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Abstract. This work deals with the analysis pertaining some dynamic behavior of vector
solutions of first order two-dimensional neutral delay differential systems of the form

d

dt

[

u(t) + pu(t− τ )

v(t) + pv(t− τ )

]

=

[

a b

c d

] [

u(t− α)

v(t− β)

]

.

The effort has been made to study

d

dt

[

x(t)− p(t)h1(x(t− τ ))

y(t)− p(t)h2(y(t− τ ))

]

+

[

a(t) b(t)

c(t) d(t)

] [

f1(x(t− α))

f2(y(t− β))

]

= 0,

where p, a, b, c, d, h1, h2, f1, f2 ∈ C(R,R); α, β, τ ∈ R
+. We verify our results with the

examples.

Keywords: oscillation; nonoscillation; nonlinear system of neutral differential equations;
asymptotically stable; Banach’s fixed point theorem

MSC 2020 : 34K40, 34C10, 34A34

1. Introduction

Suppose A and B are two countries having their common boundaries engaged in so

called sensitive border issues. Let the expenditure on arms by the country A and B

be x(t) and y(t), respectively. If the rate of change of expenditure by country A

is dx/dt, then it depends upon the expenditure on arms by B as well as its own

arm expenditure. It may be possible that it contains a term depending on mutual

hostility or mutual goodwill, which is independent of expenditures. Similarly for the
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country B. Therefore, a model citing the arm race problem could be of the form

dx

dt
= −ax+ by + r,

dy

dt
= cx− dy + s,

where a, b, c, d ∈ R. Moreover, r and s are less than zero in case of mutual goodwill

and greater than zero in case of mutual hostility. So, we have the vector differential

equation

(1.1)
d

dt

[

x(t)

y(t)

]

=

[

−a b

c −d

] [

x

y

]

+

[

r

s

]

which is known as Richardson’s armed race model.

Let x(t) be the matured male population size and y(t) be the matured female

population size of a region at time t. Assume that before a certain period of time τ

they are immature and the size could be x(t − τ) and y(t − τ), respectively. After

a period τ , the population size depends on x(t), x(t−τ) and y(t), y(t−τ). Therefore,

a mathematical description of the change in population size can be treated as

d

dt
[x(t) + p(t)x(t − τ)] = a(t)x(t − α) + b(t)y(t− β),

d

dt
[y(t) + p(t)y(t− τ)] = c(t)x(t − α) + d(t)y(t− β),

where p(t), a(t), b(t), c(t), d(t) ∈ C(R,R) and α, β, τ ∈ R
+. In the above system, if the

growth of population depends on the rate of emigration and immigration of people,

then the required population model could be of the form

d

dt
[x(t) + p(t)x(t − τ)] = a(t)x(t− α) + b(t)y(t− β) + r(t),

d

dt
[y(t) + p(t)y(t− τ)] = c(t)x(t − α) + d(t)y(t− β) + s(t),

where r, s ∈ C(R,R). Therefore, the representation of the population model is

given by

(1.2)
d

dt

[

x(t) + p(t)x(t − τ)

y(t) + p(t)y(t− τ)

]

=

[

a(t) b(t)

c(t) d(t)

] [

x(t− α)

y(t− β)

]

+

[

r(t)

s(t)

]

.

In the above two mathematical models, (1.1) is a special case of (1.2) and both

are worth studying. In this work, we emphasize to study the dynamic behavior of

vector solutions of (1.2).
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Consider a 2-dimensional first order neutral delay differential systems with con-

stant coefficients of the form

(1.3)
d

dt

[

u(t) + pu(t− τ)

v(t) + pv(t− τ)

]

=

[

a b

c d

] [

u(t− α)

v(t− β)

]

,

where a, b, c, d, p ∈ R and τ, α, β ∈ R
+. It is easy to see that the system (1.3) can

be reduced to a second order delay differential equation with constant coefficients of

the form

v′′(t) + 2pv′′(t− τ) + p2v′′(t− 2τ)− dv′(t− β)− av′(t− α)

− pdv′(t− τ − β)− pav′(t− τ − α) + (ad− bc)v(t− α− β) = 0.

We note that the ongoing equation has the characteristic equation

(1.4) f(ζ) = ζ2(1+ pe−τζ)2 − ζ(1+ pe−τζ)(ae−αζ + de−βζ) + (ad− bc)e−(α+β)ζ = 0

provided b 6= 0. On the other hand, the system (1.3) can also be written as

u′′(t) + 2pu′′(t− τ) + p2u′′(t− 2τ)− du′(t− β)− au′(t− α)

− pdu′(t− τ − β)− pau′(t− τ − α) + (ad− bc)u(t− α− β) = 0

with the same characteristic equation (1.4) provided c 6= 0. It is easy to prove the

following result.

Proposition 1.1. Let bc 6= 0. If the characteristic equation (1.4) has no real

roots, then the system (1.3) is oscillatory.

In [5] and [6], Naito and Opluštil have established the oscillation and nonoscillation

criteria for two-dimensional nonlinear differential systems of the form

d

dt

[

u(t)

v(t)

]

=

[

0 g(t)

−p(t) 0

] [

|u|1/αsgnu

|v|1/αsgn v

]

and, in a similar fashion, Mihalíková (see [4]) has obtained oscillation results for the

neutral differential system

d

dt

[

x1(t)− px1(t− τ)

x2(t)

]

=

[

0 a1(t)

a2(t) 0

] [

f2(x1(g1(t)))

f1(x2(g2(t)))

]

.

Note that the above works deal with the special cases of the systems like (1.1), (1.2)

and (1.3). However, Grigorian’s work in [2] presents an interesting application of the
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Riccati technique for study of oscillation properties of a two-dimensional differential

system of the form
d

dt

[

ϕ(t)

ψ(t)

]

=

[

a11 a12

a21 a22

] [

ϕ(t)

ψ(t)

]

which is in closed form. This observation motivates us to consider the closed form

of two-dimensional neutral delay differential systems and to investigate their dy-

namic behavior. For more on delay differential systems, we refer the reader to the

monographs [1] and [3] and the references cited therein.

