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Abstract. Motivated by the study of anticipating stochastic integrals using Kurzweil-
Henstock approach, we use anticipating interval-point pairs (with the tag as the right-end
point of the interval) in studying non-stochastic integral, which we call the Kurzweil-
Henstock anticipating non-stochastic integral. We prove the integration-by-parts and
integration-by-substitution results, the convergence theorems using our new setting. Us-
ing the convergence theorems, we show that the Kurzweil-Henstock’s anticipating non-
stochastic integral is equivalent to the Lebesgue integral.
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1. Introduction

The Riemann integral was perhaps the first rigorous definition of the integral [8].

The theory of Riemann integration is well-known. It is inadequate for many the-

oretical purposes as it cannot be used to study highly oscillatory integrands and

integrators.

The Lebesgue integral, which remedied the technical deficits in Riemann integra-

tion, was introduced by Henri Lebesgue in 1906 (see [4]). This integral was able to

handle more irregular functions and provide more careful approximation techniques.

However, Lebesgue integral is technically involved and a considerable amount of

measure theory is required even to define the integral.

In the 1950s, Jaroslav Kurzweil and Ralph Henstock independently introduced

another integral by a slight modification of the classical Riemann integral (see [1]).

They used non-uniform meshes instead of uniform meshes as in the usual Riemann

approach. This modification of the classical Riemann approach led to integrals which
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are more general than both the Riemann and Lebesgue integral. It preserves the

intuitive approach of the Riemann integral.

The use of non-uniform mesh in Kurzweil-Henstock integral has allowed for highly

oscillating points to be encompassed. In the study of stochastic integral using

Kurzweil-Henstock approach, the tag in the interval-point pair cannot be any point

in the interval. In the case of non-anticipating Itô-stochastic integrals the tag must

be the left point of the interval, [3], [9]–[15]. Lim and Toh (see [7]) study the theory

of non-stochastic integral by restricting the tag to be the left point of the interval,

and show that this is equivalent to the Lesbesgue integral.

In this paper, we study non-stochastic integrals using the Kurzweil-Henstock ap-

proach by considering the tag to be the right-hand point of the interval. This is mo-

tivated by the study of anticipating stochastic integrals using the Kurzweil-Henstock

approach used by Chew et al. (see [2]).

2. Some definitions

We consider throughout this paper functions and integrals which are defined on

a closed and bounded interval [a, b].

Definition 2.1. (1) A collection of sub-intervals [xi−1, xi], for all i = 1, 2, . . . , n,

where a = x0 < x1 < x2 < . . . < xn = b, is a (full) partition of [a, b].

(2) A collection of nonoverlapping subintervals {([u, v], ξ)} of [a, b], that is,

nonoverlapping subintervals such that ∪[u, v] ⊂ [a, b] is said to be a partial di-

vision of [a, b].

Definition 2.2. Let δ be a positive function on [a, b]. A full division D =

{([u, v], ξ)} of [a, b] is said to be δ-fine Henstock division if for all interval point pairs

([u, v], ξ), ξ ∈ [u, v] ⊂ [ξ − δ(ξ), ξ + δ(ξ)].

Note that Definition 2.2 is used in Henstock’s integration theory. Such a full

division exists by continuous bisection (see [6]) or a consequence of Heine-Borel

Theorem (see [5]).

Definition 2.3. A collection of interval-point pairs D = {([u, ξ], ξ)} is said to be

a partial anticipating (or PA) δ-fine division if for all interval point pairs ([u, ξ], ξ),

ξ ∈ [u, ξ] ⊂ [ξ − δ(ξ), ξ].

In the study of stochastic integrals, Toh and Chew in [3], [9]–[15] used a belated

partial division in which the tag ξ was the left-hand point of the interval. In this

study, we adopt the case when the tag is the right-hand point, aligned to the approach

used in [2].
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We noted that a full anticipating δ-fine division of [a, b] may not exist. In con-

sidering the interval [a, b], let δ(ξ) = (ξ − a)/2 > 0. Then any finite collection of

intervals (ξi − δ(ξi), ξi] = ((ξi + a)/2, ξi] will leave some parts near to x = a uncov-

ered. Hence, for this chosen δ > 0, we can only have a partial division. From Vitali

Covering Theorem, a PA δ-fine division of [a, b] that misses out the interval [a, b] by

any arbitrary small part exists. We have:

Definition 2.4. Let δ be a positive function of [a, b] and η > 0 be a positive

number. A collection of interval point pairs D = {([u, ξ], ξ)} is said to be a PA

(δ, η)-fine division of [a, b] if:

(1) the set of intervals {([u, ξ], ξ)} is non-overlapping and [u, ξ] ⊂ [a, b],

(2) for each interval point pair ([u, ξ], ξ), [u, ξ] ⊆ (ξ − δ(ξ), ξ], and

(3)
∣

∣

∣
[a, b] \

⋃

D

[u, ξ]
∣

∣

∣
< η.

3. Kurzweil-Henstock anticipating non-stochastic Stieltjes integral

Definition 3.1 (KHANS integral). A real-valued function f is said to be

Kurzweil-Henstock anticipative non-stochastic Stieltjes (KHANS) integrable to A

on [a, b] with respect to the function g if for every ε > 0 there exists a positive

function δ > 0 and a positive number η > 0 such that for any PA (δ, η)-fine division

D = {([u, ξ], ξ)} of [a, b], we have

∣

∣

∣

∣

(D)
∑

f(ξ)[g(ξ)− g(u)]−A

∣

∣

∣

∣

< ε,

where (D)
∑

f(ξ)[g(ξ) − g(u)] denotes the Riemann sum of f with respect to the

function g over the division D on the interval [a, b].

Here, the function f is known as the integrand and g the integrator. In the event

that the integrator g can be understood from the context, we may simply say f is

KHANS integrable on [a, b] (with respect to g). Note that the part of the interval [a, b]

that is not covered by D has total measure of less than η, that is,
∣

∣

∣
[a, b]\

⋃

D

[u, ξ]
∣

∣

∣
< η,

for a given η > 0.

N o t e 3.1. For the special case when the integrator g(x) ≡ x, we name the

integral Kurzweil-Henstock anticipative non-stochastic or KHAN integral.

