm is so strong a condition that it reduces the t-conorm to
be SM . Thus, it seems to be a reasonable direction of research to restrict the domain of
the distributivity law to obtain some new solutions that are non-idempotent.

Definition 3.1. An overlap function O is conditional distributive over a t-conorm S if,
for all x, y, z ∈ [0, 1],

O(x, S(y, z)) = S(O(x, y), O(x, z)), whenever S(y, z) < 1. (3)
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In order to simplify the researches on the conditional distributivity of overlap func-
tions over continuous t-conorms, we firstly discuss the relationship between conditional
distributivity and the φ−conjugate.

Proposition 3.2. Let O be an overlap function, S be a t-conorm, and φ be an auto-
morphism. Then O is conditionally distributive over S if and only if Oφ is conditionally
distributive over Sφ.

P r o o f . According to the nature of automorphism, we only need to prove one direction.
Let’s assume O is conditionally distributive over S. For any x, y, z ∈ [0, 1], if Sφ(y, z) <
1, then S(φ(y), φ(z)) < 1, so one has

Oφ(x, Sφ(y, z)) =φ−1(O(φ(x), φ(Sφ(y, z))))

=φ−1(O(φ(x), S(φ(y), φ(z))))

=φ−1(S(O(φ(x), φ(y)), O(φ(x), φ(z))))

=Sφ(φ−1(O(φ(x), φ(y))), φ−1(O(φ(x), φ(z))))

=Sφ(Oφ(x, y), Oφ(x, z)).

Thus, Oφ is conditional distributive over Sφ. □

Next, the conditional distributivity of overlap functions over continuous t-conorms
will be discussed in detail.

Lemma 3.3. Let O be an overlap function, S be a continuous t-conorm, u ∈ (0, 1) be
an idempotent element of S. If O is conditionally distributive over S, then [0, O(1, u)] ⊆
Id(S).

P r o o f . For all x ∈ [0, 1], since O is conditionally distributive over S, it holds that

O(x, u) = O(x, S(u, u)) = S(O(x, u), O(x, u)).

That is, O(x, u) is an idempotent element of S for each x ∈ [0, 1]. Thus, it follows from
(O2) and (O5) that [0, O(1, u)] ⊆ Id(S). □

Lemma 3.3 illustrates that the maximal non-trivial idempotent element of a con-
tinuous t-conorm plays important roles in investigating our conditional distributivity
problem. Therefore, we firstly discuss the solutions of Eq.(3) when the continuous t-
conorm has no non-trivial idempotent element, i. e., it is a continuous Archimedean
t-conorm.

Theorem 3.4. Let O be an overlap function, S be a continuous Archimedean t-conorm.
Then O is conditionally distributive over S if and only if S is a nilpotent t-conorm, and
if S = (SL)φ for an automorphism φ then O = (TP )φ.
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P r o o f . (⇒) Suppose S is a strict t-conorm, then by Proposition 3.2, it is enough
to consider the case S = SP . Since O is conditionally distributive over SP , it holds
that O(x, SP (y, y)) = SP (O(x, y), O(x, y)) = 2O(x, y) − O(x, y)2 for all x ∈ (0, 1)
and y ∈ [0, 1). Thus, it follows from the continuity of O and SP that O(x, 1) =
lim
y→1

O(x, SP (y, y)) = lim
y→1

(2O(x, y)−O(x, y)2) = 2O(x, 1)−O(x, 1)2, and then it implies

that O(x, 1) = 1 or O(x, 1) = 0. Thus, by (O2) and (O3), there holds x = 1 or x = 0,
an obvious contradiction with the value of x. Consequently, S is a nilpotent t-conorm.
Similarly, our priority is to consider S = SL. For any x, y, z ∈ [0, 1], if SL(y, z) < 1, i. e.,
y + z < 1, then it follows from conditional distributivity that

SL(O(x, y), O(x, z)) = O(x, SL(y, z)) = O(x, y + z) < 1.

Furthermore, it holds that

O(x, y + z) = O(x, y) + O(x, z). (4)

Fixed x ∈ [0, 1], define a function fx : [0, 1)→ R by fx(y) = O(x, y), then it holds that
fx(0) = 0, and Eq.(4) can be rewritten as fx(y + z) = fx(y) + fx(z). Obviously, fx is
continuous, and satisfies Eq.(2). Therefore, by Theorem 2.12, there exists cx ∈ R such
that fx(y) = cxy for all y ∈ [0, 1). In addition, because of continuity,

fx(y) = cxy, y ∈ [0, 1]. (5)

Specially, if x = 1, it holds that f1(1) = O(1, 1) = 1. Thus, it follows from Eq.(5) that
c1 = 1. Furthermore, for each y ∈ [0, 1], we can obtain O(1, y) = f1(y) = y. And then,
cx = fx(1) = x for all x ∈ [0, 1]. Thus, O is actually TP . Moreover, associated with
Proposition 3.2, if there exists automorphism φ such that S = (SL)φ, then O = (TP )φ.
Obviously, O is a strict t-norm.

(⇐) By Proposition 3.2, we only need to prove that TP is conditionally distributive
over SL. For any x, y, z ∈ [0, 1], if SL(y, z) < 1, we have y + z < 1 and xy + xz < 1, and
then,

TP (x, SL(y, z)) = x(y + z) = xy + xz = SL(TP (x, y), TP (x, z)).

Thus, TP is conditionally distributive over SL. □

Next, we will discuss the conditional distributivity of an overlap function over the
continuous t-conorm with a maximum non-trivial idempotent element.

Proposition 3.5. Let O be an overlap function, S be a continuous t-conorm, a ∈ (0, 1)
be the maximum non-trivial idempotent element of S. If O is conditionally distributive
over S, then O(1, a) = a.

P r o o f . As we all know, S |[a,1]2 is isomorphic to a continuous Archimedean t-conorm.
And Lemma 3.3 shows that [0, O(1, a)] ⊆ Id(S), so O(1, a) ≤ a. Assume O(1, a) < a,
and let H = {t ∈ [0, 1] | O(1, t) = a}, then H ̸= ∅. Take α = ∧H, then O(1, α) = a
and a < α < 1. Since S |[a,1]2 is isomorphic to a continuous Archimedean t-conorm,
then α = S(β, β) > β holds for some β ∈ (a, 1). Moreover, due to the conditional
distributivity, we have a = O(1, α) = O(1, S(β, β)) = S(O(1, β), O(1, β)). Then it follows
from the structure of S that O(1, β) = a, it means β ∈ H and α ≤ β, an obvious
contradiction. Consequently, O(1, a) = a. □
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Proposition 3.6. Let O be an overlap function, S be a continuous t-conorm, a ∈ (0, 1)
be the maximum non-trivial idempotent element of S. If O is conditionally distributive
over S, then O(x, a) = O(x, 1) holds for all x ∈ [0, a].

