
Kybernetika

Liang Li-zhi; Wang Xue-ping
New results on additive generator pairs of overlap and grouping functions

Kybernetika, Vol. 61 (2025), No. 2, 238–263

Persistent URL: http://dml.cz/dmlcz/152990

Terms of use:
© Institute of Information Theory and Automation AS CR, 2025

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/152990
http://dml.cz


KYBERNET IKA — VOLUME 6 1 ( 2 0 2 5 ) , NUMBER 2 , PAGES 2 3 8 – 2 6 3

NEW RESULTS ON ADDITIVE GENERATOR PAIRS
OF OVERLAP AND GROUPING FUNCTIONS

Li-zhi Liang and Xue-ping Wang

In this article, we deeply reveal the relationship between functions θ and ϑ in an overlap
function additively generated by an additive generator pair (θ,ϑ), which is used to character-
ize the conditions for an overlap function additively generated by the pair being a triangular
norm by terms of functions θ and ϑ. We also establish the conditions that an overlap function
additively generated by the additive generator pair can be obtained by a distortion of a trian-
gular norm and a (pseudo) automorphism. Finally, we dually give the related results concerned
grouping functions.

Keywords: overlap function, grouping function, triangular norm, additive generator pair,
distortion

Classification: 03B52, 03E72

1. INTRODUCTION

Overlap and grouping functions introduced by Bustince et al. [5, 6] arise from some
problems in image processing [4], classification and decision making [24], for which tri-
angular norms (t-norms for short) and triangular conorms (t-conorms for short) are
widely considered [13] but the associativity is not strongly required in the real world.
As two special cases of aggregation functions [3, 18], overlap and grouping functions are
given by increasing continuous commutative bivariate functions defined over the unit
square and with appropriate boundary conditions.

In recent years, overlap and grouping functions have a very rapid development both
in applications and theory. In applications, overlap and grouping functions play an im-
portant role in image processing [5, 16, 17], data stream clustering [26], convolutional
neural networks [22], classification [1, 25, 29] and decision making problems [23, 28] when
we need to assign a given object into one of two different classes which are not evidently
distinct. In theory, several explorations have also been made. For example, Bedregal et
al. [2] discussed some significant properties related to overlap and grouping functions,
such as migrativity, homogeneity, idempotency and the existence of generators. Particu-
larly, they obtained important results related to the action of automorphisms on overlap
and grouping functions, and investigated the preservation of those properties and also
the Lipschitz condition. More theoretic achievements are referred in [7, 8, 9, 12, 14].
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As we know, there exists a close relationship between overlap and grouping functions
and some particular class of t-norms and t-conorms. Because a very significant way
for building t-norms or t-conorms is the use of additive and multiplicative generators
[15, 20, 27], it seems natural for us to investigate whether such a building method are
suitable for the overlap and grouping functions or not. Moreover, with an eye kept on
application, the use of additive and multiplicative generators may simplify the choice of
an appropriate overlap or grouping function for a given problem since we only need to
consider one-variable functions instead of a bivariate one, reducing the computational
complexity in this way [19]. Based on this idea, Dimuro et al. [11] supplied the notion of
an additive generator pair for grouping functions. Later, they also suggested the notion
of an additive generator pair for overlap functions and studied the overlap function
obtained by the distortion of a positive continuous t-norm and a pseudo automorphism.
Specific speaking, they gave the definition of an additive generator pair for overlap
functions as follows.

Definition 1.1. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be continuous and
decreasing functions such that

(1) θ(x) = ∞ if and only if x = 0;

(2) θ(x) = 0 if and only if x = 1;

(3) ϑ(x) = 1 if and only if x = 0;

(4) ϑ(x) = 0 if and only if x = ∞.

Then the function Oθ,ϑ : [0, 1]2 → [0, 1], defined by Oθ,ϑ(x, y) = ϑ(θ(x) + θ(y)), is an
overlap function. (θ, ϑ) is called an additive generator pair of the overlap function Oθ,ϑ,
and Oθ,ϑ is said to be additively generated by the pair (θ, ϑ).

In 2018, Junsheng Qiao [21] gave another way for building overlap and grouping functions
by a multiplicative generator pair. The definition of a multiplicative generator pair is
as follows.

Definition 1.2. Let g, h : [0, 1] → [0, 1] be two continuous and increasing functions
such that

(1) h(x) = 0 if and only if x = 0;

(2) h(x) = 1 if and only if x = 1;

(3) g(x) = 0 if and only if x = 0;

(4) g(x) = 1 if and only if x = 1.

Then, the function Og,h : [0, 1]2 → [0, 1], defined by Og,h(x, y) = g(h(x)h(y)), is an
overlap function. (g, h) is called a multiplicative generator pair of the overlap function
Og,h, and Og,h is said to be multiplicatively generated by the pair (g, h).
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In particular, Feng-qing Zhu [30] supplied a positive answer to an open problem raised
by Dimuro et al. [10] by constructing an example and presented the conditions under
which an overlap function can be obtained by a (F , T )-distortion for a positive and
continuous t-norm T and a (pseudo) automorphism F .

Notice that the condition of an additive generator pair proposed in [10] (resp. the
condition of a multiplicative generator pair presented in [21]) is sufficient but not nec-
essary for the function Oθ,ϑ (resp. Og,h) being an overlap function. For instance, when
h and g do not satisfy (2) and (4) of Definition 1.2, respectively, Og,h : [0, 1]2 → [0, 1]
can also be an overlap function (see Example 3.1 in [21]). Thus some conditions of the
additive (resp. multiplicative) generator pair can be omitted or replaced. Therefore,
an interesting question naturally arise: do we characterize the functions θ and ϑ (resp.
g and h) and explore whether we can construct overlap and grouping functions by an
additive generator pair (θ, ϑ) (resp. (g, h)) with weaker conditions or not? This article
will positively answer this problem.

The rest of this article is organized as follows: In Section 2, we present some prelim-
inary concepts and results. In Section 3, we first introduce the concept of an additive
generator pair (θ,ϑ) of an overlap function, and then investigate the relationship between
functions θ and ϑ. In Section 4, we shall give the conditions for an overlap function addi-
tively generated by the pair(θ,ϑ) being a t-norm. In Section 5, we explore the conditions
that an overlap function additively generated by the pair(θ,ϑ) can be obtained by a dis-
tortion of a t-norm and a (pseudo) automorphism. Section 6 is devoted to introducing
the concept of an additive generator pair of grouping functions and some related results.
A conclusion is drawn in Section 7.

2. PRELIMINARIES

In this section, we recall some fundamental concepts and results that will be used in the
sequel.

Definition 2.1. (Klement et al. [15]) A t-norm is a binary operator T : [0, 1]2 → [0, 1]
such that for all x, y, z ∈ [0, 1], the following conditions are satisfied:

(T1) T (x, y) = T (y, x);

(T2) T (T (x, y), z) = T (x, T (y, z));

(T3) T (x, y) ≤ T (x, z) whenever y ≤ z;

(T4) T (x, 1) = x.

A t-norm T is called positive if T (x, y) = 0 then either x = 0 or y = 0. A bi-
nary operator T : [0, 1]2 → [0, 1] is called t-subnorm if it satisfies (T1), (T2), (T3) and
T (x, y) ≤ min{x, y} for all x, y ∈ [0, 1].

Let T be a t-norm. Define for each n-tuple (x1, x2, . . . , xn) ∈ [0, 1]n

n
⊺

i=1
xi = T (

n−1
⊺

i=1
xi, xn) = T (x1, x2, . . . , xn).

If, in particular, we have x1 = x2 = · · · = xn = x, we shall briefly write

x
(n)
T = T (x, x, . . . , x).
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Definition 2.2. (Klement et al. [15]) Let p, q, s, t ∈ [−∞,∞] with p < q, s < t and
f : [p, q] → [s, t] be an increasing (resp. a decreasing) function. Then the function
f (−1) : [s, t] → [p, q] defined by

f (−1)(y) = sup{x ∈ [p, q] | f(x) < y} (resp. f (−1)(y) = sup{x ∈ [p, q] | f(x) > y})

is called a pseudo-inverse of the increasing (resp. decreasing) function f .