Definition 3.2 (KHAN integral). A real-valued function f is said to be

Kurzweil-Henstock anticipative non-stochastic (KHAN) integrable to A on [a, b]

if for every ε > 0 there exists a positive function δ > 0 and a positive number η > 0
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such that for any PA (δ, η)-fine division D = {([u, ξ], ξ)} of [a, b] we have
∣

∣

∣

∣

(D)
∑

f(ξ)(ξ − u)−A

∣

∣

∣

∣

< ε.

Theorem 3.1 (Uniqueness of KHANS integral). If f is a KHANS integrable

function on [a, b] (with respect to g), then the integral on [a, b] is unique. That is, if

both A and B are two values of the KHANS integrals of f on [a, b], then A = B.

Since the KHANS integral of f on [a, b] is unique, we can use the notion

KHANS
∫ b

a
f(t) dg(t) or simply

∫ b

a
f dg to denote the KHANS integral of f on

[a, b] with respect to g if the integral exists and if there is no ambiguity on the type

of integral being referred to.

Theorem 3.2 (Integrability of sum and difference). Suppose f and h are KHANS

integrable functions defined on [a, b]. Then f ± h is KHANS integrable on [a, b].

Furthermore,
∫ b

a

(f(t)± h(t)) dg(t) =

∫ b

a

f(t) dg(t)±

∫ b

a

h(t) dg(t).

Theorem 3.3 (Integrability of scalar multiple). Suppose f is a KHANS inte-

grable function defined on [a, b] and k ∈ R. Then kf is KHANS integrable on [a, b].

Furthermore,
∫ b

a

kf(t) dg(t) = k

∫ b

a

f(t) dg(t).

Note that the proofs of the above theorems are typical results of integration theory.

It is instructive for readers to go through the proof following classical results.

Theorem 3.4 (Cauchy criterion). A function f is KHANS integrable on [a, b] if

and only if for every ε > 0 there exists a positive function δ > 0 and a positive

number η > 0 such that for any two PA (δ, η)-fine divisions D1 and D2 we have
∣

∣

∣

∣

(D1)
∑

f(ξ)[g(ξ)− g(u)]− (D2)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

< ε.

P r o o f. Necessity follows from triangle inequality. We only need to prove the

sufficiency. For any ε > 0, there exists a positive function δ > 0 and a positive

number η > 0 such that for any two PA (δ, η)-fine divisions D1 and D2 we have
∣

∣

∣

∣

(D1)
∑

f(ξ)[g(ξ)− g(u)]− (D2)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

<
ε

2
.

Take ε/2 = 1/k for a positive integer k. Define a sequence of positive functions

δ1 > δ2 > δ3 > . . . and a sequence of positive numbers η1 > η2 > η3 > . . . For each
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k = 1, 2, 3, . . ., let Sk denote (Dk)
∑

f(ξ)[g(ξ) − g(u)], where Dk is a (δk, ηk)-fine

division. If p > q, then the (δp, ηp)-fine division Sp is also (δq, ηq)-fine. Since both Sp

and Sq are (δq, ηq)-fine, |Sp − Sq| < ε/2. Hence, {Sp} is a Cauchy sequence in R.

Let S be the limit of this sequence. So there exists N > 0 such that for all k > N

we have |S − Sk| < ε/2. Let D be any PA (δn, ηn)-fine division with n < k. Then
∣

∣

∣

∣

S − (D)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

=

∣

∣

∣

∣

S − Sk + Sk − (D)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

6 |S − Sk|+

∣

∣

∣

∣

Sk − (D)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

<
ε

2
+

ε

2
= ε,

showing that f is KHANS integrable. �

Theorem 3.5 (Integrability on a subinterval). If f is KHANS integrable on [a, b],

then it is KHANS integrable on any subinterval [c, d] of [a, b].

P r o o f. For ε > 0, let D1 and D2 be any two PA (δ, η)-fine divisions of [c, d]

and denote the Riemann sums of f overD1 and D2 by S1 and S2, respectively, corre-

sponding to Theorem 3.4 for ε/2. Similarly, take another PA (δ, η)-fine division D3

of [a, c] ∪ [d, b] and denote the corresponding Riemann sum by S3. Then D1 ∪D3 is

a PA (δ, η)-fine division of [a, b]. By the Cauchy criterion (Theorem 3.4) on [a, b],

|S1 − S2| = |(S1 + S3)− (S2 + S3)| < ε.

Hence, the proof is completed by applying the Cauchy Criterion with the interval

[a, b] being replaced by [c, d]. �

Theorem 3.6 (Henstock’s Lemma). Suppose f is KHANS integrable on [a, b].

Then, given ε > 0, there exists δ > 0 such that for any PA δ-fine division D =

{([u, ξ], ξ)} on [a, b], we have

∣

∣

∣

∣

(D)
∑

{

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

}
∣

∣

∣

∣

< ε.

P r o o f. Since f isKHANS integrable on [a, b], given ε > 0, there exists a positive

function δ > 0 and a positive number η > 0 such that for any PA (δ, η)-fine division

D,
∣

∣

∣

∣

(D)
∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

∣

∣

∣

∣

<
ε

2
.

Let D = {([u, ξ], ξ)} be a collection of δ-fine partial divisions. Let the closure of

[a, b] \
⋃

D

[u, ξ] be
m
⋃

i=1

[ai, bi]. By Theorem 3.5, f is KHANS integrable on each [ai, bi].
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Given ε > 0, choose a positive function δi(ξ) > 0 and ηi > 0 such that for any PA

(δi, ηi)-fine division D, we have

∣

∣

∣

∣

(Di)
∑

f(ξ)[g(ξi)− g(ui)]−

∫ bi

ai

f dg

∣

∣

∣

∣

<
ε

2m

for each i = 1, 2, 3, . . . ,m.

Impose the condition that δi 6 δ for all i = 1, 2, 3, . . . ,m, and that
∑

ηi 6 η.

