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KYBERNETIKA — VOLUME 61 (2025), NUMBER 4, PAGES 537-553

ADAPTIVE INVERSE OPTIMAL CONTROL
FOR UNSTABLE REACTION-DIFFUSION PDE SYSTEM

X1UusHAN CAI, YUE L1, PING WANG, YUHANG LIN, LE ZHANG, AND LEIPO LiU

We study adaptive inverse optimal boundary control for reaction-diffusion PDE system
with unknown coefficient. First, an adaptive boundary control with parameter update rule is
designed which no attempt is made to force parameter convergence. Next, it is proven through a
non quadratic Lyapunov function that the closed-loop system is globally asymptotically stable.
Further, it indicates that adaptive boundary control with parameter update law is optimal for a
meaningful functional. Finally, the effectiveness of the proposed control design is demonstrated
through an example.

Keywords: inverse optimality, adaptive boundary control, reaction-diffusion PDE, param-
eter update law, unknown coefficient

Classification: 93Cxx, 93Dxx

1. INTRODUCTION

Reaction-diffusion partial differential equations (PDEs) can describe a variety of prac-
tical phenomena, such as, heat transfer processes, biological, chemical reactions, and
traffic flow in [21] 22] and the references therein.

For a class of reaction-diffusion PDEs, an adaptation mechanism is developed and
the performance bounds are established in [I8]. The first adaptive controllers for un-
stable reaction-diffusion PDEs without relative degree limitations, open-loop stability
assumptions is [I4]. Adaptive control based on Lyapunov method is provided for a class
of reaction-diffusion PDEs, whereas the parameter estimation error is penalized through
an exponential of its square in [I1]. An output feedback stabilization of reaction-diffusion
PDEs with a non-collocated boundary condition is studied in [I5]. Based on modal de-
composition method, a feedback control is proposed to stabilize a cascaded heat-heat
system with different reaction coefficients in [20].

For a reaction-diffusion PDE with a constant delay, a finite-dimensional delayed con-
troller is computed for the unstable part, and it is shown that this controller stabilizes
the whole PDE in [I7]. Intermittent static output feedback control is presented for
stochastic delayed-switched positive systems with only partially measurable information
in [§]. Controls of unstable reaction-diffusion PDEs with long input delays are also
appeared based on backstepping technique in [12].
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Inverse optimization method is to design a control law and prove that it is optimal
for a meaningful function [2], [3], [6], [9], [19)].

Inverse optimization has practical significance because it can design optimal control
laws that minimize/maximize the physical quantity of interest, and it may have a cer-
tain robustness margin without solving a Hamilton—Jacobi-Isaacs PDE in [13]. Inverse
optimal control is established for linear systems [I], [7], [23], strict-feedforward nonlinear
system [5], robotic manipulators with compliant actuators [16], Burgers’ equation [10],
Korteweg—de Vries-Burgers equation [4]. However, to the best of the authors’ knowledge,
there are only limited results for inverse optimal control of unstable reaction-diffusion
PDEs.

In this paper, we consider adaptive inverse optimal boundary control for an unstable
reaction-diffusion PDE with unknown coefficient. Main contributions are as follows.

1. An adaptive boundary control with parameter update law is designed for this type
of system. The control process does not force the parameters to converge, but the
estimation transient is penalized simultaneously with the state and control.

2. Globally asymptotical stability of the closed-loop system is analyzed using a suit-
able Lyapunov functional.

3. It is shown that the adaptive boundary control with parameter update law is
optimal to a meaningful functional.

This paper is organized as follows: System description and some lemmas are in Sec-
tion [2] An adaptive boundary control and stability analysis are achieved in Section
Adaptive inverse optimal boundary control is shown in Section[d] Simulation is provided
in Section[5] Concluding remarks are in Section [6}

Notation. A continuous function « is called a class K function, if it is strictly increas-
ing, and a(0) = 0. For an n-vector, | - | denotes the usual Euclidean norm. The spatial
L2(0,1) norm is denoted by | - |. The symbols J(-), I;(-) denote the first order Bessel
function of the first kind and the first order modified Bessel functions of the first kind,
respectively.

2. SYSTEM DESCRIPTION AND SOME LEMMAS

Consider a reaction-diffusion PDE system

(2, t) = Uge (2, t) + Au(z, 1), (1)
u(0,1) =0, (2)
u(l,t) = U(t), (3)
where 0 < z < 1, t > 0, and w is the state, A is an unknown coefficient, and U(¢) is a
boundary control.