P r o o f . The case of x = 0 is obvious. Specially, S = (⟨a, 1, S∗⟩), where S∗ is a
continuous Archimedean t-conorm. So for any ϵ ∈ (0, 1−a), there exists tϵ ∈ (a, 1) such
that 1− ϵ = S(tϵ, tϵ) > tϵ. Thus, for x ∈ (0, a], since O is conditionally distributive over
S, it follows from Proposition 3.5 and the structure of S that

O(x, 1− ϵ) = O(x, S(tϵ, tϵ)) = S(O(x, tϵ), O(x, tϵ)) = O(x, tϵ).

Take Hx,ϵ = {y ∈ (a, 1) | O(x, y) = O(x, 1 − ϵ)}, then Hx,ϵ ̸= ∅. Let mx,ϵ =
∧
Hx,ϵ,

then by the continuity of O, one has O(x,mx,ϵ) = O(x, 1 − ϵ) and a ≤ mx,ϵ < 1.
We assert mx,ϵ = a. In fact, if mx,ϵ > a, then there exists nx,ϵ ∈ (a, 1) such that
mx,ϵ = S(nx,ϵ, nx,ϵ) > nx,ϵ. Thus, it follows from the conditional distributivity that
O(x,mx,ϵ) = O(x, S(nx,ϵ, nx,ϵ)) = S(O(x, nx,ϵ), O(x, nx,ϵ)) = O(x, nx,ϵ), then one has
nx,ϵ ∈ Hx,ϵ, a contradiction. Thus, mx,ϵ = a and O(x, 1 − ϵ) = O(x, a). Hence, from
the randomness of ϵ and continuity of O, it can be concluded O(x, a) = O(x, 1) for all
x ∈ [0, a]. □

Proposition 3.7. Let O be an overlap function, S be a continuous t-conorm, and
a ∈ (0, 1) be the maximum non-trivial idempotent element of S. If O is conditionally
distributive over S, then for any x, y ∈ [a, 1], O(x, y) = a if and only if x = a or y = a.

P r o o f . (⇐) It is acquirable from Proposition 3.5 and Proposition 3.6.

(⇒) Suppose O(x0, y0) = a holds for some x0, y0 ∈ (a, 1]. Let b =
∨
{x ∈ (a, 1)|O(x, x) =

a}, then b ∈ (a, 1) and O(b, b) = a. Furthermore, take H = {x ∈ (a, 1] | O(b, x) = a}
and c =

∨
H, then 1 ≥ c ≥ b > a and O(b, c) = a.

• If c = 1, then O(1, b) = a. Take d =
∨
{x ∈ (a, 1)|O(1, x) = a}, then b ≤ d < 1 and

O(1, d) = a. Since S |[a,1]2 is isomorphic to a continuous Archimedean t-conorm,
there exists t ∈ (a, 1) such that t < d < S(t, t) < 1.Therefore, it follows from the
conditional distributivity that

O(1, S(t, t)) = S(O(1, t), O(1, t)) = S(a, a) = a.

Thus, we have S(t, t) ≤ d, a contradiction.

• If b ≤ c < 1 and O(b, c) = a hold. Similarly, there exists u ∈ (a, 1) such that
u < c < S(u, u) < 1. So it holds that a ≤ O(b, u) ≤ O(b, c) = a, i. e., O(b, u) = a.
Due to the conditional distributivity, we have O(b, S(u, u)) = S(O(b, u), O(b, u)) =
S(a, a) = a, that is, S(u, u) ∈ H, an obvious contradiction.

Consequently, for any x, y ∈ [a, 1], if O(x, y) = a, then x = a or y = a. □
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Theorem 3.8. Let O be an overlap function, S be a continuous t-conorm, and a ∈
(0, 1) be the maximum non-trivial idempotent element of S. Then O is conditionally
distributive over S if and only if S and O have the following forms (see Figure 1):

S(x, y) =

{
a + (1− a)(SL)φ(x−a

1−a ,
y−a
1−a ), (x, y) ∈ [a, 1]2,

max(x, y), otherwise,

O(x, y) =


a + (1− a)(TP )φ(x−a

1−a ,
y−a
1−a ), (x, y) ∈ [a, 1]2,

aO1(x
a ,

y
a ), (x, y) ∈ [0, a]2,

aO1(min(x,y)
a , 1), otherwise,

where (SL)φ is the φ−conjugation of SL, (TP )φ is the φ−conjugation of TP , O1 is a
1-overlap function.

P r o o f . (⇒) It follows from Theorem 3.4, Proposition 3.6 and Proposition 3.7.

(⇐) ∀ x, y, z ∈ [0, 1], we shall prove Eq. (3) in the following cases:

(i) when x, y, z ∈ [0, a], S(y, z) ≤ a, we have

O(x, S(y, z)) = O(x,max(y, z)) = max(O(x, y), O(x, z)) = S(O(x, y), O(x, z));

(ii) when x, y, z ∈ [a, 1], Eq.(3) can be obtained from Theorem 3.4;

(iii) when x, y ∈ [0, a], z ∈ (a, 1], if S(y, z) < 1, then z ∈ (a, 1), and it holds that
S(y, z) = z, O(x, y) ≤ O(x, z) ≤ a, thus, by the structure of S, one has

O(x, S(y, z)) = O(x, z) = max(O(x, y), O(x, z)) = S(O(x, y), O(x, z));

(iv) when y, z ∈ [0, a], x ∈ (a, 1], by the structure of S and O, we get S(y, z) =
max(y, z) < 1, O(x, y) ≤ a, O(x, z) ≤ a, thus, it holds that

O(x, S(y, z)) = O(x,max(y, z)) = max(O(x, y), O(x, z)) = S(O(x, y), O(x, z));

(v) when x, z ∈ [0, a], y ∈ (a, 1], it can be proved similarly to item (iii);

(vi) when x, y ∈ (a, 1], z ∈ [0, a), if S(y, z) < 1, then y ∈ (a, 1), and it follows that
S(y, z) = y, O(x, y) > a, O(x, z) ≤ a, therefore, by the structure of S, one gets

O(x, S(y, z)) = O(x, y) = max(O(x, y), O(x, z)) = S(O(x, y), O(x, z));

(vii) when y, z ∈ (a, 1], x ∈ [0, a), if S(y, z) < 1, then O(x, S(y, z)) = O(x, y) =
O(x, z) = O(x, a), thus, it follows from the structure of S that

O(x, S(y, z)) = O(x, a) = max(O(x, y), O(x, z)) = S(O(x, y), O(x, z));

(viii) when x, z ∈ (a, 1], y ∈ [0, a), it can be proved similarly to item (vi).

Consequently, O is conditionally distributive over S. □
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max max
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Fig. 1. Structure of S and O from Theorem 3.8.
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When every element of [0,1] is an idempotent element of continuous t-conorm S, i. e.,
S = SM , obviously, any overlap function will be conditionally distributive over S. To
sum up, we can give a complete characterization of the conditional distributivity of
overlap functions over continuous t-conorms.

Theorem 3.9. Let O be an overlap function, S be a continuous t-conorm. Then O is
conditionally distributive over S if and only if one of the following holds:

(1) S = SM .

