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Abstract. The study of linear dynamical systems for linear relations was initiated by
C.-C. Chen et al. in (2017). Then E. Abakumov et al. extended hypercyclicty to linear rela-
tions in (2018). We extend the concept of disk-cyclicity studied in M. Amouch, O. Benchiheb
(2020), Z.Z.Jamil, M. Helal (2013), Y.-X. Liang, Z.-H. Zhou (2015), Z. J. Zeana (2002) for
linear operators to linear relations.
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1. INTRODUCTION

Let H and K be two complex infinite dimensional separable Hilbert spaces. We
denote by L(H, K) (or B(H, K)) the set of all linear operators (or bounded linear
operators) acting from H into K. When K = H, we write B(H) = B(H, H) and
L(H) = L(H, H). One of the most significative notions of linear dynamical properties
is the hypercyclicity. An operator T' € B(H) is said to be hypercyclic if there exists
a vector x € H such that the orbit

Orb(T, z) :={T"z: n > 0}

is dense in H.

If S is the unilateral backward shift on /2(N), then AS is hypercyclic if and only if
|A| > 1, see [18]. This motives the following notion introduced in [21] and studied by
[5], [6], [7], [13], [14], [15], [20], [21]. An operator T' € B(H) is said to be disk-cyclic
if there exists a vector x in H such that the set

DOrb(T,z) :={aT"x: a € D, n >0}
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is dense in H, where D := {a € C: |a| < 1}. In this case, the vector z is called
a disk-cyclic vector for T.

An equivalent concept of disk-cyclicity is the disk transitivity. A bounded opera-
tor T on H is said to be disk transitive [7] if for any pair (U, V) of nonempty open
subsets of H there exist « € D\ {0} and n > 0 such that

aT™(U) NV # 0.

A disk-cyclicity criterion that can be used to prove that an operator is disk-cyclic is
one of the most important characterization of the disk-cyclicity. A bounded linear op-
erator T satisfies the disk-cyclicity criterion if there exist two dense sets D1, Dy C X,
an increasing sequence of positive integers {nj}, a sequence {ay, } in D\ {0} and
a sequence of maps Sy, : D — H provided that:

(i) apn,T™x — 0 for every x € Dy;
(ii) oy, ! Sn,y — 0 for every y € Do;
(iii) TSy, y — y for every y € Ds.

Another disk-cyclic criterion which is equivalent to the above criterion was intro-
duced in [13]. For T' € B(H) we say that T satisfies the three open sets conditions
for disk-cyclicity if for any pair (U,V') of nonempty open sets in H and for any
neighbourhood W of zero in H there exist n > 0 and « € D such that

aT*(U)NW #0 and oT"(W)NV # 0.

In [1] Abakumov et al. extended hypercyclicty to linear relation, and Chen et
al. [10] studied some linear dynamical system notions for linear relation. Motivated
by these generalizations, we extend, in this paper, the concept of disk-cyclicity and
related concepts to linear relations. In Section 2, we recall some basic properties of
linear relations that we will need in the sequel. Section 3 is devoted to introducing
and to studying the disk-cyclicity of a linear relation. We show that this property is
stable under quasi-conjugacy. We also show that if a linear relation T is disk-cyclic,
then the range of T'— AI is dense in H for every A € . As a consequence, the
eigenvalues of the adjoint of a disk-cyclic linear relation are outside D. In the last
section, we introduce and we characterize the notion of disk transitive linear relation.
Among other things, we show that a linear relation is disk transitive if and only if it
is disk-cyclic.
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2. LINEAR RELATIONS

From [1], [2], [10], [11] we recall some basic definitions and notations of linear
relations. A linear relation or a multivalued linear operator T on H is a mapping
from a subspace

D(T) :={x € X: Tx is a nonempty subset of H}

called the domain of T" into 2 \ ), the set of all non empty subsets of H, provided
that
T(A\x + py) = AT (x) + uT'(y)

for all z,y € D(T') and all nonzero scalars A and p. We denoted by LR(H) the set
of all linear relations on H. Let T' € LR(H). Then for x € D(T), y € T« if and
only if Ta = y + T(0). Notice that T(0) = {0} if and only if T" maps the points of
its domain to singletons; in this case T is said to be a single valued operator.

A linear relation T on H is uniquely determined by its graph G(T'), which is
defined by

G(T) ={(r,yy e HxH: € D(T) and y € T(x)}.