The objective of this work is to discuss the oscillatory, nonoscillatory and asymp-

totic stability of two-dimensional linear neutral delay differential systems with con-

stant coefficients of the form (1.3), and by applying the results for linear differ-

ential system, we are interested in linearized oscillation theory for the nonlinear

two-dimensional differential system

(1.5)
d

dt

[

x(t) − p(t)h1(x(t− τ))

y(t)− p(t)h2(y(t− τ))

]

+

[

a(t) b(t)

c(t) d(t)

] [

f1(x(t− α))

f2(y(t− β))

]

= 0.

Definition 1.1. By the solution of (1.3) (or (1.5)), we mean a continuous vector

function X(t) = [u(t), v(t)]⊤ with u, v ∈ C1(R,R) which satisfies (1.3) (or (1.5)) for

t ∈ (−̺,∞), where ̺ = max{τ, α, β}. A nontrivial vector solution of (1.3) (or (1.5))

is said to be oscillatory if all its components are oscillatory; otherwise, the system is

called nonoscillatory.

2. Differential systems with constant coefficients

This section deals with necessary and sufficient conditions for oscillation of all

vector solutions of the system (1.3) by means of its characteristic equation (1.4).

Theorem 2.1. Assume that ad − bc > 0. Then the system (1.3) is oscillatory if

and only if f(ζ) has no real roots in (0,∞).

P r o o f. Suppose that (1.3) is oscillatory. Now, f(0) = ad− bc > 0 and

lim
ζ→∞

f(ζ) = lim
ζ→∞

(ζ2(1 + pe−τζ)2 − ζ(1 + pe−τζ)(ae−αζ + de−βζ)

+ (ad− bc)e−(α+β)ζ)

= ∞

implies that f(ζ) has no real roots in (0,∞).
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Conversely, assume that f(ζ) has no real roots in (0,∞). Then f(ζ) has complex

roots. Let n+ im and n− im be the complex roots of f(ζ). Therefore, we have the

components like

u(t) = c1e
(n+im)t = c1e

nt(cosmt+ i sinmt)

and

v(t) = c2e
(n−im)t = c2e

nt(cosmt− i sinmt).

Hence, there is an oscillatory vector solution of the system (1.3) and it is of the form
[

u(t)

v(t)

]

=

[

c1e
nt ic1e

nt

c2e
nt −ic2e

nt

] [

cosmt

sinmt

]

.

By taking all complex roots of (1.3), we get oscillatory vector solutions. �

Theorem 2.2. If ad− bc 6 0, then the system (1.3) has a nonoscillatory vector

solution in (−∞,∞).

P r o o f. If ad− bc = 0, then ζ = 0 is a real root of f(ζ). When ad− bc < 0, we

have f(0) = ad − bc < 0 and lim
ζ→∞

f(ζ) = ∞ shows that f(ζ) = 0 has a real root

lying in (−∞,∞). Hence, the system (1.3) is nonoscillatory in (−∞,∞). �

Theorem 2.3. In [0,∞), the system (1.3) is oscillatory if and only if ad− bc > 0.

Theorem 2.4. If p = −1, ad − bc > 0, a < 0, d < 0, then the system (1.3) is

oscillatory if and only if f(ζ) has no real roots in (−∞,∞).

Theorem 2.5. Let p > 0, ad − bc < 0, a < 0, d < 0, α, β > τ. Then the

system (1.3) is oscillatory if and only if f(ζ) has no real roots in (−∞, 0).

P r o o f. Assume that the system (1.3) is oscillatory. We have f(0) = ad− bc < 0.

Clearly,

f(ζ) = ζ2(1 + pe−τζ)2
(

1−
ae−αζ + de−βζ

ζ(1 + pe−τζ)

)

+ (ad− bc)e−(α+β)τ

and

lim
ζ→−∞

ae−αζ + de−βζ

ζ(1 + pe−τζ)
= lim

ζ→−∞

−aαe−αζ − dβe−βζ

1 + pe−τζ − τpζe−τζ

= lim
ζ→−∞

−aa1α
2e−a1ζ

τ2p
+ lim

ζ→−∞

−da2β
2e−a2ζ

τ2p
= ∞,

where −α+τ = −a1 < 0 and −β+τ = −a2 < 0 implies that lim
ζ→−∞

f(ζ) = −∞, that

is, f(ζ) has no real roots in (−∞, 0). The converse part follows from Theorem 2.1. �
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E x am p l e 2.1. Consider a two-dimensional neutral delay differential system of

the form

(2.1)
d

dt

[

u(t) + 3u(t− 1
2π)

v(t) + 3v(t− 1
2π)

]

=

[

1 −3

3 1

] [

u(t− 3
2π)

v(t− 7
2π)

]

which satisfies all the conditions of Theorem 2.1. In particular, [u(t), v(t)]⊤ =

[sin t, cos t]⊤ is one of oscillatory vector solutions of the system (2.1).
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Figure 2.

In Figure 1, the solution satisfies component-wise oscillation, which is explained in

the proof of the theorem. However, Figure 2 deals with the oscillatory vector directly.

Theorem 2.6. Let p > 0, a, d > 0, α, β > τ , ad − bc < 0, then the system (1.3)

is oscillatory if and only if

g(ζ) =
f(ζ)

ζ2(1 + pe−τζ)2

has no real roots in (0, ζ1) ∪ (ζ1,∞), where ζ1 is a root of g(ζ).
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P r o o f. We note that g(0) = −∞ and

lim
ζ→∞

g(ζ) = lim
ζ→∞

(

1 +
(ad− bc)e−(α+β)ζ

ζ2(1 + pe−τζ)2
−

(ae−αζ + de−βζ)

ζ(1 + pe−τζ)

)

= 1.