(2) There exists idempotent element a ∈ [0, 1) such that S and O have the following
forms(see Figure 1):

S(x, y) =

{
a + (1− a)(SL)φ(x−a

1−a ,
y−a
1−a ), (x, y) ∈ [a, 1]2,

max(x, y), otherwise,

O(x, y) =


a + (1− a)(TP )φ(x−a

1−a ,
y−a
1−a ), (x, y) ∈ [a, 1]2,

aO1(x
a ,

y
a ), (x, y) ∈ [0, a]2,

aO1(min(x,y)
a , 1), otherwise,

where (SL)φ is the φ−conjugation of SL, (TP )φ is the φ−conjugation of TP , O1 is
a 1-overlap function.

Corollary 3.10. Let O be an overlap function with neutral element 1, S be a continuous
t-conorm. Then O is conditionally distributive over S if and only if one of the following
holds:

(1) S = SM .

(2) There exists an idempotent element a ∈ [0, 1) such that S = (⟨a, 1, (SL)φ⟩), and
O = (⟨0, a, O1⟩, ⟨a, 1, (TP )φ⟩), where (SL)φ is the φ−conjugation of SL, (TP )φ is
the φ−conjugation of TP , O1 is an overlap function with neutral element 1.
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Example 3.11. Consider the t-conorm S and overlap function O as follows:

S(x, y) =

{
min(x + y − 1

2 , 1), (x, y) ∈ [ 12 , 1]2,

max(x, y), otherwise,

O(x, y) =



2xy − x− y + 1, (x, y) ∈ [ 12 , 1]2,
√
x, (x, y) ∈ [0, 1

4 ]× [
√
x, 1],

√
y, (y, x) ∈ [0, 1

4 ]× [
√
y, 1],

1
2 , (x, y) ∈ [ 14 ,

1
2 ]× [ 12 , 1]

⋃
[ 12 , 1]× [ 14 ,

1
2 ],

max(x, y), otherwise,

then one can verify that O is conditionally distributive over the conorm S.

4. CONDITIONAL DISTRIBUTIVITY OF OVERLAP FUNCTIONS
OVER UNINORMS WITH CONTINUOUS UNDERLYING OPERATORS

The distributivity law of overlap function over uninorm is too strong a condition that
makes the structure of uninorm very simple, the uninorm is actually reduced to TM ,
SM or Umin

e . Thus, it is reasonable to restrict the domain of distributivity law to obtain
some new solutions. While the uninorms with continuous underlying operators have
magic structure, we consider a counterpart of the distributivity of overlap functions
over this class of uninorms on the restricted domain. In this section, we shall discuss the
conditional distributivity of overlap functions over uninorms with continuous underlying
operators, and we suppose that the neutral element e of uninorm belongs to (0, 1).

Definition 4.1. An overlap function O is conditionally distributive over a uninorm U
with continuous underlying operators if, for all x, y, z ∈ [0, 1],

O(x, U(y, z)) = U(O(x, y), O(x, z)), whenever U(y, z) < 1. (6)

Proposition 4.2. Let O be an overlap function and U ∈ COU . If O is conditionally
distributive over U , then O(1, e) = e.

P r o o f . Since O(1, 0) = 0 and O(1, 1) = 1, then it follows from the continuity of O
that there exists t ∈ (0, 1) such that e = O(1, t). Thus, by the conditional distributivity,
one has e = O(1, t) = O(1, U(e, t)) = U(O(1, e), O(1, t)) = U(O(1, e), e) = O(1, e). □

Lemma 4.3. Let O be an overlap function and U ∈ COU . If O is conditionally dis-
tributive over U , and v ∈ (0, 1) is an idempotent element of U , then [0, O(1, v)] ⊆ Id(U).

P r o o f . The proof is similar to Lemma 3.3. □

From Proposition 4.2 and Lemma 4.3, we can get some results as follows.

Remark 4.4. If overlap function O is conditionally distributive over uninorm U with
continuous underlying operators, then [0, e] ⊆ Id(U), which means the underlying t-
norm TU = TM .
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Proposition 4.5. Let O be an overlap function and U ∈ COU . If O is conditionally
distributive over U , then O(x, e) = O(x, 1) for all x ∈ [0, e].

P r o o f . For any x ∈ [0, e] and y ∈ [e, 1), since O is conditionally distributive over U ,
it follows from the structrue of U that

O(x, y) = O(x, U(e, y)) = U(O(x, e), O(x, y)) = min(O(x, e), O(x, y)) = O(x, e).

Thus, by the continuity of O, O(x, e) = O(x, 1) holds for all x ∈ [0, e]. □

Proposition 4.6. Let O be an overlap function and U ∈ COU . If O is conditionally
distributive over U , then U(0, x) = 0 for all x ∈ (e, 1).

P r o o f . Since TU = TM and SU can be written as ordinal sum, it can be known
from Proposition 2.9 that U is locally internal uninorm, then U(0, x) ∈ {0, x} for all
x ∈ (e, 1). Suppose U(0, x0) = x0 holds for some x0 ∈ (e, 1), then by Proposition 4.5
and the monotonicity of O, we have O(e, x0) = e. Since O is conditionally distributive
over U , we have

e = O(e, x0) = O(e, U(0, x0)) = U(O(e, 0), O(e, x0)) = U(0, O(e, x0)) = U(0, e) = 0,

which is an obvious contradiction. Consequently, U(0, x) = 0 for all x ∈ (e, 1). □

For the uninorm U with continuous underlying operators, Lemma 4.3 shows that the
maximal non-trivial idempotent element of U plays vital roles in investigating the condi-
tional distributivity. With that in mind, we firstly discuss the conditional distributivity
of overlap functions over idempotent uninorms.

Theorem 4.7. Let O be an overlap function, U ∈ Uide. If O is conditionally distributive
over U , then U has the following form:

U(x, y) =


max(x, y), (x, y) ∈ [e, 1]2,

min(x, y), (x, y) ∈ [0, e]2 ∪ ([0, e)× (e, 1)) ∪ ((e, 1)× [0, e)),

x or y, otherwise.

(7)

P r o o f . Since U is idempotent, then U = ⟨e, g⟩ide for an associated function g. We
assert g(x) = 1 for all x ∈ [0, e). In fact, it can be known from Proposition 4.6 that
g(0) = 1. Assume that there exists x0 ∈ (0, e) such that g(x0) < 1, then the following
statements hold:

(1) O(e, x0) = e. For any y ∈ (g(x0), 1), it holds that x0 < e ≤ g(x0) < y < 1, then
by the structures of U and O, one has U(y, x0) = y and O(e, y) = e. Since O is
conditionally distributive over U , one gets

e = O(e, y) = O(e, U(y, x0)) = U(O(e, y), O(e, x0)) = U(e,O(e, x0)) = O(e, x0).
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(2) O(1, g(x0)) = e. In fact, it is obvious when g(x0) = e; when g(x0) > e, it follows
from item (1) and Proposition 4.5 that O(1, x0) = O(e, x0) = e. Thus, for any
z ∈ (e, g(x0)), one has

e = O(1, x0) = O(1, U(z, x0)) = U(O(1, z), O(1, x0)) = U(O(1, z), e) = O(1, z).