Then D
m
⋃

i=1

Di is a PA (δ, η)-fine division of [a, b]. Hence,

∣

∣

∣

∣

(D)
∑

{

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

}
∣

∣

∣

∣

=

∣

∣

∣

∣

(

D

m
⋃

i=1

Di

)

∑

f(ξ)[g(ξ)− g(u)]−

m
∑

i=1

(Di)
∑

f(ξ)[g(ξ)− g(u)]

−

(
∫ b

a

f dg −

m
∑

i=1

∫ bi

ai

f dg

)
∣

∣

∣

∣

6

∣

∣

∣

∣

(

D

m
⋃

i=1

Di

)

∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

∣

∣

∣

∣

+

∣

∣

∣

∣

( m
∑

i=1

(Di)
∑

f(ξ)[g(ξ)− g(u)]−

m
∑

i=1

∫ bi

ai

f dg

)
∣

∣

∣

∣

=

∣

∣

∣

∣

(

D
m
⋃

i=1

Di

)

∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

∣

∣

∣

∣

+

m
∑

i=1

∣

∣

∣

∣

(

(Di)
∑

f(ξ)[g(ξ)− g(u)]−

∫ bi

ai

f dg

)
∣

∣

∣

∣

6
ε

2
+m

( ε

2m

)

= ε,

thereby completing the proof. �

Theorem 3.7 (Strong Henstock’s Lemma). Suppose f is KHANS integrable on

[a, b]. Then, given ε > 0, there exists δ > 0 such that for any PA δ-fine partial

division D = {([u, ξ], ξ)} on [a, b],

(D)
∑

∣

∣

∣

∣

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

∣

∣

∣

∣

< ε.
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P r o o f. Suppose f is KHANS integrable on [a, b]. We want to show that the

above condition is equivalent to that of Henstock’s Lemma in Theorem 3.6. We only

need to prove the necessity. By Henstock’s Lemma, given ε > 0, there exists δ > 0

such that for any PA δ-fine division D = {([u, ξ], ξ)} on [a, b], we have

∣

∣

∣

∣

(D)
∑

{

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

}
∣

∣

∣

∣

< ε.

Let D1 be those parts {([u, ξ], ξ)} in D such that f(ξ)[g(ξ) − g(u)] −
∫ ξ

u
f dg > 0

and D2 be those parts {([u, ξ], ξ)} in D such that f(ξ)[g(ξ) − g(u)] −
∫ ξ

u
f dg < 0.

Then D1 and D2 are PA δ-fine divisions such that

∣

∣

∣

∣

(D1)
∑

{

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

}∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

(D2)
∑

{

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

}∣

∣

∣

∣

< ε.

Hence,

(D)
∑

∣

∣

∣

∣

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

∣

∣

∣

∣

= (D1)
∑

(

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

)

− (D2)
∑

(

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

)

=

∣

∣

∣

∣

(D1)
∑

(

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

)

− (D2)
∑

(

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

)∣

∣

∣

∣

6

∣

∣

∣

∣

(D1)
∑

(

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

)∣

∣

∣

∣

+

∣

∣

∣

∣

(D2)
∑

(

f(ξ)[g(ξ)− g(u)]−

∫ ξ

u

f dg

)∣

∣

∣

∣

<
ε

2
+

ε

2
= ε,

thereby completing the proof. �

Definition 3.3 (Absolute continuity). A function F : [a, b] → R is absolutely

continuous on [a, b] if for every ε > 0, there exists δ > 0 such that
∑

|F (v)−F (u)| < ε

whenever {[u, v]} is a collection of subintervals of [a, b] with
∑

|v − u| < δ.
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Theorem 3.8 (Small Riemann sum). Let f be KHANS integrable with respect

to g on [a, b]. Then given ε > 0, there exists a positive function δ > 0 and a positive

number µ > 0 such that for any given PA δ-fine partial division D = {([u, ξ], ξ)} of

[a, b] with (D)
∑

|ξ − u| < µ,

∣

∣

∣

∣

(D)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

< ε.

P r o o f. Given ε > 0, choose a positive function δ > 0 and a positive number

η > 0 such that for any PA (δ, η)-fine division D1 = {([u, ξ], ξ)} we have

∣

∣

∣

∣

(D1)
∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

∣

∣

∣

∣

<
ε

2
.

Take a PA δ-fine partial division D = {([u, ξ], ξ)} from [a, b] \
⋃

D1

[u, ξ]. Since D1 is

(δ, η)-fine, we have
∣

∣

∣
[a, b] \

⋃

D1

[u, ξ]
∣

∣

∣
< η, and hence (D)

∑

|ξ − u| < η. Then D ∪D1

is (δ, η)-fine. Hence,

∣

∣

∣

∣

(D ∪D1)
∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

∣

∣

∣

∣

<
ε

2
.

By the triangle inequality,

∣

∣

∣

∣

(D ∪D1)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

=

∣

∣

∣

∣

(D)
∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

+

∫ b

a

f dg − (D1)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

+

∣

∣

∣

∣

(

(D1)
∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

)
∣

∣

∣

∣

6

∣

∣

∣

∣

(D ∪D1)
∑

f(ξ)[g(ξ) − g(u)]−

∫ b

a

f dg

∣

∣

∣

∣

+

∣

∣

∣

∣

(D1)
∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

∣

∣

∣

∣

6
ε

2
+

ε

2
= ε,

thereby completing the proof. �

Lemma 3.1. If f is KHANS integrable on the interval [a, b] with respect to g,

then F (t) =
∫ t

a
f dg is absolutely continuous on [a, b].
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P r o o f. Given ε > 0, by Theorem 3.8 there exists a positive function δ > 0 and

a positive number η > 0 such that whenever Dk = {([u, ξ], ξ)} is a PA δ-fine division

of [a, b] with (Dk)
∑

|ξ − u| < η, we have
∣

∣

∣

∣

(Dk)
∑

f(ξ)[g(ξ) − g(u)]

∣

∣

∣

∣

<
ε

2
.

Let {[ai, bi]}
m
i=1 be a finite collection of disjoint subintervals from [a, b] such that

∑

|bi−ai| < η, where η is chosen as above. By Theorem 3.5, f is KHANS integrable

on each [ai, bi], where i = 1, 2, 3, . . . ,m. By Theorem 3.6, on each [ai, bi] there exists

δi > 0 such that wheneverDi = {([u, ξ], ξ)} is a PA δi-fine division of [ai, bi], we have
∣

∣

∣

∣

(Di)
∑

f(ξ)[g(ξ)− g(u)]−

∫ bi

ai

f dg

∣

∣

∣

∣

<
ε

2i+2
.

Assume that δi 6 δ for each i = 1, 2, 3, . . . ,m. So D =
m
⋃

i=1

Di is a δ-fine partial

division with
(
⋃

Di

)
∑

|ξ − u| 6
∑

|bi − ai| < η. By Theorem 3.8,

∣

∣

∣

∣

( m
⋃

i=1

Di

)

∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

<
ε

2
.

