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Abstract. Motivated by the study of anticipating stochastic integrals using Kurzweil-
Henstock approach, we use anticipating interval-point pairs (with the tag as the right-end
point of the interval) in studying non-stochastic integral, which we call the Kurzweil-
Henstock anticipating non-stochastic integral. We prove the integration-by-parts and
integration-by-substitution results, the convergence theorems using our new setting. Us-
ing the convergence theorems, we show that the Kurzweil-Henstock’s anticipating non-
stochastic integral is equivalent to the Lebesgue integral.
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1. INTRODUCTION

The Riemann integral was perhaps the first rigorous definition of the integral [8].
The theory of Riemann integration is well-known. It is inadequate for many the-
oretical purposes as it cannot be used to study highly oscillatory integrands and
integrators.

The Lebesgue integral, which remedied the technical deficits in Riemann integra-
tion, was introduced by Henri Lebesgue in 1906 (see [4]). This integral was able to
handle more irregular functions and provide more careful approximation techniques.
However, Lebesgue integral is technically involved and a considerable amount of
measure theory is required even to define the integral.

In the 1950s, Jaroslav Kurzweil and Ralph Henstock independently introduced
another integral by a slight modification of the classical Riemann integral (see [1]).
They used non-uniform meshes instead of uniform meshes as in the usual Riemann

approach. This modification of the classical Riemann approach led to integrals which
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are more general than both the Riemann and Lebesgue integral. It preserves the
intuitive approach of the Riemann integral.

The use of non-uniform mesh in Kurzweil-Henstock integral has allowed for highly
oscillating points to be encompassed. In the study of stochastic integral using
Kurzweil-Henstock approach, the tag in the interval-point pair cannot be any point
in the interval. In the case of non-anticipating It6-stochastic integrals the tag must
be the left point of the interval, [3], [9]-[15]. Lim and Toh (see [7]) study the theory
of non-stochastic integral by restricting the tag to be the left point of the interval,
and show that this is equivalent to the Lesbesgue integral.

In this paper, we study non-stochastic integrals using the Kurzweil-Henstock ap-
proach by considering the tag to be the right-hand point of the interval. This is mo-
tivated by the study of anticipating stochastic integrals using the Kurzweil-Henstock
approach used by Chew et al. (see [2]).

2. SOME DEFINITIONS

We consider throughout this paper functions and integrals which are defined on
a closed and bounded interval [a, b].

Definition 2.1. (1) A collection of sub-intervals [x;_1,;], for alli =1,2,... n,
where a = 29 < x1 < x2 < ... <z, = b, is a (full) partition of [a, b].

(2) A collection of nonoverlapping subintervals {([u,v],&)} of [a,b], that is,
nonoverlapping subintervals such that Ufu,v] C [a,b] is said to be a partial di-
vision of [a, b].

Definition 2.2. Let § be a positive function on [a,b]. A full division D =
{([u,v],&)} of [a, b] is said to be §-fine Henstock division if for all interval point pairs

([uvv]ag)a 5 € [u,v] C [g - 5(5)75 + 6(5)]

Note that Definition 2.2 is used in Henstock’s integration theory. Such a full
division exists by continuous bisection (see [6]) or a consequence of Heine-Borel
Theorem (see [5]).

Definition 2.3. A collection of interval-point pairs D = {([u, £], &)} is said to be
a partial anticipating (or P.A) d-fine division if for all interval point pairs ([u,&],§),

§ € [u7§] c [§ - 5(§)a€]

In the study of stochastic integrals, Toh and Chew in [3], [9]-[15] used a belated
partial division in which the tag £ was the left-hand point of the interval. In this
study, we adopt the case when the tag is the right-hand point, aligned to the approach
used in [2].
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We noted that a full anticipating J-fine division of [a,b] may not exist. In con-
sidering the interval [a,b], let 0(§) = (£ —a)/2 > 0. Then any finite collection of
intervals (& — 6(&;),&] = ((& + a)/2,&;] will leave some parts near to z = a uncov-
ered. Hence, for this chosen § > 0, we can only have a partial division. From Vitali
Covering Theorem, a P.A d-fine division of [a, b] that misses out the interval [a, b] by
any arbitrary small part exists. We have:

Definition 2.4. Let § be a positive function of [a,b] and n > 0 be a positive
number. A collection of interval point pairs D = {([u,£],£)} is said to be a PA
(6,n)-fine division of [a, b] if:

(1) the set of intervals {([u,£],£)} is non-overlapping and [u, ] C [a, b],
(2) for each interval point pair ([u,£],£), [u,&] C (£ — §(€),&], and

)

(3) Jlo. 5]\ U €]] <

3. KURZWEIL-HENSTOCK ANTICIPATING NON-STOCHASTIC STIELTJES INTEGRAL

Definition 3.1 (KHANS integral). A real-valued function f is said to be
Kurzweil-Henstock anticipative non-stochastic Stieltjes (KHANS) integrable to A
on [a,b] with respect to the function g if for every e > 0 there exists a positive

function 6 > 0 and a positive number 7 > 0 such that for any P.A (d,7)-fine division
D= {([uvf]vf)} of [a,b], we have

\(D) S F©)l() — g(u)] - A <.

where (D) " f(€)[g(§) — g(u)] denotes the Riemann sum of f with respect to the
function g over the division D on the interval [a, b].