The objective of this paper is to design an adaptive boundary control that globally
stabilizes system f. Further, it is shown that the proposed control is optimal to a

meaningful functional.
The following Lemma 2.1 is from [I4].
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Lemma 2.1. For any W € C'[0,1], it holds

/ W) ([ oworac) as

The following Lemmas 2.2, 2.3 are from [10].

7|W|2

\f

Lemma 2.2. (Poincare’s inequality) For any W € C'[0, 1], it holds
1 1
/ W(z)?de < 2W(0)? + 4/ W, (2)? dz,
0 0
1 1
/ W(z)?de < 2W (1) + 4/ W, (z)? dz.
0 0

Lemma 2.3. (Agmon’s inequality). For any W € C[0, 1], it holds

maxW()<W —|—2\//W 2daﬂ/VV x,
z€[0,1]

aclél[%,)i] W(z)> < W(1)2 —|—2\//0 W(x)zdx/o Wy (x)? da.

3. ADAPTIVE BOUNDARY CONTROL DESIGN

First, system 7 is transferred to the following system

by the backstepping transformation

w(a, b, 7(2)) = ulz, 1) - / k(g M0)uly. ) dy,

where the kernel satisfies the following PDE equations

o~ ~

Kaw (2, Y, A1) = kyy (2,9, M(1)) + Ak, 9, A1),
0

Wal?.
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k(xz,z,\(t)) = — (15)
with 0 <y < x < 1. The solution of PDE equations 7 is
i (VAo )

k(z,y, A1) = =A(t)y ; (16)
A(t) (2% — y?)

where X(t) is a real-time estimate of A\. The inverse backstepping transformation of
is given by

u(e,t) = wiz, £ A / 1,y MO)w(y, £, M(D)) dy, (17)
where the kernel satisfies

Lo (2, U, A1) = Lyy (z, 1, A1) — A(8)1 (2, y, (1)), (18)
I(2,0,X(t)) = 0, (19)
(2,2, A\(t) = —%x, (20)

with 0 <z <y <1, and the solution of PDE equations 7 is

7 (Vaeer )

Uz, y, \(t)) = =A()y : (21)

Alt) (22 = y?)

The inverse backstepping transformation transfers system @7 to system f
. An adaptive boundary control is designed as

1
U(0) = [ kL y Ae)uot) dy, (22)
0
with the parameter update law
1 ~
BY S ()2 d

L+ [o w(z, t,A(t)2 de

Remark 1. From (T, in order to get w(1, t&(t)) = 0, it leads to the control law 22).

the parameter update law is chosen such that 0 < X(t) <1, and X(t) — 0 when the
target system @f converges to zero in the Lo sense.

We first consider system @7 under adaptive boundary control law , with
parameter update law , we have the following result.
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Lemma 3.1. Consider system @7, with control law , and the parameter up-
date law (23)), for any A(0) € R, it holds

w(z, t, A(t))?

1

WL \T b 2 X
§4/0 (2,0, 3(0))% d

12e(A0)=)?
3-v3

x <1+/01w(x,0,X(0))2dx> , (24)

. =~ 2 ~ 2 1/2
(ejolw(m,O,A(O)) dz+(XN(0)—A) _1)

for all t > 0, 0 < z < 1. Furthermore, A() and the solution w(z, ¢, A()) are uniformly
bounded and w(z,t, A(t))? — 0, as t — oo, uniformly in z € [0,1], and A(t) — Aw, as
t — 00, for some A.

Proof. Let
1 N
V(t) = (1 +/ w(zx, t, \(t))? dx) eAO=2? _q (25)
0

The derivative of V() along the trajectory of the closed-loop system @, and 7
£3) is

R 1 ~
_26(/\(25)—)\)2/ wo (o £, X(1)2 da
0

R R 1 . @ ~
+6()\(t)7)\)2)\(t)/ w(x,t,/\(t))/ yw(y,t, A(t)) dydx
0 0

+ 2627\ — X(1) / 1 w(z, t, A()* da
0
~ 1 .
e()‘(t)*’\)2 w(x h) 2dx NOESI)) .
+2 (1+ /0 (z,t,A())?d )()\(t) A)A(t) (26)

By Lemma 2.1, it holds

2 [ we(z, t, A(t))? da

= 3

/ w(z M) / " gy £, A1) dydz
0 0

Using , and , from , one has

V(t) < —2¢0H-2 <1 - ‘f) / 1 wa(z, 6, ()% da. (28)
0
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From , , we can deduce that

1 w(z, t, A1) da + (\(t) — A)?