The inverse of T is the linear relation 7' defined by
G(T™Y) = {(y,2) € H x H: (z,y) € G(T)}.
For T and S € LR(H), the linear relations T+ S and T'S are defined respectively by
GT+S)={(x,y+2)€ HxH: (x,y) € G(T) and (z,2) € G(5)}
and
G(TS):={(x,y) € Hx H: 3z € H such that (z,2) € G(S) and (z,y) € G(T)}.

For T € LR(H), the image of a subset M of H by T and the inverse image of
a subset N of H by T~! are defined respectively by

T(M) := U Tz and T YN):={zeD(T): TenY #0}.
2eD(T)NM

The subspace ker(T) := T~1(0) is called the kernel of T and R(T) := T(D(T)) is
the range of T.

Lemma 2.1 (2], Lemma 2.5). Let A, B and C € LR(H). Then:
(i) (A+B)C Cc AC + BC. If C(0) C ker(A) Uker(B), then

(A+ B)C = AC + BC.

(ii) If A is everywhere defined, then A(B + C) = AB + AC.
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For a positive integer n, T™ is defined as follows: T° = I (the identity operator
in H), T* = T and if 7"~ ! is defined, then

Tg =TT 'z = U Ty,
yeD(T)NT 1z

where D(T") := {x € D(T"1): D(T)NT" 1a £ 0}.
For y € D(T~') := R(T), the inverse image of y by T is defined by

T 'y :={xeD(T): yeTx}

By induction, we can show that (77)~1 = (T~!)" for all n € N.

We say that T € LR(H) is continuous if for each neighbourhood V in R(T),
T~(V) is a neighbourhood in D(T). If D(T) = H and T is continuous, then in this
case, T is said to be bounded. T is closed if its graph G(T) is closed. The set of all
closed and bounded linear relations will be denoted by BCR(H). Notice that if T'
is closed, then T'(0) is closed. We say that 7' € BCR(H) satisfies the stabilization
property [8] if T'(0) = T2(0).

The adjoint T* of T € LR(H) is defined by

G(T") :=={(y,y") € H x H: (a',y) = (¢, ) V(x,2) € G(T)}
and we have (see [11], [19])
ker(T*) = R(T)* and T*(0)=D(T)"*.

If D(T) = H, then T* is a single valued operator.
A linear operator S is called a selection of T if D(S) = D(T) and

Tex=Sx+T(0) YxeDT).

Moreover, if S is continuous, then T is continuous.
Linear relations are studied by numerous mathematicians, see for instance [2], [3],
[4], [8], [9], [11], [16], [17], [19] and the reference therein. In the sequel, all linear

relations are nonzero and satisfy |J T7(0) # H.
n>1
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3. DISK-CYCLIC LINEAR RELATIONS

In the same direction as in [1], [10], we introduce the notion of disk-cyclicity for
linear relations.

Definition 3.1. Let T' € BCR(H). We say that T is a disk-cyclic linear relation
if there exist a nonzero vector x € H such that

D Orb(T, x) := U U oIz

n>0 aeD

is dense in H. In this case, the vector = is called a disk-cyclic vector of T and
D Orb(T, x) is the disk-orbit of T at x.

The set of all disk-cyclic linear relations on a separable Hilbert space H and the
set of all disk-cyclic vectors for T" are respectively denoted by DCR(H) and DCR(T),
with DCR(T) =0 if T ¢ DCR(H).

Following [1], a relation T" € BCR(H) is hypercyclic if there exists a sequence
{&m, m € N} provided that:

(i) {@m,m € N} is dense in H,

(ii) for each m, |J T"x., is dense in H.
neN

Remark 3.1. Let T € BCR(H) be a bounded linear relation such that
T”—(O)7£ H for each n > 1 and assume that T satisfies the stabilization prop-
erty. If T is a hypercyclic linear relation, then 7T is a disk-cyclic linear relation.
Indeed, suppose that T is a hypercyclic linear relation, then by [1], Corollary 2.1

there exists a vector z in H such that |J T"x is dense in H. We then have
neN

H = U Trx C U U aImx =DOrb(T,x) C H.
neN acDn>0

Therefore, T is a disk-cyclic linear relation.

In general, T being a disk-cyclic linear relation does not imply that 7T is a hyper-
cyclic linear relation, see for instance [7], Example 2.20.