Here, the function f is known as the integrand and g the integrator. In the event
that the integrator ¢ can be understood from the context, we may simply say f is
KHANS integrable on [a, b] (with respect to g). Note that the part of the interval [a, b]
that is not covered by D has total measure of less than 7, that is, ‘[a, b\Ul[w, &]| < n,

D

for a given n > 0.

Note 3.1. For the special case when the integrator g(z) = x, we name the
integral Kurzweil-Henstock anticipative non-stochastic or KHAN integral.

Definition 3.2 (KHAN integral). A real-valued function f is said to be
Kurzweil-Henstock anticipative non-stochastic (KHAN) integrable to A on [a,b]
if for every ¢ > 0 there exists a positive function § > 0 and a positive number 1 > 0
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such that for any P.A (6, n)-fine division D = {([u,&],£)} of [a, b] we have
‘ Z f(¢ ‘ <e.

Theorem 3.1 (Uniqueness of KHANS integral). If f is a KHANS integrable
function on [a, b] (with respect to g), then the integral on [a,b] is unique. That is, if
both A and B are two values of the KHANS integrals of f on [a,b], then A = B.

Since the KHANS integral of f on [a,b] is unique, we can use the notion
KHANS fab f(®)dg(t) or simply fffdg to denote the KHANS integral of f on
[a, b] with respect to g if the integral exists and if there is no ambiguity on the type
of integral being referred to.

Theorem 3.2 (Integrability of sum and difference). Suppose f and h are KHANS
integrable functions defined on [a,b]. Then f + h is KHANS integrable on [a,b].

Furthermore,
/ab(f()ih / £(6) dg() / h(t) dg(t).

Theorem 3.3 (Integrability of scalar multiple). Suppose f is a KHANS inte-
grable function defined on [a,b] and k € R. Then kf is KHANS integrable on [a, b].

Furthermore,
b b
/ k(1) dg(t) = k / £() dg(t)

Note that the proofs of the above theorems are typical results of integration theory.
It is instructive for readers to go through the proof following classical results.

Theorem 3.4 (Cauchy criterion). A function f is KHANS integrable on [a,b] if
and only if for every € > 0 there exists a positive function § > 0 and a positive
number 1 > 0 such that for any two P.A (0,n)-fine divisions Dy and Dy we have

\(Dn S HOWE) — 9] — (D) S FO)lg(€) — g(u)]

Proof. Necessity follows from triangle inequality. We only need to prove the

<eE.

sufficiency. For any € > 0, there exists a positive function § > 0 and a positive
number 1 > 0 such that for any two P.A (4, n)-fine divisions Dy and Ds we have

\(Dn S FO)10(©) — 9] — (Do) FE)la(E) — g(w)]

Take /2 = 1/k for a positive integer k. Define a sequence of positive functions

<E
%

01 > 02 > d3 > ... and a sequence of positive numbers 11 > 19 > n3 > ... For each
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k=1,2,3,..., let Sy denote (D). f(&)[g(§) — g(u)], where Dy, is a (0, ny)-fine
division. If p > ¢, then the (dp, n,)-fine division Sy, is also (04, 7q)-fine. Since both S,
and S, are (dq,7,)-fine, |S, — Sy < €/2. Hence, {S,} is a Cauchy sequence in R.
Let S be the limit of this sequence. So there exists N > 0 such that for all £k > N
we have |S — S| < e/2. Let D be any P.A (0, nn)-fine division with n < k. Then

‘s — (D) FOg(&) — g(uw)]

- ‘s_ S+ S — (D)3 F()lg(6) — g(u)]

<9 = Skl + Sk — (D)) F(©)g(§) — g(w)]
cfefs
2 2
showing that f is KHANS integrable. O

Theorem 3.5 (Integrability on a subinterval). If f is KHANS integrable on [a, b],
then it is KHANS integrable on any subinterval [c,d)] of |a, b].

Proof. Fore > 0, let D; and D2 be any two P.A (4, n)-fine divisions of [c, d]
and denote the Riemann sums of f over D1 and Dy by S; and S, respectively, corre-
sponding to Theorem 3.4 for £/2. Similarly, take another P.A (J,n)-fine division Ds
of [a,c] U[d,b] and denote the corresponding Riemann sum by S3. Then Dy U D3 is
a PA (6,n)-fine division of [a,b]. By the Cauchy criterion (Theorem 3.4) on [a, b],

[S1 — Sa| = [(S1+ S3) — (S2+ S3)| < e.