Therefore, we can get O(1, g(x0)) = e from the continuity of O.

Let p =
∧
{x ∈ [0, e)|g(x) < 1}, then 0 ≤ p < e. For any t ∈ (p, e), it holds

that g(t) < 1 and O(e, t) = e. Hence, by the continuity of O, we have O(e, p) = e.
Obviously, p ̸= 0. And, by Proposition 4.5, we can get O(1, p) = e. Take u ∈ (0, e)
such that g(u) < 1, then O(1, g(u)) = e, furthermore, there exists mu ∈ (0, p) such that
u = O(1,mu). Then g(mu) = 1 because of mu ∈ (0, p). Moreover, for any y ∈ (g(u), 1),
there exists zy ∈ (g(u), 1) such that y = O(1, zy) because of the continuity of O. In
addition, since O is conditionally distributive over U , we can get from the structure of
U that

u = O(1,mu) = O(1, U(zy,mu)) = U(O(1, zy), O(1,mu)) = U(y, u) = y. (8)

However, u < e < y, which contradicts with Eq.(8).
Consequently, g(x) = 1 for all x ∈ [0, e). Then by the characterization of associated

function, we have

g(x) =

{
1, x ∈ [0, e),

e, x ∈ [e, 1).

Thus, U has the form of Eq.(7). □

Proposition 4.8. Let O be an overlap function, U ∈ Uide. If O is conditionally dis-
tributive over U , then O(x, 1) = O(x, e) < e for all x ∈ [0, e).

P r o o f . For x = 0, it is obvious. Take any x ∈ (0, e), by Proposition 4.5, we know
O(x, 1) = O(x, e). Suppose that there exists x0 ∈ (0, e) such that O(1, x0) = O(e, x0) =
e, then for any y ∈ (e, 1), it follows from Theorem 4.7 and the conditional distributivity
that

e = O(1, x0) = O(1, U(y, x0)) = U(O(1, y), O(1, x0)) = U(O(1, y), e) = O(1, y).

Furthermore, we can obtain O(1, 1) = e < 1 in that O is continuous, it is a contradiction.
□

Theorem 4.9. Let O be an overlap function, U be an idempotent uninorm, and U =
⟨e, g⟩ide. Then O is conditionally distributive over U if and only if one of the following
statements holds:

(1) U and O have the following form (see Figure 2):

U(x, y) =


max(x, y), (x, y) ∈ [e, 1]2,

1, (x, y) ∈ ((g(1), e)× {1}) ∪ ({1} × (g(1), e)),

min(x, y), otherwise,

(9)
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O(x, y) =


e + (1− e)O2(x−e

1−e ,
y−e
1−e ), (x, y) ∈ [e, 1]2,

eO1(x
e ,

y
e ), (x, y) ∈ [0, e]2,

eO1(min(x,y)
e , 1), otherwise,

(10)

where O1 is an overlap function, O2 is a 0-overlap function, O has the following
properties:

(⋆) O(1, g(1)) ≤ g(1).

(2) U has the following form:

U(x, y) =


max(x, y), (x, y) ∈ [e, 1]2,

1, (x, y) ∈ ([g(1), e)× {1}) ∪ ({1} × [g(1), e)),

min(x, y), otherwise,

(11)

and O has the form of Eq.(10)(see Figure 3), but O has the following properties:

(⋆
′
) O(1, x) < g(1) for all x ∈ [0, g(1)).

P r o o f . (⇒): By Proposition 4.2, Proposition 4.5 and Proposition 4.8, O satisfies
Eq.(10), where O1 is an overlap function, O2 is a 0-overlap function. And, by Theorem
4.7, the values of g on [0, 1) can be obtained, then due to the value of g(1), we shall
discuss the cases below.

i) If g(1) = 0, then two cases should be considered:

• when U is conjunctive, U satisfies Eq.(9), and O obviously satisfies (⋆);

• when U is disjunctive, U satisfies Eq.(11), and O satisfies (⋆
′
).

ii) If g(1) = e, then U satisfies Eq.(11), and by Proposition 4.8, O satisfies (⋆
′
).

iii) If g(1) ∈ (0, e), then idempotent uninorm U has the following form:

U(x, y) =


1 or g(1), (x, y) ∈ {(1, g(1)), (g(1), 1)},
max(x, y), (x, y) ∈ [e, 1]2,

1, (x, y) ∈ ((g(1), e)× {1}) ∪ ({1} × (g(1), e)),

min(x, y), otherwise.

• When U(1, g(1)) = g(1), U satisfies Eq.(9). And, since O is conditionally dis-
tributive over U , it holds that

O(1, g(1)) = O(1, U(1, g(1))) = U(O(1, 1), O(1, g(1))) = U(1, O(1, g(1))).

Furthermore, by the structure of U , we get O(1, g(1)) ≤ g(1).

• When U(1, g(1)) = 1, U satisfies Eq.(11). For any x ∈ [0, g(1)), since O is
conditionally distributive over U , one has

O(1, x) = O(1, U(1, x)) = U(O(1, 1), O(1, x)) = U(1, O(1, x)),

then it follows from the structure of U that O(1, x) < g(1).

(⇐) Firstly, we discuss the case g(1) ∈ (0, e).
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1) Suppose O and U are given as Eq.(10) and Eq.(9), respectively. For any x, y, z ∈
[0, 1], if U(y, z) < 1, then we shall divide our proof into the following cases:

(i) when x, y, z ∈ [0, e], Eq.(6) holds;

(ii) when y, z ∈ [e, 1) and x ∈ [e, 1], Eq.(6) is easy to get;

(iii) when x, y ∈ [0, e] and z ∈ (e, 1), it holds that O(x, y) ≤ O(x, z) ≤ e, thus, by
the structures of O and U , one has

O(x, U(y, z)) = O(x, y) = min(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(iv) when x ∈ [0, e], y ∈ [0, g(1)] and z = 1, we have U(y, 1) = y and O(x, y) ≤
O(x, z) ≤ e, thus, it holds that

O(x, U(y, 1)) = O(x, y) = min(O(x, y), O(x, 1)) = U(O(x, y), O(x, 1));

(v) when y, z ∈ [0, e] and x ∈ (e, 1], we can obtain U(y, z) = min(y, z) < 1,
O(x, y) ≤ e and O(x, z) ≤ e, thus, we have

O(x, U(y, z)) = min(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(vi) when x, z ∈ [0, e] and y ∈ (e, 1), similarly to case (iii);

(vii) when x ∈ [0, e], z ∈ [0, g(1)] and y = 1, similarly to case (iv);

(viii) when x ∈ (e, 1], y ∈ (e, 1) and z ∈ [0, e), we have U(y, z) = z, e ≤ O(x, y) <
1 and O(x, z) < e, it follows that

O(x, U(y, z)) = O(x, z) = min(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(ix) when x ∈ (e, 1], y = 1 and z ∈ [0, g(1)], one gets U(1, z) = z and O(x, 1) ≥ e,
moreover, O(x, z) ≤ O(1, g(1)) ≤ g(1) can be obtained by (⋆), thus, we have

O(x, U(1, z)) = O(x, z) = min(O(x, 1), O(x, z)) = U(O(x, 1), O(x, z));

(x) when y, z ∈ (e, 1) and x ∈ [0, e), it holds that O(x, U(y, z)) = O(x, y) =
O(x, z) = O(x, e) < e, thus, we get

O(x, U(y, z)) = O(x, e) = U(O(x, y), O(x, z));

(xi) when x ∈ (e, 1], z ∈ (e, 1) and y ∈ [0, e), similarly to case (viii);

(xii) when x ∈ (e, 1], z = 1 and y ∈ [0, g(1)], similarly to case (ix).