In the following example, we show that every linear relation which has a disk-cyclic
selection is a disk-cyclic linear relation.

Example 3.1. Let A € B(X) be a selection of a linear relation T' € BCR(H).
If A is disk-cyclic, then T is a disk-cyclic linear relation. Indeed, if A is a selection of
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a linear relation T € BCR(H), then Tx = Az + T(0) for all x € H. By Lemma 2.1,

we have

T?z = T(Tx) = T(Az + T(0)) = TAx + T?(0) = A%z + T A(0) 4+ T?(0)
= A%z +T(0) + T%(0) = A%z + T?(0).

By induction, we can prove that
Tz = A"z +T"(0) VneNU{0}.

Since A is a disk-cyclic linear operator, then

H={aA"z: n>0,a€ D} C DOrb(T,z) C H.

Consequently, we obtain 7" is a disk-cyclic linear relation.

In the following example, we show that every noninjective disk-cyclic linear oper-
ator is a selection of a disk-cyclic linear relation.

Example 3.2. Let S € B(H) be a disk-cyclic linear operator such that
ker(S) # {0}, we consider the bounded linear relation defined by

T: H— 27\,
z = ST1S%(z).
Then S is a selection of T'. Indeed, we have
Tz =S"15%x) = S'9(Sz) = Sz + ker(S) = Sz + T(0)

for all z € D(T) = H, which means that S is a selection of T. Since S is disk-
cyclic linear operator, then by Example 3.1, we deduce that T is a disk-cyclic linear
relation.

Example 3.3. Let S be the bounded linear operator acting on l3(N) as follows:

S ZQ(N) — lQ(N),

x = (z1,22,...) = 2(z2, z3,...).

Then S is a disk-cyclic linear operator by Example 3.3 in [7]. Let T be the bounded
linear relation defined by

T: I5(N) — 220N\ ¢,
xSz +5710).

Then T is a disk-cyclic linear relation since S is a selection of T
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Proposition 3.1. Let T € BCR(H), S € BCR(K) and G € B(H, K) such that
SG = GT and R(G) is dense in K. Then

G(DCR(T)) € DCR(S).

In particular, if T is disk-cyclic, then S is disk-cyclic.

Proof. If T is not disk-cyclic, then DCR(T) = () and hence, G(DCR(T)) = 0 C
DCR(S). Now suppose T is disk-cyclic. Let x € DCR(T'), then D Orb(T, x) is dense
in H. We thus get

DOrb(S,Gx) = | ) | asGz =) | aGT"2

aeDn>0 aeDn=0
= U U aG(Trz) = U U G(aTmz)
aeDn>0 aeDn=0
= G(U U aT”m) D) G(U U aT”x)
aeDn>0 aeDn=0
= G(H) = R(G).

Since R(G) is dense in K, then D Orb(S, Gz) is also dense in K. Therefore Gz is an
element of DCR(S). O

Corollary 3.1. Let T € BCR(H) and G € B(X). If TG = GT and R(G) is dense
in H, then:
(i) Gz € DCR(T) for every x € DCR(T),
(ii) ADCR(T) = DCR(T) for all A € C\ {0}.

Lemma 3.1 ([1], Lemma 2.1). Let A and B be two subsets of a Banach space X

with int(A) = (. Then
int(B) = int(A U B).

Proposition 3.2. Let T € BCR(H). If T is disk-cyclic, then the range of T is
dense in H.

Proof. Suppose that T is a disk-cyclic linear relation. Then there exists
a nonzero vector x € H such that D Orb(T, z) is dense in H. We set

Dy :={az: a €D} and A= U U aT"z.

n>1acD
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Let y € DOrb(T, z) \ D,, then there exist n > 1 and a € D such that y € aT"x. If
« = 0, then y = 0, which is a contradiction with 0 € D,. So, assume that o # 0,
then

ye€ ol =T"(ax) C R(T™) C R(T).

Therefore

(3.1) D Orb(T, z) \ D, C R(T).

Since span{z} = span{z} # H, then int(span{z}) = 0. Furthermore, as D, is

a subset of span{z}, we obtain int(D,) = . Using Lemma 3.1, we get
int(D, U A) = int(A).

On the other hand, we have

H = int(H) = int(D Orb(T, x)) = int(AUD,) = int(AUD,) = int(A) C A C H,

which implies that A is dense in H.