Hence, the proof is completed by applying the Cauchy Criterion with the interval
[a, b] being replaced by [c, d]. O

Theorem 3.6 (Henstock’s Lemma). Suppose f is KHANS integrable on [a,b].
Then, given € > 0, there exists 6 > 0 such that for any P.A d-fine division D =

{([uvf]vf)} on [ayb], we have

‘(D)Z{f(f)[g(f) ~g(w)- [ Efdg}‘ <

Proof. Since f is KHANS integrable on [a, b], given & > 0, there exists a positive
function § > 0 and a positive number n > 0 such that for any P.A (§, n)-fine division
D,

9
< .

b
(D)X 1(©late) ~ ot - [ rag| <

Let D = {([u,&],€)} be a collection of J-fine partial divisions. Let the closure of

[a,b] \ U[u, &] be U [as, b;]. By Theorem 3.5, f is KHANS integrable on each [a;, b;].
D

i=1
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Given € > 0, choose a positive function §;(£) > 0 and n; > 0 such that for any P.A
(6;,m;)-fine division D, we have

b;
€
(D) Y FOla(6) - atw] - [ fag] < o
a; m
for each i =1,2,3,...,m.
Impose the condition that ¢; < § for all i = 1,2,3,...,m, and that > 7 < 7.
Then D |J D; is a PA (d,n)-fine division of [a, b]. Hence,
=1

1=

< ‘(n L_"J Di) Zl_f(f)[g(f) ~ gl - [ bfdg‘
i C (D) S £()l9(€) — glw)] - i / b fdg)\

thereby completing the proof. O

Theorem 3.7 (Strong Henstock’s Lemma). Suppose f is KHANS integrable on
[a,b]. Then, given € > 0, there exists § > 0 such that for any P.A é-fine partial
division D = {([u,&],&)} on [a,b],

£
(D) S| £©)lo(€) - g(w) - / fdg‘ <

u
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Proof. Suppose f is KHANS integrable on [a,b]. We want to show that the
above condition is equivalent to that of Henstock’s Lemma in Theorem 3.6. We only

need to prove the necessity. By Henstock’s Lemma, given € > 0, there exists § > 0
such that for any P.A é-fine division D = {([u,£],£)} on [a, b], we have

€
O {50 -9t - [ ra}) <
Let Dy be those parts {([u,&],€)} in D such that f(£)[g(&) — g(u)] — ff fdg >0

and Dy be those parts {([u,&],€)} in D such that f(&)[g(§) — g(u)] — fffdg < 0.
Then D; and D5 are P.A d-fine divisions such that

\(Doz {f(é)[g(é) ~gtw) - [ 5 fdg}‘ <e

" 003" { sterote) - ot - [ ral] <=
0) S |rteate) ~ st - [ s
=00 3 (10(©) - s - [ 5 rag)
- (00 3 (FO19(©) - atw] - [ 5 rag)
~ |00 Y (#@ate) - sl - [ 5 rag)
- (00 3 (FO10(©) - atw] - [ 5 rag)|
<[00 3 (@0 gt - [ 7as)
+ |00 X (r@ote) - ot - [ ras)
< % +5=¢,
thereby completing the proof. 0

Definition 3.3 (Absolute continuity). A function F': [a,b] — R is absolutely
continuous on [a, b] if for every e > 0, there exists 6 > 0 such that Y |F(v)—F(u)| < €
whenever {[u,v]} is a collection of subintervals of [a,b] with > |[v —u| < 0.
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Theorem 3.8 (Small Riemann sum). Let f be KHANS integrable with respect
to g on [a,b]. Then given ¢ > 0, there exists a positive function § > 0 and a positive
number p > 0 such that for any given P.A §-fine partial division D = {([u,£],&)} of
la,8] with (D) 2[¢ —ul < 4,

<e.

‘(D)Zf(f)[y(f) ~ g(w)]

Proof. Given ¢ > 0, choose a positive function § > 0 and a positive number
1 > 0 such that for any P.A (§,n)-fine division Dy = {([u,{],£)} we have

‘(Dl)Zf(ﬁ)[g(é’) —g(u)] = /:fdg‘ < g

Take a PA -fine partial division D = {([u, €], &)} from [a,b] \ U[u,§]. Since D; is
D,
(6, n)-fine, we have ‘[a, b\ U[u,f]‘ < n, and hence (D) > |§ —u| <n. Then DU D,
D,
is (6, n)-fine. Hence,

3
< -

b
<

\(D 0D Y Sl - o) - [ 7

By the triangle inequality,

\(Du D) Y FO(E) — g(w)]| = ‘(D)Zf(f)[y(f) ~ gt [ fag

b
4 / fdg—(D1) Y F(E)lg(€) — g(u)]

thereby completing the proof. O

Lemma 3.1. If f is KHANS integrable on the interval [a,b] with respect to g,
then F(t) = fat f dg is absolutely continuous on [a, b].
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Proof. Given e > 0, by Theorem 3.8 there exists a positive function § > 0 and
a positive number 7 > 0 such that whenever Dy, = {([u,¢], £)} is a P.A d-fine division
of [a,b] with (D) > |€ — u| < n, we have

3
< z.

