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Abstract. We introduce a type of Riemannian manifolds (namely, quasirecurrent mani-
fold) and study its several geometric properties. Among others, we prove that the scalar
curvature of such a manifold is constant, and that the manifold is Einstein under certain
condition. In addition, we deal with a quasirecurrent product manifold. Finally, we ensure
the existence of quasirecurrent manifold by a proper example.
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1. Introduction

Cartan [3] introduced the notion of (locally) symmetric manifolds as a general-

ization of the notion of a space of constant curvature and he obtained a classifica-

tion of such manifolds. The study on generalization of locally symmetric manifolds

started in 1946 and continued to date in different directions. For instance the no-

tions of recurrent manifold and conformally recurrent manifold were introduced by

Ruse [8], [9], [10] and Walker [11]; Adati and Miyazawa [1], respectively. A Rie-

mannian manifold (Mn, g) is called a recurrent manifold provided that its curvature

tensor R satisfies the relation

(1.1) (∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V ),

where ∇ denotes the Levi-Civita connection and A is a nonzero 1-form.

Also a Riemannian manifold (Mn, g) is called a conformally recurrent manifold

provided that its conformal curvature tensor C satisfies the relation

(1.2) (∇XC)(Y, Z, U, V ) = A(X)C(Y, Z, U, V ),

where A is a nonzero 1-form.
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The author has recently studied a type of weakly symmetric structure on a Rie-

mannian manifold [4]. In [6], Pokhariyal defined some curvature tensors with the

help of Weyl’s projective curvature tensor and studied their physical and geometric

properties. One of the curvature tensors introduced in [6] was the W2-curvature

tensor defined by

(1.3) W2(X,Y, Z, U) = R(X,Y, Z, U) +
1

n− 1
(g(X,Z)Ric(Y, U)

− g(Y, Z)Ric(X,U)),

where Ric denotes the Ricci tensor.

In [5], [7], Pokhariyal et al. introduced the notion of W2-recurrent manifold and

studied its geometric properties. A Riemannian manifold (Mn, g) is said to be W2-

recurrent provided that its W2-curvature tensor satisfies the relation

(1.4) (∇XW2)(Y, Z, U, V ) = A(X)W2(Y, Z, U, V ),

where A is a nonzero 1-form.

Motivated by the above studies, as a sequel to [4], we introduce a type of Rie-

mannian manifold called quasirecurrent manifold and study its several geometric

properties.

A Riemannian manifold (Mn, g) is called a quasirecurrent manifold provided that

its curvature tensor R satisfies the relation

(1.5) (∇XR)(Y, Z, U, V ) = A(X)W2(Y, Z, U, V ),

where A is a nonzero 1-form.

A quasirecurrent manifold with covariantly constant Ricci tensor is W2-recurrent,

while a quasirecurrent manifold with vanishing Ricci tensor reduces to a recurrent

manifold. Hence, it is worthwhile to undertake the study of a quasirecurrent mani-

fold. This paper is organized as follows. In Section 2, we give a sufficient condition

for a quasirecurrent manifold to be Einstein. Section 3 is concerned with quasirecur-

rent product manifold. In addition, a proper example of quasirecurrent manifold is

provided.

2. Some properties of quasirecurrent manifold

Let (Mn, g) be a quasirecurrent manifold. Contracting (1.3) with respect to X

and U , we get

(2.1) W2(Y, Z) =
n

n− 1

(
Ric(Y, Z)−

s

n
g(Y, Z)

)
,

where s denotes the scalar curvature.
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Contracting (1.5) with respect to Y and V , from (2.1) we have

(2.2) (∇XRic)(Z,U) = A(X)
n

n− 1

(
Ric(Z,U)−

s

n
g(Z,U)

)
.

Now we have the following theorem.

Theorem 2.1. Let (Mn, g) be a quasirecurrent manifold of dimension n. Then

its scalar curvature s is constant.

P r o o f. Contracting (2.2) with respect to Z and U , we get

Xs = 0,

showing that the scalar curvature s of a quasirecurrent manifold is constant. �

A Riemannian manifold (Mn, g) is said to be Ricci-symmetric provided that its

Ricci tensor is covariantly constant. In particular, a Riemannian manifold (Mn, g)

is called an Einstein manifold provided that its Ricci tensor is proportional to the

metric tensor, i.e., Ric = sg/n. In this case, its scalar curvature s is constant [2].

Theorem 2.2. Let (Mn, g) be a quasirecurrent manifold which is Ricci-symme-

tric. Then the manifold is Einstein.

P r o o f. By taking account of (2.2) and A 6= 0, we know that the manifold is

Einstein. �

Now we verify some relationships among recurrent manifold, quasirecurrent mani-

fold, W2-recurrent manifold and conformally recurrent manifold.

Theorem 2.3. Let (Mn, g) be a Riemannian manifold with covariantly constant

Ricci tensor. Then condition (1.5) of quasirecurrent manifold is equivalent to condi-

tion (1.4) of W2-recurrent manifold. In particular, if a Riemannian manifold (M
n, g)

is Einstein, then condition (1.5) of quasirecurrent manifold is equivalent to condi-

tion (1.2) of conformally recurrent manifold. Furthermore, if a Riemannian manifold

(Mn, g) has vanishing Ricci tensor, then condition (1.5) of quasirecurrent manifold

is equivalent to condition (1.1) of recurrent manifold.