Indeed,

g′(ζ) =
(ad− bc)e−(α+β)ζ

ζ4(1 + pe−τζ)4
(−ζ2(1 + pe−τζ)2(α+ β)

− 2ζ(1 + pe−τζ)2 + 2pτe−τζζ2(1 + pe−τζ))

−
1

ζ2(1 + pe−τζ)2
(−ζ(1 + pe−τζ)(aαe−αζ + dβe−βζ)

− (ae−αζ + de−βζ)(1 + pe−τζ − ζτpe−τζ))

=
(ad− bc)e−(α+β)ζ

ζ3(1 + pe−τζ)3
(−2(1 + pe−τζ)− ζ(α + β + pe−τζ(α+ β − 2τ)))

−
1

ζ2(1 + pe−τζ)2
(−(1 + pe−τζ)(ae−αζ + de−βζ)− ζ(aαe−αζ + dβe−βζ)

− ζpe−τζ(ae−αζ(α− τ) + de−βζ(β − τ)))

> 0

for all ζ > 0, which implies g(ζ) is an increasing function on (0,∞) and hence g(ζ)

may cut the real axis once at ζ = ζ1. Therefore, g(ζ) has no real root in (0, ζ1)∪(ζ1,∞)

and the statement of the theorem follows. �

Theorem 2.7. Let p 6 −1, a, d > 0, α, β > τ , ad− bc < 0. Then the system (1.3)

is oscillatory if and only if g(ζ) has no real roots in (log(−p)/τ, ζ2)∪(ζ2,∞), where ζ2

is a root of g(ζ).

P r o o f. Here, we observe that g(log(−p)/τ) = −∞ and lim
ζ→∞

g(ζ) = 1. The rest

of the proof follows from Theorem 2.6. �

Corollary 2.1. Let −1 < p < 0, a, d < 0 and ad− bc > 0; then the system (1.3)

is oscillatory if and only if g(ζ) has no real roots in (−∞, log(−p)/τ).

R em a r k 2.1. We have seen in Corollary 2.1 that g(ζ) has no real roots in

(−∞, log(−p)/τ) and so also f(ζ). That is, the roots have negative real parts in

(−∞, log(−p)/τ). Therefore, the components take the form

u(t) = e(x1+ix2)t = ex1t(cos x2t+ i sinx2t)

and

v(t) = e(x
′

1
+ix′

2
)t = ex

′

1
t(cosx′2t+ i sinx′2t).

Consequently, lim
t→∞

Z(t) = lim
t→∞

[u(t), v(t)]⊤ = 0. Hence, the vector solution of (1.3)

asymptotically converges to zero.
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Corollary 2.2. Assume that Corollary 2.1 holds true. Then the system (1.3) is

asymptotically stable in (−∞, log(−p)/τ).

P r o o f. Let ζj = αj + iβj , j = 1, 2, 3, . . . Since the characteristic equation (1.4)

of (1.3) is the same for both equations in u(t) and v(t), then the corresponding

components of the system (1.3), taking multiplicity into account, can be of the form

(2.2) u(t) = tp exp(ζjt) = v(t),

where p is a nonnegative integer. Let θ > 0 be a number such that −θ > max Re(ζj).

Then, we have

(2.3) αj + θ < 0.

We claim that |uj(t) exp(θt)| → 0 as t → ∞ and |vj(t) exp(θt)| → 0 as t → ∞.

Indeed,

|uj(t) exp(θt)| = |tp exp(ζjt) exp(θt)| = |tp exp(αjt) exp(θt)|

= |tp exp((αj + θ)t)| → 0 as t→ ∞

due to (2.3). So, we can find constants kj > 0 for j = 1, 2, 3, . . . such that

|uj(t) exp(θt)| 6 kj and |vj(t) exp(θt)| 6 kj ,

that is,

(2.4) |uj(t)| 6 kj exp(−θt)

and

(2.5) |vj(t)| 6 kj exp(−θt).

We know that the general solution of the system (1.3), by means of components, has

the form

u(t) =
∞
∑

j=1

cjuj(t) and v(t) =
∞
∑

j=1

cj
′vj(t),

where c1, c2, . . . and c
′
1, c

′
2, . . . are arbitrary constants. From (2.4) and (2.5), we get

|u(t)| 6

∞
∑

j=1

|cj‖uj(t)| 6 max
j

|cj |

∞
∑

j=1

|uj(t)| 6 max
j

|cj |

∞
∑

j=1

kj exp(−θt) = k exp(−θt),
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where k = max
j

|cj |
∞
∑

j=1

kj and

|v(t)| 6

∞
∑

j=1

|c′j‖vj(t)| 6 max
j

|c′j |

∞
∑

j=1

|vj(t)| 6 max
j

|cj |

∞
∑

j=1

kj exp(−θt) = k′ exp(−θt),

where k′ = max
j

|c′j |
∞
∑

j=1

kj . Consequently,

lim
t→∞

|u(t)| = 0 and lim
t→∞

|v(t)| = 0

and hence ‖Z(t)‖ → 0 as t → ∞. Therefore, the zero solution of the system (1.3) is

asymptotically stable. �

Corollary 2.3. If p > 0, ad−bc < 0, a < 0, d < 0, α, β > τ, then the system (1.3)

is asymptotically stable in (−∞, 0).

P r o o f. The proof of the corollary follows from Theorem 2.5 and Corollary 2.2.

Hence, the details are omitted. �

E x am p l e 2.2. Consider a two-dimensional neutral delay differential system of

the form

(2.6)
d

dt

[

u(t)− e−2πu(t− 2π)

v(t)− e−2πv(t− 2π)

]

=

[

−2e−3π/2 2

3 −3e3π/2

] [

u(t− 4π)

v(t− 5π

2 )

]

,

which satisfies all the conditions of Corollary 2.2. In particular, [u(t), v(t)]⊤ =

[e−t sin t, e−t cos t]⊤ is one such asymptotically stable vector solution of the sys-

tem (2.6).

