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Abstract. The class of Sakaguchi type functions defined by balancing polynomials has
been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-
Szegö inequality and the initial coefficients |a2| and |a3| have also been estimated.
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1. Introduction and preliminaries

Let H be the class of analytic functions in the open unit disc U = {z ∈ C : |z| < 1}
and consider the classes P , A and S defined by

P = {p ∈ H : p(0) = 1 and ℜ(p(z)) > 0, z ∈ U},
A = {f ∈ H : f(0) = f ′(0)− 1 = 0},
S = {f ∈ A : f is univalent in U},

respectively. It is clear that the function f ∈ A can be expressed as

(1.1) f(z) = z +

∞
∑

n=2

anz
n, z ∈ U.

For two functions f, g ∈ H we say that the function f is subordinate to g in U, and write

f(z) ≺ g(z), z ∈ U,
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if there exists a Schwarz function

ω ∈ Ω := {ω ∈ H : ω(0) = 0 and |ω(z)| < 1, z ∈ U}

such that

f(z) = g(ω(z)), z ∈ U.

A subclass consisting of functions f ∈ A satisfying the analytic criterion

ℜ
( zf′(z)

f(z)− f(−z)
)

> α, 0 6 α < 1

was introduced by Sakaguchi [22] and these functions were named after him as Sak-

aguchi type functions [16], [17], [25]. Sakaguchi type functions are starlike with

respect to symmetric points. Frasin [8] generalized Sakaguchi type class which had

functions of the form (1.1) given by

ℜ
( (s− b)zf′(z)

f(sz)− f(bz)

)

> α, 0 6 α < 1, s, b ∈ C with s 6= b, |s| 6 1, |b| 6 1, z ∈ U.

There are numerous integer number sequences in literature, including the Fibonacci,

Lucas, Pell, and others. A novel integer sequence called balancing numbers was re-

cently presented by Behera and Panda [4]. Some of the characteristics of this new

number sequence have been thoroughly researched during the past 25 years. There

was research done, and generalizations were undoubtedly formed. The references

in [7], [9], [10], [12], [13], [18], [19], [20] provide thorough information for people

who are interested in balancing numbers. The balancing polynomials are a natu-

ral generalization of the balancing numbers, and [21] provides a definition of these

polynomials as well as some of their intriguing characteristics.

Definition 1.1. For x ∈ C and any integer n > 2, the balancing polynomials

are defined by the following recurrence relations:

(1.2) Bn(x) = 6xBn−1(x) −Bn−2(x)

with the initial values

B0(x) = 0 and B1(x) = 1.

R em a r k 1.1. If we set n = 2 and n = 3 in (1.2), then we obtain the polynomials

(1.3) B2(x) = 6x and B3(x) = 36x2 − 1,

respectively.
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In the same way as with other number polynomials, generating functions can be

used to produce balancing polynomials. One such function is as follows:

Lemma 1.1 ([11]). The ordinary generating function of balancing polynomials is

given by

(1.4) B(x, z) =
∞
∑

n=0

Bn(x)z
n =

z

1− 6xz + z2
, z ∈ U.

A function f ∈ A is called bi-univalent in U if f ∈ S and its inverse function has
an analytic continuation to |w| < 1. Let Σ = {f ∈ S : f is bi-univalent}. For the
function f ∈ A given by (1.1), the inverse function g = f−1 is of the form

(1.5) g(w) = f−1(w) = w − a2w
2 + (2a2

2
− a3)w

3 − (5a3
2
− 5a2a3 + a4)w

4 + . . .

Note that the functions

f1(z) =
z

1− z
, f2(z) =

1

2
log

1 + z

1− z
, f3(z) = − log(1− z)

with their corresponding inverses

f−1

1
(w) =

w

1 + w
, f−1

2
(w) =

e2w − 1

e2w + 1
, f−1

3
(w) =

ew − 1

ew

are elements of Σ (see [24], [26], [27]). However, the functions in S such as

z

1− z2
and z − z2

2

and the familiar Koebe function are not a member of Σ. For a brief history and

interesting examples in the class Σ, see [6] (and see also [2], [3], [23], [28]).