As seen above, in all considered cases we obtain the overlap function O given as
Eq.(10) is conditionally distributive over the uninorm U shown in Eq.(9).

2) If O is an overlap function satisfying Eq.(10), and U is a uninorm satisfying Eq.(11),
the conditional distributivity can be proved similarly to the case 1).

For the cases g(1) = 0 and g(1) = e, the conditional distributivity can be easily
proved. □
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Fig. 2. Structure of U and O from Theorem 4.9(1).
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Fig. 3. Structure of U and O from Theorem 4.9(2).
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In order to make the difference between the two solutions clearer, let’s give an example
as follows.

Example 4.10. Consider the idempotent uninorm U =< 1
2 , g > with associated func-

tion

g(x) =


1, x ∈ [0, 1

2 ),
1
2 , x ∈ [ 12 , 1),
1
4 , x = 1.

(1) If U is given by

U(x, y) =

{
max(x, y), (x, y) ∈ [ 12 , 1]2

⋃
(( 1

4 ,
1
2 )× {1}) ∪ ({1} × ( 1

4 ,
1
2 )),

min(x, y), otherwise,
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and we define an overlap function O as follows:

O(x, y)=



1
4O1(4x, 4y), (x, y) ∈ [0, 1

4 ]2,

max(x + y − 1
2 ,

1
4 ), (x, y) ∈ [ 14 ,

1
2 ]2,

1
2 + 1

2O2(2x− 1, 2y − 1) (x, y) ∈ [ 12 , 1]2,
1
4O1(4x, 1), (x, y) ∈ [0, 1

4 ]× [ 14 , 1],
1
4O1(1, 4y), (x, y) ∈ [ 14 , 1]× [0, 1

4 ],

min(x, y), otherwise,

where O1 and O2 are defined by

O1(x, y) =


√

2x, (x, y) ∈ [0, 1
2 ]× [

√
2x, 1],

√
2y, (y, x) ∈ [0, 1

2 ]× [
√

2y, 1],

max(x, y), otherwise,

O2(x, y) = min(x, y) max(x2 + y2 − 1, 0),

the structure of O and U is shown in Figure 4, then one can verify that O is
conditionally distributive over the uninorm U . This fits in with the first solution
in Theorem 4.9.

(2) If U is given by

U(x, y) =

{
max(x, y), (x, y) ∈ [ 12 , 1]2

⋃
([ 14 ,

1
2 )× {1}) ∪ ({1} × [ 14 ,

1
2 )),

min(x, y), otherwise,

and an overlap function O∗ is constructed by

O∗(x, y) =



2 min(x
√
y, y
√
x), (x, y) ∈ [0, 1

4 ]2,
1
4 + 1

4 (4x− 1)2(4y − 1)2, (x, y) ∈ [ 14 ,
1
2 ]2,

1
2+min((2x−1)2,(2y−1)2) max(x+y−3

2 , 0), (x, y) ∈ [ 12 , 1]2,

min(x,
√
x
2 ), (x, y) ∈ [0, 1

4 ]× [ 14 , 1],

min(y,
√
y

2 ), (x, y) ∈ [ 14 , 1]× [0, 1
4 ],

1
4 + 1

4 min((4x− 1)2, (4y − 1)2), otherwise,

their structure is shown in Figure 5, and O3, O4 and O5 are listed as follows:

O3(x, y) = min(x
√
y, y
√
x),

O4(x, y) = x2y2,

O5(x, y) = min(x2, y2) max(x + y − 1, 0),

then O∗ is conditionally distributive over the uninorm U . This illustrates the
second solution in Theorem 4.9.
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Fig. 4 . Structure of U and O from Example 4.10(1).

0 1
4

1
2 1

1
4

1
2

1

O1

TL

O2

1 4
O

1
(4
x
,1

)

min

min

1
4O1(1, 4y)

0 1
4 11

2

1
4

1

1
2

min min

maxmin

•
|→1←|

•

↓

—–

1
—–

↑

Fig. 5. Structure of U and O from Example 4.10(2).
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Above all, we have completely characterized the conditional distributivity of overlap
functions over idempotent uninorms. The maximum idempotent element, but not 1, is
crucial for us to study the conditional distributivity of overlap function over uninorm
with continuous underlying operators. As we all know, the neutral element e is an
idempotent element, so by Remark 4.4, we can directly get [0, e] ⊆ Id(U), namely
TU = TM , therefore the maximum non-trivial idempotent element of uninorm will fall
in [e, 1).

Proposition 4.11. Let O be an overlap function, U ∈ COU , and a ∈ [e, 1) is the
maximum non-trivial idempotent element of U . If O is conditionally distributive over
U , then O(1, a) = a.

P r o o f . If a = e, it follows directly from Proposition 4.2. If a ∈ (e, 1), since SU is
continuous, and a is the maximum non-trivial idempotent element of U , we have that
U |[a,1]2 is isomorphic to a continuous Archimedean t-conorm. Additionally, by Lemma
4.3, we get [0, O(1, a)] ⊆ Id(U), so it holds that O(1, a) ≤ a. Assume O(1, a) < a,
then there exists t ∈ (a, 1) such that a = O(1, t) in that O is continuous. Let B =
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{x ∈ (a, 1) | O(1, x) = a}, then B ̸= ∅. Take m =
∧

B, then O(1,m) = a and
a < m < 1 hold. For m ∈ (a, 1), since U |[a,1]2 is a continuous Archimedean t-conorm,
then m = U(n, n) > n for some n ∈ (a, 1). Thus, we can get from the conditional
distributivity that a = O(1,m) = O(1, U(n, n)) = U(O(1, n), O(1, n)). Furthermore, by
the structure of U , we have O(1, n) = a, i. e., n ∈ B and n ≥ m, which is a contradiction.
Thus, O(1, a) = a. □

Remark 4.12. If overlap function O is conditionally distributive over U with continu-
ous underlying operators, and a ∈ [e, 1) is the maximum non-trivial idempotent element
of U , then the underlying operators of U are TU = TM and SU = (⟨a−e

1−e , 1, S
∗⟩), where

S∗ is a continuous Archimedean t-conorm.