Now, we show that D, C R(T). Let a € D\ {0}}, then

ax € H=DOrb(T,z) \ D,.

Hence, there exists a sequence {y;} in DOrb(T,x) \ {az: a € D} such that {y;}
converges to ax, as i — 0o. So, for all ¢ > 1 there exist n; > 1 and «o; € D\ {0} such
that

yi € T2z C R(T) and y; — ax.

Then

(3.2) D, C R(T).

Combining (3.1) and (3.2), we conclude that

DOrb(T,z) C R(T) C H.

As DOrb(T, ) is dense in H, then the range of T' is dense in H. O
Remark 3.2. In general, the converse of Proposition 3.2 is not true. Indeed,

let A € B(I2(N)) be the bounded operator defined by

A(xl,xg,...): (1‘2,1‘3,...).

N =

Then the range of A is dense in I2(N) and by Example 2.22 in [12], A is not hyper-
cyclic. Furthermore, according to [7], Corollary 3.6, A is not disk-cyclic.
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The following result is [11], Exercise I11.3.21, but for the convenience of the reader
we give here a proof.

Lemma 3.2. Let T € BCR(H) and let M be a nonempty subset of H. Then

T(M)  T(M).

Proof. Since T is continuous and closed, then according to [11], Corollary II 4.6,
T has a continuous selection A and T'(0) is closed. As A is continuous, then
A(M) c A(M). Therefore,

T(M)=A(M)+T(0)C AM)+T(0) C AM)+T(0)=T(M).

O

Proposition 3.3. Let T € DCR(H) and S € BCR(H) be such that TS = ST,
T(0) = T'S(0) and the range of S is dense in H. Then

Sz € DCR(T)

for all x € DCR(T).
Proof. Let x be a disk-cyclic vector for T. Then the set D Orb(T,x) is dense
in H. Now, let y € Sx. Then
TSx=T(y+ S0))=Ty+TS0)=Ty+T(0)=Ty.
Since T'S = ST, then
ST"'x =T"Sx =T"y

for all n > 1. Since x € DCR(T), then D Orb(T, z) \ D, is also dense in H (see the
proof of Proposition 3.2). By Lemma 3.2, we have

R(S) = S(H) = S(DOrb(T, z) \ D,)  S(DOrb(T, z) \ D)

= (U aT”x) = U U S(aTmx) = U U aST"x
aeDn>1 aeDn>1 aceDn>1
U U oaTnSe = U U o™y C DOrb(T,y) C H.
acDn>1 a€eDn>1

Since the range of S is dense in H, we get that D Orb(7, y) is dense in H. Therefore, y
is a disk-cyclic vector for T and so Sz is a subset of DCR(T). O
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Theorem 3.1. Let T' € BCR(H) satisfy the criterion of stabilization. Then T
is a disk-cyclic linear relation if and only if T? is a disk-cyclic linear relation for all
peN.

Proof. Suppose that T is a disk-cyclic linear relation. Then by Proposition 3.2,
the range of T is dense in H. Since T'(0) = T?(0), then by virtue of Proposition 3.3,

(3.3) T(DCR(T)) C DCR(T).
Hence, by induction we have
T"(DCR(T)) C DCR(T) Vn=>1.
Now, we show that 72 is a disk-cyclic linear relation. By assumption there exists
x € H such that D Orb(T, z) is dense in H. Let y € T"z C DCR(T). Using the fact
that T'(0) = T?%(0) and Lemma 2.1, we get
T?"x = T"T"x = T"(y + T"(0)) = T"y + T?"(0) = T"y + T™(0) = T"y
for all n > 1. Consequently,
D Orb(T?%,z) \ D, = DOrb(T,y) \ D,,.
Since y is a disk-cyclic vector for T', it follows from the proof of Proposition 3.2 that
DOrb(T,y) \ Dy is also dense in H. Therefore D Orb(7?,z) is dense in H, which

implies that 72 is a disk-cyclic linear relation. By induction, we show that for all
p > 1, T? is a disk-cyclic linear relation. ([

Let T € LR(H) and M be a subspace of H. Then the restriction of T' to M
denoted by Ty is the linear relation defined by

G(Ty) = G(T) N (M x H).