In Figure 3, the solution converges asymptotically to zero, which is explained in

the proof of the theorem. However, Figure 4 deals with the vector that directly

converges asymptotically to zero.
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Figure 3.
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3. Linearized oscillation for differential systems

This section deals with some applications of constant coefficient results to two-

dimensional nonlinear neutral differential systems of the form

(3.1)
d

dt

[

u(t)− p(t)h1(u(t− τ))

v(t)− p(t)h2(v(t− τ))

]

+

[

a(t) b(t)

c(t) d(t)

] [

f1(u(t− α))

f2(v(t− β))

]

= 0

through linearized oscillation technique. For this, we need the following hypotheses

in the sequel:

(H1) lim sup
t→∞

p(t) = p0 ∈ [1,∞);

(H2) lim
t→∞

a(t) = a0 ∈ (0,∞), lim
t→∞

b(t) = b0 ∈ (0,∞), lim
t→∞

c(t) = c0 ∈ (0,∞),

lim
t→∞

d(t) = d0 ∈ (0,∞);

(H3) h1(s)/s > 1 for s 6= 0 and lim
|s|→∞

h1(s)/s = 1, h2(s)/s > 1 for s 6= 0 and

lim
|s|→∞

h2(s)/s = 1;

(H4) sf1(s) > 0 for s 6= 0, |f1(s)| > f10 > 0 for |s| > ζ0 > 0, lim
|s|→∞

f1(s)/s = 1,

sf2(s) > 0 for s 6= 0, |f2(s)| > f20 > 0 for |s| > ζ0 > 0, lim
|s|→∞

f2(s)/s = 1.

We consider the limiting system of (3.1) as

(3.2)
d

dt

[

ν1(t)− p0ν1(t− τ)

ν2(t)− p0ν2(t− τ)

]

+

[

a0 b0
c0 d0

] [

ν1(t− α)

ν2(t− β)

]

= 0,

whose characteristic equation is given by

(3.3) E(ζ) = ζ2(1− p0e
−τζ)2 + ζ(1 − p0e

−τζ)(a0e
−αζ + d0e

−βζ)

+ (a0d0 − b0c0)e
−(α+β)ζ

= 0.

By Theorem 2.1, (3.2) is oscillatory if and only if (3.3) has no real roots in (0,∞)

provided a0d0 − b0c0 > 0 and b0c0 6= 0.
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Lemma 3.1. Let (a0 + d0) > (b0 + c0). Assume that every vector solution of

the system (3.2) oscillates. Then there exists an ε0 > 0 such that for each ε with

0 6 ε 6 ε0, every vector solution of

(3.4)
d

dt

[

ν1(t)− (p0 + 2ε)ν1(t− τ)

ν2(t)− (p0 + 2ε)ν2(t− τ)

]

+

[

(a0 − ε) (b0 − ε)

(c0 − ε) (d0 − ε)

] [

ν1(t− α)

ν2(t− β)

]

= 0

oscillates.

P r o o f. Since (3.2) is oscillatory, then (3.3) has no real roots in (0,∞) when

a0d0 > b0c0. Let 0 < ε∗ < min{a0, b0, c0, d0}. For ζ ∈ R, set

M∗(ζ) = ε∗(4ζ2e−τζ(1− p0e
−τζ) + 2ζe−τζ(a0e

−αζ + d0e
−βζ)

+ ζ(e−αζ + e−βζ)(1− p0e
−τζ) + e−(α+β)ζ((a0 + d0)− (b0 + c0))).

Therefore,

E(ζ)−M∗(ζ) = ζ2(1 − p0e
−τζ)(1− (p0 + 4ε∗)e−τζ)

+ e−(α+β)ζ(a0d0 − b0c0 − ε∗((a0 + d0)− (b0 + c0)))

− 2ε∗ζe−τζ(a0e
−αζ + d0e

−βζ)

+ ζ(1 − p0e
−τζ)(e−αζ(a0 − ε∗) + e−βζ(d0 − ε∗))

implies that E(ζ) −M∗(ζ) → ∞ as ζ → ∞. Hence, it is possible to find a ζ0 > 0

such that ζ > ζ0 implies that E(ζ) −M∗(ζ) > 1
2m, where m = inf

ζ>0
E(ζ) > 0. Let

ε0 = min
{

ε∗,
1
2m

(2ζ0 + 1)(2ζ0 + a0 + d0)

}

and 0 < ε 6 ε0. Now, the characteristic equation of (3.4) is given by

(3.5) M(ζ) = ζ2(1 − (p0 + 2ε)e−τζ)2

+ ζ(1 − (p0 + 2ε)e−τζ)((a0 − ε)e−αζ + (d0 − ε)e−βζ)

+ ((a0 − ε)(d0 − ε)− (b0 − ε)(c0 − ε))e−(α+β)ζ.

To complete the proof of the lemma, we are required to show that (3.5) has no real

roots on (0,∞). If ζ > ζ0, then

M(ζ) = E(ζ)− ε(4ζ2e−τζ(1− (p0 + ε)e−τζ) + 2ζe−τζ(a0e
−αζ + d0e

−βζ)

+ ζ(e−αζ + e−βζ)(1 − (p0 + 2ε)e−τζ) + e−(α+β)ζ((a0 + d0)− (b0 + c0)))

> E(ζ)− ε∗(4ζ2e−τζ(1− p0e
−τζ) + 2ζe−τζ(a0e

−αζ + d0e
−βζ)

+ ζ(e−αζ + e−βζ)(1 − p0e
−τζ) + e−(α+β)ζ((a0 + d0)− (b0 + c0)))

> E(ζ)−M∗(ζ) >
m

2
.
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If ζ ∈ (0, ζ0), then

M(ζ) = E(ζ)− ε(4ζ2e−τζ(1− (p0 + ε)e−τζ) + 2ζe−τζ(a0e
−αζ + d0e

−βζ)

+ ζ(e−αζ + e−βζ)(1 − (p0 + 2ε)e−τζ) + e−(α+β)ζ((a0 + d0)− (b0 + c0)))

> E(ζ)− ε(4ζ2e−τζ + 2ζe−τζ(a0e
−αζ + d0e

−βζ) + ζ(e−αζ + e−βζ)

+ e−(α+β)ζ((a0 + d0)− (b0 + c0)))

> E(ζ)− ε(4ζ2 + 2ζ(a0 + d0) + 2ζ + (a0 + d0))

> E(ζ)− ε(2ζ(2ζ + 1) + (2ζ + 1)(a0 + d0))

> E(ζ)− ε0((2ζ0 + 1)(2ζ0 + a0 + d0)) >
m

2
.