P r o o f. By taking account of (1.3), we have from ∇Ric = 0 the equivalence

between relations (1.4) and (1.5). In particular, if the manifold is Einstein, it is well

known [2] that

C(X,Y, Z, U) = R(X,Y, Z, U)−
s

n(n− 1)
(g(X,U)g(Y, Z)− g(X,Z)g(Y, U)),
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which yields

(2.3) C(X,Y, Z, U) = W2(X,Y, Z, U)

and

(2.4) (∇XC)(Y, Z, U, V ) = (∇XR)(Y, Z, U, V )

because of (1.3) and Ric = sg/n (and hence s = constant). Therefore by taking

account of (2.3) and (2.4), we conclude that relation (1.5) holds if and only if relation

(1.2) holds. Furthermore, considering Ric = 0 and (1.3), we can easily see that

relation (1.5) holds true when relation (1.1) holds, and vice versa. �

From now on, a vector field A♯ on a quasirecurrent manifold (Mn, g) denotes

a vector field associated with the 1-form A in (1.5), i.e., g(A♯, X) = A(X).

Theorem 2.4. Let (Mn, g) be a quasirecurrent manifold. Then s/n is an eigen-

value of the Ricci tensor corresponding to the vector field A♯.

P r o o f. By virtue of the second Bianchi identity, we have

(∇XR)(Y, Z, U, V ) + (∇ZR)(X,Y, U, V ) + (∇Y R)(Z,X,U, V ) = 0,

which using (1.5) yields

A(X)W2(Y, Z, U, V ) +A(Z)W2(X,Y, U, V ) +A(Y )W2(Z,X,U, V ) = 0.

Contracting the last relation with respect to Y and V , from (2.1) we get

A(X)
( n

n− 1

)[
Ric(Z,U)−

s

n
g(Z,U)

]
+A(Z)

( n

n− 1

)[
− Ric(X,U) +

s

n
g(X,U)

]

+W2(Z,X,U,A♯) = 0.

Contracting the last relation with respect to Z and U , we have

( 2n

n− 1

)[
− Ric(X,A♯) +

s

n
g(X,A♯)

]
= 0,

which yields

(2.5) Ric(X,A♯) =
s

n
g(X,A♯).

�
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Now we give some sufficient conditions for a quasirecurrent manifold to be Einstein.

Theorem 2.5. Let (Mn, g) be a quasirecurrent manifold which is conformally

flat. Then the manifold is Einstein.

P r o o f. It is well known [2] that a conformally flat manifold (Mn, g) satisfies

the relation

(∇XRic)(Y, Z)− (∇ZRic)(Y,X) =
1

2(n− 1)
[g(Y, Z) ds(X)− g(X,Y ) ds(Z)].

From Theorem 2.1, it follows that the last relation yields

(∇XRic)(Y, Z) = (∇ZRic)(Y,X).

By virtue of (2.2), the last relation leads to

A(X)
( n

n− 1

)[
Ric(Y, Z)−

s

n
g(Y, Z)

]
= A(Z)

( n

n− 1

)[
Ric(Y,X)−

s

n
g(Y,X)

]
,

which using X = A♯ and (2.5) yields

‖A‖2
n

n− 1

[
Ric(Y, Z)−

s

n
g(Y, Z)

]
= 0.

Hence, from the last relation and A 6= 0 it follows that

Ric(Y, Z) =
s

n
g(Y, Z),

showing that the manifold is Einstein. �

A Riemannian manifold is called a cyclic Ricci symmetric manifold provided that

its Ricci tensor Ric satisfies the relation:

(2.6) (∇XRic)(Y, Z) + (∇ZRic)(X,Y ) + (∇Y Ric)(Z,X) = 0.

Now we get the following theorem.

Theorem 2.6. Let (Mn, g) be a quasirecurrent manifold which is of cyclic Ricci

symmetry. Then the manifold is Einstein.
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P r o o f. Taking account of (2.2) and (2.6), we have

(2.7) A(X)[Ric(Y, Z)−
s

n
g(Y, Z)] +A(Z)

[
Ric(X,Y )−

s

n
g(X,Y )

]

+A(Y )
[
Ric(Z,X)−

s

n
g(Z,X)

]
= 0.

In Walker’s lemma [11], it is said that if a(X) and b(X,Y ) are the numbers satisfying

b(X,Y ) = b(Y,X) and a(X)b(Y, Z)+a(Y )b(Z,X)+a(Z)b(X,Y ) = 0 for all X , Y , Z,

then either all the a(X) are zero or all the b(X,Y ) are zero. Therefore from (2.7) and

Walker’s lemma, we get either A(X) = 0 or Ric(Y, Z)− (s/n)g(Y, Z) = 0. However,

A(X) = 0 is inadmissible by the defining condition of quasirecurrent manifold and

hence we find

Ric(Y, Z)−
s

n
g(Y, Z) = 0,

showing that the manifold is Einstein. �

A vector field V on a Riemannian manifold (Mn, g) is said to be torse-forming

provided that it satisfies

(2.8) ∇XV = fX + ω(X)V,

where f is a nonzero scalar and ω is a 1-form.