Consequently,

m
∑

i=1

|[F (bi)− F (ai)]| 6

∣

∣

∣

∣

m
∑

i=1

{
∫ bi

ai

f dg − (Di)
∑

f(ξ)[g(ξ)− g(u)]

}∣

∣

∣

∣

+

∣

∣

∣

∣

m
∑

i=1

{

(Di)
∑

f(ξ)[g(ξ)− g(u)]

}
∣

∣

∣

∣

6

m
∑

i=1

∣

∣

∣

∣

{

(Di)
∑

f(ξ)[g(ξ)− g(u)]−

∫ bi

ai

f dg

}∣

∣

∣

∣

+

∣

∣

∣

∣

( m
⋃

i=1

Di

)

∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

6

m
∑

i=1

ε

2i+2
+

ε

2
=

ε

4

m
∑

i=1

1

2i
+

ε

2
6

ε

2
+

ε

2
= ε,

thereby completing the proof. �

Theorem 3.9 (Sequential definition). The function f is KHANS integrable on

[a, b] with respect to g if and only if there exists a sequence of positive functions {δn}

and a sequence of positive numbers {ηn} such that

A = lim
n→∞

S(f, g,Dn, δn, ηn), where S(f, g,Dn, δn, ηn) = (Dn)
∑

f(ξ)[g(ξ)−g(u)].
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P r o o f. Suppose f is KHANS integrable on [a, b] with respect to g, let the

sequences of positive function δn and positive numbers ηn be such that for any PA

(δn, ηn)-fine division Dn we have

∣

∣

∣

∣

(Dn)
∑

f(ξ)[g(ξ)− g(u)]−A

∣

∣

∣

∣

<
1

n

for all n = 1, 2, 3, . . . Given ε > 0, choose an integer k such that 1/k < ε, so that

∣

∣

∣

∣

(Dk)
∑

f(ξ)[g(ξ)− g(u)]−A

∣

∣

∣

∣

<
1

k
< ε.

There we have A = lim
n→∞

S(f, g,Dn, δn, ηn).

Conversely, suppose there exists a sequence of positive functions {δn} and a se-

quence of positive numbers {ηn} such that

A = lim
n→∞

S(f, g,Dn, δn, ηn).

Suppose f is not KHANS integrable to A. Then there exists an ε > 0 such that for

every positive function δ and every positive number η there exists a PA (δ, η)-fine

division D, where
∣

∣

∣

∣

(D)
∑

f(ξ)[g(ξ)− g(u)]−A

∣

∣

∣

∣

> ε.

For the above ε, take δk ∈ {δn} and ηk ∈ {ηn} such that Dk is a PA (δn, ηn)-fine

division, where

∣

∣

∣

∣

(Dk)
∑

f(ξ)[g(ξ)− g(u)]−A

∣

∣

∣

∣

= |A− S(f, g,Dk, δk, ηk)| > ε.

This contradicts the statement that A = lim
n→∞

S(f, g,Dn, δn, ηn), showing that f is

KHANS integrable to A. �

We next prove the main result of integration by substitution. In our setting, we

weaken the condition of the differentiability of the integrator to left-differentiable.

Compared to [7], we further weaken the condition of the boundedness of the inte-

grator.

Theorem 3.10 (Integration by substitution). Let the function f be KHANS in-

tegrable on [a, b] with respect to g, which is left-differentiable on [a, b]. Then

∫ b

a

f(x) dg(x) =

∫ b

a

f(x)g′−(x) dx,

where g′−(x) denotes the left-sided derivative of g at x.
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P r o o f. Given ε > 0, choose a positive function δ and a positive number η such

that for any PA (δ, η)-fine division D,

∣

∣

∣

∣

(D)
∑

f(ξ)[g(ξ)− g(u)]−

∫ b

a

f dg

∣

∣

∣

∣

<
ε

2
.

Let Dk = {{[u, ξ], ξ} ∈ D : k − 1 < f(ξ) 6 k} for integer k. Let the number of

intervals in each Dk be nk. Since g is left-differentiable at ξ in Dk, where k 6= 0,

choose δ(ξ) < 1/(|k|2|k|+3nk) such that whenever 0 < ξ − u < δ(ξ),

∣

∣

∣

g(ξ)− g(u)

ξ − u
− g′−(ξ)

∣

∣

∣
< ε

or equivalently,

(Dk)
∑

|g(ξ)− g(v)− g′−(ξ)(ξ − u)| < (Dk)
∑ ε

|k|2|k|+3nk

=
ε

|k|2|k|+3
.

Consider
∣

∣

∣

∣

(D)
∑

f(ξ)g′−(ξ)(ξ − u)− (D)
∑

f(ξ)[g(ξ)− g(u)]

∣

∣

∣

∣

6 (D)
∑

|f(ξ)||(g′−(ξ)(ξ − u)− g(ξ) + g(u))|

6

∞
∑

−∞

|k|(Dk)
∑

|(g′−(ξ)(ξ − u)− g(ξ) + g(u))| 6

∞
∑

−∞
k 6=0

|k|ε

|k|2|k|+3
=

4ε

8
=

ε

2
.

Consequently,

∣

∣

∣

∣

(D)
∑

f(ξ)g′−(ξ)(ξ − u)−

∫ b

a

f dg

∣

∣

∣

∣

6

∣

∣

∣

∣

(D)
∑

f(ξ)g′−(ξ)(ξ − u)− (D)
∑

f(ξ)(ξ − u)

∣

∣

∣

∣

+

∣

∣

∣

∣

(D)
∑

f(ξ)(ξ − u)−

∫ b

a

f dg

∣

∣

∣

∣

6
ε

2
+

ε

2
= ε,

showing that
∫ b

a
f(x) dg(x) =

∫ b

a
f(x)g′−(x) dx. �

4. Kurzweil-Henstock variational anticipative integral

If the KHANS integral is likened to the definite integral in the classical calculus,

the Kurzweil-Henstock variational anticipative integral (or KHVA) introduced in this

section is the counterpart of the indefinite integral.
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Definition 4.1 (Bounded variation). A real-valued function f defined on [a, b]

is said to be of bounded variation on [a, b] if for any real number M ,

sup
∑

|f(v)− f(u)| 6 M,

where the supremum is taken over all the possible partitions of [a, b]. If the set

S =

{ n
∑

i=1

|f(xi)− f(xi−1)| : {a = x0, x1, . . . , xn = b} is a partition of [a, b]

}

is bounded, then the total variation of f on [a, b] is defined to be V (f, [a, b]) = supS.