S—

0

<V(t)
<V(0)
1 o~
= (1 —|—/ w(z,0,1(0))? dx) ePO=2* _ g
0
< eJd w@0.X(0)? dzt(R(O)-A) _ 1 (29)

From (29), it follows that fol w(z,t, A(t))% dz, and A(t) are bounded for all ¢ > 0.
In what follows, we show that w(x,t,X(t)) is bounded for all t > 0 and 0 < = < 1.
Using @7, and , we know w(0,t,A(t)) = 0, w(l,t,A(t)) = 0, and 0 <

A(t) < 1, and consider

1d(fy we (2,1, A(1))? do)
dt
[ < dwa (2,8, A1)
_/0 wm(x,t,)\(t))de
~ dw(L,t, A1)
:ww(lat7/\(t))T

- wI(O,t,X(t))W

_ /1 Way (2, T, X(mw "
0

dt
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Denote

Integrating the last inequality of , we have

/ (. 5(0) da
0

</1wm(x 0,3(0)) dar

+2 sup A7 / / we(x, T, /\ 2 dzdr. (32)
0<r<t
Using , it holds
X(t) < (efol w(z,0,7(0))2 dz4+Xx(0)2 _ 1)1/27 (33)

for all ¢ > 0. Integrating , we obtain

2
/ A7) / wx:cT)\ 2 dzdr

< — 1+/ w(z, 0, 20 ))? dx) RO (34
2(3 — \/3) ( 0 (0 )
Substituting (33]), (34) into (32), we get

/1 wg(z,t, A(t)? da
0

+ 7(ef01 w(x,0,X(0))2 dz+A(0)2 _ 1)4/2

(3-V3)



544 X. CAIL P. WANG, Y. LIN, R. WANG, AND L. LIU

x (1 + /Olw(x,o,i(o))?dx> X0’ (35)

Using the fact that w(0, t,/):(t)) = 0, by Agmon’s and Poincare’s inequalities, we get

max w(z, £, M£)? < 4 /0 wa (1, M(#)2 da, (36)

z€[0,1]

thus w(a:,t,:\\(t)) is uniformly bounded for ¢t > 0, 0 < x < 1, and we get . Next, we
prove fol w(z,t,A(t))?dz — 0, as t — oo. By @77 and , , and using Lemma
2.1, noting that 0 < :\\(t) < 1, we have

1d(fy w,t,\(1)? dx)
dt

1

2

! ~ dw(z,t,\(1))
2/0 w(a, 6, 3(1) 22D gy

1 R R S x y R
/0 w(z, t, A1) (wm(:c,t,)\(t))—i—)\(t) /0 Yty 1, 3(0)) dy

FO = AO)w(z, t,X(t)) dx‘

1 R 1 _ 1 R
g/o wy (z,t, \(t))? dz + (m+|/\(t)|)/0 w(z, t, \(t))* dz. (37)

1 N 2 ~
Using (29)), (35)), (37), we know that ‘d(‘fo w(x’fi’t)‘(t)) dx)‘ is bounded. Thus fol w(x, t, \(t))? dz
is uniformly continuous. Using , it is easy to know

/Ot/olwx(x,T,X(T)FdxdT
< 2(3_3\/3) (1 + /Olw(x,o,X(O))de) X0 (38)

for any ¢t > 0, that is, fol wy (T, T, X(T))2 dz is integrable in time over the infinite time
interval. By Barbarlat’s lemma it follows that fol w(z, L‘,X(t))2 dz — 0, as t — co. Note
w(0, t,X(t)) = 0, using Agmon’s inequality, it holds

w(z,t, A1) <2 (/01 wm(x,t,X(t))def </01 w(g;,t,X(t))ng;)é . (39)

Since fol wa (2, t, M(t))? dz is bounded from (35), and fol w(z, t, \(t))2dz — 0 as t — oo,

then w(axt,X(t)) — 0 as t — oo, in view of (23), it yields X(t) — 0 as t — oo, then
A(t) = Ao, as t — oo for some Ay, which completes the proof. O
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Remark 2. One can see that no attempt is made to force parameter convergence, but
the estimation transient, the parameter is penalized simultaneously with the state and
control under the control law and parameter update law .

Remark 3. The well-posedness of the closed-loop system @7, together with con-
trol law and parameter update law can be followed from [I4].