The class Σ of analytic bi-univalent functions was first introduced by Lewin [14],

where it was proved that |a2| < 1.51. Brannan and Clunie (see [5]) improved Lewin’s

result to |a2| 6
√
2 and later Netanyahu in [15] proved that max

f∈Σ

|a2| = 4

3
.

Many scholars are currently investigating bi-univalent functions related to various

polynomials. As far as we know, there is little work in the literature regarding

balancing polynomials related to bi-univalent functions. Motivated primarily by the

work of Aktaş and Karaman (see [1]), we present a new subclass BSλ
Σ
(s, b, x, z) of

Sakaguchi-type bi-univalent functions subordinate to the balancing polynomial and

obtain bounds for the Taylor-Maclaurin coefficients |a2| and |a3|, as well as Fekete-
Szegö functional problem for functions in this class.
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Definition 1.2. The function f ∈ Σ is in the class BSλ
Σ
(s, b, x, z) if

(1.6)
(s− b)zF′

λ(z)

Fλ(sz)− Fλ(bz)
≺ B(x, z)

z
= I(x, z), z ∈ U

and

(1.7)
(s− b)wG′

λ(w)

Gλ(sw) −Gλ(bw)
≺ B(x,w)

w
= I(x,w), w ∈ U,

where

Fλ(z) = (1− λ)f(z) + λzf′(z), z ∈ U,(1.8)

Gλ(w) = (1− λ)g(w) + λwg′(w), w ∈ U,(1.9)

g = f−1 given by (1.5) and 0 6 λ 6 1, s, b ∈ C with s 6= b, |s| 6 1, |b| 6 1.

R em a r k 1.2. For s = 1 and b = −1, the class BSλ
Σ
(s, b, x, z) reduces to the

class BSλ
Σ
(x, z), which consists of functions f ∈ Σ satisfying

2zF′
λ(z)

Fλ(z)− Fλ(−z)
≺ I(x, z) and

2wG′
λ(w)

Gλ(w)−Gλ(−w)
≺ I(x,w).

(i) For λ = 0 we get the class BS0

Σ
(x, z) = BSΣ(x, z), which consists of functions

f ∈ Σ satisfying

2zf′(z)

f(z)− f(−z) ≺ I(x, z) and
2wg′(w)

g(w)− g(−w) ≺ I(x,w).

(ii) For λ = 1 we get the class BS1

Σ
(x, z) = BKΣ(x, z), which consists of functions

f ∈ Σ satisfying

2(zf′(z))′

f′(z) + f′(z)
≺ I(x, z) and

2(wg′(w))′

g′(w) + g′(−w) ≺ I(x,w).

R em a r k 1.3. For s = 1 and b = 0, the class BSλ
Σ
(s, b, x, z) reduces to the class

BHλ
Σ
(x, z), which consists of functions f ∈ Σ satisfying

zF′
λ(z)

Fλ(z)
≺ I(x, z) and

wG′
λ(w)

Gλ(w)
≺ I(x,w).

(i) For λ = 0, we get the class BH0

Σ
(x, z) = BHΣ(x, z), which consists of functions

f ∈ Σ satisfying

zf′(z)

f(z)
≺ I(x, z) and

wg′(w)

g(w)
≺ I(x,w).
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(ii) For λ = 1, we get the class BH1

Σ
(x, z) = BNΣ(x, z), which consists of functions

f ∈ Σ satisfying

1 +
zf′′(z)

f′(z)
≺ I(x, z) and 1 +

wg′′(w)

g′(w)
≺ I(x,w).

The classes BHΣ(x, z) and BNΣ(x, z) are introduced by Aktaş and Karaman in [1].

2. Coefficients estimates and Fekete-Szegö inequality

Let the function f ∈ A be given by (1.1) and Fλ be defined by (1.8). For

s, b ∈ C with s 6= b, |s| 6 1, |b| 6 1,

we have

(2.1)
(s− b)zF′

λ(z)

Fλ(sz)− Fλ(bz)
= 1+(1+λ)δ2a2z+((1+2λ)δ3a3− (1+λ)2δ2γ2a

2

2)z
2+ . . . ,

where

(2.2) δn = n− γn, n ∈ N

and

(2.3) γn =
sn − bn

s− b
= sn−1 + sn−2b+ . . .+ sbn−2 + bn−1, n ∈ N.