Hence, M(ζ) has no real roots in (0,∞). This completes the proof. �

Proceeding as in Lemma 3.1, we can prove the following result.

Lemma 3.2. Let (a0 + d0) > (b0 + c0). Assume that every vector solution of the

system (3.2) is oscillatory. Then there exists an ε0 > 0 such that for each ε with

0 6 ε 6 ε0, every solution of

(3.6)
d

dt

[

ν1(t)− (p0 + 2ε)ν1(t− τ)

ν2(t)− (p0 + 2ε)ν2(t− τ)

]

+

[

(a0 − ε) (b0 − ε)(1− ε1)

(c0 − ε)(1− ε1) (d0 − ε)

] [

ν1(t− α)

ν2(t− β)

]

= 0

oscillates, where 0 < ε1 < 1.

Theorem 3.1. Let (H1)–(H4) hold and (a0+d0) > (b0+c0). If (3.2) is oscillatory,

then every vector solution of (3.1) oscillates.

P r o o f. Let [u(t), v(t)]⊤ be a nonoscillatory vector solution of (3.1). We have the

following possibilities:

Case 1: u(t) > 0, u(t−τ) > 0, u(t−α) > 0 and v(t) > 0, v(t−τ) > 0, v(t−β) > 0

for t > t1. Setting

(3.7)

[

z1(t)

z2(t)

]

=

[

u(t)− p(t)h1(u(t− τ))

v(t)− p(t)h2(v(t− τ))

]

for t > t2 > t1 + σ, we obtain

d

dt

[

z1(t)

z2(t)

]

+

[

a(t) b(t)

c(t) d(t)

] [

f1(u(t− α))

f2(v(t− β))

]

= 0
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and it is equivalent to

z′1(t) = −a(t)f1(u(t− α))− b(t)f2(v(t − β)) < 0,(3.8)

z′2(t) = −c(t)f1(u(t− α))− d(t)f2(v(t− β)) < 0.(3.9)

Consequently, z1(t) and z2(t) are nonincreasing functions for t > t2. Assume that

z1(t), z2(t) > 0 for t > t3. Integrating (3.8) and (3.9), we find

∫ t

t3

z′1(s) ds =

∫ t

t3

(−a(s)f1(u(s− α))− b(s)f2(v(s− β))) ds,

∫ t

t3

z′2(s) ds =

∫ t

t3

(−c(s)f1(u(s− α))− d(s)f2(v(s− β))) ds,

that is,

∫ t

t3

(a(s)f1(u(s− α)) + b(s)f2(v(s− β))) ds = z1(t3)− z1(t) < z1(t3),(3.10)

∫ t

t3

(c(s)f1(u(s− α)) + d(s)f2(v(s− β))) ds = z2(t3)− z2(t) < z2(t3).(3.11)

By (H2) and (H4), we can rewrite (3.10) and (3.11) as

∫ t

t3

(a(s)f10 + b(s)f20) ds < z1(t3),

∫ t

t3

(c(s)f10 + d(s)f20) ds < z2(t3),

which contradicts the fact, that

∫ ∞

t3

(a(s)f10 + b(s)f20) ds = ∞ and

∫ ∞

t3

(c(s)f10 + d(s)f20) ds = ∞.

So, z1(t), z2(t) 6 0 for t > t3. If we don’t agree that lim
t→∞

z1(t) = −∞ and

lim
t→∞

z2(t) = −∞, then we let

lim
t→∞

z1(t) = µ1 and lim
t→∞

z2(t) = µ2, µ1, µ2 ∈ (−∞, 0].

Again, on integration of (3.8) and (3.9), we find contradictions. Therefore,

lim
t→∞

z1(t) = −∞ and lim
t→∞

z2(t) = −∞.

Next, we claim that lim inf
t→∞

u(t) = ∞ = lim inf
t→∞

v(t). If not, we suppose that

lim inf
t→∞

u(t) = η1 ∈ (0,∞) and lim inf
t→∞

v(t) = η2 ∈ (0,∞). Hence, there exists a se-

quence {tm} such that tm → ∞ as m→ ∞ and u(tm) → η1, v(tm) → η2 as m→ ∞.

From (3.7), we get

−z1(tm + τ) < p(tm + τ)h1(u(tm)), −z2(tm + τ) < p(tm + τ)h2(v(tm))
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for tm > t4. Taking the lim sup as m→ ∞, we have

∞6 lim sup
m→∞

(p(tm+τ)h1(u(tm)))6 lim sup
m→∞

p(tm+τ) lim
m→∞

h1(u(tm))6 p0h1(η1)<∞

and

∞ 6 lim sup
m→∞

(p(tm + τ)h2(v(tm))) 6 p0h2(η2) <∞,

which are contradiction. So, our claim holds and hence lim
t→∞

u(t) = ∞ and

lim
t→∞

v(t) = ∞. If we set

P1(t) =
p(t)h1(u(t− τ))

u(t− τ)
, P2(t) =

p(t)h2(v(t− τ))

v(t− τ)
,

A(t) =
a(t)f1(u(t− α))

u(t− α)
, B(t) =

b(t)f2(v(t − β))

v(t− β)
,

C(t) =
c(t)f1(u(t− α))

u(t− α)
, D(t) =

d(t)f2(v(t− β))

v(t− β)

for t > t4, then (3.1) can be written as

(3.12)
d

dt

[

z1(t)

z2(t)

]

+

[

A(t) B(t)

C(t) D(t)

] [

u(t− α)

v(t− β)

]

= 0.