In what follows, we prove stability of the closed-loop system 7 under control
law with parameter update law .

Theorem 3.2. Consider system (I)-(3), with an adaptive boundary controller
and parameter update law (23), then for any initial condition ug(z) € H2(0,1) (where
ug(x) = u(x,0)) compatible with boundary conditions, and any A(0) € R, it holds

u(x, t)?
< 80(els w(@0RX0)? Azt (R0)-3)? | \2)
1

/ (0))? dz

24()6(A(0)* )2
3—V3

« (1 + /O1 w(x,o,X(O))2dx> , (40)

for all t > 0, 0 < z < 1. Furthermore, lim;_, o u(x,t) = 0 uniformly in = € [0, 1], and
A(t) = Ao as t — oo, for some A

(efol w(w,0,2(0))? dz+(A(0)—X)? + )\2)3/2

Proof. From , , we know that functions k(z,y, ) and I(z, y, ) are continuous
and zero at A = 0, thus there exist class K functions L and M such that

sup |k(z,y, \)| < L(|A]), (41)
0<y<z<1
and
sup Uz, y, \)| < M(|A]). (42)
0<y<z<1

Using , 7 and Poincare’s inequality, it holds

1
/ ug(z,t)* dz
0

2(1+X@f+45)/dwﬂxt
0

/(/ IRERTE) |dy> da, (44)

o~

A(t))* da, (43)

where
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and

M) 7))

|
Zx(a:,y, /\(t)) = /\(t)xy 2 — y2

Follow [14], it can be deduced

1
[ et 301y < Ko+ 1
0

thus

Using , from , we have
1
/ ug(z,t)? dx
0
o~ 1 —~
<2 (33(1? + 10) / wa £, A())2 da
0

<20 (X(t)2 + 2%+ 1) /1 wg(z, 1, \(t))? dz.
0

AND L. LIU

(48)

With the help of , , and using Poincare’s inequality and Agmon’s inequality,

and note u(0,t) = 0, we obtain

u(z,t)?
1

§4/ ug(z,t)* dz
0

<80 (X(t)2 FA2 4 1) /01 wa(z,t, A(t))? dz

< 80(efol w(,0,X(0)) dz+(3(0)~2)* %)

X

1
/ w0, 3(0))2 da
0

240

3-3
1 -
X (1 —|—/ w(z,0,1(0))? dx) X O=X7
0

(efolw(w,o,X(o))zder(X(o)—x)? +A2)3/2

(49)

forall t > 0,0 <z < 1. Thus u(z,t) is uniform bounded for all t > 0, 0 < = < 1. From

and 7 it holds
1 1 R
/ u(z,t)? de < 2/ w(z,t, \(t))? da
0 0
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2/01 (/ .y, % (y,t,X(t))dy)de

Q/Olw 2da

2/0 (/0 Iz, YA (t)? dy/x (y,t,X(t))gdy> dz
+ (

< 9(1 + (M((1))? / wa, £, (1)) da. (50)

+

IN

_|_

By (33), it is known that A(t) is finite, so M()\( )) is finite. From Lemma 3.1, we know

fl w(z, t, \(t))2dz — 0, as t — oo. Thus fo z,t)2dr — 0, as t — oo. Note that
u(0,t) = 0, so it holds

(@ t)? <2 (/01 w(w, )2 dx)é (/01 u$(x,t)2dx)é , (51)

where fol g (z,t)* dz is bounded from ([A8), (BF). Thus u(x,t) — 0, as t — co. This
completes the proof. O

Remark 4. The state u(z, t) of the closed-loop system (1)-(B) with adaptive boundary
control and parameter update law uniformly converges to zero in x € [0, 1],
and A\(t) = Ao as t — oo, for some Ay

4. ADAPTIVE INVERSE OPTIMAL BOUNDARY CONTROL

Theorem 4.1. Consider system 7, the control law with the parameter update
law minimizes the cost functional

J = / S(t,A(t))dt, (52)
0
where
S(t. (1))
= —2eCO=N (1, £, N(#))wa (1, £, M(2))
+eBO=N (1, ¢, (1))

+ 26302 / wy (.1, M(£))? dz
0
—~ PP 1 —~ r ~
B0 p) / w(a, t, (1)) / yw(y, t, A(t)) dydz. (53)
0 0

Proof. From , with the help of , , it holds
St (1))
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> eAO=27 (4(1, ¢, M) — wa (1,1, A(1)))?
— GOV (1,1, ()2

—~ 1 N
4+ 2632 / w (£, A(£))? d
0

_Gw-n?2V8lw ()]
3n2

- . 2 ! ~
2 e(A(t)f)‘) (1 — \/§> / wx(xv ta A(t))2 dl’
0

32

~ 2
S (G- [ 2V3
4 32

1 2
t)*d
X fo u(, ) xA . (54)
20+ sup iz, y,A())[*)
0<y<e<1

Remark 5. The last inequality is achieved through the use of Poincare’s inequality and
inverse backstepping transformation .