Proposition 4.13. Let O be an overlap function, U ∈ COU , and a ∈ [e, 1) is the
maximum non-trivial idempotent element of U . If O is conditionally distributive over
U , then O(x, a) = O(x, 1) for all x ∈ [0, a].

P r o o f . If a = e, it is given by Proposition 4.5. If a ∈ (e, 1), O(0, a) = O(0, 1) = 0 is
obvious. For any y ∈ (a, 1), since U |[a,1]2 is a continuous Archimedean t-conorm, there
exists ty ∈ (a, 1) such that y = U(ty, ty) > ty. For any x ∈ (0, a], it follows from the
conditional distributivity that

O(x, y) = O(x, U(ty, ty)) = U(O(x, ty), O(x, ty)) = O(x, ty).

Let Bx,y = {u ∈ (a, 1) | O(x, u) = O(x, y)}, then Bx,y ̸= ∅, take mx,y =
∧

Bx,y,
we have O(x,mx,y) = O(x, y) and a ≤ mx,y < 1. Next, we shall prove mx,y = a.
Suppose that mx,y > a, then there exists nx,y ∈ (a, 1) such that mx,y = U(nx,y, nx,y) >
nx,y. So by the conditional distributivity, one gets O(x,mx,y) = O(x, U(nx,y, nx,y)) =
U(O(x, nx,y), O(x, nx,y)) = O(x, nx,y), i. e., nx,y ∈ Bx,y. However nx,y < mx,y, which
is a contradiction with the definition of mx,y. Thus mx,y = a, i. e., O(x, y) = O(x, a).
Moreover, it follows from the continuity of O that O(x, a) = O(x, 1) for all x ∈ [0, a].

□

Proposition 4.14. Let O be an overlap function, U ∈ COU , and a ∈ [e, 1) is the
maximum non-trivial idempotent element of U . If O is conditionally distributive over
U , then for any x, y ∈ [a, 1], O(x, y) = a if and only if x = a or y = a.

P r o o f . (⇐) It can be obtained by Proposition 4.11 and Proposition 4.13.
(⇒) Suppose that there exist x0, y0 ∈ (a, 1] such that O(x0, y0) = a, then there must

be z0 ∈ (a, 1) such that O(z0, z0) = a. Let b =
∨
{x ∈ (a, 1)|O(x, x) = a}, then b ∈ (a, 1)

and O(b, b) = a. Because U |[a,1]2 is a continuous Archimedean t-conorm, we have
t < b < U(t, t) < 1 for some t ∈ (a, 1), hence a ≤ O(b, t) ≤ O(b, b) = a, i. e., O(b, t) = a.
Therefore, by the conditional distributivity, we have

O(b, U(t, t)) = U(O(b, t), O(b, t)) = U(a, a) = a.

Let B = {x ∈ (a, 1] | O(b, x) = a}, then U(t, t) ∈ B. Take c =
∨

B, it holds that c > b
and O(b, c) = a. For c, there exists v ∈ (a, 1) such that v < c < U(v, v) < 1, then
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O(b, v) = a. Owing to the conditional distributivity, we have O(b, U(v, v)) = U(a, a) =
a. That is, U(v, v) ∈ B, but U(v, v) > c, it contradicts with the definition of c. Thus,
for any x, y ∈ [a, 1], if O(x, y) = a, then x = a or y = a. □

Theorem 4.15. Let O be an overlap function, U ∈ COU , and a ∈ [e, 1) is the maximum
non-trivial idempotent element of U . If O is conditionally distributive over U , then U
has the following form:

U(x, y) =


a+(1−a)(SL)φ(x−a

1−a ,
y−a
1−a ), (x, y)∈ [a, 1]2,

max(x, y), (x, y)∈ [e, a]2∪([e, a]×(a, 1])∪((a, 1]×[e, a]),

min(x, y), (x, y)∈ [0, e]2∪([0, e)×(e, 1))∪((e, 1)×[0, e)),

x or y, otherwise.

(12)

P r o o f . We have known TU = TM and SU can be represented by ordinal sum, so
by Proposition 2.9, U is a locally internal uninorm, that is, there exists an associated
function g such that U = ⟨e, g⟩loc. Similar to the proof of Theorem 4.7, we can get
g(x) = 1 for all x ∈ [0, e). Thus, according to the property of g, we have

g(x) =

{
1, x ∈ [0, e),

e, x ∈ [e, 1).

Then by the conditional distributivity, we know O|[a,1]2 is conditionally distributive over
U |[a,1]2 . Therefore, combined with Proposition 4.14 and Theorem 3.4, uninorm U has
the form of Eq.(12). □

Proposition 4.16. Let O be an overlap function, U ∈ COU , and a ∈ [e, 1) is the
maximum non-trivial idempotent element of U . If O is conditionally distributive over
U , then O(x, 1) = O(x, e) < e for all x ∈ [0, e).

P r o o f . The proof is similar to Proposition 4.8. □

Theorem 4.17. Let O be an overlap function, U ∈ COU , and a ∈ [e, 1) is the maximum
non-trivial idempotent element of U . Then O is conditionally distributive over U if and
only if one of the following conditions holds:

(1) U and O have the following forms(see Figure 6):

U(x, y) =


a+(1−a)(SL)φ(x−a

1−a ,
y−a
1−a ), (x, y)∈ [a, 1]2,

max(x, y), (x, y)∈ [e, a]2∪([e, a]×(a, 1])∪((a, 1]×[e, a]),

1, (x, y)∈((g(1), e)×{1})∪({1}×(g(1), e)),

min(x, y), otherwise,

(13)
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O(x, y) =



a + (1− a)(TP )φ(x−a
1−a ,

y−a
1−a ), (x, y) ∈ [a, 1]2,

e + (a− e)O2(x−e
a−e ,

y−e
a−e ), (x, y) ∈ [e, a]2,

eO1(x
e ,

y
e ), (x, y) ∈ [0, e]2,

e + (a− e)O2(min(x,y)−e
a−e , 1), (x, y) ∈ ([e, a]×(a, 1])∪((a, 1]×[e, a]),

eO1(min(x,y)
e , 1), (x, y) ∈ ([0, e)×(e, 1])∪((e, 1]×[0, e)),

(14)
where g is the associated function of U , (SL)φ is the φ−conjugate of SL, (TP )φ is
the φ−conjugate of TP , O1 is an overlap function, O2 is a 2-dimentional general
overlap function, and O also satisfies the following condition:

(⋆) O(1, g(1)) ≤ g(1).

(2) U has the following form(see Figure 7):

U(x, y) =


a+(1−a)(SL)φ(x−a

1−a ,
y−a
1−a ), (x, y)∈ [a, 1]2,

max(x, y), (x, y)∈ [e, a]2∪([e, a]×(a, 1])∪((a, 1]×[e, a]),

1, (x, y)∈([g(1), e)×{1})∪({1}×[g(1), e)),

min(x, y), otherwise,

(15)
where g is the associated function of U , (SL)φ is the φ−conjugate of SL, (TP )φ
is the φ−conjugate of TP , and O has the form of Eq.(14), but O satisfies the
following condition:

(⋆
′
) ∀ x ∈ [0, g(1)), O(1, x) < g(1) holds.