(D) F(©late) ~ ol < 5

Let {[a;,b;]}7*, be a finite collection of disjoint subintervals from [a, b] such that
> |bi —a;| < n, where ) is chosen as above. By Theorem 3.5, f is KHANS integrable
on each [a;, b;], where i = 1,2,3,...,m. By Theorem 3.6, on each [a;, b;] there exists
d; > 0 such that whenever D; = {([u,¢],£)} is a P.A d;-fine division of [a;, b;], we have

\(D» > £©)lo(©) - g(w)] - | fdg‘ <oz

a;

m
Assume that §; < ¢ for each ¢ = 1,2,3,...,m. So D = |J D, is a d-fine partial
i=1

division with (U D;) > |€ —u| < 3 |bi — ai| < 1. By Theorem 3.8,

‘ (G Dz‘) > F©)9(€) - g(w)]

<

€
5
Consequently,

Z |[F'(bi) = Fas)]| <

1y {(Dn S H©lo(e) - g(unH
=1
m bs
<Y |{erZ @m0 - sl - [ ras}
+(UD) r@lste) - atw)
< ilzziﬁ%:ii%%%%:&
thereby completing the proof. (I

Theorem 3.9 (Sequential definition). The function f is KHANS integrable on
[a, b] with respect to g if and only if there exists a sequence of positive functions {0, }
and a sequence of positive numbers {n,} such that

A= Tim S(f,9, D, duy), - where S(f,9, D0 ) = (D) 3 F(€)[9(6) ~ 9]
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Proof. Suppose f is KHANS integrable on [a,b] with respect to g, let the
sequences of positive function J,, and positive numbers 7,, be such that for any P.A
(0n, M )-fine division D,, we have

1
n

\(Dn) S F©)lo(e) — glu)] - A\ <

for all n =1,2,3,... Given € > 0, choose an integer k such that 1/k < ¢, so that

‘(Dk)Zf(é)[g(é) ~gw)] - A\ <t

There we have A = lim S(f, g, Dn,0n,nn)-
n—oo

Conversely, suppose there exists a sequence of positive functions {4, } and a se-
quence of positive numbers {n,} such that

A = hm S(f,g, Dn; 57177771)
n— 00

Suppose f is not KHANS integrable to A. Then there exists an € > 0 such that for
every positive function § and every positive number 7 there exists a P.A (J,n)-fine
division D, where

(D) 1€l - gt - 4] > =
For the above ¢, take 0y € {0,} and nx € {n,} such that Dy is a PA (d,,n,)-fine

division, where

(D)X FO1) - gt ~ 4] = 14~ (7.9, Do )| > =

This contradicts the statement that A = li_>m S(f,9, Dn,dn,nn), showing that f is
n [ee]
KHANS integrable to A. O

We next prove the main result of integration by substitution. In our setting, we
weaken the condition of the differentiability of the integrator to left-differentiable.
Compared to [7], we further weaken the condition of the boundedness of the inte-
grator.

Theorem 3.10 (Integration by substitution). Let the function f be KHANS in-
tegrable on [a,b] with respect to g, which is left-differentiable on [a,b]. Then

b b
[ @ dgte) = [ syt @) da.
where ¢’ (z) denotes the left-sided derivative of g at .
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Proof. Given e > 0, choose a positive function § and a positive number 7 such

that for any P.A (4, n)-fine division D,

‘(D)Zf(f)[y(f) ~gtu) - [ bfdg‘ <<

Let Dy = {{[u,&],§} € D: k—1 < f(§) < k} for integer k. Let the number of
intervals in each Dy be ng. Since g is left-differentiable at £ in Dy, where k # 0,

choose 6(¢) < 1/(|k|2!F+3n,) such that whenever 0 < € —u < §(€),

A=) _ g (g)| <

or equivalently,
D) Y- 19(6) = 9(0) = &€ — )| < (D) 3 s = e

Consider
D)) f(©)9-(©)E —u) = (D) Y FE)g(€) — g(w)]
(D) > 1N ()& = u) — (&) + g(u))|
k 4e
ZW DkZ' ) +glu |\Z|k||2|:+3_§_g'
Consequently,

showing that f: f(x)dg(x) = f: f(z

4. KURZWEIL-HENSTOCK VARIATIONAL ANTICIPATIVE INTEGRAL

If the KHANS integral is likened to the definite integral in the classical calculus
the Kurzweil-Henstock variational anticipative integral (or KHVA) introduced in this

section is the counterpart of the indefinite integral.
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Definition 4.1 (Bounded variation). A real-valued function f defined on [a, b]

is said to be of bounded variation on [a, b] if for any real number M,

sup Y _ [ f(v) = f(w)] < M,

where the supremum is taken over all the possible partitions of [a, b]. If the set
n

S = {Z |f(z:) — f(zi—1)]: {a =20, 21,...,2, = b} is a partition of [a,b]}
i=1

is bounded, then the total variation of f on [a, b] is defined to be V'(f,[a,b]) = sup S.
In other words, a function f is said to be of bounded variation on [a, b] if V(f, [a, b])
is finite.