Lemma 3.3. Let T € LR(H) and M be a nontrivial closed subspace of H such
that T(M) C M and T(M*) C M*. If P is the orthogonal projection onto M=,

(TP)" =T"P = PT"

for alln > 1.
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Proof. Since H is a Hilbert space and M is a closed subspace of H, then H =
M @ M*. Let x € H, then there exist a € M and b € M~ such that z = a + b.
Since T(M) C M and T(M*) c M+,

PTx=P(Ta+Tb)=PTb=Tb=TPx.
Hence TP = PT. By induction, we obtain (TP)* =T"P = PT", foralln >1. O

Proposition 3.4. Let T € DCR(H). Let M be a nontrivial closed subspace of H
such that T(M) C M and let P be the orthogonal projection onto M~. Then

Px#0

for all x € DCR(T).

Proof. Letz € DCR(T) C H. For the sake of contradiction assume that Pz = 0.
So, x € M. As T(M) C M, then aT"x C oT"M C aM = M for all « € D\ {0}
and all n > 0. This implies that

H = U UaT"mCM:M,
acDn=0

which is a contradiction. Therefore Px # 0. O

Proposition 3.5. Let T € DCR(H) and M be a nontrivial subspace of H such
that T(M) C M and T(M*) C M*. Then Ty and Ty;. are disk-cyclic linear
relations.

Proof. Let P be the bounded projection onto M~. Since T is a disk-cyclic
linear relation, there exists x € H such that the set D Orb(T,x) is dense in H. It
follows from the proof of Proposition 3.2 that D Orb(T, z) \ D, is also dense in H.
As H =M @& M™', there exist x1 € M and zo € M+ such that * = 21 + 2. Hence
Pz = x9. By Lemma 3.3, we have (TP)” = T"P = PT" for all n > 1. Therefore
we obtain

M* = P(H) = P(DOtb(T, z) \ Dy) C P(DOb(T,z) \ Dy) (U | aTma )
acDn>1
= U UaPT"x: U UaT”Pm— U U (TP) xo
acDn>1 acDn>1 acDn>1
U U Ty, w2 CDOrb(Ty,e, Ip) C MLt = M*.
acDn>1

Finally, we conclude that Tj,1 is a disk-cyclic linear relation. With the same argu-
ment we show that T3, is also a disk-cyclic linear relation. O
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Let {H;}?, be a family of separable Hilbert spaces and T; € BCR(H;) for all
i€{1,...,n}. We define (see [10])

n
@Hi ={(z1,...,xn): z; € H;, 1 <i< n}
and
n
@Tix ={(Y1,---yyn): ¥i € Tiz;, 1 <i< n}, where z = (z1,...,2,).

Let k£ € N, then

n k n
(@) - Drie
i=1 i=1

Proposition 3.6. Let T; € BCR(H;) for all i € {1,...,m}. If @ T; is a disk-
i=1
cyclic linear relation, then T; is a disk-cyclic linear relation for each i € {1,...,m}.

m m
Proof. Lety = (y1,...,ym) € @ H;. Since @ T; is a disk-cyclic linear relation,
i=1 =1

m m
then there exists v = (21,...,2m) € IDCR(@ Ti) such that DOrb(@ Ti,x) is

i=1

dense in @ H,;. Therefore there exists {y;} in DOrb(@ Tl,x) such that {yx}
i=1
converges to y as k — oo. Then for all £ € N there exists {ak} in D and {ng} in N

such that

m Nk
yr — y with yx € ay (@ Ti) x.

i=1

m
Let P; be the bounded projection defined on @ H; such that R(P;) = H;. Then
i=1

Pi(yx) € aT/"™z; and P;(yx) — v

Therefore z; € DCR(T;) for each i € {1,...,m}. O
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4. DISK TRANSITIVE LINEAR RELATION

Here we define and study the concept of disk transitive linear relation.

Definition 4.1. Let T € BCR(H). We say that T is disk transitive if for any
pair (U, V) of nonempty open subsets of H there exist « € D\ {0} and n > 0 such
that «T™(U)NV £ 0.

Let S € B(H) be a disk transitive linear operator. Let U and V be two open
nonempty sets of H, then there exist n > 0 and o € D\ {0} such that

aSMU) NV £ 0.

Let y € aS™(U) N V. Hence, there exists x € U such that y = a.S™z.

If S is a selection of a linear relation T' € BCR(H ), then by virtue of Example 3.1,
we have T"z = S™x + T™(0) and hence, y = aS™z € aT"x C oT"U. Consequently,
aT™(U) NV # () and therefore T is a disk transitive linear relation.