In other words, a function f is said to be of bounded variation on [a, b] if V (f, [a, b])

is finite.

Let I[a, b] denote the collection of all closed subintervals [u, v] ⊂ [a, b]. Then

Definition 4.1 can be defined on real-valued function F defined on I[a, b] as: A real-

valued function F defined on I[a, b] is said to be of bounded variation on [a, b] if for

any real number M ,

sup
∑

|F [u, v]| 6 M,

where the supremum is taken over all the possible partitions of [a, b].

We shall use these two interchangeably in our discussion below whenever necessary.

Definition 4.2 (Zero variation). A real-valued function F defined on I[a, b] is

said to be of zero variation if for any ε > 0 there exists a positive function δ > 0

such that for any partition of δ-fine partial division D = {([u, v]} of [a, b] with

(D)
∑

|v − u| < δ, we have
∣

∣

∣

∣

(D)
∑

F [u, v]

∣

∣

∣

∣

< ε.

It is instructional to check that F [u, v] ≡ K for all [u, v] ∈ I[a, b] has zero variation

for any constant K. The function G[u, v] = |v − u|2 for all [u, v] ∈ I[a, b] also has

zero variation on [a, b].

Definition 4.3 (KHVA integral). A real-valued function f defined on [a, b] is

said to be Kurzweil-Henstock variational anticipative KHVA integrable with respect

to g to a function F : I → R if for every ε > 0 there exists a positive function

δ > 0 such that for any partial anticipative δ-fine division D = {([u, ξ], ξ)} on [a, b],

we have
∣

∣

∣

∣

(D)
∑

{f(ξ)[g(ξ)− g(u)]− F [u, ξ]}

∣

∣

∣

∣

< ε.

We next state without proof the basic properties of the integrals. The proofs of

the following theorems are similar to that for KHANS integral, hence omitted.
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Theorem 4.1 (Uniqueness of KHVA integral). If f is KHVA integrable on [a, b],

then its primitive on I[a, b] is said to be unique up to zero variation. That is, if

both F and G are the primitives of f with respect to g on [a, b], then F − G is of

zero variation.

We denote the KHVA integral by F , where F [u, v] = (KHVA)
∫ v

u
f dg for all

[u, v] ⊂ I[a, b]. If no ambiguity exists, we shall use
∫ v

u
f dg to denote F [u, v]. Note

that the KHANS integral is a real-valued function on [a, b] while the KHVA integral

is a real-valued function on I[a, b]. Also readers are reminded that the equality is

only up to zero variation.

Theorem 4.2 (Integrability of sum and difference). Suppose f and h are KHVA

integrable functions on [a, b]. Then f ±h is KHVA integrable on [a, b]. Furthermore,

∫ b

a

(f(t)± h(t)) dg(t) =

∫ b

a

f(t) dg(t)±

∫ b

a

h(t) dg(t).

Theorem 4.3 (Integrability of scalar multiple). Suppose f is KHVA integrable

on [a, b] and k ∈ R. Then kf is KHVA integrable on [a, b]. Furthermore,

∫ b

a

kf(t) dg(t) = k

∫ b

a

f(t) dg(t).

Theorem 4.4 (Integration by substitution). Let f be KHVA integrable on [a, b]

and g be left-differentiable on [a, b]. Then

∫ b

a

f(x) dg(x) =

∫ b

a

f(x)g′−(x) dx.

Theorem 4.5 (Integration-by-parts). Let the function f be left-continuous on

[a, b] and the function g be of bounded variation on [a, b]. If (KHVA)
∫ b

a
f dg exists,

then so does (KHVA)
∫ b

a
g df , and

(KHVA)

∫ b

a

g(t) df(t) = f(b)g(b)− f(a)g(a)− (KHVA)

∫ b

a

f(t) dg(t).

P r o o f. Given ε > 0, choose a positive function δ1 and such that for any PA

δ1-fine division D1 of [a, b] we have
∣

∣

∣

∣

(D1)
∑

f(ξ)[g(ξ)− g(u)]− F [u, ξ]

∣

∣

∣

∣

<
ε

2
.

LetM be the total variation of g. Choose δ2 > 0 such that whenever 0 < ξ−u < δ2,

we have |f(ξ) − f(u)| < ε/2M . Take δ = min(δ1, δ2) and consider any PA δ-fine
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division D2 on [a, b].

∣

∣

∣

∣

(D2)
∑

g(ξ)[f(ξ)− f(u)] + (D2)
∑

F [u, ξ]− [f(b)g(b)− f(a)g(a)]

∣

∣

∣

∣

=

∣

∣

∣

∣

(D2)
∑

f(u)[g(u)− g(ξ)] + (D2)
∑

F [ξ, u]

∣

∣

∣

∣

=

∣

∣

∣

∣

(D2)
∑

[f(u)− f(ξ)][g(u)− g(ξ)]

+ (D2)
∑

[f(ξ)g(u)− g(ξ)] + (D2)
∑

F [ξ, u]

∣

∣

∣

∣

6 (D2)
∑ ε

2M
|g(u)− g(ξ)|+

ε

2
6

ε

2M
(M) +

ε

2
= ε,

thereby completing the proof. �

Note that the proof of the above theorem is still true if the roles of f and g are

swapped, that is, f is of bounded variation on [a, b] and g is left-continuous on [a, b].

We next establish the relation between KHANS integral and KHVA integral.

Theorem 4.6. If f is KHANS integrable on [a, b], then it is also KHVA integrable

there.

P r o o f. This follows directly from Henstock’s Lemma. �

Theorem 4.7. If f is KHVA integrable on [a, b] and the primitive F is absolutely

continuous on [a, b], then f is KHANS integrable there.

P r o o f. Given ε > 0, choose a positive function δ > 0 and such that for any PA

δ-fine division D = {([u, ξ], ξ} of [a, b] we have

(4.1)

∣

∣

∣

∣

(D)
∑

{f(ξ)[g(ξ)− g(u)]− F [u, ξ]}

∣

∣

∣

∣

<
ε

2
.