Using (H1) and (H3), we get

lim sup
t→∞

P1(t) 6 lim sup
t→∞

p(t) lim
t→∞

h1(u(t− τ))

u(t− τ)
= p0,

lim sup
t→∞

P2(t) 6 lim sup
t→∞

p(t) lim
t→∞

h2(v(t− τ))

v(t− τ)
= p0.

Also, it is easy to see that

lim sup
t→∞

P1(t) > lim sup
t→∞

p(t) = p0, lim sup
t→∞

P2(t) > lim sup
t→∞

p(t) = p0.

Therefore,

lim sup
t→∞

P1(t) = p0, lim sup
t→∞

P2(t) = p0.

Integrating (3.12) from t4 to t for t > t4, we get

z1(t) +

∫ t

t4

(A(s)u(s− α) +B(s)v(s− β)) ds = z1(t4) < 0,

z2(t) +

∫ t

t4

(C(s)u(s− α) +D(s)v(s− β)) ds = z2(t4) < 0,
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that is,

u(t)− P1(t)u(t− τ) +

∫ t

t4

(A(s)u(s− α) +B(s)v(s − β)) ds < 0,

v(t)− P2(t)v(t − τ) +

∫ t

t4

(C(s)u(s− α) +D(s)v(s− β)) ds < 0,

which are equivalent to

u(t) >
1

P1(t+ τ)

(

u(t+ τ) +

∫ t+τ

t4

(A(s)u(s− α) +B(s)v(s − β)) ds

)

,(3.13)

v(t) >
1

P2(t+ τ)

(

v(t+ τ) +

∫ t+τ

t4

(C(s)u(s− α) +D(s)v(s − β)) ds

)

.(3.14)

Let 0 < ε < min{a0, b0, c0, d0} be given. We can find positive constants T1, T2, T3,

T4, T5, T6 such that P1(t) < p0+ε for t > T1, P2(t) < p0+ε for t > T2, A(t) > a0−ε

for t > T3, B(t) > b0 − ε for t > T4, C(t) > c0 − ε for t > T5, D(t) > d0 − ε for

t > T6. Let T0 = max{t4, T1, T2, T3, T4, T5, T6} and choose 1 < γ < 1 + ε/(p0 + ε).

Then, P1(t), P2(t) < (p0 + 2ε)/γ for t > T0. Hence, (3.13) and (3.14) reduce to

(3.15) u(t) >
γ

p0 + 2ε

(

u(t+τ)+(a0−ε)

∫ t+τ

T0

u(s−α) ds+(b0−ε)

∫ t+τ

T0

v(s−β) ds

)

,

(3.16) v(t) >
γ

p0 + 2ε

(

v(t+τ)+(c0−ε)

∫ t+τ

T0

u(s−α) ds+(d0−ε)

∫ t+τ

T0

v(s−β) ds

)

.

Let X = BC([T0 − ̺,∞),R2) be the Banach space of all real valued bounded con-

tinuous functions on I = [T0 − ̺,∞) defined by

X =
{

Y : I → R
2, ‖Y ‖ = sup

t∈I
|Y | <∞

}

.

For Y = [x(t), y(t)]⊤, we put

B = {Y ∈ X : 0 6 x(t), y(t) 6 1, t > T0 − ̺ but Y (t) 6= 0 on any subinterval of I}.

Indeed, B is a closed, bounded and convex subset of X . Define T : B → X as

(TY )(t) = (TY )(T0), t ∈ [T0 − ̺, T0],

(TY )(t) =

























1

(p0 + 2ε)u(t)

(

u(t+ τ)x(t + τ) + (a0 − ε)

∫ t+τ

T0

u(s− α)x(s − α) ds

+(b0 − ε)

∫ t+τ

T0

v(s− β)y(s− β) ds

)

1

(p0 + 2ε)v(t)

(

v(t+ τ)y(t+ τ) + (c0 − ε)

∫ t+τ

T0

u(s− α)x(s − α) ds

+(d0 − ε)

∫ t+τ

T0

v(s− β)y(s− β) ds

)
























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for t > T0. We notice that (TY )(t) > 0 for t > T0 − ̺,

(Tx)(t)

6
1

(p0 + 2ε)u(t)

(

u(t+ τ) + (a0 − ε)

∫ t+τ

T0

u(s− α) ds+ (b0 − ε)

∫ t+τ

T0

v(s− β) ds

)

6
1

γ
< 1

and

(Ty)(t)

6
1

(p0 + 2ε)v(t)

(

v(t+ τ) + (c0 − ε)

∫ t+τ

T0

u(s− α) ds+ (d0 − ε)

∫ t+τ

T0

v(s− β) ds

)

6
1

γ
< 1

implies that T : B → B. For x1, x2, y1, y2 ∈ B,

|(Tx1)(t) − (Tx2)(t)|

=



























|(Tx1)(T0)− (Tx2)(T0)|, t ∈ [T0 − ̺, T0],

1

(p0 + 2ε)u(t)

∣

∣

∣

∣

(

u(t+ τ)(x1(t+ τ)− x2(t+ τ))

+(a0 − ε)

∫ t+τ

T0

u(s− α)(x1(s− α)− x2(s− α)) ds

)∣

∣

∣

∣

, t > T0,

and

|(Ty1)(t) − (Ty2)(t)|

=



























|(Ty1)(T0)− (Ty2)(T0)|, t ∈ [T0 − ̺, T0],

1

(p0 + 2ε)v(t)

∣

∣

∣

∣

(

v(t+ τ)(y1(t+ τ) − y2(t+ τ))

+(d0 − ε)

∫ t+τ

T0

v(s− β)(y1(s− β)− y2(s− β)) ds

)∣

∣

∣

∣

, t > T0.