Proposition 4.1. Let T € BCR(H), S € BCR(K) and A € B(H,K) be such
that SA = AT and the range of A is dense in K. If T' is a disk transitive linear
relation, then S is a disk transitive linear relation.

Proof. Let U and V be two nonempty open subsets of K. Since A is bounded
and with dense range, then A~'(U) and A~!(V) are two nonempty open subsets
of H. As T is a disk transitive linear relation, there exist n > 0 and o € D\ {0} such
that

T AN U)N AT (V) £ 0.

Let y € A~1(V) and x € A1(U) such that y € aT™z. Since SA = AT, we obtain
aS"Ar = aAT"r = A(aT"z) = A(y + oT"(0)) = Ay + aAT™(0) = Ay + a.S™ A(0).
So, Ay € aS™ Az C aS™(U) and Ay € V. Thus,

aS"(U)NV #0.

Finally, S is a disk transitive linear relation. (]

The following theorem gives a characterization of a disk transitive linear relation.

Theorem 4.1. Let T' € BCR(H). Then the following assertions are equivalent:
(i) T is disk transitive.
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(ii) For each pair (U,V) of nonempty open subsets of H there exist |a| > 1 and
n > 0 such that
aT™™(U)NV £ 0.

(iii) For any nonempty open subset U of H,

U U

aeD\{0} n=0

is dense in H.
(iv) For any nonempty open subset V of H,

U Uer v

a€C,|a|>21n20
is dense in H.

Proof. (i) = (ii). Let (U, V) be a pair of nonempty open subsets of H. Since T
is disk transitive, then there exist « € D\ {0} and n > 0 such that oT™(U) NV # (.
Hence

(U +T7™0))NT~™(V) # 0.

Let x € (U +T7™(0)) NT~"™(V). Then there exist u € U, y € T-"(0) and v € V
such that x = ou +y and x € T~"(v). Hence

T7"v)=2+T"0)=au+y+T"(0) =au+T""(0)

which means that au € T~"(v). We thus get u € 8T "(V)NU with |8] = 1/|a| > 1.
Therefore ST~"(V)NU # 0.

(ii) = (i). It is similar to (i) = (ii).

(i) <= (iii). Assume that T is a disk transitive linear relation. Let U be a non-
empty open subset of H and let (O;);>1 be a countable basis of open sets of H. For
each 7 > 1 we can find n; > 0 and o; € D\ {0} such that o; 7™ (U) N O; # . We

then obtain that
U U aT™(U)
aeD\{0} n>0

is dense in H.
Conversely, let U and V' be two open nonempty subsets of H. Since the set

U U aT™(U)

a€D\{0} n>0
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is dense in H, then there exist & € D\ {0} and n > 0 such that
aT™(U)NV #£0,

which means that T is a disk transitive linear relation.
(ii) <= (iv). It is similar to (i) <= (iii). O

In the sequel, we denote by B(x,r) the open ball centered at x € H and with
radius r > 0.

Theorem 4.2. Let T € BCR(H). Then the following assertions are equivalent:

(1) T is a disk transitive linear relation.
(2) For each (x,y) € H? there exist sequences of positive integers {ny}, {zx} in H,
{ax} in D\ {0} and {yx} in H such that

=z, yr—y and opT™ g =y +T7(0).

(3) For each (z,y) € H? and for each neighbourhood W of 0 there exist z,t € H,
a € D\ {0} and n € N such that

x—z€W, t—yeW and oT"z=1t+T"(0).
Proof. (1) = (2): Suppose that T is disk transitive. Let z,y € H and let
By, := B(z,1/k) and By, := B(y,1/k) for all k > 1. Then By and By, are nonempty
open subsets of H. As T is a disk transitive linear relation, then there exist two

sequences {ar} C D\ {0} and {nz} in N such that T"* (o, By) N B}, # 0 for all k > 1.
Hence, there exists a sequence {yx} in H such that

yr € T™ (ay,By) N By,
for all £ > 1. Consequently, for each k > 1 there exists xj € By such that
yr € T™ (o) N By,.
Therefore we have
ar ™z, =y + apT™(0) = yr + T™(0).

Moreover,
rr —x and Yy — Y.

323



(2) = (3): Assume that for each (z,y) € H? there exist sequences {n;} in N,
{z} in H, {o,} in D\ {0} and {y} in H provided that

zr—2—0, ype—y—0 and opT" x =yr+T7%(0).