Definition 2.3. (Bustince et al. [5]) A bivariate function O : [0, 1]2 → [0, 1] is said to
be an overlap function if it satisfies the following conditions:

(O1) O is commutative;

(O2) O(x, y) = 0 if and only if xy = 0;

(O3) O(x, y) = 1 if and only if xy = 1;

(O4) O is increasing;

(O5) O is continuous.

3. ADDITIVE GENERATOR PAIRS OF OVERLAP FUNCTIONS

This section first introduces the concept of an additive generator pair (θ,ϑ) of an overlap
function, and then it deeply reveals the relationship between functions θ and ϑ in the
overlap function additively generated by the pair.

Similar to Definition 3.1 of [21], we may give the following one.

Definition 3.1. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be continuous and
decreasing functions, respectively. If the bivariate function Oθ,ϑ : [0, 1]2 → [0, 1], given
by

Oθ,ϑ(x, y) = ϑ(θ(x) + θ(y)),

is an overlap function, then (θ, ϑ) is called an additive generator pair of the overlap
function Oθ,ϑ and Oθ,ϑ is said to be additively generated by the pair (θ, ϑ).

Let θ : [0, 1] → [0,∞] be a function. For any a ∈ [0,∞), define functions 2θ : [0, 1] →
[0,∞] and θ + a

2 : [0, 1] → [0,∞], respectively, by

(2θ)(x) = 2θ(x)

for any x ∈ [0, 1] and

(θ +
a

2
)(x) = θ(x) +

a

2

for any x ∈ [0, 1]. Then the following theorem characterizes the functions θ : [0, 1] →
[0,∞] and ϑ : [0,∞] → [0, 1], respectively, whenever Oθ,ϑ is an overlap function addi-
tively generated by the pair (θ,ϑ).

Theorem 3.2. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be continuous and decreas-
ing functions, respectively, and Oθ,ϑ : [0, 1]2 → [0, 1] be an overlap function additively
generated by the pair (θ, ϑ). Then the following two statements hold:
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(i) θ(x) = ∞ if and only if x = 0;

(ii) ϑ(x) = 0 if and only if x = ∞.

P r o o f . (i) (⇐) If x = 0, then we affirm that θ(x) = ∞. Indeed, if θ(0) < ∞ then by
Definition 2.3, ϑ(u) ≤ ϑ(2θ(0)) = ϑ(θ(0) + θ(0)) = Oθ,ϑ(0, 0) = 0, i. e.,

ϑ(u) = 0 (1)

for any u ∈ [2θ(0),∞]. Note that 2θ : [0, 1] → [0,∞] is continuous since θ : [0, 1] → [0,∞]
is continuous. In the following, we prove that ϑ(y) ̸= 0 for any y ∈ [0, 2θ(0)) by
distinguishing two cases.

Case 1. If y ∈ (2θ(1), 2θ(0)), then there exists a z ∈ (0, 1) such that y = 2θ(z) by the
continuity of 2θ. Assume that ϑ(y) = 0. Then one has that

Oθ,ϑ(z, z) =ϑ(θ(z) + θ(z))

=ϑ(2θ(z))

=ϑ(y)

=0,

which contradicts (O2) of Definition2.3. Therefore,

ϑ(y) ̸= 0 (2)

for any y ∈ (2θ(1), 2θ(0)).

Case 2. If y ∈ [0, 2θ(1)] and ϑ(y) = 0, then it is obvious that ϑ(u) = 0 for any
u ∈ (2θ(1), 2θ(0)) since ϑ is a decreasing function, contrary to (2). Therefore, ϑ(y) ̸= 0
for any y ∈ [0, 2θ(1)].

Cases 1 and 2 imply that ϑ(y) ̸= 0 for any y ∈ [0, 2θ(0)), which together with (1)
implies that

ϑ(u) = 0 if and only if u ∈ [2θ(0),∞]. (3)

On the other hand, since Oθ,ϑ is an overlap function, by (O2) of Definition 2.3 we have
that

Oθ,ϑ(0, y) = ϑ(θ(0) + θ(y)) = 0

for any y ∈ [0, 1]. Thus from (3) we get θ(0) + θ(y) ≥ 2θ(0), i. e., θ(y) ≥ θ(0) for any
y ∈ [0, 1]. In particular, θ(0) ≤ θ(1). Thus θ(1) = θ(0) since θ(1) ≤ θ(0). Furthermore,
we conclude that

Oθ,ϑ(1, 1) =ϑ(θ(1) + θ(1))

=ϑ(θ(0) + θ(0))

=Oθ,ϑ(0, 0)

=0 by (O2) of Definition 2.3

which contradicts (O3) of Definition 2.3. Therefore, θ(0) = ∞.
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(⇒) If θ(x) = ∞ then we assert that x = 0. In fact, if there exists a u ∈ (0, 1] such
that θ(u) = ∞, then

Oθ,ϑ(u, u) =ϑ(θ(u) + θ(u))

=ϑ(∞),

Since θ(0) = ∞, by (O2) of Definition 2.3, we further have

Oθ,ϑ(u, u) = ϑ(∞) = ϑ(θ(0) + θ(0))) = Oθ,ϑ(0, 0) = 0, (4)

contrary to (O2) of Definition 2.3.

(ii) (⇐) If x = ∞, then by (4), we know that ϑ(x) = 0.
(⇒) From (i), we know that θ(x) = ∞ if and only if x = 0. Thus if ϑ(x) = 0 then we

assert that x = ∞. Otherwise, there are two cases as follows.

Case a. If there exists a u ∈ (2θ(1), 2θ(0)) such that ϑ(u) = 0, then there exists a
z ∈ (0, 1) such that u = 2θ(z) by the continuity of 2θ. Thus

Oθ,ϑ(z, z) =ϑ(θ(z) + θ(z))

=ϑ(u)

=0,

which is contrary to (O2) of Definition 2.3. Consequently,

ϑ(y) ̸= 0 (5)

for any y ∈ (2θ(1), 2θ(0)).

Case b. If there exists a u ∈ [0, 2θ(1)] such that ϑ(u) = 0, then ϑ(y) ≤ ϑ(u) = 0 for
any y ∈ (2θ(1),∞), contrary to (5).

Therefore, from Cases a and b, ϑ(u) ̸= 0 for any u ∈ [0,∞), i. e., x = ∞. □
The following theorem shows the conditions that a pair (θ, ϑ) can additively generate

overlap functions.

Theorem 3.3. For a given a ∈ [0,∞), let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be
continuous and decreasing functions such that

(i) θ(x) = ∞ if and only if x = 0;

(ii) θ(x) = a
2 if and only if x = 1;

(iii) ϑ(x) = 1 if and only if x ∈ [0, a];

(iv) ϑ(x) = 0 if and only if x = ∞.

Then, the function Oθ,ϑ : [0, 1]2 → [0, 1], defined by

Oθ,ϑ(x, y) = ϑ(θ(x) + θ(y)),

is an overlap function.
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P r o o f . We only need to show that Definition 2.3 holds. Indeed, the conditions (O1)
and (O5) are obvious. So that we just verify the other conditions as follows.

(O2) First note that from (iv), Oθ,ϑ(x, y) = 0 if and only if ϑ(θ(x) + θ(y)) = 0
if and only if θ(x) + θ(y) = ∞.

Now, suppose that Oθ,ϑ(x, y) = 0. We claim that xy = 0. In fact, if xy ̸= 0. Then
x ̸= 0 and y ̸= 0. Thus from (i), we have θ(x) + θ(y) ̸= ∞, a contradiction.

Conversely, if xy = 0, then x = 0 or y = 0, say x = 0, thus from (i) we have θ(x) = ∞.
This follows that θ(x) + θ(y) = ∞, which implies that Oθ,ϑ(x, y) = 0.

(O3) First note that from (iii), Oθ,ϑ(x, y) = 1 if and only if ϑ(θ(x) + θ(y)) = 1
if and only if θ(x) + θ(y) ∈ [0, a].