Throughout this paper, unless otherwise stated, we assume that

0 6 λ 6 1, s, b ∈ C with s 6= b, |s| 6 1, |b| 6 1, γn 6= n

and for real s, b, γn < n, n ∈ N \ {1}.

Theorem 2.1. Let f given by (1.1) be in the class BSλ
Σ
(s, b, x, z), and define

(2.4) L := 2(1 + 2λ)δ3 − (1 + λ)2δ2γ2 and M := (1 + λ)δ2.

Then we have

|a2| 6 min
{ 6|x|
(1 + λ)|δ2|

, γ
}

,

where

γ =















6
√
6|x|

√

|x|
√

|36(L−M2)x2 +M2|
, L 6=M2 and x2 6= M2

36(M2 − L)
,

6
√
6|x|

√

|x|
|M | , L =M2,

(2.5)

|a3| 6 6|x|
( 1

(1 + 2λ)|δ3|
+

6|x|
(1 + λ)2|δ2|2

)

.(2.6)
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P r o o f. Let f ∈ BSλ
Σ
(s, b, x, z). Then there exist analytic functions l(z) and

m(w) given by

(2.7) l(z) = l1z + l2z
2 + l3z

3 + . . .

and

(2.8) m(w) = m1w +m2w
2 +m3w

3 + . . . ,

respectively, which are analytic in U with l(0) = 0, m(0) = 0 and |l(z)| < 1,

|m(w)| < 1, z, w ∈ U, such that

(2.9)
(s− b)zF′

λ(z)

Fλ(sz)− Fλ(bz)
= I(x, l(z))

and

(2.10)
(s− b)wG′

λ(w)

Gλ(sw)−Gλ(bw)
= I(x,m(w)),

respectively. It is to be noted that since

|l(z)| = |l1z + l2z
2 + l3z

3 + . . . | < 1, z ∈ U

and

|m(w)| = |m1w +m2w
2 +m3w

3 + . . . | < 1, w ∈ U,

then

(2.11) |li| 6 1 and |mi| 6 1, i = 1, 2, 3, . . .

For the functions Fλ and Gλ defined by (1.8) and (1.9), respectively, we have the

equalities (2.1) and

(2.12)
(s− b)wG′

λ(w)

Gλ(sw) −Gλ(bw)
= 1− (1 + λ)δ2a2w − ((1 + 2λ)δ3a3

− ((1 + λ)2δ2γ2 − 2(1 + 2λ)δ3)a
2

2)w
2 + . . .

On the other hand, we get

(2.13) I(x, l(z)) = B1(x) +B2(x)l1z + (B2(x)l2 +B3(x)l
2

1
)z2 + . . .

and

(2.14) I(x,m(w)) = B1(x) +B2(x)m1w + (B2(x)m2 +B3(x)m
2

1
)w2 + . . . ,
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respectively. From equalities (2.1), (2.9), (2.13) and (2.10), (2.12), (2.14), we obtain

the following equations, respectively:

(1 + λ)δ2a2 = B2(x)l1,(2.15)

(1 + 2λ)δ3a3 − (1 + λ)2δ2γ2a
2

2
= B2(x)l2 +B3(x)l

2

1
,(2.16)

−(1 + λ)δ2a2 = B2(x)m1,(2.17)

(2(1 + 2λ)δ3 − (1 + λ)2δ2γ2)a
2

2
− (1 + 2λ)δ3a3 = B2(x)m2 +B3(x)m

2

1
.(2.18)

Adding (2.15) and (2.17), we get the equation

(2.19) l1 = −m1.

Further, squaring and adding (2.15) and (2.17), we have

(2.20) 2(1 + λ)2δ22a
2

2 = B2

2(x)(l
2

1 +m2

1).

Then the addition of (2.16) and (2.18) gives

(2.21) 2(2(1 + 2λ)δ3 − (1 + λ)2δ2γ2)a
2

2 = B2(x)(l2 +m2) +B3(x)(l
2

1 +m2

1).

From (1.3), (2.11) and (2.20) we get

|a2| 6
6|x|

(1 + λ)|δ2|
.

Also using (2.20) in equation (2.21), we obtain

(2.22) 2
(

(1 + 2λ)δ3 − (1 + λ)2δ2γ2 −
B3(x)

B2
2
(x)

(1 + λ)2δ22

)

a22 = B2(x)(l2 +m2),

and then

(2.23) a22 =
B3

2(x)(l2 +m2)

2((2(1 + 2λ)δ3 − (1 + λ)2δ2γ2)B2
2
(x)− (1 + λ)2δ2

2
B3(x))

.