Let W be a neighbourhood of zero. Then there exists some ky > 1 such that
T —xp, € W and yp, —y € W. Set z := xp, and t := yg,. We thus have

x—zeW, t—yeW and T 0z =1+ T"0(0).

(3) = (1): Let U and V be two nonempty open subsets of H. Let (z,y) € Ux V.
For each k > 1, Wy, := B(0,1/k) is a neighbourhood of zero. By assumption there
exist sequences {z} in H, {ax} in D\ {0}, {nx} in N and {yx} C H such that

1 1
T — T T Yk — Y -, an Yr € Qg T
low =2l < 2. llye =yl < 7 and ye € axT™

Then {z\} converges to z and {yx} converges to y as k — co. Therefore for k large
enough we have x, € U and y;, € V. Thus

0 o T e, NV C o, T™UNV
and we conclude that T is a disk transitive linear relation. O

Lemma 4.1. Let T € BCR(H). If x € DCR(T), then for any nonempty open
set U of H there exist n > 0 and v € D\ {0} such that

YTz NU # .

Proof. Since x is a disk-cyclic vector for T, then the set

DOrb(T, z) = U U oIz

n>20 aeD

is dense in H. Let U be a nonempty open subset of H. Then

(U UaT”x)ﬂU#@.

n>20 aeD

Now, we distinguish two cases:

(i) If 0 ¢ U, then there exist n > 0 and o € D\ {0} such that
aT"zNU # 0.
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(ii) If 0 € U, then we can find an open set V' of H such that

0¢V and V CU.

Using the above argument, we deduce that there exist m > 0 and 5 € D\ {0} such
that
BT™xNV £

and so

BT™x MU # 0.

Finally, in both cases there exist n > 0 and v € D\ {0} such that vT"zNU # 0. O

Proposition 4.2. Let T € BCR(H). Then T is a disk transitive linear relation
if and only if

DCRM) = J U o7 W)

keENN2>0 aeC,|al>1
is a dense Gs-set in H, where (V})ren is a countable basis of open subsets of H.
Proof. Let T be disk-cyclic. Let (Vi)ren be a countable basis of open subsets

of H. From Lemma 4.1 we have

v € DCR(T) «= ¥k >1, e (|J U aT"a) #0

n>20 aeD

<~ Vk>1, 3€D\{0}, In>0 suchthat VpzNBT"z #0
< Vk>1, 3peD\{0}, In>0 suchthat pzeT "(V)
<<= Vk>21l, FJaeC/o/>1, In>0 suchthat ze€al "(Vs)

=zc(NU U o).

EeENn>0 aeC,|al>1

Now, we show that DCR(T) is dense in H. For each k > 1 we set

Ok::U U oT (V).

n20 a€C,|a|>1

Since T is disk transitive, then by Theorem 4.1, Oy is dense in H. As Oy is an
open set of H (see [1], Remark 2.2), by the Baire category theorem, we obtain

) Or = DCR(T) is dense Gs-set in H.
keN
Conversely, let U and V' be two nonempty open subsets of H. Since (Vi)ken is

a countable basis of open subsets of H and (| O = DCR(T) is dense in H, then
keN
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for U= |J Vi with I C N, we have (| OxNU # 0. Hence, O, NU # @ for all k € N.
keI keN
For k € I we have

proenv=(UJ U aormw)nv

n>0 aeC,|a|>1

c(U U er(Uwv))nv

n=20 aeC,|a|>1 i€l

-(U U arm@)nv.

n>0 a€C,|a]>1

Thus, (U U a7 ™(U))NV # 0 for all nonempty open subset V of H, which
n20 aeC,|a|>1

means that |J U oI ™(U) is dense in H. Finally, by virtue of Theorem 4.1,
n20 aeC,|a|>1
we conclude that T is a disk transitive linear relation. O

Theorem 4.3. Let T € BCR(H). Then the following assertions are equivalent:
(i) T is a disk transitive linear relation.

(ii) T is a disk-cyclic linear relation.

Proof. Suppose that T is disk transitive, then by Proposition 4.2, DCR(T) is
dense in H. Hence, DCR(T) is a nonempty set of H and so T is a disk-cyclic linear
relation.