Now, suppose that Oθ,ϑ(x, y) = 1. Then we assert that xy = 1. In fact, if xy ̸= 1.
Then x ̸= 1 or y ̸= 1, say x ̸= 1, thus from (ii) we have θ(x) > θ(1) = a

2 . Then
θ(x) + θ(y) > a

2 + θ(y) ≥ a
2 + a

2 = a, which is in conflict with θ(x) + θ(y) ∈ [0, a].
Conversely, if xy = 1, then x = 1 and y = 1. Thus from (ii) we have that θ(x)+θ(y) =

θ(1) + θ(1) = a
2 + a

2 = a, i. e., θ(x) + θ(y) ∈ [0, a]. Therefore, Oθ,ϑ(x, y) = 1.

(O4) For any y, z ∈ [0, 1] with y ≤ z, θ(y) ≥ θ(z) since θ is decreasing, which together
with ϑ being decreasing means that

Oθ,ϑ(x, y) = ϑ(θ(x) + θ(y)) ≤ ϑ(θ(x) + θ(z)) = Oθ,ϑ(x, z),

i. e., (O4) holds. □

The following two examples illustrate Theorem 3.3.

Example 3.4. For a given a ∈ [0,∞), consider the functions θ : [0, 1] → [0,∞] and
ϑ : [0,∞] → [0, 1] defined by

θ(x) =

{
a
2 − lnx if x ̸= 0,

∞ if x = 0

and

ϑ(x) =

{
1 if x ∈ [0, a),

e−x+a if x ∈ [a,∞],

respectively. Then it is easy to see that both θ and ϑ are continuous and decreasing
functions satisfying the conditions of Theorem 3.3. Therefore, Oθ,ϑ(x, y) = xy is an
overlap function. In particular, Oθ,ϑ = Tp.

Example 3.5. For a given a ∈ [0,∞), consider the functions θ : [0, 1] → [0,∞] and
ϑ : [0,∞] → [0, 1], defined, respectively, by

θ(x) =

{
a
2 − lnx if x ̸= 0,

∞ if x = 0

and

ϑ(x) =

{
1 if x ∈ [0, a),
a
x if x ∈ [a,∞].
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Then we can see that both θ and ϑ are continuous and decreasing functions, satisfying
the conditions of Theorem 3.3.

In a simple computation, we have

Oθ,ϑ(x, y) =

0 otherwise,
a

a− lnxy
if xy ̸= 0.

Therefore, by Theorem 3.3, Oθ,ϑ is an overlap function that is not associative, and 1 is
not its neutral element.

The following proposition reveals that the conditions (ii) and (iii) of Theorem 3.3
are closely associated whenever Oθ,ϑ : [0, 1]2 → [0, 1] is an overlap function additively
generated by the pair (θ, ϑ).

Proposition 3.6. For a given a ∈ [0,∞), let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be
two continuous and decreasing functions such that a binary function Oθ,ϑ : [0, 1]2 → [0, 1]
with Oθ,ϑ(x, y) = ϑ(θ(x) + θ(y)) is an overlap function. Then the following statements
are equivalent:

(i) x ∈ [0, a] if and only if ϑ(x) = 1;

(ii) θ(x) = a
2 if and only if x = 1.

P r o o f . (i)⇒(ii): If θ(x) = a
2 , then from (i) we have ϑ(θ(x) + θ(x)) = ϑ(a) = 1. Hence

Oθ,ϑ(x, x) = 1. Since Oθ,ϑ is an overlap function, by (O3) of Definition 2.3, we have
that x = 1.

In the converse implication, if x = 1, then Oθ,ϑ(1, 1) = 1 since Oθ,ϑ is an overlap
function, i. e., ϑ(θ(1)+ θ(1)) = 1. Hence, it follows from (i) that θ(1) ∈ [0, a

2 ]. We assert
that θ(1) = a

2 . In fact, if θ(1) < a
2 , then there exists an x0 ∈ [0, 1) such that θ(x0) =

a
2

since θ is continuous and θ(0) = ∞, thus ϑ(θ(x0) + θ(x0)) = ϑ(a) = 1, which violates
(O3) of Definition 2.3. Therefore, θ(1) = a

2 .
(ii)⇒(i): Necessity. If x ∈ [0, a], then ϑ(x) ≥ ϑ(a) since ϑ is decreasing. Meanwhile,

from (ii) we have ϑ(a) = ϑ(θ(1)+θ(1)) = Oθ,ϑ(1, 1) = 1 since Oθ,ϑ is an overlap function.
Thus 1 ≥ ϑ(x) ≥ ϑ(a) = 1 for any x ∈ [0, a], i. e., ϑ(x) = 1 for any x ∈ [0, a].

Sufficiency. If ϑ(x) = 1, Then we claim x ∈ [0, a]. Indeed, if there exists an x0 ∈
(a,∞] such that ϑ(x0) = 1, then there exist two elements y, z ∈ [0, 1] such that θ(y) +
θ(z) = x0 since θ is continuous. Thus yz < 1 and ϑ(θ(y) + θ(z)) = ϑ(x0) = 1, contrary
to (O3) of Definition 2.3 since Oθ,ϑ is an overlap function. □

Remark 3.7. Compared with the additive generator pair of an overlap function in [10]
(see Corollary 4.1 in [10]), the additive generator pair of an overlap function appeared
in Theorem 3.3 gives a way to construct overlap functions with more relaxed boundary
conditions. Indeed, if a = 0, then Theorem 3.3 coincides with Corollary 4.1 in [10].

4. CONDITIONS THAT AN OVERLAP FUNCTION IS A T-NORM

From Examples 3.4 and 3.5, one easily sees that not every overlap function additively
generated by the pair (θ,ϑ) is a t-norm. Then a natural question arises: what are the
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conditions for an overlap function additively generated by the pair (θ,ϑ) being a t-norm?
This section will answer this problem.

First, we have the following proposition.

Proposition 4.1. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be two continuous and
decreasing functions, and let Oθ,ϑ : [0, 1]2 → [0, 1] be an overlap function additively
generated by the pair (θ, ϑ) with θ(1) = a

2 where a ∈ [0,∞). Then the following two
statements are equivalent:

(1) ϑ ◦ (θ + a
2 ) = id[0,1];

(2) 1 is a neutral element of Oθ,ϑ.

P r o o f . (1) ⇒ (2) If ϑ ◦ (θ + a
2 ) = id[0,1], then

Oθ,ϑ(x, 1) =ϑ(θ(x) + θ(1))

=ϑ(θ(x) +
a

2
)

=x

for each x∈ [0, 1] since θ(1) = a
2 . Therefore, 1 is a neutral element of Oθ,ϑ.

(2) ⇒ (1) If 1 is a neutral element of Oθ,ϑ, then

ϑ((θ(x) +
a

2
)) =ϑ((θ(x) + θ(1)))

=Oθ,ϑ(x, 1)

=x

for any x ∈ [0, 1] since θ(1) = a
2 . Therefore, ϑ ◦ (θ + a

2 ) = id[0,1]. □

Before presenting results that are associating a t-norm with an overlap function ad-
ditively generated by the pair (θ,ϑ), we need the following lemma.

Lemma 4.2. (Bustince et al. [5]) O : [0, 1]2 → [0, 1] is an associative overlap function
if and only if O is a continuous and positive t-norm.

Proposition 4.3. For a given a ∈ [0,∞), let θ : [0, 1] → [0,∞] be a continuous and
strictly decreasing function such that:

(1) θ(x) = ∞ if and only if x = 0;

(2) θ(x) = a
2 if and only if x = 1.

If a function ϑ : [0,∞] → [0, 1] satisfies ϑ(x) = (θ + a
2 )

(−1)(x) for any x ∈ [0, 1], then
a binary function Oθ,ϑ : [0, 1]2 → [0, 1] with Oθ,ϑ(x, y) = ϑ(θ(x) + θ(y)) is a positive
t-norm.
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P r o o f . Since θ is strictly decreasing, θ + a
2 is also strictly decreasing. Then ϑ =

(θ + a
2 )

(−1) is continuous and decreasing. In the following, we verify that the Oθ,ϑ :
[0, 1]2 → [0, 1] is an overlap function according to Theorem 3.3. From the hypothesis it
is clearly that both (i) and (ii) of Theorem 3.3 hold. Next, we prove that (iii) and (iv)
of Theorem 3.3 are true, respectively.