P r o o f . Since the proof for a = e is similar and simpler to that for a ∈ (e, 1), only the
proof for a ∈ (e, 1) is presented here.

(⇒) Obviously, O satisfies Eq.(14), where (TP )φ is the φ−conjugate of TP , O1 is
an overlap function, O2 : [0, 1]2 → [0, 1] satisfies (O1), (O4), (O5), O2(1, 1) = 1, and
O2(0, x) = O2(x, 0) = 0 for all x ∈ [0, 1], i. e., O2 is a 2-dimentional general overlap
function. And by Theorem 4.15, g |[0,1) can be determined, then according to the value
of g(1), we shall discuss the following cases.

i) If g(1) = 0, then we investigate two cases:

• when U is conjunctive, U satisfies Eq.(13), and O satisfies (⋆);

• when U is disjunctive, U satisfies Eq.(15), and O satisfies (⋆
′
).

ii) If g(1) = e, then U satisfies Eq.(15), and by Proposition 4.17, O satisfies (⋆
′
).

iii) If g(1) ∈ (0, e), then U has the following form:

U(x, y) =



a+(1−a)(SL)φ(x−a
1−a ,

y−a
1−a ), (x, y)∈ [a, 1]2,

max(x, y), (x, y)∈ [e, a]2∪([e, a]×(a, 1])∪((a, 1]×[e, a]),

1, (x, y)∈((g(1), e)×{1})∪({1}×(g(1), e)),

1 or g(1), (x, y) ∈ {(1, g(1)), (g(1), 1)},
min(x, y), otherwise,
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(a) when U(1, g(1)) = g(1), U satisfies Eq.(13), and since O is conditionally dis-
tributive over U , it holds that

O(1, g(1)) = O(1, U(1, g(1))) = U(1, O(1, g(1))),

furthermore, by the structure of U , one gets O(1, g(1)) ≤ g(1);

(b) when U(1, g(1)) = 1, U satisfies Eq.(15), for any x ∈ [0, g(1)), since O is condi-
tionally distributive over U , one has O(1, x) = O(1, U(1, x)) = U(1, O(1, x)),
then it follows from the structure of U that O(1, x) < g(1).

(⇐) Considering g(1) ∈ (0, e) at first.

1) Suppose O and U are given as Eq.(14) and Eq.(13), respectively. For any x, y, z ∈
[0, 1], if U(y, z) < 1, then we shall divide our proof into the following parts:

(i) when (x, y, z) ∈ [0, e]3
⋃

[e, a]3, Eq.(6) holds;

(ii) when x, y, z ∈ [a, 1], by Theorem 3.4, Eq.(6) holds;

(iii) when x ∈ [0, e], y ∈ [0, e) and z ∈ (e, 1), it holds that O(x, y) ≤ O(x, z) ≤ e,
thus, by the structures of U and O, we have

O(x, U(y, z)) = O(x, y) = min(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(iv) when x ∈ [0, e], y = e and z ∈ (e, 1), it holds that O(x, y) = O(x, z) ≤ e,
thus, there holds

O(x, U(y, z)) = O(x, z) = min(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(v) when x ∈ [0, e], y ∈ [0, g(1)] and z = 1, we have U(y, 1) = y and O(x, y) ≤
O(x, 1) ≤ e, then it follows that

O(x, U(y, 1)) = O(x, y) = U(O(x, y), O(x, 1));

(vi) when y, z ∈ [0, e] and x ∈ (e, 1], then it holds that U(y, z) = min(y, z) < 1,
O(x, y) ≤ e, O(x, z) ≤ e, thus, we have

O(x, U(y, z)) = min(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(vii) when x, z ∈ [0, e] and y ∈ (e, 1), similarly to item (iii) and (iv);

(viii) when x ∈ [0, e], z ∈ [0, g(1)] and y = 1, similarly to item (v);

(ix) when x ∈ (e, 1], y ∈ (e, 1) and z ∈ [0, e), we have U(y, z) = z, e ≤ O(x, y) < 1
and O(x, z) < e, thus, it follows from the structures of U that

O(x, U(y, z)) = O(x, z) = min(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(x) when x ∈ (e, 1], y = 1 and z ∈ [0, g(1)], we have U(1, z) = z and O(x, 1) ≥ e,
moreover, we can get O(x, z) ≤ O(1, g(1)) ≤ g(1) by condition (⋆), thus, by
the structure of U , we have

O(x, U(1, z)) = O(x, z) = min(O(x, 1), O(x, z)) = U(O(x, 1), O(x, z));
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(xi) when y, z ∈ (e, 1) and x ∈ [0, e), we have O(x, U(y, z)) = O(x, y) = O(x, z) =
O(x, e) < e, thus, it holds that

O(x, U(y, z)) = O(x, e) = U(O(x, y), O(x, z));

(xii) when x ∈ (e, 1], z ∈ (e, 1) and y ∈ [0, e), similarly to item (ix);

(xiii) when x ∈ (e, 1], z = 1 and y ∈ [0, g(1)], similarly to item (x);

(xiv) when x, y ∈ [e, a] and z ∈ (a, 1), we have U(y, z) = z, and O(x, y), O(x, z) ∈
[e, a], thus, it follows from the structure of U that

O(x, U(y, z)) = O(x, z) = max(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(xv) when y, z ∈ [e, a] and x ∈ (a, 1], it holds that U(y, z) = max(y, z), and
O(x, y), O(x, z) ∈ [e, a], hence, we get

O(x, U(y, z)) = max(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(xvi) when x, z ∈ [e, a] and y ∈ (a, 1), the proof is similar to item (xiv);

(xvii) when x ∈ (a, 1], y ∈ (a, 1) and z ∈ [e, a], we have U(y, z) = y, O(x, y) ∈
[a, 1) and O(x, z) ∈ [e, a], thereby, it holds that

O(x, U(y, z)) = O(x, y) = max(O(x, y), O(x, z)) = U(O(x, y), O(x, z));

(xviii) when y, z ∈ (a, 1) and x ∈ [e, a], we have U(y, z) ∈ (a, 1) and O(x, U(y, z)) =
O(x, y) = O(x, z) ∈ [e, a], sequentially, we get

O(x, U(y, z)) = O(x, y) = U(O(x, y), O(x, z));

(xix) when x ∈ (a, 1], z ∈ (a, 1) and y ∈ [e, a], similarly to item (xvii).

As a result, the overlap function O given as Eq.(14) is conditionally distributive
over the uninorm U shown in Eq.(13).

2) If O is an overlap function satisfying Eq.(14), and U is a uninorm satisfying Eq.(15),
the conditional distributivity can be proved similarly to the case 1).