Choose µ > 0 such that whenever {[α, β]} is a collection of subintervals of [a, b] with
∑

|β − α| < µ, we have

(4.2)
∑

|F [α, β]| <
ε

2
.

Let [a, b] \
⋃

D

[u, ξ] be denoted by
m
⋃

i=1

[αi, βi]. We can let η = µ > 0 such that the

δ-fine partial division D given above is a η-fine partial division on [a, b]. Note that
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in this case, both (4.1) and (4.2) hold. Hence,

∣

∣

∣

∣

(D)
∑

f(ξ)[g(ξ) − g(u)]− F [a, b]

∣

∣

∣

∣

=

∣

∣

∣

∣

(D)
∑

f(ξ)[g(ξ)− g(u)]−

{

(D)
∑

F [u, ξ] +

m
∑

i=1

F [αi, βi]

}∣

∣

∣

∣

6

∣

∣

∣

∣

(D)
∑

{f(ξ)[g(ξ)− g(u)]− F [u, ξ]}

∣

∣

∣

∣

+

∣

∣

∣

∣

m
∑

i=1

F [αi, βi]

∣

∣

∣

∣

6
ε

2
+

m
∑

i=1

|F [αi, βi]| <
ε

2
+

ε

2
< ε,

therefore completing the proof. �

5. Convergence theorems

In this section, we shall study the integrability of the limit of a sequence of inte-

grable functions. Roughly speaking, a convergence theorem states that integrability

is preserved under taking limits. In the second part, we prove the equivalence of

KHAN integral and Lebesgue Integral. This was largely motivated by the study of

convergence theorems for the stochastic integrals (see [9]–[15]).

Definition 5.1 (Pointwise convergence). Let f and f (n), n = 1, 2, 3, . . . , be real-

valued functions on [a, b]. Then {f (n)} converges pointwise to f if for any ε > 0 there

exists N(t) > 0 such that we have |f (n)(t)− f(t)| < ε whenever n > N(t).

Definition 5.2 (Uniform convergence). Let f and f (n), n = 1, 2, 3, . . . , be real-

valued functions on [a, b]. Then {f (n)} converges uniformly to f if for any ε > 0

there exists N > 0 such that we have |f (n)(t)− f(t)| < ε whenever n > N .

Note that the difference between uniform convergence and pointwise convergence

is that in the latter, N does not depend on t but in pointwise convergence, N(t) is

dependent on t.

Definition 5.3 (Variational convergence). Let F and F (n), n = 1, 2, 3, . . . , be

real-valued functions on I[a, b]. Then {F (n)} is said to converge variationally to F

if for any ε > 0 there exists a positive function δ > 0 and a positive number N > 0

such that for any δ-fine partial division D = {(u, ξ), ξ)} we have

∣

∣

∣

∣

(D)
∑

{F (n)[u, ξ]− F [u, ξ]}

∣

∣

∣

∣

< ε

if n > N .
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Theorem 5.1 (Variational convergence theorem). Let f and f (n), n = 1, 2, 3, . . .,

be real-valued functions on [a, b] such that {f (n)} converge pointwise to f . Suppose

that each f (n) is KHVA integrable to F (n) on [a, b] and {F (n)} converges variation-

ally to F . Further, let g be of bounded variation on [a, b]. Then f is KHVA integrable

to F on [a, b].

P r o o f. Let M be the total variation of g and ε > 0 be given. For each integer

n > 0, choose a positive function δ(n) on [a, b] such that for any PA δn-fine division

Dn = {[u, ξ], ξ} we have

∣

∣

∣

∣

(D)
∑

{f (n)(ξ)[g(ξ)− g(u)]− |F (n)(ξ)− F (n)(u)|}

∣

∣

∣

∣

< ε.

Without loss of generality, assume that for k = 1, 2, 3, . . ., f (k) is HVA integrable

to F (k), with the associated δ(k) > 0 such that for all δ(k)-fine partial division Dk

we have

(5.1)

∣

∣

∣

∣

(Dk)
∑

{f (k)(ξ)[g(ξ) − g(u)]− |F (k)(ξ)− F (k)(u)|}

∣

∣

∣

∣

<
ε

2k+2
.

Let δ > 0 be a positive function on [a, b] and N > 0 be a positive number such

that for any PA δ-fine division Dn = {[u, ξ], ξ} we have

∣

∣

∣

∣

(D)
∑

{[F (n)(ξ)− F (n)(u)]− [F (ξ)− F (u)]}

∣

∣

∣

∣

< ε

for all n > N . There exists a subsequence nk of n such that

∣

∣

∣

∣

(D)
∑

{[F (nk)(ξ)− F (nk)(u)]− [F (ξ)− F (u)]}

∣

∣

∣

∣

<
ε

2k+2
.

We re-index the sequence {nk} by {k}, so that there exists a positive function

δk > 0 and a positive integer k > 0 such that for any δk-fine partial division Dk =

{[u, ξ], ξ} we have

(5.2)

∣

∣

∣

∣

(D)
∑

{[F (k)(ξ)− F (k)(u)]− [F (ξ)− F (u)]}

∣

∣

∣

∣

<
ε

2k+2
.

Choose n(ξ) > 0 such that fn(ξ)(ξ)− f(ξ) < ε/2M. Thus, we have

∣

∣

∣

∣

(D)
∑

{f(ξ)[g(ξ)− g(u)]− [F (ξ)− F (u)]}

∣

∣

∣

∣

6

∣

∣

∣

∣

(D)
∑

{f(ξ)[g(ξ)− g(u)]− fn(ξ)(ξ)[g(ξ) − g(u)]}

∣

∣

∣

∣
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+

∣

∣

∣

∣

(D)
∑

{fn(ξ)(ξ)[g(ξ)− g(u)]− [Fn(ξ)(ξ)− Fn(ξ)(ξ)(u)]}

∣

∣

∣

∣

+

∣

∣

∣

∣

(D)
∑

{[Fn(ξ)(ξ)− Fn(ξ)(ξ)(u)] − [F (ξ)− F (u)]}

∣

∣

∣

∣

= I1 + I2 + I3,

I1 =

∣

∣

∣

∣

(D)
∑

{f(ξ)[g(ξ)− g(u)]− fn(ξ)(ξ)[g(ξ) − g(u)]}

∣

∣

∣

∣

< (D)
∑

∣

∣

∣

{( ε

2M

)