(3) From Definition 2.2, ϑ(x) = 1 if and only if (θ+a
2 )

(−1)(x) = 1 if and only if sup{z ∈
[0, 1] | θ(z) + a

2 > x} = 1.

Suppose that ϑ(x) = 1. If x ∈ (a,∞], then there exists a u ∈ [0, 1) such that
x = θ(u)+ a

2 since θ is continuous and strictly decreasing. Thus ϑ(x) = (θ+ a
2 )

(−1)(x) =
sup{z ∈ [0, 1] | θ(z) + a

2 > θ(u) + a
2} = u ̸= 1, which is contrary to ϑ(x) = 1. Therefore,

x ∈ [0, a].

Conversely, if x = a, then we get

ϑ(a) =(θ +
a

2
)(−1)(a)

= sup{z ∈ [0, 1] | θ(z) + a

2
> a}

=sup{z ∈ [0, 1] | θ(z) > a

2
}

=1.

Thus 1 ≥ ϑ(x) ≥ ϑ(a) = 1, i. e., ϑ(x) = 1 for any x ∈ [0, a].

(4) From Definition 2.2, ϑ(x) = 0 if and only if (θ+a
2 )

(−1)(x) = 0 if and only if sup{z ∈
[0, 1] | θ(z) + a

2 > x} = 0.

(⇒) Supposing that ϑ(x) = 0, we assert that x = ∞. Otherwise, there exists an
x0 ∈ [0,∞) such that ϑ(x0) = 0. Then, because of the continuity of θ, we have

ϑ(x0) = (θ +
a

2
)(−1)(x0)

= sup{z ∈ [0, 1] | θ(z) + a

2
> x0}

̸= 0

since θ(x) = ∞ if and only if x = 0, which violates ϑ(x0) = 0.

(⇐) If x = ∞, then ϑ(x) = sup{z ∈ [0, 1] | θ(z) + a
2 > ∞} = 0.

Therefore, from Theorem 3.3, Oθ,ϑ is an overlap function.

Now, we prove the associativity of Oθ,ϑ.

For each x, y, z ∈ [0, 1], there exists an w ∈ [0, 1] such that θ(x) + θ(y) = θ(w) + a
2

since θ is continuous and θ(x) + θ(y) ≥ θ(x) + a
2 . On the other hand, θ + a

2 is strictly
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decreasing since θ is strictly decreasing, which means (θ + a
2 )

(−1)(θ(w) + a
2 ) = w. Thus

Oθ,ϑ(Oθ,ϑ(x, y), z) =Oθ,ϑ((θ +
a

2
)(−1)(θ(x) + θ(y)), z)

=(θ +
a

2
)(−1)(θ((θ +

a

2
)(−1)(θ(x) + θ(y))) + θ(z))

=(θ +
a

2
)(−1)(θ((θ +

a

2
)(−1)(θ(w) +

a

2
)) + θ(z))

=(θ +
a

2
)(−1)(θ(w) + θ(z))

=(θ +
a

2
)(−1)(θ(x) + θ(y) + θ(z)− a

2
).

Analogously, Oθ,ϑ(x,Oθ,ϑ(y, z)) = (θ + a
2 )

(−1)(θ(x) + θ(y) + θ(z) − a
2 ). Therefore,

Oθ,ϑ(x,Oθ,ϑ(y, z)) = Oθ,ϑ(Oθ,ϑ(x, y), z).

Finally, by Lemma 4.2, Oθ,ϑ is a continuous and positive t-norm. □

Notice that we can directly prove Proposition 4.3 by the definition of the t-norm.
Meanwhile, the condition that a function ϑ : [0,∞] → [0, 1] satisfies ϑ(x) = (θ+ a

2 )
(−1)(x)

for any x ∈ [0, 1] cannot be deleted generally.

Example 4.4. For a given a ∈ [0,∞), consider the function θ : [0, 1] → [0,∞] defined
by

θ(x) =

{
a
2 − lnx if x ̸= 0,

∞ if x = 0.

For each b ∈ [0,∞) with a ̸= b, let a function ϑ : [0,∞] → [0, 1] satisfy ϑ(x) =
(θ + b

2 )
(−1)(x) for any x ∈ [0, 1]. Then by a simple calculation, we have

Oθ,ϑ(x, y) = e
b−a
2 xy,

which is not a t-norm.

Proposition 4.5. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be two continuous
and decreasing functions, and Oθ,ϑ : [0, 1]2 → [0, 1] be an overlap function additively
generated by the pair (θ, ϑ) with 1 as neutral element. If for a given a ∈ [0,∞), θ
satisfies the condition (ii) of Theorem 3.3, then Oθ,ϑ is associative.

P r o o f . From the condition (ii) of Theorem 3.3 we get θ(x) = a
2 if and only if x = 1.

Then we have

Oθ,ϑ(x, 1) = ϑ(θ(x) + θ(1)) = ϑ(θ(x) +
a

2
) = x (6)

for any x ∈ [0, 1] since 1 is the neutral element of Oθ,ϑ. Moreover, because θ is decreasing,
θ(x) + θ(y) ≥ θ(x) + a

2 for any x, y ∈ [0, 1]. Thus θ(x) + θ(y) ∈ Ran(θ + a
2 ) since θ is

continuous, i. e., there exists an w ∈ [0, 1] such that θ(x) + θ(y) = θ(w) + a
2 . It follows
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that for any x, y, z ∈ [0, 1],

Oθ,ϑ(Oθ,ϑ(x, y), z) =ϑ(θ(Oθ,ϑ(x, y)) + θ(z))

=ϑ(θ(ϑ(θ(x) + θ(y))) + θ(z))

=ϑ(θ(ϑ(θ(w) +
a

2
)) + θ(z))

=ϑ(θ(w) + θ(z)) by (6)

=ϑ(θ(x) + θ(y) + θ(z)− a

2
).

Similarly, we have Oθ,ϑ(x,Oθ,ϑ(y, z)) = ϑ(θ(x) + θ(y) + θ(z)− a
2 ) for any x, y, z ∈ [0, 1].

Therefore, Oθ,ϑ(Oθ,ϑ(x, y), z) = Oθ,ϑ(x,Oθ,ϑ(y, z)) for any x, y, z ∈ [0, 1]. □

Lemma 4.2, Propositions 4.1 and 4.5 imply the following theorem.

Theorem 4.6. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be two continuous and de-
creasing functions and, Oθ,ϑ : [0, 1]2 → [0, 1] be an overlap function additively generated
by the pair (θ, ϑ). If for a given a ∈ [0,∞), θ satisfies the condition (ii) of Theorem 3.3,
then the following three statements are equivalent:

(1) Oθ,ϑ is a t-norm;

(2) 1 is a neutral element of Oθ,ϑ;

(3) ϑ ◦ (θ + a
2 ) = id[0,1].

Remark 4.7. The differences between the pair (θ, ϑ) that generates t-norms in Theorem
4.6 and the classical additive generator t of continuous t-norms in [15] are as follows.

(1) The classical additive generator t must be strictly decreasing and the pair (θ, ϑ)
only need be decreasing.

(2) The classical additive generator t satisfies that t(x) = 0 if and only if x = 1 and,
the pair (θ, ϑ) satisfies that for a given a ∈ [0,∞), θ(x) = a

2 if and only if x = 1,
and ϑ ◦ (θ + a

2 ) = id[0,1].

5. CONDITIONS THAT OVERLAP FUNCTIONS ADDITIVELY GENERATED
BY THE PAIR (θ,ϑ) CAN BE OBTAINED BY A DISTORTION

Dimuro et al. [10] introduced the definition of a (pseudo) automorphism to discuss the
conditions on which an overlap function can be obtained by a distortion of a t-norm
and a (pseudo) automorphism. This section investigates the conditions that an overlap
function additively generated by the pair (θ,ϑ) can be obtained by a distortion of a
t-norm and a (pseudo) automorphism.