A small computation leads to

(2.24) |a2| 6
6
√
6|x|

√

|x|
√

|36(L−M2)x2 +M2|
,

where

L = 2(1 + 2λ)δ3 − (1 + λ)2δ2γ2 and M = (1 + λ)δ2.
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Next, in order to obtain the bound for |a3|, subtracting (2.18) from (2.16) we have

(2.25) 2(1 + 2λ)δ3(a3 − a22) = B2(x)(l2 −m2) +B3(x)(l
2

1 −m2

1).

Using equations (2.19) and (2.20) in (2.25), we get

(2.26) a3 =
B2

2
(x)

2(1 + λ)2δ2
2

(l2
1
+m2

1
) +

B2(x)

2(1 + 2λ)δ3
(l2 −m2).

Applying (1.3) and (2.11), we have the desired bound for |a3|,

(2.27) |a3| 6 6|x|
( 1

(1 + 2λ)|δ3|
+

6|x|
(1 + λ)2|δ2|2

)

.

�

Letting s = 1 and b = −1 in Theorem 2.1, we get the following result.

Corollary 2.1. Let f given by (1.1) be in the class BSλ
Σ
(x, z). Then we have

|a2| 6 min
{ 3|x|
1 + λ

, γ
}

,

where

γ =
3
√
6|x|

√

|x|
√

|(1 + λ)2 − 18(1 + 2λ+ 2λ2)x2|
, x2 6= (1 + λ)2

18(1 + 2λ+ 2λ2)

and

|a3| 6 3|x|
( 1

1 + 2λ
+

3|x|
(1 + λ)2

)

.

Letting s = 1 and b = 0 in Theorem 2.1, we get the following result.

Corollary 2.2. Let f given by (1.1) be in the class BHλ
Σ
(x, z). Then we have

|a2| 6 min
{ 6|x|
1 + λ

, γ
}

,

where

γ =











6
√
6|x|

√

|x|
√

|(1 + λ)2 − 72λ2x2|
, 0 < λ 6 1 and x2 6= (1 + λ)2

72λ2
,

6
√
6|x|

√

|x|, λ = 0

and

|a3| 6 6|x|
( 1

2(1 + 2λ)
+

6|x|
(1 + λ)2

)

.
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Letting s = 1, b = 0 and λ = 0 in Theorem 2.1, we get the following result.

Corollary 2.3. Let f given by (1.1) be in the class BHΣ(x, z). Then we have

|a2| 6















6|x|, |x| > 1

6
,

6
√
6|x|

√

|x|, |x| 6 1

6

and |a3| 6 3|x|(1 + 12|x|).

Letting s = 1, b = 0 and λ = 1 in Theorem 2.1, we get the following result.

Corollary 2.4. Let f given by (1.1) be in the class BNΣ(x, z). Then we have

|a2| 6 min{3|x|, γ},

where

γ =
3
√
6|x|

√

|x|
√

|1− 18x2|
, x2 6= 1

18
and |a3| 6 |x|(1 + 9|x|).

R em a r k 2.1. It is worth to note that our results improve the results of Aktaş

and Karaman (see [1]).

Theorem 2.2. If the function f of the form (1.1) belongs to BSλ
Σ
(s, b, x, z), then

for any complex number ̺,

(2.28) |a3 − ̺a2
2
| 6















6|x|
(1 + 2λ)|δ3|

, 0 6 |ψ(̺)| 6 1

(1 + 2λ)|δ3|
,

6|ψ(̺)||x|, |ψ(̺)| > 1

(1 + 2λ)|δ3|
,

where

|ψ(̺)| = 36|1− ̺||x|2
|36(L−M2)x2 +M2|

and L and M are defined by (2.4).

P r o o f. From (2.19) and (2.25) we get

a3 − ̺a2
2
= (1− ̺)a2

2
+

B2(x)

2(1 + 2λ)δ3
(l2 −m2).