Therefore,

|(Tx1)(t)− (Tx2)(t)| 6
‖x1 − x2‖

(p0 + 2ε)u(t)

(

u(t+ τ) + (a0 − ε)

∫ t+τ

T0

u(s− α) ds

)

6
‖x1 − x2‖

γ

and

|(Ty1)(t) − (Ty2)(t)| 6
‖y1 − y2‖

(p0 + 2ε)v(t)

(

v(t+ τ) + (d0 − ε)

∫ t+τ

T0

v(s− β) ds

)

6
‖y1 − y2‖

γ
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show that T is a contraction mapping. Hence, by Banach’s contraction principle,

T has a unique fixed point Y such that (TY )(t) = Y (t), that is, Y (t) = Y (T0),

t ∈ [T0 − ̺, T0] and

Y (t) =

























1

(p0 + 2ε)u(t)

(

u(t+ τ)x(t + τ) + (a0 − ε)

∫ t+τ

T0

u(s− α)x(s − α) ds

+(b0 − ε)

∫ t+τ

T0

v(s− β)y(s− β) ds

)

1

(p0 + 2ε)v(t)

(

v(t+ τ)y(t+ τ) + (c0 − ε)

∫ t+τ

T0

u(s− α)x(s − α) ds

+(d0 − ε)

∫ t+τ

T0

v(s− β)y(s− β) ds

)

























for t > T0. Setting
[

w1(t)

w2(t)

]

=

[

x(t)u(t)

y(t)v(t)

]

, t > T0 − ̺,

we find

[

w1(t)

w2(t)

]

=

























1

(p0 + 2ε)

(

w1(t+ τ) + (a0 − ε)

∫ t+τ

T0

w1(s− α) ds

+(b0 − ε)

∫ t+τ

T0

w2(s− β) ds

)

1

(p0 + 2ε)

(

w2(t+ τ) + (c0 − ε)

∫ t+τ

T0

w1(s− α) ds

+(d0 − ε)

∫ t+τ

T0

w2(s− β) ds

)

























,

which is a nonoscillatory vector solution of (3.4), a contradiction to Lemma 3.1.

Case 2 : u(t) < 0, u(t−τ) < 0, u(t−α) < 0 and v(t) < 0, v(t−τ) < 0, v(t−β) < 0

for t > t1. The proof is similar as in Case 1.

Case 3 : u(t) > 0, u(t−τ) > 0, u(t−α) > 0 and v(t) < 0, v(t−τ) < 0, v(t−β) < 0

for t > t1. In this case we rewrite (3.1) as

(3.17)

d

dt







u(t)− p(t)h1(u(t− τ)) −

∫ ∞

t

b(s)f2(v(s− β)) ds

v(t)− p(t)h2(v(t− τ)) −

∫ ∞

t

c(s)f1(u(s− α)) ds






=

[

−a(t)f1(u(t− α))

−d(t)f2(v(t − β))

]

.

By putting r(t) = −v(t) in (3.17), we get

(3.18)

d

dt







u(t)− p(t)h1(u(t− τ)) +

∫ ∞

t

b(s)f2(r(s− β)) ds

r(t) − p(t)h2(r(t − τ)) +

∫ ∞

t

c(s)f1(u(s− α)) ds






=

[

−a(t)f1(u(t− α))

−d(t)f2(r(t − β))

]

.
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If

(3.19)

[

z∗1(t)

z∗2(t)

]

=







u(t)− p(t)h1(u(t− τ)) +

∫ ∞

t

b(s)f2(r(s− β)) ds

r(t) − p(t)h2(r(t − τ)) +

∫ ∞

t

c(s)f1(u(s− α)) ds






,

then we obtain

z∗1
′(t) = −a(t)f1(u(t− α)) < 0,(3.20)

z∗2
′(t) = −d(t)f2(r(t − β)) < 0.(3.21)

Therefore, z∗1(t) and z
∗
2(t) are monotonic nonincreasing functions for t > t2. Pro-

ceeding as in Case 1, we obtain lim
t→∞

z∗1(t) = −∞ and lim
t→∞

z∗2(t) = −∞ upon the

ultimate choice of z∗1(t), z
∗
2(t) < 0 for t > t3. Now, we set

P1(t) =
p(t)h1(u(t− τ))

u(t− τ)
, P2(t) =

p(t)h2(r(t− τ))

r(t − τ)
,

A(t) =
a(t)f1(u(t− α))

u(t− α)
, D(t) =

d(t)f2(r(t − β))

r(t− β)
,

P ∗
1 (t) =

∫∞

t
b(s)f2(r(s− β)) ds
∫∞

t
r(s − β) ds

, P ∗
2 (t) =

∫∞

t
c(s)f1(u(s− α)) ds
∫∞

t
u(s− α) ds

for t > t4. So, (3.1) becomes

(3.22)
d

dt

[

z∗1(t)

z∗2(t)

]

+

[

A(t)u(t− α)

D(t)r(t − β)

]

= 0.

Using (H1) and (H3), we get

lim sup
t→∞

P1(t) 6 lim sup
t→∞

p(t) lim
t→∞

h1(u(t− τ))

u(t− τ)
= p0,

lim sup
t→∞

P2(t) 6 lim sup
t→∞

p(t) lim
t→∞

h2(r(t − τ))

r(t− τ)
= p0.