For the cases g(1) = 0 and g(1) = e, the conditional distributivity can be easily
proved. □

Example 4.18. (1) Take φ(x) = x2, and consider the uninorm U and overlap function
O as follows (see Figure 8):

U(x, y) =


3
4 +

√
min((x− 3

4 )2+(y− 3
4 )2, 1

16 ), (x, y)∈ [ 34 , 1]2,

max(x, y), (x, y)∈([ 12 ,
3
4 ]×[ 12 , 1])∪(( 3

4 , 1]×[ 12 ,
3
4 ]),

1, (x, y)∈(( 1
4 ,

1
2 )×{1})∪({1}×( 1

4 ,
1
2 )),

min(x, y), otherwise,
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Fig. 6. Structure of U and O from Theorem 4.17(1).
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Fig. 7 Structure of U and O from Theorem 4.17(2)
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O(x, y)=



4xy − 3x− 3y + 3, (x, y) ∈ [ 34 , 1]2,
5
8 + 1

8O1(8x− 5, 8y − 5), (x, y) ∈ [ 58 ,
3
4 ]2,

max(x + y − 5
8 ,

1
2 ), (x, y) ∈ [ 12 ,

5
8 ]2,

1
4+
√

max((x−1
4 )2+(y−1

4 )2− 1
16 , 0), (x, y) ∈ [ 14 ,

1
2 ]2,

1
4O1(4x, 4y), (x, y) ∈ [0, 1

4 ]2,
5
8 + 1

8O1(8 min(x, y)− 5, 1), (x, y) ∈ ([ 58 ,
3
4 )×( 3

4 , 1])∪(( 3
4 , 1]×[ 58 ,

3
4 )),

1
4O1(4 min(x, y), 1), (x, y) ∈ ([0, 1

4 )×( 1
4 , 1])∪(( 1

4 , 1]×[0, 1
4 )),

min(x, y), otherwise,

where O1 is defined by

O1(x, y) =


2x, (x, y) ∈ [0, 1

2 ]× [2x, 1],

2y, (y, x) ∈ [0, 1
2 ]× [2y, 1],

max(x, y), otherwise,

it can be verified that O is conditionally distributive over the uninorm U , which
corresponds to the first case of Theorem 4.17.
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(2) If U∗ is defined by

U∗(x, y)=


3
4 +

√
min((x− 3

4 )2+(y− 3
4 )2, 1

16 ), (x, y)∈ [ 34 , 1]2,

max(x, y), (x, y)∈([ 12 ,
3
4 ]×[ 12 , 1])∪(( 3

4 , 1]×[ 12 ,
3
4 ]),

1, (x, y)∈([ 14 ,
1
2 )×{1})∪({1}×[ 14 ,

1
2 )),

min(x, y), otherwise,

and an overlap function O∗ is defined by

O∗(x, y)=



4xy − 3x− 3y + 3, (x, y) ∈ [ 34 , 1]2,
5
8 + 1

8O2(8x− 5, 8y − 5), (x, y) ∈ [ 58 ,
3
4 ]2,

max(x + y − 5
8 ,

1
2 ), (x, y) ∈ [ 12 ,

5
8 ]2,

1
4+
√

max((x−1
4 )2+(y−1

4 )2− 1
16 , 0), (x, y) ∈ [ 14 ,

1
2 ]2,

8xy(x + y), (x, y) ∈ [0, 1
4 ]2,

5
8 + 1

8O2(8 min(x, y)− 5, 1), (x, y) ∈ ([ 58 ,
3
4 )×( 3

4 , 1])∪(( 3
4 , 1]×[ 58 ,

3
4 )),

2x2 + x
2 , (x, y) ∈ [0, 1

4 )×( 1
4 , 1],

2y2 + y
2 , , (x, y) ∈ ( 1

4 , 1]×[0, 1
4 ),

min(x, y), otherwise,

where O2 is defined by

O2(x, y) =


√

2x, (x, y) ∈ [0, 1
2 ]× [

√
2x, 1],

√
2y, (y, x) ∈ [0, 1

2 ]× [
√

2y, 1],

max(x, y), otherwise,

then O∗ is conditionally distributive over the uninorm U∗, it accords with the
second case of Theorem 4.17. The specific structure of O∗ and U∗ is shown in
Figure 9, and the corresponding O3 is given as O3(x, y) = xy x+y

2 .
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Fig. 8. Structure of U and O from Example 4.18(1).
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Fig. 9. Structure of U and O from Example 4.18(2).
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So far, the full characterization of overlap functions over uninorms with continuous
underlying operators can be summarized.

Theorem 4.19. Let O be an overlap function, U ∈ COU . Then O is conditionally
distributive over U if and only if one of the following cases hold:

(1) U is an idempotent uninorm, and U satisfies Eq.(9), O satisfies Eq.(10)(see Fig-
ure 2), where g is the associated function of U , O1 is an overlap function, O2 is a
0-overlap function, and O satisfies (⋆).

(2) U is an idempotent uninorm, and U satisfies Eq.(11), O satisfies Eq.(10)(see Fig-
ure 3), where g is the associated function of U , O1 is an overlap function, O2 is a
0-overlap function, but O satisfies (⋆

′
).

(3) There exists a ∈ [e, 1) such that U satisfies Eq.(13), O satisfies Eq.(14)(see Figure 6),
where g is the associated function of U , (SL)φ is the φ−conjugate of SL, (TP )φ is
the φ−conjugate of TP , O1 is an overlap function, O2 is a 2-dimentional general
overlap function, and O also satisfies (⋆).

(4) There exists a ∈ [e, 1) such that U satisfies Eq.(15), O satisfies Eq.(14)(see Figure 7),
where g is the associated function of U , (SL)φ is the φ−conjugate of SL, (TP )φ is
the φ−conjugate of TP , O1 is an overlap function, O2 is a 2-dimentional general
overlap function, and O also satisfies (⋆

′
).

5. CONCLUSIONS

Conditional distributivity of overlap functions over t-conorms and uninorms are con-
sidered throughout this paper. The distributivity for overlap functions with respect to
uninorms is rather a strong condition, since it simplifies the structure of the inner opera-
tors considerably, and the uninorms are being actually reduced to idempotent uninorms.
In Section 3, we have given a characterization of all pairs (O,S) satisfying distributivity
law on the restricted domain, where O is an overlap function and S is a continuous
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t-conorm. And then, the conditional distributivity of overlap functions over uninorms
with continuous underlying operators is fully characterized based on Section 3. It turns
out that the conditional distributivity produces a larger variety of solutions. Researches
in Section 3 and 4 are continuation investigations of conditional distributivity for overlap
function. In the forthcoming work, the distributivity and conditional distributivity for
some other classes of aggregation functions will be considered, and our further research
will focus on the obtained structures and possible applications to utility theory.
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[30] P. Drygaś and E. Rak: Distributivity equation in the class of 2-uninorms. Fuzzy Sets
Systems 291 (2016), 82–97. DOI:10.1016/j.fss.2015.02.014
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