We first need the following definitions.

Definition 5.1. (Dimuro et al. [10]) A function F : [0, 1] → [0, 1] is said to be a pseudo
automorphism if the following conditions hold:

(F1) F is increasing;
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(F2) F is continuous;

(F3) F(x) = 1 if and only if x = 1;

(F4) F(x) = 0 if and only if x = 0.

An automorphism F : [0, 1] → [0, 1] is a strictly increasing pseudo automorphism.

Proposition 5.2. (Dimuro et al. [10]) Let F : [0, 1] → [0, 1] be a pseudo automor-
phism. Then for every positive and continuous t-norm T : [0, 1]2 → [0, 1], the function
OF,T : [0, 1]2 → [0, 1], given by

OF,T (x, y) = F(T (x, y)),

is an overlap function.

The function OF,T in Proposition 5.2 is called an overlap function obtained by the dis-
tortion of the t-norm T by the pseudo automorphism F or an overlap function obtained
by the (F , T )-distortion.

Proposition 5.3. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be two continuous
and decreasing functions and, Oθ,ϑ : [0, 1]2 → [0, 1] be an overlap function additively
generated by the pair (θ, ϑ) that satisfies one of the following two conditions: for a given
a ∈ [0,∞),

(1) θ(x) = a
2 if and only if x = 1;

(2) ϑ(x) = 1 if and only if x ∈ [0, a].

Then the overlap function Oθ,ϑ can be obtained by a (F , Tsub)-distortion for a (pseudo)
automorphism F and a t-subnorm Tsub.

P r o o f . Define functions Tsub : [0, 1]
2 → [0, 1] and F : [0, 1] → [0, 1], respectively, by

Tsub(x, y) = (θ +
a

2
)(−1)(θ(x) + θ(y)) (7)

for any x, y ∈ [0, 1] and

F(x) = ϑ(θ(x) +
a

2
) (8)

for any x ∈ [0, 1]. The rest of the proof is completed by three steps as below.
Step 1. We prove that Tsub is a t-subnorm.

(i) The commutativity of Tsub is obvious.

(ii) The associativity of Tsub. Because θ is decreasing, from the hypothesis and Propo-
sition 3.6 θ(x) + θ(y) ≥ θ(x) + a

2 for each x, y ∈ [0, 1] since Oθ,ϑ is an overlap
function. Then θ(x) + θ(y) ∈ Ran(θ + a

2 ) since θ is continuous, i. e., there exists
an w ∈ [0, 1] such that

θ(x) + θ(y) = θ(w) +
a

2
. (9)
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Let

w1 = (θ +
a

2
)(−1)(θ(w) +

a

2
). (10)

Thus, from the continuity of θ we have

θ(w) = θ(w1). (11)

Therefore, for each x, y, z ∈ [0, 1],

Tsub(Tsub(x, y), z) =Tsub((θ +
a

2
)(−1)(θ(x) + θ(y)), z)

=(θ +
a

2
)(−1)(θ((θ +

a

2
)(−1)(θ(x) + θ(y))) + θ(z))

=(θ +
a

2
)(−1)(θ(w1) + θ(z)) by (9) and (10)

=(θ +
a

2
)(−1)(θ(w) + θ(z)) by (11)

=(θ +
a

2
)(−1)(θ(x) + θ(y) + θ(z)− a

2
).

Analogously, Tsub(x, Tsub(y, z)) = (θ + a
2 )

(−1)(θ(x) + θ(y) + θ(z) − a
2 ) for each

x, y, z ∈ [0, 1]. Consequently, Tsub(x, Tsub(y, z)) = Tsub(Tsub(x, y), z) for each
x, y, z ∈ [0, 1].

(iii) The monotonicity of Tsub. For y, z ∈ [0, 1] with y ≤ z, θ(y) ≥ θ(z) since θ
is decreasing. This follows that Tsub(x, y) = (θ + a

2 )
(−1)(θ(x) + θ(y)) ≤ (θ +

a
2 )

(−1)(θ(x) + θ(z)) = Tsub(x, z).

(iv) For each x, y ∈ [0, 1], we have that Tsub(x, y) = (θ + a
2 )

(−1)(θ(x) + θ(y)) ≤ (θ +
a
2 )

(−1)(θ(x)+ a
2 ) ≤ x since both θ and θ+ a

2 are decreasing. Similarly, Tsub(x, y) ≤
y. Therefore, Tsub(x, y) ≤ min{x, y}. (i), (ii), (iii) and (iv) mean that Tsub is a
t-subnorm.

Step 2. We prove that F is a (pseudo) automorphism.

In fact, it is easy to see that F is continuous and increasing since both θ and ϑ
are continuous and decreasing. From F(x) = ϑ(θ(x) + a

2 ), we have that F(x) =
0 if and only if ϑ(θ(x)+a

2 ) = 0. Moreover, by Theorem 3.2, ϑ(θ(x)+a
2 ) = 0 if and only if

θ(x) = ∞ if and only if x = 0 since Oθ,ϑ is an overlap function. Then F(x) =
0 if and only if x = 0. Again from F(x) = ϑ(θ(x) + a

2 ), we have that F(x) =
1 if and only if ϑ(θ(x)+ a

2 ) = 1. Moreover, from the hypothesis, it follows from Proposi-
tion 3.6 that we have ϑ(θ(x)+ a

2 ) = 1 if and only if θ(x)+ a
2 ∈ [0, a] if and only if θ(x) =

a
2 if and only if x = 1 sinceOθ,ϑ is an overlap function. Therefore, F(x) = 1 if and only if x =
1. Consequently, by Definition 5.1, F is a (pseudo) automorphism.

Step 3. We prove that the overlap function Oθ,ϑ can be obtained by a (F , Tsub)-distortion
for a (pseudo) automorphism F and a t-subnorm Tsub.
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For any x, y ∈ [0, 1],

F(Tsub(x, y)) =ϑ(θ(θ +
a

2
)(−1)(θ(x) + θ(y)) +

a

2
) by (7) and (8)

=ϑ(θ(θ +
a

2
)(−1)(θ(w) +

a

2
) +

a

2
) by (9)

=ϑ(θ(w1) +
a

2
) by (10)

=ϑ(θ(w) +
a

2
) by (11)

=ϑ(θ(x) + θ(y)) by (9)

=Oθ,ϑ(x, y),

i. e., Oθ,ϑ(x, y) = F(Tsub(x, y)). □

The following theorem gives two descriptions that an overlap function Oθ,ϑ addi-
tively generated by the pair (θ,ϑ) can be obtained by a (F , T )-distortion for a (pseudo)
automorphism F and a t-norm T .

Theorem 5.4. For a function O : [0, 1]2 → [0, 1] the following are equivalent:

(1) There exist a continuous and strictly decreasing function θ : [0, 1] → [0,∞] and
a continuous and decreasing function ϑ : [0,∞] → [0, 1] such that the function O
is an overlap function additively generated by the pair (θ,ϑ) satisfying one of the
following two conditions: for a given a ∈ [0,∞),

(a) θ(x) = a
2 if and only if x = 1;

(b) ϑ(x) = 1 if and only if x ∈ [0, a].

(2) The function O is an overlap function obtained by a (F ,T )-distortion for a (pseudo)
automorphism F and a strict t-norm T;

(3) There exist a strictly increasing bijection φ : [0, 1] → [0, 1] and a (pseudo) auto-
morphism H such that O(x, y) = H(φ(x)φ(y)) for all (x, y) ∈ [0, 1]2.