Let Z[a,b] denote the collection of all closed subintervals [u,v] C [a,b]. Then
Definition 4.1 can be defined on real-valued function F' defined on Z[a,b] as: A real-
valued function F' defined on Za, b] is said to be of bounded variation on [a, b] if for
any real number M,

sup 3 [Flu,o]] < M,

where the supremum is taken over all the possible partitions of [a, b].
We shall use these two interchangeably in our discussion below whenever necessary.

Definition 4.2 (Zero variation). A real-valued function F' defined on Z[a,b] is
said to be of zero variation if for any £ > 0 there exists a positive function § > 0
such that for any partition of §-fine partial division D = {([u,v]} of [a,b] with
(D) > |v —ul| < 4§, we have

<E.

(DY Flu

It is instructional to check that F[u,v] = K for all [u, v] € Z]a, b] has zero variation

for any constant K. The function G[u,v] = |v — u|? for all [u,v] € Z[a,b] also has
zero variation on [a, ).

Definition 4.3 (KHVA integral). A real-valued function f defined on [a,b] is
said to be Kurzweil-Henstock variational anticipative KHVA integrable with respect
to g to a function F: Z — R if for every € > 0 there exists a positive function
d > 0 such that for any partial anticipative d-fine division D = {([u,&],£)} on [a, b],

we have

\(D) S F©)10(©) — g(w)] — Flu.el}| < =

We next state without proof the basic properties of the integrals. The proofs of
the following theorems are similar to that for KHANS integral, hence omitted.
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Theorem 4.1 (Uniqueness of KHVA integral). If f is KHVA integrable on [a, ],
then its primitive on Z|a,b] is said to be unique up to zero variation. That is, if
both F and G are the primitives of f with respect to g on [a,b], then F — G is of
zero variation.

We denote the KHVA integral by F', where Flu,v] = (KHVA) f;}fdg for all
[u,v] C Z[a,b]. If no ambiguity exists, we shall use f; f dg to denote F[u,v]. Note
that the KHANS integral is a real-valued function on [a, b] while the KHVA integral
is a real-valued function on Zla,b]. Also readers are reminded that the equality is

only up to zero variation.

Theorem 4.2 (Integrability of sum and difference). Suppose f and h are KHVA
integrable functions on [a,b]. Then f+ h is KHVA integrable on [a,b]. Furthermore,
b b b
[ u@=nmagi = [ swag = [ wedgo.

Theorem 4.3 (Integrability of scalar multiple). Suppose f is KHVA integrable
on [a,b] and k € R. Then kf is KHVA integrable on [a,b]. Furthermore,

b b
/ k(1) dg(t) = k / £(6) dg ().

Theorem 4.4 (Integration by substitution). Let f be KHVA integrable on [a, b]
and g be left-differentiable on [a,b]. Then

/ " o) do() = / ’ @) (@) do.

Theorem 4.5 (Integration-by-parts). Let the function f be left-continuous on
[a,b] and the function g be of bounded variation on [a,b]. If (KHVA) f; f dg exists,
then so does (KHVA) f;gdf, and

b

b
(KHVA) / g(t) df () = F(B)g(b) — f(a)g(a) — (KHVA) / £() dg ().

a

Proof. Given € > 0, choose a positive function d; and such that for any P.A

d1-fine division D of [a, b] we have

Do ™

\(Dn S 7€) lg(6) — glu)] - F[u,ﬂ\ <

Let M be the total variation of g. Choose d2 > 0 such that whenever 0 < {—u < §2,
we have |f(§) — f(u)| < ¢/2M. Take 0 = min(dq,d2) and consider any P.A d-fine
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division D on [a, b].

‘(Dz) Y@L = fw]+ (D2) Y Flu, €] = [£(b)g(b) — f(a)g(a)]

- \<D2> S Fw)lo(u) - 9(€)] + (D2) S Flé.uf

thereby completing the proof. O

Note that the proof of the above theorem is still true if the roles of f and g are
swapped, that is, f is of bounded variation on [a, b] and ¢ is left-continuous on [a, b].
We next establish the relation between KHANS integral and KHVA integral.

Theorem 4.6. If f is KHANS integrable on [a, b], then it is also KHVA integrable
there.