Let V() be given by (25). Calculate the derivative of V() along the trajectory of the
closed-loop system @D, together with 7 it holds . Note that the parameter
update law is given by (23)), from , we deduce that

V()
= 2621, , X(#))wa (1, £, A(¢))

—~ 1 N
_ 9 B-A / wy (£, A(1)? dz
0

~

+ e(i(t)—/\)zj(t) /01 w(z, t, A\(t)) /0-@ yw(y, t, A(t)) dydz. (55)

From , , it is easy to know

S, A1) = =V () + e PO (1,8, A(2)) (56)
By , we get
J= /0 (A1) dt
=V(0) — V(o0) +/ eQO=2" (1, X(1))? dt. (57)
0

Using Lemma 3.1, the control law with the the parameter update law globally
stabilizes system (9)-(1I)), so V(co0) = 0. From (57), it is clear that w(1,¢,A(t)) = 0,
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that is, the control law (22]) ensures that the cost function J in is equal to V(0).
Thus the minimum of (52)) is

1 -
V(0) = (1 +/ w(z,0,(0))? d:c) PO _ (58)
0
which completes the proof. O

5. SIMULATION

In this section, we show that control law with parameter update law globally
stabilizes system 7, and minimizes functional .

Example 1. Consider the reaction-diffusion PDE system

ut(2, 1) = uga(,t) + Au(z, t), (59)
w(0,1) = 0, (60)
w(l,t) = U(#), (61)

where A is an unknown real coefficient.

Using Theorem 4.1, control law is designed as , the parameter update law is .
We conducted two simulation studies, one with X(O) = 0.1, up(x) = cos(2mx); the other
is :\\(O) = 0.1, up(z) = rand(1) (rand(1) represents a random number with a value within
the interval of (0,1)). Responses of the PDE state u(x,t) together with the state norm
||u(,¢)|| under control law with the parameter update law are in Figure 1, and
Figure 3, respectively, and the control law and parameter update law are given
in Figure 2, and Figure 4, respectively.

One can see that control law with parameter update law is such that the
closed-loop system converges to zero quick, and the parameter update law tends to
zero. In addition, control law with parameter update law exhibits robustness
to initial values of random disturbances.

[JuC0)]]

0.6

0
04 . 0 0.1 0.2 0.3 0.4
T t

Fig. 1. State u(z,t) and norm |[u(-,t)|| under control law (22)),
parameter update law with A(0) = 0.1, ug(z) = cos(27z).
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25212 04
0.35
2
0.3
'S 0.25
= =
= (<02
S (=<
0.15
0.5
0.1
0 0.05
0.5 0
0 0.1 0.2 0.3 0.4 0 0.1 0.2 03 0.4
t t

Fig. 2. Control law 7 parameter update law with X(O) =0.1,
uo(x) = cos(27z).

0.4

0.35

[[u-, )]

0 0.1 0.2 0.3 0.4
t

Fig. 3. State u(z,t) and norm |[u(-,t)|| under control law (22)),

parameter update law with A(0) = 0.1, uo(x) = rand(1).

-3

o0 : : : 03

1 0.25

2 02
= =
RO o5
S (<

4 0.1

K 0.05

6 0

0 0.1 02 03 04 0 0.1 02 03 0.4
t t

Fig. 4. Control law 7 parameter update law with X(O) =0.1,
uo(z) = rand(1).



Adaptive inverse optimal control 551

6. CONCLUSION

We consider adaptive inverse optimal control for reaction-diffusion PDE system with
unknown coefficient. First, an adaptive boundary control with parameter update law
has been designed. We don’t try to force parameter convergence, but the estimated tran-
sients are penalized simultaneously with the state and control. Next, it has been proven
that the closed-loop system is globally asymptotically stable through a non quadratic
Lyapunov function. Further, it has been shown that adaptive boundary control with
parameter update law is optimal for a meaningful functional. Finally, the effectiveness
of the proposed control design is demonstrated through an example.

(Received October 30, 2024)
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