P r o o f . (1) ⇒ (2) : By Proposition 5.3 and its proof, the overlap function O can be
obtained by a (F , Tsub)-distortion for a (pseudo) automorphism F and a t-subnorm Tsub

where Tsub(x, y) = (θ + a
2 )

(−1)(θ(x) + θ(y)) for any x, y ∈ [0, 1]. From the hypothesis,
by Proposition 3.6 we always get that the condition (a) holds since O is the overlap
function. It is obvious that Tsub is a continuous t-subnorm since θ is a continuous and
strictly decreasing function, moreover,

Tsub(x, 1) =(θ +
a

2
)(−1)(θ(x) + θ(1))

=(θ +
a

2
)(−1)(θ(x) +

a

2
)

=x.

Then Tsub is a continuous t-norm. The rest of the proof are split into two parts as below.
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Part A. Tsub is Archimedean.
By Definition 2.2 we have

x
(n)
Tsub

=(θ +
a

2
)(−1)(nθ(x)− (n− 2)

a

2
)

= sup{z ∈ [0, 1] | θ(z) + a

2
> nθ(x)− (n− 2)

a

2
} (12)

for any x ∈ (0, 1). Since nθ(x) − (n − 2)a2 = n(θ(x) − a
2 ) + a and θ(x) > a

2 for any
x ∈ (0, 1), we get that lim

n→∞
n(θ(x) − a

2 ) + a = ∞. This together with (12) yields

lim
n→∞

x
(n)
Tsub

= 0. Thus by Theorem 2.12 of [15], Tsub is Archimedean.

Part B. Tsub is a t-norm with no zero divisors.
Indeed, by Theorem 3.2 the condition (i) of Theorem 3.3 holds since O is an overlap

function. Thus, we get xy = 0 whenever sup{z ∈ [0, 1] | θ(z) + a
2 > θ(x) + θ(y)} = 0.

Then it follows from

Tsub(x, y) =(θ +
a

2
)(−1)(θ(x) + θ(y))

= sup{z ∈ [0, 1] | θ(z) + a

2
> θ(x) + θ(y)}

that, Tsub(x, y) = 0 if and only xy = 0. Thus Tsub is a continuous t-norm with no zero
divisors.

Therefore, Tsub is a continuous Archimedean t-norm with no zero divisors, i. e., Tsub

is strict by Theorem 2.18 of [15].

(2) ⇒ (1) : Suppose that O(x, y) = F(T (x, y)) for a (pseudo) automorphism F and
a strict t-norm T . Thus, from Theorem 5.1 of [15], we know that T has a continuous
additive generator t : [0, 1] → [0,∞] where t is a continuous and strictly decreasing
function satisfying t(1) = 0. Define θ : [0, 1] → [0,∞] by

θ(x) = t(x) +
a

2
(13)

for any x ∈ [0, 1]. Then from Corollary 3.30 of [15], θ is continuous and strictly decreasing
and satisfies the following two conditions:

(i) θ(x) = a
2 if and only if x = 1;

(ii) θ(x) = ∞ if and only if x = 0.

Define ϑ : [0,∞] → [0, 1] by

ϑ(x) = F((θ +
a

2
)(−1)(x)). (14)

for any x ∈ [0,∞]. Then, ϑ is a continuous and decreasing function since F is increasing
and continuous, and (θ + a

2 )
(−1) is decreasing and continuous.

By Definition 5.1, F((θ+ a
2 )

(−1)(x)) = 0 if and only if (θ+ a
2 )

(−1)(x) = 0. Then from

(14), ϑ(x) = 0 if and only if (θ + a
2 )

(−1)(x) = 0. On the other hand, from (ii), we have
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sup{z ∈ [0, 1] | θ(z) + a
2 > x} = 0 if and only if x = ∞. Thus ϑ(x) = 0 if and only if

x = ∞.
From (14) and Definition 5.1, it is obvious that ϑ(x) = 1 if and only if (θ+ a

2 )
(−1)(x) =

1. From (i), we have sup{z ∈ [0, 1] | θ(z) + a
2 > x} = 1 if and only if x ∈ [0, a]. Thus

ϑ(x) = 1 if and only if x ∈ [0, a].
Therefore,

ϑ(θ(x) + θ(y)) =F((θ +
a

2
)(−1)(θ(x) + θ(y))) by (14)

=F(sup{z ∈ [0, 1] | θ(z) + a

2
> θ(x) + θ(y)}) by Definition 2.2

=F(sup{z ∈ [0, 1] | t(z) + a > t(x) + t(y) + a}) by (13)

=F(sup{z ∈ [0, 1] | t(z) > t(x) + t(y)})
=F(t(−1)(t(x) + t(y))) by Definition 2.2

=F(T (x, y))

=O(x, y).

(2) ⇔ (3) is immediately from [30]. □

Example 5.5. For a given a ∈ [0,∞), let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be
defined, respectively, by

θ(x) =

{
a
2 + ln 2−x

x if x ̸= 0,

∞ if x = 0

for any x ∈ [0, 1] and

ϑ(x) =

{
1 if x ∈ [0, a),

4
e2(x−a)+2ex−a+1

if x ∈ [a,∞]

for any x ∈ [0,∞]. Then, it is obvious that θ is a continuous and strictly decreasing
function and, ϑ is a continuous and decreasing function. By a simple computation, we
get that

Oθ,ϑ(x, y) = ϑ(θ(x) + θ(y)) = (
xy

2− x− y + xy
)2.

Hence, from Theorem 5.4, the function Oθ,ϑ is an overlap function obtained by a (F , T )-
distortion for a (pseudo) automorphism F and a strict t-norm T . In fact, the Hamacher
t-norm T (x, y) = xy

2−x−y+xy is a strict t-norm and let F(x) = x2. Then

Oθ,ϑ(x, y) = (
xy

2− x− y + xy
)2 = F(T (x, y)).

Meanwhile, from Theorem 5.4, there exist a strictly increasing bijection φ : [0, 1] → [0, 1]
and a (pseudo) automorphism H such that O(x, y) = H(φ(x)φ(y)) for each (x, y) ∈
[0, 1]2. Indeed, let φ(x) = x

2−x and H(x) = ( 2x
1+x )

2. Obviously, φ is a strictly increasing
bijection and H is an automorphism. Moreover,

H(φ(x)φ(y)) = (
xy

2− x− y + xy
)2

for all (x, y) ∈ [0, 1]2.
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As a conclusion of this section, we investigate when an overlap function additively
generated by the pair (θ, ϑ) cannot be obtained by a (F , T )-distortion for a positive
and continuous t-norm T and a (pseudo) automorphism F . First, we introduce two
necessary lemmas.

Lemma 5.6. (Feng-qing Zhu and Xue-ping Wang [30]) Let T be a positive continuous
t-norm. Then, one of the following three cases is valid for T :

(1) T (x, y) = min{x, y};

(2) T (x, y) is a strict t-norm;

(3) There exists a countable family {[aα, eα], Tα} such that T is an ordinal sum of this
family and each Tα is a continuous Archimedean t-norm, and Tα is a strict t-norm
when aα = 0.

Lemma 5.7. (Feng-qing Zhu and Xue-ping Wang [30]) Let O : [0, 1]2 → [0, 1] be an
overlap function and F : [0, 1] → [0, 1] be a (pseudo) automorphism with F(x) = O(x, 1).
Then the following are equivalent:

(1) The overlap function O can be determined by a (F , T )-distortion for the (pseudo)
automorphism F and a positive continuous t-norm T .

(2) One of the following three cases is valid for the overlap function O:

(i) O(x, y) = min{F(x),F(y)};
(ii) There exists a continuous and strictly decreasing function t : [0, 1] → [0,∞]

with t(1) = 0 and t(0) = ∞ such that

O(x, y) = F(t(−1)(t(x) + t(y)))

for all (x, y) ∈ [0, 1]2;

(iii) There exists a countable family [aα, eα] of non-overlapping, closed, non-trivial,
proper subintervals of [0, 1] such that, for all (x, y) ∈ [0, 1]2,

O(x, y) =

{F(h−1
α (hα(x) + hα(y))) if (x, y) ∈ [aα, eα]

2,

min{F(x),F(y)} otherwise,

where hα : [aα, eα] → [0,∞] is a continuous and strictly decreasing function
which satisfies hα(eα) = 0 for each α and hα(aα) = ∞ when aα = 0.