Proof. This follows directly from Henstock’s Lemma. t

Theorem 4.7. If f is KHVA integrable on [a,b] and the primitive F is absolutely
continuous on [a, b], then f is KHANS integrable there.

Proof. Given e > 0, choose a positive function § > 0 and such that for any P.A

d-fine division D = {([u,&],&} of [a,b] we have

(4.1) (D) D _AF(©)lg() — g(w)] = Flu, &} <

Choose p > 0 such that whenever {[«, 8]} is a collection of subintervals of [a, b] with
> |8 — a] < p, we have

(4.2) > |Fla, B < -

Let [a,b] \ U[u £] be denoted by U [ai, B;]. We can let n = p > 0 such that the

i=1

0-fine partial d1v1310n D given above is a 7-fine partial division on [a,b]. Note that
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in this case, both (4.1) and (4.2) hold. Hence,
(D)Y F€sl6) - gtu] - Flat]

= |(0) S £©l9(6) - a(w] - { (D) 3 Pl +§;F[a“ﬁ”}‘

i=

<| @ Z 7@l - gt - Flugh|+ | 3 Flow, )
i=1
< §+;|F[ai,/zn <s+s<s
therefore completing the proof. ([

5. CONVERGENCE THEOREMS

In this section, we shall study the integrability of the limit of a sequence of inte-
grable functions. Roughly speaking, a convergence theorem states that integrability
is preserved under taking limits. In the second part, we prove the equivalence of
KHAN integral and Lebesgue Integral. This was largely motivated by the study of
convergence theorems for the stochastic integrals (see [9]-[15]).

Definition 5.1 (Pointwise convergence). Let f and f™ . n=1,2,3,..., bereal-
valued functions on [a,b]. Then {f(™} converges pointwise to f if for any & > 0 there
exists N(t) > 0 such that we have | f("™)(t) — f(t)| < ¢ whenever n > N(t).

Definition 5.2 (Uniform convergence). Let f and f(™, n=1,2,3,..., be real-
valued functions on [a,b]. Then {f(™} converges uniformly to f if for any ¢ > 0
there exists N > 0 such that we have |f(")(t) — f(t)| < ¢ whenever n > N.

Note that the difference between uniform convergence and pointwise convergence
is that in the latter, N does not depend on ¢ but in pointwise convergence, N (t) is
dependent on t.

Definition 5.3 (Variational convergence). Let F and F(™, n =1,2,3,..., be
real-valued functions on Z[a,b]. Then {F(™} is said to converge variationally to F
if for any € > 0 there exists a positive function § > 0 and a positive number N > 0
such that for any d-fine partial division D = {(u,£),&)} we have

\(D) S (FO €] - Flu, €]} <<
ifn> N.
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Theorem 5.1 (Variational convergence theorem). Let f and f n=1,23,...,
be real-valued functions on |a,b] such that {f(™} converge pointwise to f. Suppose
that each f(™ is KHVA integrable to F™) on [a,b] and {F(™} converges variation-
ally to F'. Further, let g be of bounded variation on [a,b]. Then f is KHVA integrable
to F' on [a,b].

Proof. Let M be the total variation of g and € > 0 be given. For each integer
n > 0, choose a positive function 6 on [a, b] such that for any P.A §"-fine division

D’ﬂ = {[uag]ag} we ha‘ve
(D) ©la(€) - atw)] - [V = PO} <.
Without loss of generality, assume that for k = 1,2,3,..., f(*) is HVA integrable

to F®) with the associated 6(¥) > 0 such that for all 6*)-fine partial division Dy,
we have

5 |00 TUO©late) - st - OO - FOWIY < 5

Let 6 > 0 be a positive function on [a,b] and N > 0 be a positive number such
that for any P.A d-fine division D,, = {[u,&],£} we have

(D) SO - 7] - (71 - )| <

for all n > N. There exists a subsequence nj of n such that

3

(D) AP (€)= 0] = [F(€) = Pl | < g
We re-index the sequence {ny} by {k}, so that there exists a positive function

6% > 0 and a positive integer k > 0 such that for any 6*-fine partial division Dy =
{lu, €], €} we have

3

(5.2 (D) TP (E) - FO ] - [F(©) - F| < -

Choose n (&) > 0 such that f™)(¢) — f(€) < e/2M. Thus, we have
(D) SOl - )] - [F(©) ~ Pl

< (O SO - )] - 7 OEla(6) - g(w}
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n \(D) S O©)0(e) — g(w)] — [FRO(e) - F”<5><§><u>1}\

\ ) SO E) — PO (€)(w)] — [F(6) —F(u)]}\
= Il + 12 + I3a
\ )L ()] - FO©)[g(€) - g(u)]}}

Z\{(m) —g(uﬂ}\
v7) (V0O — ol < (g37) - M =5

2
< 3|0 Ol ~ a0~ 170 - F%)(u)]}\
< Z 2% = Z from (5.1),
k=1
< 3|00 S E O ) - PO ) - 1P - F(u)]}\
k=1