Concerning a torse-forming vector field in a quasirecurrent manifold, we get the

following theorem.

Theorem 2.7. Let (Mn, g) be a quasirecurrent manifold with nonvanishing scalar

curvature s. If its associated vector field A♯ is a unit torse-forming vector field, then

the integral curve α of A♯ in Mn is geodesic.

P r o o f. Taking account of (2.2) and (2.5), we have

(2.9) (∇XRic)(Y,A♯) = A(X)
n

n− 1

[
Ric(Y,A♯)−

s

n
g(Y,A♯)

]
= 0.

On the other hand, we get

(2.10) (∇XRic)(Y,A♯) = ∇X [Ric(Y,A♯)]− Ric(∇XY,A♯)− Ric(Y,∇XA♯).

From (2.5), (2.9), (2.10) and Theorem 2.1, it follows that

0 =
s

n
g(Y,∇XA♯)− Ric(Y,∇XA♯),
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which using torse-forming vector field A♯ yields

(2.11) 0 =
s

n
(∇XA)(Y )− f Ric(Y,X)− ω(X)Ric(Y,A♯).

Putting Y = A♯ in (2.11), from (2.5) and g(A♯, A♯) = A(A♯) = 1 we get

(2.12) 0 =
s

n
(∇XA)(A♯)− f

s

n
A(X)−

s

n
ω(X).

From (2.12), s 6= 0 and (∇XA)(A♯) = −A(∇XA♯), it follows that

(2.13) A(∇XA♯) = −fA(X)− ω(X).

However, from torse-forming vector field A♯ we know that

∇XA♯ = fX + ω(X)A♯

and hence

(2.14) A(∇XA♯) = fA(X) + ω(X).

Taking account of (2.13) and (2.14), we have

fA(X) + ω(X) = 0.

Putting X = A♯ in the last relation, we get

f = −ω(A♯),

which using torse-forming vector field A♯ yields

∇XA♯ = −ω(A♯)X + ω(X)A♯.

Putting X = A♯ in the last relation, we have

∇A♯A♯ = 0,

showing that the integral curve α of A♯ in Mn is geodesic. �
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3. Quasirecurrent product manifolds

Let (Mn, g) be a Riemannian product manifold (Mp ×Mn−p, ĝ + g̃). In local co-

ordinates, we adopt the Latin indices (or the Greek indices) for tensor components

which are constructed on (Mp, ĝ) (or (Mn−p, g̃)). Therefore, the Latin indices take

the values from 1, . . . , p, whereas the Greek indices run over the range p+ 1, . . . , n.

A Riemannian product manifold (Mp ×Mn−p, ĝ + g̃) is called a quasirecurrent prod-

uct manifold provided that the product manifold is quasirecurrent. Now we have the

following theorem.

Theorem 3.1. Let (Mp ×Mn−p, ĝ + g̃) be a quasirecurrent product manifold.

Then either one decomposition manifold (Mp, ĝ) is locally symmetric or the other

decomposition manifold (Mn−p, g̃) is Einstein.

P r o o f. Since any tensor components of R and its covariant derivatives with

both Latin and Greek indices together should be zero, from (1.5) we have

0 = Rαβγδ;p = ApW2αβγδ,

which leads to either

(3.1) Ap = 0

or

(3.2) W2αβγδ = 0.

Here semicolon “;” indicates covariant differentiation.

In the case of Ap = 0, from (1.5) we have

Rijkl;p = 0,

showing that the manifold (Mp, ĝ) is locally symmetric.

On the other hand, if we assume that Ap 6= 0, then from (1.3) and (3.2) we have

(3.3) Rαβγδ +
1

n− 1
(gαγ Ricβδ − gβγ Ricαδ) = 0.

Contracting (3.3) over α, δ, we obtain

n

n− 1

(
Ricβγ −

s

n
gβγ

)
= 0,

which implies

Ricβγ =
s

n
gβγ ,

showing that (Mn−p, g̃) is Einstein.

Therefore, either one decomposition manifold (Mp, ĝ) is locally symmetric or the

other decomposition manifold (Mn−p, g̃) is Einstein. �
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Now we show a proper example of quasirecurrent manifold.

E x am p l e 3.1. Let (Mn, gc) be a space of constant curvature. It is well

known [2] that a space of constant curvature is Einstein. Therefore from (1.3) and

Ric = sg/n, we have

W2(X,Y, Z, U) = R(X,Y, Z, U) +
s

n(n− 1)
(g(X,Z)g(Y, U)− g(Y, Z)g(X,U)),

which leads to

(3.4) W2 = 0

because (Mn, gc) is a space of constant curvature.

On the other hand, it is also well known [2] that a space of constant curvature is

locally symmetric, that is,

(3.5) ∇R = 0.

Hence, both (3.4) and (3.5) imply that (1.5) holds for any nonzero 1-form A.

Therefore (Mn, gc) is a quasirecurrent manifold.
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