Then we have the following proposition.

Proposition 5.8. Let θ : [0, 1] → [0,∞] be a continuous and decreasing but not strict
function and ϑ : [0,∞] → [0, 1] be a continuous and decreasing function. Let Oθ,ϑ :
[0, 1]2 → [0, 1] be an overlap function additively generated by the pair (θ, ϑ) that satisfies
one of the following two conditions: for a given a ∈ [0,∞),

(1) θ(x) = a
2 if and only if x = 1;
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(2) ϑ(x) = 1 if and only if x ∈ [0, a].

Then the overlap function Oθ,ϑ cannot be obtained by a (F , T )-distortion for a positive
and continuous t-norm T and a (pseudo) automorphism F .

P r o o f . Suppose that the overlap function Oθ,ϑ can be obtained by a (F , T )-distortion
for a positive and continuous t-norm T and a (pseudo) automorphism F . Then by
Lemma 5.6, there are three cases as follows.

Case 1. If T (x, y) = min{x, y}, then Oθ,ϑ(x, y) = min{F(x),F(y)}. In particular,

Oθ,ϑ(x, x) = ϑ(θ(x) + θ(x)) = F(x) (15)

for any x ∈ (0, 1). From the hypothesis, it follows from Proposition 3.6 that we have
θ(x) = a

2 if and only if x = 1 since Oθ,ϑ is an overlap function. Thus

Oθ,ϑ(x, 1) = ϑ(θ(x) +
a

2
) = F(x) (16)

and, θ(x) > a
2 for any x ∈ (0, 1) since θ is decreasing. The inequality means that 2θ(x) >

θ(x) + a
2 . Hence there exists a y with 0 < y < x such that θ(x) + a

2 < θ(y) + a
2 < 2θ(x).

This together with (15) and (16) results in F(x) = ϑ(2θ(x)) = ϑ(θ(y)+ a
2 ) = ϑ(2θ(y)) =

F(y). By induction, we can get that F(u) = F(x) for any u ∈ (0, x). Then F is a
constant over (0, x) and F(0) = 0, which violate the continuity of F .

Case 2. If T (x, y) is a strict t-norm, then by Theorem 5.4, θ is a strict function, a
contradiction.

Case 3. If there exists a countable family {[aα, eα], Tα} such that T is an ordinal
sum of this family and each Tα is a continuous Archimedean t-norm, and Tα is a strict
t-norm when aα = 0, then from Lemma 5.7, there exists a countable family [aα, eα]
of non-overlapping, closed, non-trivial, proper subintervals of [0, 1] such that, for all
(x, y) ∈ [0, 1]2,

O(x, y) =

{
F(h(−1)

α (hα(x) + hα(y))) if (x, y) ∈ [aα, eα]
2

min{F(x),F(y)} otherwise,
(17)

where hα : [aα, eα] → [0,∞] is a continuous and strictly decreasing function which
satisfies hα(eα) = 0 for each α and hα(aα) = ∞ when aα = 0.

It is easy to see that the interval [0, 1] can be represented as a union of a countable
family of pairwise disjoint intervals (Jα)α∈A where, for each α ∈ A, either Jα = [uα, vα]
or Jα = (uα, vα) for suitable uα, vα ∈ [0, 1]. From Theorem 3.2, we have θ(x) = ∞ if
and only if x = 0 since Oθ,ϑ is an overlap function and, from hypothesis and Proposition
3.6 we get θ(x) = a

2 if and only if x = 1. Then there exist suitable uα, vα such that
uα ̸= 0 and θ(uα) > θ(vα) and [uα, vα] or (uα, vα) ∈ (Jα)α∈A. Hence, for some fixed
x with 0 < x < uα, we have ϑ(θ(x) + θ(vα)) = ϑ(θ(x) + θ(uα)) = F(x) by (17).
Because θ is decreasing and continuous, there exists an x0 with 0 < x0 < x such that
θ(x) + θ(vα) < θ(x0) + θ(vα) < θ(x) + θ(uα) and, F(x0) = ϑ(θ(x0) + θ(vα)) from (17).
Then, F(x0) = ϑ(θ(x0) + θ(vα)) = ϑ(θ(x + θ(vα))) = F(x). Therefore, by induction,
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ϑ(θ(u) + θ(vα)) = F(u) = F(x) ̸= 0 for any u ∈ (0, x), which violates the continuity of
F since F(x) = 0 if and only if x = 0.

This completes the proof. □

The following example explains Proposition 5.8.

Example 5.9. For a given a ∈ [0,∞), consider the functions θ : [0, 1] → [0,∞] and
ϑ : [0,∞] → [0, 1] defined by

θ(x) =


∞ if x = 0,
a
2 − lnx if 0 < x ≤ 1

3 ,
a
2 + ln3 if 1

3 < x ≤ 2
3 ,

a
2 + ln 4−3x

x if 2
3 < x ≤ 1

and

ϑ(x) =

{
1 if x ∈ [0, a),

e−x+a if x ∈ [a,∞],

respectively. Then it is easy to see that both θ and ϑ are continuous and decreasing
functions satisfying the conditions of Theorem 3.3. By a simple calculation, the overlap
function Oθ,ϑ generated by θ and ϑ is

Oθ,ϑ(x, y) =



xy if (x, y) ∈ [0, 1
3 )

2,

min{x
3 ,

y
3} if (x, y) ∈ [0, 1

3 )× [ 13 ,
2
3 ] ∪ [ 13 ,

2
3 ]× [0, 1

3 ),

1
9 if (x, y) ∈ [ 13 ,

2
3 ]

2,
min{x,y}max{x,y}

4−3max{x,y} if (x, y) ∈ [0, 1
3 )× ( 23 , 1] ∪ ( 23 , 1]× [0, 1

3 ),
max{x,y}

12−9max{x,y} if (x, y) ∈ [ 13 ,
2
3 ]× ( 23 , 1] ∪ ( 23 , 1]× [ 13 ,

2
3 ],

xy
(4−3x)(4−3y) if (x, y) ∈ ( 23 , 1]

2.

Therefore, by Proposition 5.8, Oθ,ϑ cannot be obtained by (F ,T )-distortion. In fact, if
Oθ,ϑ can be obtained by (F ,T )-distortion, then from Lemma 5.1 of [10], we have that

F(x) = Oθ,ϑ(x, 1) =


x if x ∈ [0, 1

3 ),
1
3 if x ∈ [ 13 ,

2
3 ],

x
4−3x if x ∈ ( 23 , 1].

Thus Oθ,ϑ(x, y) = F(T (x, y)) = 1
3 whenever T (x, y) ∈ [ 13 ,

2
3 ]. On the other hand, by a

simple calculation, we get Oθ,ϑ(x, y) =
1
3 when x = 1, y ∈ [ 13 ,

2
3 ] or y = 1, x ∈ [ 13 ,

2
3 ] or

x, y ∈ (0, 1) with 6(x + y) − 3xy = 8. Therefore, T (x, y) < 1
3 when x, y ∈ (0, 1) with

6(x+ y)− 3xy < 8, T (x, y) > 2
3 when x, y ∈ (0, 1) with 6(x+ y)− 3xy > 8, contrary to

the fact that T is continuous.
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6. ADDITIVE GENERATOR PAIRS OF GROUPING FUNCTIONS

In this section, we introduce the concept of an additive generator pair of grouping
functions and some related results whose proofs are omitted since grouping functions
are given as dual operations of overlap functions.

First, we give the definitions of both a grouping function and its an additive generator
pair.

Definition 6.1. (Bustince et al. [6]) A bivariate function G : [0, 1]2 → [0, 1] is said to
be a grouping function if it satisfies the following conditions:

(G1) G is commutative;

(G2) G(x, y) = 0 if and only if x = y = 0;

(G3) G(x, y) = 1 if and only if x = 1 or y = 1;

(G4) G is increasing;

(G5) G is continuous.