> € €
< Z 5hrz = ] from (5.2).
k=1

Thus, I1 + I + Is < /2 4+ ¢/4 + £/4 = ¢, showing that f is KHVA integrable to F’
on [a,b]. O

Theorem 5.2 (Monotone convergence theorem). If the following conditions are
satisfied, then f is KHAN integrable to A on [a,b]:

(i) {fn(x)} converges pointwise to f(x) almost everywhere in [a,b] as n — oo,
where each f,, is KHAN integrable on [a,b] to F,;

(i1) fi(x) < fax) < ... for almost all x € [a,b];

(iii) F,, converges to A on [a,b] as n — oo.

Proof. Without loss of generality, assume f,(x) converges pointwise to f(z)
everywhere in [a,b]. Given £ > 0, choose positive integer N(§) > 0 such that
whenever n > N (&), we have |f,(£) — f(&)] <e/(b—a).

Given each f, is KHAN integrable on [a,b] to F;, by Theorem 3.7, choose §,, > 0
and 7, > 0 such that for any P.A (J,,n,)-fine division D,, = {([u,¢],€)} on [a, b,

we have
Da) Y (€l = 1) = Fulu,€)] < -
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Now take 6(§) = On(e)(§) and 7 = () and consider any PA (J,7)-fine division
D = {([uvf]vf)} on [a,b]. Then

D) F©)le — o] - \ \ )" A = v )€ —w)
n }(D) S I )€ — ) — Fxe(u. s)}
+ ‘(D) Z Fne(u,§) — A‘

=L+ L+

Then

D) > 1£(€) = fne (©IE —ul
g g

< (D)Zm|§—u| < m(b—a)zﬁ,
(D) v (©)(E = u) = Fie(u, )|

<Y D) 1O ~u) - F 223 .

Since the sequence {f,(x)} is monotone increasing, the sequence {F,(a,b)} is also
monotone increasing. Further, the number of the associated points £ in D is finite,
and so is the number of those different N (&) in the above sum over D. Let kg denote
the maximum of those N (¢). Since Fy,(a,b) < A, let k1 be such that |Fj,(a,b)—A| < ¢
whenever k > k;. Take k2 = max{ko, k1}, and we have

< |(D) Y g ©) - 4] < |(0) Y a6~ 4] < 1Fus(ast) — 4l <
completing the proof of the Monotone Convergence Theorem. O

Lemma 5.1 (Max-Min Lemma). If f; and f, are KHAN integrable on [a,b] and
if g(z) < fi(x) < h(x) almost everywhere for i = 1,2, where g and h are also KHAN
integrable on [a,b], then max(fi, fo) and min(fy, fo) are both KHAN integrable
on [a, b].

The proof of Lemma 5.1 is modelled after the Henstock case (see [6]), hence omitted
here.

Lemma 5.2. If f1 and fo are KHAN integrable on [a,b] and if their primitives Fy
and F» are both of bounded variation on [a,b], then max(f1, f2) and min(fi, f2) are
both KHAN integrable on [a, b].
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Proof. Let M; be the total variation of f; on [a, b] for i = 1,2. Define F*(u,v) =
max{F (u,v), F»(u,v)} for any (u,v) € Z. For any PA (§,n)-fine division D =
{[u, €], &} of [a, 0],

D) F*(u,&) < (D)Y_ Fi(u,€) + (D)) Fa(u,8)
= (D)) (Fi(§) = Fi(w) + (D) Y _(Fa(§) — Fa(w))
< (D)) |F1(€) = Fi(w)| + (D) Y [Fa(6) — Fo(u)| < My + Mo,

Hence, (D) F*(u,§) is bounded. The rest of the proof is similar to that of
Lemma 5.1, hence omitted. (]

Theorem 5.3 (Dominated convergence theorem). If the following conditions are
satisfied, then f is KHAN integrable on [a,b] and f; fndx converges to f; fdx as
n — oo:

(i) fn(x) converges pointwise to f(x) almost everywhere in [a,b] as n — oo where
each f,, is KHAN integrable on [a, b];

(ii) g(z) < fn(z) < h(x) for almost all x € [a,b] and all n, where g and h are also
KHAN integrable on [a, b].

Proof. Let f;" =min{f,: i<n<j}forj=1i,i+1,i+2,... By Lemma 5.1,
each f;* is KHAN integrable on [a,b]. Consider the sequence {f: —f;"dz}. So

{—/;"}, and hence {f: —f;" da} are monotone increasing. Since each f, > g, each
fab —f;" dz is bounded above by fabgdx, S0 {fab —f;"dxz} is convergent. By Theo-
rem 5.2, lim f;* is KHAN integrable on [a,b]. Hence
j—oo
inf{fn,: n>i} = lim min{f,: i <n < j} = lim f;"
j—oo )=

is KHAN integrable on [a, b]. Similarly, sup{f,: n > i} is also KHAN integrable on

[a,b]. Hence
b
/ (mf fn) < inf fn sup / fn < / sup fn
a n=i nzi n>iJa n>=i

Note that f,(z) converges pointwise to f(x) as n — oo if and only if

tim {inf f, (@)} = f(x) = Jim {sup fu(x) }.