Therefore, we can find t4 > t3 such that

P1(t), P2(t) <
(p0 + 2ε)

γ

for t > t4. Integrating (3.22) from t5 to t (> t5 > t4), we obtain

∫ t

t5

z∗1
′(t) +

∫ t

t5

A(s)u(s− α) ds = 0,

∫ t

t5

z∗2
′(t) +

∫ t

t5

D(s)r(s − β) ds = 0,

that is,

z∗1(t) +

∫ t

t5

A(s)u(s− α) ds < 0, z∗2(t) +

∫ t

t5

D(s)r(s − β) ds < 0.
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Substituting for the values of z∗1(t) and z
∗
2(t), we get

u(t)− P1(t)u(t− τ) +

∫ ∞

t

b(s)f2(r(s − β)) ds+

∫ t

t5

A(s)u(s− α) ds < 0,

r(t) − P2(t)r(t − τ) +

∫ ∞

t

c(s)f1(u(s− α)) ds+

∫ t

t5

D(s)r(s − β) ds < 0,

and equivalently

(3.23) u(t) >
1

P1(t+ τ)

(

u(t+τ)+P ∗
1 (t+τ)

∫ ∞

t+τ

r(s−β) ds+

∫ t+τ

t5

A(s)u(s−α) ds

)

,

(3.24) r(t) >
1

P2(t+ τ)

(

r(t+τ)+P ∗
2 (t+τ)

∫ ∞

t+τ

u(s−α) ds+

∫ t+τ

t5

D(s)r(s−β) ds

)

for t > t5. Let 0 < ε < min{a0, b0, c0, d0}. We can find positive constants T1, T2, T3,

T4, T5, T6 such that P1(t) < p0+ε for t > T1, P2(t) < p0+ε for t > T2, A(t) > a0−ε

for t > T3, b(t) > b0 − ε for t > T4, c(t) > c0 − ε for t > T5, D(t) > d0 − ε for t > T6.

Clearly,

P ∗
1 (t) =

∫∞

t b(s)f2(r(s − β)) ds
∫∞

t r(s − β) ds
> (b0 − ε)

∫∞

t f2(r(s− β)) ds
∫∞

t r(s− β) ds
,

P ∗
2 (t) =

∫∞

t c(s)f1(u(s− α)) ds
∫∞

t
u(s− α) ds

> (c0 − ε)

∫∞

t f1(u(s− α)) ds
∫∞

t
u(s− α) ds

.

For 0 < ε1 < 1, there exists T7 > 0 such that

P ∗
1 (t) > (b0 − ε)(1− ε1)

∫∞

t
r(s− β) ds

∫∞

t
r(s− β) ds

,

P ∗
2 (t) > (c0 − ε)(1− ε1)

∫∞

t
u(s− α) ds

∫∞

t
u(s− α) ds

for t > T7. Let T0 = max{t5, T1, T2, T3, T4, T5, T6, T7}. Therefore, (3.23) and (3.24)

reduce to

(3.25)

u(t) >
γ

p0 + 2ε

(

u(t+τ)+(a0−ε)

∫ t+τ

T0

u(s−α) ds+(b0−ε)(1−ε1)

∫ ∞

t+τ

r(s−β) ds

)

and

(3.26)

r(t) >
γ

p0 + 2ε

(

r(t+τ)+(d0−ε)

∫ t+τ

T0

r(s−β) ds+(c0−ε)(1−ε1)

∫ ∞

t+τ

u(s−α) ds

)

.
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Similar to Case 1, we define T1 : B → X as (T1Y )(t) = (T1Y )(T0), t ∈ [T0 − ̺, T0],

(T1Y )(t) =

























1

(p0 + 2ε)u(t)

(

u(t+ τ)x(t + τ) + (a0 − ε)

∫ t+τ

T0

u(s− α)x(s − α) ds

+(b0 − ε)(1− ε1)

∫ ∞

t+τ

r(s− β)y(s− β) ds

)

1

(p0 + 2ε)r(t)

(

r(t + τ)y(t+ τ) + (d0 − ε)

∫ t+τ

T0

r(s− β)y(s− β) ds

+(c0 − ε)(1− ε1)

∫ ∞

t+τ

u(s− α)x(s − α) ds

)

























for t > T0. The rest of the proof follows from Case 1.

Case 4 : u(t) < 0, u(t−τ) < 0, u(t−α) < 0 and v(t) > 0, v(t−τ) > 0, v(t−β) > 0

for t > t1. The proof is similar as Case 3. This completes the proof of the theorem.

�

E x am p l e 3.1. Consider a two-dimensional first order neutral delay differential

system of the form

(3.27)
d

dt

[

u(t)− (1 + 1/t)h1(u(t− 2π))

v(t)− (1 + 1/t)h2(v(t− 2π))

]

+

[

(2 + 1/t) (2 + 1/t)

(7 + 1/t) (7 + 1/t)

] [

f1(u(t−
5
2π))

f2(v(t− 4π))

]

= 0,

where

h1(u) = u(1 + e−|u|), f1(u) = u(1 + e−|u|),

h2(v) = v(1 + e−|v|), f2(v) = v(1 + e−|v|).

Here,

lim
t→∞

p(t) = 1 ∈ [1,∞), lim
t→∞

a(t) = 2 ∈ (0,∞), lim
t→∞

b(t) = 2 ∈ (0,∞),

lim
t→∞

c(t) = 7 ∈ (0,∞), lim
t→∞

d(t) = 7 ∈ (0,∞).

Hence, the limiting system of (3.27) can be put in the form

(3.28)
d

dt

[

u(t)− u(t− 2π)

v(t)− v(t− 2π)

]

+

[

2 2

7 7

] [

u(t− 5
2π)

v(t− 4π)

]

= 0

which satisfies all conditions of Theorem 3.1. Since the limiting system is oscillatory,

then so also is (3.27). In particular, [u(t), v(t)]⊤ = [sin t, cos t]⊤ is one of such

oscillatory vector solutions of the system (3.28).

R em a r k 3.1. It would be interesting to establish linearized oscillation theory

for the system (3.1) when −∞ < p(t) < 1 for all t.

A c k n ow l e d g em e n t s. The authors are thankful to the referees for their valu-

able suggestions and comments for necessary corrections of this paper.
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