[g(ξ)− g(u)]
}
∣

∣

∣

<
( ε

2M

)

· (D)
∑

|{[g(ξ)− g(u)]}| 6
( ε

2M

)

·M =
ε

2
,

I2 6

∞
∑

k=1

∣

∣

∣

∣

(Dk)
∑

{fk(ξ)[g(ξ)− g(u)]− [F k(ξ)− F k(ξ)(u)]}

∣

∣

∣

∣

6

∞
∑

k=1

ε

2k+2
=

ε

4
from (5.1),

I3 6

∞
∑

k=1

∣

∣

∣

∣

(Dk)
∑

{[Fn(ξ)(ξ) − Fn(ξ)(ξ)(u)]− [F (ξ)− F (u)]}

∣

∣

∣

∣

6

∞
∑

k=1

ε

2k+2
=

ε

4
from (5.2).

Thus, I1 + I2 + I3 6 ε/2 + ε/4 + ε/4 = ε, showing that f is KHVA integrable to F

on [a, b]. �

Theorem 5.2 (Monotone convergence theorem). If the following conditions are

satisfied, then f is KHAN integrable to A on [a, b]:

(i) {fn(x)} converges pointwise to f(x) almost everywhere in [a, b] as n → ∞,

where each fn is KHAN integrable on [a, b] to Fn;

(ii) f1(x) 6 f2(x) 6 . . . for almost all x ∈ [a, b];

(iii) Fn converges to A on [a, b] as n → ∞.

P r o o f. Without loss of generality, assume fn(x) converges pointwise to f(x)

everywhere in [a, b]. Given ε > 0, choose positive integer N(ξ) > 0 such that

whenever n > N(ξ), we have |fn(ξ)− f(ξ)| < ε/(b− a).

Given each fn is KHAN integrable on [a, b] to Fn by Theorem 3.7, choose δn > 0

and ηn > 0 such that for any PA (δn, ηn)-fine division Dn = {([u, ξ], ξ)} on [a, b],

we have

(Dn)
∑

|fn(ξ)[ξ − u]− Fn(u, ξ)| <
ε

2n
.
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Now take δ(ξ) = δN(ξ)(ξ) and η = ηN(ξ) and consider any PA (δ, η)-fine division

D = {([u, ξ], ξ)} on [a, b]. Then

∣

∣

∣

∣

(D)
∑

f(ξ)[ξ − u]−A

∣

∣

∣

∣

6

∣

∣

∣

∣

(D)
∑

f(ξ)(ξ − u)− fN(ξ)(ξ)(ξ − u)

∣

∣

∣

∣

+

∣

∣

∣

∣

(D)
∑

fN(ξ)(ξ)(ξ − u)− FN(ξ)(u, ξ)

∣

∣

∣

∣

+

∣

∣

∣

∣

(D)
∑

FN(ξ)(u, ξ)−A

∣

∣

∣

∣

= I1 + I2 + I3.

Then

I1 6 (D)
∑

|f(ξ)− fN(ξ)(ξ)||ξ − u|

6 (D)
∑ ε

(b− a)
|ξ − u| 6

ε

(b − a)
(b− a) = ε,

I2 6 (D)
∑

|fN(ξ)(ξ)(ξ − u)− FN(ξ)(u, ξ)|

6

∞
∑

n=1

(Dn)
∑

|fn(ξ)(ξ − u)− Fn(u, ξ)| 6

∞
∑

n=1

ε

2n
= ε.

Since the sequence {fn(x)} is monotone increasing, the sequence {Fn(a, b)} is also

monotone increasing. Further, the number of the associated points ξ in D is finite,

and so is the number of those different N(ξ) in the above sum over D. Let k0 denote

the maximum of thoseN(ξ). Since Fk0
(a, b) 6 A, let k1 be such that |Fk(a, b)−A| < ε

whenever k > k1. Take k2 = max{k0, k1}, and we have

I3 6

∣

∣

∣

∣

(D)
∑

FN(ξ)(u, ξ)−A

∣

∣

∣

∣

6

∣

∣

∣

∣

(D)
∑

Fk2
(u, ξ)−A

∣

∣

∣

∣

6 |Fk2
(a, b)−A| < ε,

completing the proof of the Monotone Convergence Theorem. �

Lemma 5.1 (Max-Min Lemma). If f1 and f2 are KHAN integrable on [a, b] and

if g(x) 6 fi(x) 6 h(x) almost everywhere for i = 1, 2, where g and h are also KHAN

integrable on [a, b], then max(f1, f2) and min(f1, f2) are both KHAN integrable

on [a, b].

The proof of Lemma 5.1 is modelled after the Henstock case (see [6]), hence omitted

here.

Lemma 5.2. If f1 and f2 are KHAN integrable on [a, b] and if their primitives F1

and F2 are both of bounded variation on [a, b], then max(f1, f2) and min(f1, f2) are

both KHAN integrable on [a, b].
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P r o o f. LetMi be the total variation of fi on [a, b] for i = 1, 2. Define F ∗(u, v) =

max{F1(u, v), F2(u, v)} for any (u, v) ∈ I. For any PA (δ, η)-fine division D =

{[u, ξ], ξ} of [a, b],

(D)
∑

F ∗(u, ξ) 6 (D)
∑

F1(u, ξ) + (D)
∑

F2(u, ξ)

= (D)
∑

(F1(ξ) − F1(u)) + (D)
∑

(F2(ξ) − F2(u))

6 (D)
∑

|F1(ξ)− F1(u)|+ (D)
∑

|F2(ξ) − F2(u)| 6 M1 +M2.

Hence, (D)
∑

F ∗(u, ξ) is bounded. The rest of the proof is similar to that of

Lemma 5.1, hence omitted. �

Theorem 5.3 (Dominated convergence theorem). If the following conditions are

satisfied, then f is KHAN integrable on [a, b] and
∫ b

a
fn dx converges to

∫ b

a
f dx as

n → ∞:

(i) fn(x) converges pointwise to f(x) almost everywhere in [a, b] as n → ∞ where

each fn is KHAN integrable on [a, b];

(ii) g(x) 6 fn(x) 6 h(x) for almost all x ∈ [a, b] and all n, where g and h are also

KHAN integrable on [a, b].