Conversely, assume that T is a disk-cyclic linear relation, then there exists a vec-
tor « in H such that the set DOrb(7,z) is dense in H. Let (U,V) be a pair of
nonempty open sets of H. Then

DOrb(T,z)NU #0 and DOrb(T,z) NV # 0.
According to Lemma 4.1, there exist m,n > 0 and «, § € D\ {0} such that
UNnaT™x #0 and VNET™x #0.

We choose n > m. Since UNaT™x # () and VNBT™x # ), there exist two elements 2,
and zy such that z; €e UNaT™x and zo € VN BT™zx. So, we distinguish two cases:
Case 1: |a] < |B]. Since zo € fT™x and 8 # 0,
29 € BT™z = 25 € T™(Br) <= (Bz,22) € G(T™) <= (22, 8z) € G((T™)™1)

= (22,02) e G(T™™)) <= Pr e T Moy <=2x € lT‘ng.

B
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Thus,

z1 €aT™x C gT”_sz - gT"_m(V).

B B
We set p:=n—m >0 and v := a/f. Therefore

~TP(V)NU # () with p > 0 and v € D\ {0}.

Therefore T is a disk transitive linear relation.
Case 2: |B| < |a|. As (z1,22) € T™x x V, then

1
€l < x € =T "z,
Q

which implies

B

«

B

20 € BT C =T "2z C —
e

Tm=™U) CyT~P(U)
with p :=n —m and v := 8/a. Since n > m and |5| < |«],
NYTP(UYNV # 0 with p e NU{0} and v € D\ {0}.

Hence,

b nves( | Uer)nv

a€C,|a|>21n=0

and so

'y( U UozT_"(U))ﬂV;é@

a€eC,|a|>21n20

for any nonempty open subset V' of H. Thus, we deduce that the set

G::y( U UaT’”(U))

a€C,|a|>1n20

is dense in H.
Now, we consider the map h. defined on H by hy(z) = v 'z. Clearly, h, is

a homeomorphism. Since h., is closed,

U UYer—@) = la- ho(G) = hy(G) = hy(H) = ln_m

a€C,lal>1n>0 v Yy

It follows from Theorem 4.1 that T is a disk transitive linear relation. O
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Theorem 4.4. Let T € DCR(H) and A € D. Then the range of T — A\ is dense
in H.

Proof. If A = 0, then by Proposition 3.2, R(T') is dense in H. Now, let A\ €
D\ {0}. Suppose that R(T" — AI) is not dense in H. Since T is disk-cyclic, then
by virtue of Proposition 4.2 and Theorem 4.3 there exists x € DCR(T) such that
x ¢ (T'—A)H. By the Hahn Banach theorem, there exists a continuous linear
functional ¢ on H such that ¢(x) # 0 and ¢(R(T — X)) = {0}. This implies that

Y(Ty) — Mp(y) = (T = M)y) =0
for all y € H. Hence, ¥(Ty) = M)(y). Using [9], Lemma 4.2, we get for all n > 1,
R(T™ — X\"I) C R(T — AI). Thus
(4.1) P(T™y) = \"P(y)

foralln > 1andally € H.

Now since D Orb(T, x) is dense in H, there exists {x;} in D Orb(T, ) such that
{z1} converges to 3z. Then 9 (x) — 3¢(x) as k — oco. For each k > 1 there exists
nk > 1 and oy in D such that z € opT™ 2. Using equality (4.1) and T™ ayx =
x + T™(0), we obtain

Y(xg) = P(aaT x) = app(T™ x) = ap A" ().

Thus, agA™(x) — 3¢(x). Since |apA™| < 1 and ¥(z) # 0, |agA™| — 3 < 1 as
k — oo, which is a contradiction. Finally, we conclude that the range of T'— A is
dense in H. O

As an immediate consequence of the previous results, we obtain the following
corollary.

Corollary 4.1. Let T € DCR(H). Then
op(T*) C C\ D.

Proof. Suppose that o,(7™) is a nonempty subset of C. Let A € D, then, by
Theorem 4.4, we deduce that R(T — AI) is dense in H. This implies that
ker(T — )" = R(T — \[)* = R(T — M) = H* = {0}.
Moreover, since Al is a bounded linear operator,
ker(T — AI)* = ker(T* — \I) = {0},

which implies that A\ ¢ 0,(7*). Since A € D is equivalent to A € D, we obtain
A ¢ 0p(T*). Thus, 0,(T*) is a subset of C\ D. O
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