Definition 6.2. Let t : [0, 1] → [0,∞] and s : [0,∞] → [0, 1] be continuous and in-
creasing functions, respectively. If the bivariate function Gt,s : [0, 1]2 → [0, 1], given
by

Gt,s(x, y) = s(t(x) + t(y)),

is a grouping function, then (t, s) is called an additive generator pair of the grouping
function Gt,s and Gt,s is said to be additively generated by the pair (t, s).

The following theorem characterizes the functions t : [0, 1] → [0,∞] and s : [0,∞] →
[0, 1], respectively, whenever Gt,s is a grouping function additively generated by the pair
(t,s).

Theorem 6.3. Let t : [0, 1] → [0,∞] and s : [0,∞] → [0, 1] be continuous and increasing
functions, respectively. Let Gt,s : [0, 1]2 → [0, 1] be a grouping function additively
generated by the pair (t, s). Then the following statements hold:

(1) t(x) = ∞ if and only if x = 1;

(2) s(x) = 1 if and only if x = ∞.

The following theorem shows the conditions that a pair (t, s) can additively generate
grouping functions.

Theorem 6.4. For a given a ∈ [0,∞), let t : [0, 1] → [0,∞] and s : [0,∞] → [0, 1] be
continuous and increasing functions such that

a. t(x) = ∞ if and only if x = 1;

b. t(x) = a
2 if and only if x = 0;

c. s(x) = 0 if and only if x ∈ [0, a];



New results on additive generator pairs of overlap and grouping functions 259

d. s(x) = 1 if and only if x = ∞.

Then, the function Gt,s : [0, 1]
2 → [0, 1], defined by

Gt,s(x, y) = s(t(x) + t(y)),

is a grouping function.

The following proposition reveals that the conditions (b) and (c) of Theorem 6.4
are closely associated whenever Gt,s : [0, 1]2 → [0, 1] is a grouping function additively
generated by the pair (t, s).

Proposition 6.5. For a given a ∈ [0,∞), let t : [0, 1] → [0,∞] and s : [0,∞] → [0, 1] be
two continuous and increasing functions such that a binary function Gt,s : [0, 1]

2 → [0, 1]
with Gt,s(x, y) = s(t(x) + t(y)) is a grouping function. Then the following statements
are equivalent:

(i) x ∈ [0, a] if and only if s(x) = 0;

(ii) t(x) = a
2 if and only if x = 0.

In what follows, we shall investigate the conditions under which a grouping function
additively generated by the pair (t,s) is a t-conorm.

Proposition 6.6. Let t : [0, 1] → [0,∞] and s : [0,∞] → [0, 1] be continuous and
increasing functions, respectively. Let Gt,s : [0, 1]2 → [0, 1] be a grouping function
additively generated by the pair (t, s) with t(0) = a

2 for some a ∈ [0,∞). Then the
following statements are equivalent:

(1) s ◦ (t+ a
2 ) = id[0,1];

(2) 0 is a neutral element of Gt,s.

Proposition 6.7. For a given a ∈ [0,∞), let t : [0, 1] → [0,∞] be a continuous and
strictly increasing function such that:

(1) t(x) = ∞ if and only if x = 1;

(2) t(x) = a
2 if and only if x = 0.

If a function s : [0,∞] → [0, 1] satisfies s(x) = (t + a
2 )

(−1)(x) for any x ∈ [0, 1], then
a binary function Gt,s : [0, 1]2 → [0, 1] with Gt,s(x, y) = s(t(x) + t(y)) is a positive
t-conorm.

Proposition 6.8. Let t : [0, 1] → [0,∞] and s : [0,∞] → [0, 1] be two continuous
and increasing functions, and Gt,s : [0, 1]2 → [0, 1] be a grouping function additively
generated by the pair (t, s) with 0 as neutral element. If for a given a ∈ [0,∞), t
satisfies the condition (b) of Theorem 6.4, then Gt,s is associative.

Theorem 6.9. Let t : [0, 1] → [0,∞] and s : [0,∞] → [0, 1] be two continuous and in-
creasing functions and, Gt,s : [0, 1]

2 → [0, 1] be a grouping function additively generated
by the pair (t, s). If for a given a ∈ [0,∞), t satisfies the condition (b) of Theorem 6.4,
then the following three statements are equivalent:
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(1) Gt,s is a t-conorm;

(2) 0 is a neutral element of Gt,s;

(3) s ◦ (t+ a
2 ) = id[0,1].

In the following, we give the conditions that a grouping function additively gener-
ated by the pair (t,s) can be obtained by a distortion of a t-conorm and a (pseudo)
automorphism.

Proposition 6.10. Let F : [0, 1] → [0, 1] be a pseudo automorphism. Then for every
positive and continuous t-conorm S : [0, 1]2 → [0, 1], the function GF,S : [0, 1]2 → [0, 1],
given by

GF,S(x, y) = F(S(x, y)),

is a grouping function.
Where GF,S is called a grouping function obtained by the distortion of the t-conorm

S by the pseudo automorphism F or a grouping function obtained by a (F , S)-distortion.

Proposition 6.11. Let t : [0, 1] → [0,∞] and s : [0,∞] → [0, 1] be two continuous
and increasing functions and, Gt,s : [0, 1]2 → [0, 1] be a grouping function additively
generated by the pair (t, s) that satisfies one of the following two conditions: for a given
a ∈ [0,∞),

(1) t(x) = a
2 if and only if x = 0;

(2) s(x) = 0 if and only if x ∈ [0, a].

Then the grouping function Gt,s can be obtained by a (F , Tsuper)-distortion for a
(pseudo) automorphism F and a t-superconorm Tsuper.

The next theorem gives two descriptions that a grouping function Gt,s additively
generated by the pair (t, s) can be obtained by a (F , S)-distortion for a (pseudo) auto-
morphism F and a t-conorm S.

Theorem 6.12. For a function G : [0, 1]2 → [0, 1] the following are equivalent:

(1) There exist a continuous and strictly increasing function t : [0, 1] → [0,∞] and
a continuous and increasing function s : [0,∞] → [0, 1] such that the function G
is a grouping function additively generated by the pair (t,s) satisfying one of the
following two conditions: for a given a ∈ [0,∞),

(a) t(x) = a
2 if and only if x = 0;

(b) s(x) = 0 if and only if x ∈ [0, a].

(2) The functionG is a grouping function obtained by a (F ,S)-distortion for a (pseudo)
automorphism F and a strict t-conorm S;

(3) There exist a strictly increasing bijection φ : [0, 1] → [0, 1] and a (pseudo) auto-
morphism H such that G(x, y) = H(φ(x)+φ(y)−φ(x)φ(y)) for all (x, y) ∈ [0, 1]2.
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Finally, we investigate when a grouping function additively generated by the pair
(t, s) cannot be obtained by a (F , S)-distortion for a positive and continuous t-conorm
S and a (pseudo) automorphism F .

Proposition 6.13. Let t : [0, 1] → [0,∞] be a continuous and increasing but not strict
function and s : [0,∞] → [0, 1] be a continuous and increasing function. Let Gt,s :
[0, 1]2 → [0, 1] be a grouping function additively generated by the pair (t, s) that satisfies
one of the following two conditions: for a given a ∈ [0,∞),

(1) t(x) = a
2 if and only if x = 0;

(2) s(x) = 0 if and only if x ∈ [0, a].

Then the grouping function Gt,s cannot be obtained by a (F , S)-distortion for a positive
and continuous t-conorm S and a (pseudo) automorphism F .

7. CONCLUSIONS

The article mainly explored the relationship between functions θ and ϑ in an over-
lap function additively generated by a relaxing boundary additive generator pair (θ,ϑ)
(Proposition 3.6 and Theorem 4.6) and characterized the overlap function additively gen-
erated by the additive generator pair (θ,ϑ) (Theorem 5.4). Compared with the known
definition, see [10], of an additive generator pair for overlap functions, our functions
θ and ϑ in the additive generator pair of an overlap function are more general with a
relaxed boundary conditions while the property of overlap functions can be preserved
(Theorem 3.3). Clearly, multiplicative generator pairs of overlap and grouping functions
can be discussed analogously.
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