P r o o f. Let fj
∗ = min{fn : i 6 n 6 j} for j = i, i+1, i+2, . . . By Lemma 5.1,

each fj
∗ is KHAN integrable on [a, b]. Consider the sequence {

∫ b

a
−fj

∗ dx}. So

{−fj
∗}, and hence {

∫ b

a
−fj

∗ dx} are monotone increasing. Since each fn > g, each
∫ b

a
−fj

∗ dx is bounded above by
∫ b

a
g dx, so {

∫ b

a
−fj

∗ dx} is convergent. By Theo-

rem 5.2, lim
j→∞

fj
∗ is KHAN integrable on [a, b]. Hence

inf{fn : n > i} = lim
j→∞

min{fn : i 6 n 6 j} = lim
j→∞

fj
∗

is KHAN integrable on [a, b]. Similarly, sup{fn : n > i} is also KHAN integrable on

[a, b]. Hence

∫ b

a

(

inf
n>i

fn

)

6 inf
n>i

∫ b

a

fn 6 sup
n>i

∫ b

a

fn 6

∫ b

a

(

sup
n>i

fn

)

.

Note that fn(x) converges pointwise to f(x) as n → ∞ if and only if

lim
i→∞

{

inf
n>i

fn(x)
}

= f(x) = lim
i→∞

{

sup
n>i

fn(x)
}

,

and denote respectively the upper and lower limits above by

lim inf
n→∞

fn(x) = lim
i→∞

{

inf
n>i

fn(x)
}

and lim sup
n→∞

fn(x) = lim
i→∞

{

sup
n>i

fn(x)
}

.
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Since the sequence {inf{fn : n > i}}∞i=1 is monotone increasing, the correspond-

ing integral sequence {
∫ b

a
inf{fn : n > i} dx}∞i=1 is also monotone increasing. Note

that each
∫ b

a
inf{fn : n > i} dx is bounded above by

∫ b

a
h dx. Hence, the sequence

{
∫ b

a
inf{fn : n > i} dx}∞i=1 is convergent. By Theorem 5.2, {inf{fn : n > i}}∞i=1, f is

KHAN integrable on [a, b]. Hence

∫ b

a

f dx 6 lim inf
n→∞

∫ b

a

fn dx 6 lim sup
n→∞

∫ b

a

fn dx 6

∫ b

a

f dx.

By Squeeze Theorem,

lim inf
n→∞

∫ b

a

fn dx = lim sup
n→∞

∫ b

a

fn dx → lim
n→∞

∫ b

a

fn dx =

∫ b

a

f dx,

thereby completing the proof. �

We are now ready to prove that the KHAN integral and the classical Lebesgue

integral on a closed and bounded interval [a, b] agree. This approach was inspired by

that used to prove that the Henstock’s stochastic integral and the classical stochastic

integrals agree by using convergence theorems [3], [9]–[15].

Theorem 5.4 (KHAN integral of simple measurable functions). Let f : [a, b]→R

be a simple measurable function such that f is Lebesgue integrable. Then f is also

KHAN integrable and

(L)

∫

f dµ = (KHAN)

∫ b

a

f dx.

P r o o f. It is sufficient to prove for the case of a characteristic function of a set E

that it is measurable on [a, b], denoted by χE . By definition, the Lebesgue integral

(L)
∫ b

a
χE dx = µ(E), where µ is the Lebesgue measure. We just need to prove that

(KHAN)

∫ b

a

χE dx = µ(E) = (L)

∫ b

a

χE dx.

Given ε > 0, choose a PA (δ, η)-fine division D = {[u, ξ], ξ}. Since E is

a measurable subset of R, let open intervals {In} = I1, I2, . . . be such that

E ⊂
∞
⋃

n=1
In and

∞
∑

n=1
µ(In \ E) < ε. Choose δ such that if ξ ∈ In for some n,

then (u, ξ) ⊂ (ξ − δ, ξ + δ) ⊂ In. Then

∣

∣

∣

∣

(D)
∑

χE(ξ)(ξ − u)− µ(E)

∣

∣

∣

∣

6

∣

∣

∣

∣

(D)
∑

µ[u, ξ]− µ(E)

∣

∣

∣

∣

6

∞
∑

n=1

µ(In \ E) < ε.

Hence, (KHAN)
∫

R
χE dx = µ(E). �
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Theorem 5.5. Let f : [a, b] → R be a measurable function such that f is Lebesgue

integrable. Then f is also KHAN integrable on [a, b] and

(L)

∫

f dµ = (KHAN)

∫ b

a

f dx.

P r o o f. Since f is measurable, there exists a sequence f1, f2, . . . of real-valued

functions on [a, b] such that lim
n→∞

fn = f , where each fn is a simple measurable func-

tion. Let g(x) = sup
n>1

{ max
x∈[a,b]

{|fn(x)|}} such that |fn(x)| 6 g(x) for all n = 1, 2, 3, . . .

By Theorem 5.4, we have that each fn and g are both Lebesgue and KHAN in-

tegrable. Hence, the Dominated Convergence Theorem for both the Lebesgue and

KHAN integral result in

(L)

∫

f dµ = lim
n→∞

(L)

∫

fn dµ and (KHAN)

∫

f dx = lim
n→∞

(KHAN)

∫

fn dx.

By Theorem 5.4, for every n = 1, 2, 3, . . .,

(L)

∫

fn dµ = (KHAN)

∫ b

a

fn dx → lim
n→∞

(L)

∫

fn dµ = lim
n→∞

(HIA)

∫ b

a

fn dx

→ (L)

∫ b

a

f dx = (KHAN)

∫

f dµ.

�

6. Conclusion

In this note, we have studied non-stochastic integrals using the Kurzweil-Henstock

approach used by Toh and Chew (see [3], [9]–[15] in their study of stochastic integrals.

Motivated by [2], we fixed the tag to be the right-hand point of the interval, hence

anticipating in the sense of stochastic integral. We prove the equivalence of the

classical Lebesgue integral and the Kurzweil-Henstock anticipating integral using

convergence theorems.

Another approach in using stochastic approach to study non-stochastic integral

could be the Kurzweil-Henstock approach in defining the Stratonovich integral

(see [16], [17]), where the tag is the mid-point of the interval. A study of non-

stochastic integral using this approach will appear in a paper sometime in the future.
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