By using (2.23) in the above equality, we obtain

a3 − ̺a22 =
B2(x)

2

((

ψ(̺) +
1

(1 + 2λ)δ3

)

l2 +
(

ψ(̺)− 1

(1 + 2λ)δ3

)

m2

)

,

where

ψ(̺) =
(1− ̺)B2

2
(x)

(2(1 + 2λ)δ3 − (1 + λ)2δ2γ2)B2
2
(x)− (1 + λ)2δ2

2
B3(x)

.
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Thus, we have

|a3 − ̺a2
2
| 6















6|x|
(1 + 2λ)|δ3|

, 0 6 |ψ(̺)| 6 1

(1 + 2λ)|δ3|
,

6|ψ(̺)||x|, |ψ(̺)| > 1

(1 + 2λ)|δ3|
.

�

Letting s = 1 and b = −1 in Theorem 2.2, we get the following result.

Corollary 2.5. If the function f of the form (1.1) belongs to BSλ
Σ
(x, z), then for

any complex number ̺,

|a3 − ̺a2
2
| 6















3|x|
1 + 2λ

, 0 6 |ψ(̺)| 6 1

2(1 + 2λ)
,

6|ψ(̺)||x|, |ψ(̺)| > 1

2(1 + 2λ)
,

where

|ψ(̺)| = 9|1− ̺||x|2
|(1 + λ)2 − 18(1 + 2λ+ 2λ2)x2| .

Letting s = 1 and b = 0 in Theorem 2.2, we get the following result.

Corollary 2.6. If the function f of the form (1.1) belongs to BHλ
Σ
(x, z), then for

any complex number ̺,

|a3 − ̺a2
2
| 6















3|x|
1 + 2λ

, 0 6 |ψ(̺)| 6 1

2(1 + 2λ)
,

6|ψ(̺)||x|, |ψ(̺)| > 1

2(1 + 2λ)
,

where

|ψ(̺)| = 36|1− ̺||x|2
|(1 + λ)2 − 72λ2x2| .

Letting s = 1, b = 0 and λ = 0 in Theorem 2.2, we get the following result.

Corollary 2.7. If the function f of the form (1.1) belongs to BHΣ(x, z), then for

any complex number ̺,

|a3 − ̺a22| 6















3|x|, 0 6 |1− ̺| 6 1

72|x|2 ,

216|1− ̺||x|3, |1− ̺| > 1

72|x|2 .
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Letting s = 1, b = 0 and λ = 1 in Theorem 2.2, we get the following result.

Corollary 2.8. If the function f of the form (1.1) belongs to BNΣ(x, z), then for

any complex number ̺,

|a3 − ̺a22| 6















|x|, 0 6 |1 − ̺| 6 |1− 18x2|
54|x|2 ,

54|1− ̺||x|3
|1− 18x2| , |1− ̺| > |1− 18x2|

54|x|2 .

Letting ̺ = 1 in Theorem 2.2, we get the following consequence.

Corollary 2.9. If the function f of the form (1.1) belongs to BSλ
Σ
(s, b, x, z), then

|a3 − a22| 6
6|x|

(1 + 2λ)|δ3|
.

Letting ̺ = 0 in Theorem 2.2, we obtain the following result.

Corollary 2.10. If the function f of the form (1.1) belongs to BSλ
Σ
(s, b, x, z), then

|a3| 6















6|x|
(1 + 2λ)|δ3|

, 0 6 |ψ(0)| 6 1

(1 + 2λ)|δ3|
,

6|ψ(0)||x|, |ψ(0)| > 1

(1 + 2λ)|δ3|
,

where

|ψ(0)| = 36|x|2
|36(L−M2)x2 +M2|

and L and M are defined by (2.4).

Conclusion

This paper has successfully introduced a novel subclass of bi-univalent functions,

specifically the class of Sakaguchi type functions defined by balancing polynomials.

The bounds for the Fekete-Szegö inequality and the initial coefficients |a2| and |a3|
have been estimated, providing valuable insights into the behavior of these functions.

Furthermore, some results have been improvised, enhancing our understanding of

this subclass of bi-univalent functions. This work not only contributes to the existing

body of knowledge but also opens new avenues for future research.

Future work will focus on exploring other subclasses of bi-univalent functions and

estimating their coefficients. Additionally, the relationship between these subclasses

and the Sakaguchi type functions will be investigated. This will further deepen our

understanding of bi-univalent functions and their applications.
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