1—oo \n>1i =00 Lp>y

and denote respectively the upper and lower limits above by

liminf f,(z) = lim {mf fn(x )} and limsup f,(z) = hm {sup fn(x)}

n—00 i—oo \n>i n—o00 n>i
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Since the sequence {inf{f,: n > i}}$2; is monotone increasing, the correspond-
ing integral sequence { f: inf{fn: n > i}dz}s2, is also monotone increasing. Note
that each ff inf{f,: n > i} da is bounded above by f;hdx. Hence, the sequence
{fab inf{fn: n>i}da}s2, is convergent. By Theorem 5.2, {inf{f,: n >i}}2,, fis
KHAN integrable on [a, b]. Hence

b b b b
/ fdz <lim inf/ fndx < lim sup/ fndx < / fdz.
a n=oo Jo n—oo a a

By Squeeze Theorem,

b b b b
lim inf / fndx = limsup / frndx — lim / fndx = / fdz,
n—oo J, n—oo Jq n=oo Jo a

thereby completing the proof. ([

We are now ready to prove that the KHAN integral and the classical Lebesgue
integral on a closed and bounded interval [a, b] agree. This approach was inspired by
that used to prove that the Henstock’s stochastic integral and the classical stochastic
integrals agree by using convergence theorems [3], [9]-[15].

Theorem 5.4 (KHAN integral of simple measurable functions). Let f: [a,b]—R
be a simple measurable function such that f is Lebesgue integrable. Then f is also
KHAN integrable and

(L)/fdu: (KHAN) /:fdx.

Proof. It issufficient to prove for the case of a characteristic function of a set F
that it is measurable on [a, b], denoted by xg. By definition, the Lebesgue integral
(L) f; xe dz = u(E), where p is the Lebesgue measure. We just need to prove that

b b
(KHAN) [ xpdo = plE) = (L) [ xpde.

a

Given ¢ > 0, choose a PA (§,n)-fine division D = {[u,£],£{}. Since E is
a measurable subset of R, let open intervals {I,,} = Ij,Is,... be such that

o0 o0

Ec UI, and > p(l, \ E) < e. Choose § such that if £ € I, for some n,
n=1 n=1

then (u,&) C (£ —96,£+6) C I,. Then

oo

\(D) S wm(O)(E —u) - u(E)‘ < \(D) Sl €]~ u(B)| < 3 I\ E) <.

n=1

Hence, (KHAN) [, xp dz = u(E). O
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Theorem 5.5. Let f: [a,b] — R be a measurable function such that f is Lebesgue
integrable. Then f is also KHAN integrable on [a,b] and

(L)/fdu: (KHAN) /abfdx.

Proof. Since f is measurable, there exists a sequence fi, fo, ... of real-valued
functions on [a, b] such that lim f, = f, where each f,, is a simple measurable func-
n—oo

tion. Let g(z) = sup{ m[a)i]{|fn(x)|}} such that |f,(z)] < g(z) for alln=1,2,3,...
n>1 z€la,
By Theorem 5.4, we have that each f, and g are both Lebesgue and KHAN in-

tegrable. Hence, the Dominated Convergence Theorem for both the Lebesgue and
KHAN integral result in

(L)/fdu = nl;néo(L)/fn dp and (KHAN)/fdx = nILH;O(KHAN)/f” dz.

By Theorem 5.4, for every n =1,2,3, ...,
b b
(L)/fndu: (KHAN)/ frndz — lim (L)/fndu: lim (HIA)/ fndx
a n—oo n—oo @

—>(L)/abfdx—(KHAN)/fdu.

6. CONCLUSION

In this note, we have studied non-stochastic integrals using the Kurzweil-Henstock
approach used by Toh and Chew (see [3], [9]-[15] in their study of stochastic integrals.
Motivated by [2], we fixed the tag to be the right-hand point of the interval, hence
anticipating in the sense of stochastic integral. We prove the equivalence of the
classical Lebesgue integral and the Kurzweil-Henstock anticipating integral using
convergence theorems.

Another approach in using stochastic approach to study non-stochastic integral
could be the Kurzweil-Henstock approach in defining the Stratonovich integral
(see [16], [17]), where the tag is the mid-point of the interval. A study of non-
stochastic integral using this approach will appear in a paper sometime in the future.

Acknowledgement. We would like to thank Professor Tuan-Seng Chew and
Professor Peng-Yee Lee, whose works on Henstock integrals have motivated the study
in this paper.
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