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Abstract. We introduce a type of Riemannian manifolds (namely, quasirecurrent mani-
fold) and study its several geometric properties. Among others, we prove that the scalar
curvature of such a manifold is constant, and that the manifold is Einstein under certain
condition. In addition, we deal with a quasirecurrent product manifold. Finally, we ensure
the existence of quasirecurrent manifold by a proper example.
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1. INTRODUCTION

Cartan [3] introduced the notion of (locally) symmetric manifolds as a general-
ization of the notion of a space of constant curvature and he obtained a classifica-
tion of such manifolds. The study on generalization of locally symmetric manifolds
started in 1946 and continued to date in different directions. For instance the no-
tions of recurrent manifold and conformally recurrent manifold were introduced by
Ruse [8], [9], [10] and Walker [11]; Adati and Miyazawa [1], respectively. A Rie-
mannian manifold (M™, g) is called a recurrent manifold provided that its curvature
tensor R satisfies the relation

(1.1) (VxR)(Y,Z,U,V)=AX)R(Y,Z UYV),

where V denotes the Levi-Civita connection and A is a nonzero 1-form.
Also a Riemannian manifold (M™,g) is called a conformally recurrent manifold
provided that its conformal curvature tensor C satisfies the relation

(1.2) (VxC)(Y,Z,U, V) = A(X)C(Y, Z,U,V),

where A is a nonzero 1-form.
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The author has recently studied a type of weakly symmetric structure on a Rie-
mannian manifold [4]. In [6], Pokhariyal defined some curvature tensors with the
help of Weyl’s projective curvature tensor and studied their physical and geometric
properties. One of the curvature tensors introduced in [6] was the Wy-curvature
tensor defined by

(1.3) Wa(X,Y, 2,U) = R(X,Y, Z,U) + ﬁ (9(X, Z)Ric(Y, )
—g(Y, Z)Ric(X,U)),

where Ric denotes the Ricci tensor.

In [5], [7], Pokhariyal et al. introduced the notion of Wj-recurrent manifold and
studied its geometric properties. A Riemannian manifold (M7, g) is said to be Wa-
recurrent provided that its Wa-curvature tensor satisfies the relation

(1.4) (VxW2)(Y, Z,U,V) = A(X)Wo(Y, Z,U, V),

where A is a nonzero 1-form.

Motivated by the above studies, as a sequel to [4], we introduce a type of Rie-
mannian manifold called quasirecurrent manifold and study its several geometric
properties.

A Riemannian manifold (M™, g) is called a quasirecurrent manifold provided that
its curvature tensor R satisfies the relation

where A is a nonzero 1-form.

A quasirecurrent manifold with covariantly constant Ricci tensor is Wa-recurrent,
while a quasirecurrent manifold with vanishing Ricci tensor reduces to a recurrent
manifold. Hence, it is worthwhile to undertake the study of a quasirecurrent mani-
fold. This paper is organized as follows. In Section 2, we give a sufficient condition
for a quasirecurrent manifold to be Einstein. Section 3 is concerned with quasirecur-
rent product manifold. In addition, a proper example of quasirecurrent manifold is
provided.

2. SOME PROPERTIES OF QUASIRECURRENT MANIFOLD
Let (M™,g) be a quasirecurrent manifold. Contracting (1.3) with respect to X
and U, we get
n

(2.1) Wa(Y, 2) = ——

(Ric(v, 2) = 29(v.2)),
n
where s denotes the scalar curvature.
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Contracting (1.5) with respect to Y and V, from (2.1) we have

n

(2.2) (VxRic)(Z,U) = A(X)——

. s
<R1C(Z, U) - =g(2. U)).
Now we have the following theorem.

Theorem 2.1. Let (M™,g) be a quasirecurrent manifold of dimension n. Then

its scalar curvature s is constant.

Proof. Contracting (2.2) with respect to Z and U, we get
Xs=0,

showing that the scalar curvature s of a quasirecurrent manifold is constant. O

A Riemannian manifold (M™,g) is said to be Ricci-symmetric provided that its
Ricci tensor is covariantly constant. In particular, a Riemannian manifold (M™, g)
is called an Einstein manifold provided that its Ricci tensor is proportional to the
metric tensor, i.e., Ric = sg/n. In this case, its scalar curvature s is constant [2].

Theorem 2.2. Let (M™,g) be a quasirecurrent manifold which is Ricci-symme-
tric. Then the manifold is Einstein.

Proof. By taking account of (2.2) and A # 0, we know that the manifold is
Einstein. O

Now we verify some relationships among recurrent manifold, quasirecurrent mani-
fold, Ws-recurrent manifold and conformally recurrent manifold.

Theorem 2.3. Let (M™,g) be a Riemannian manifold with covariantly constant
Ricci tensor. Then condition (1.5) of quasirecurrent manifold is equivalent to condi-
tion (1.4) of Wa-recurrent manifold. In particular, if a Riemannian manifold (M™, g)
is Einstein, then condition (1.5) of quasirecurrent manifold is equivalent to condi-
tion (1.2) of conformally recurrent manifold. Furthermore, if a Riemannian manifold
(M™, g) has vanishing Ricci tensor, then condition (1.5) of quasirecurrent manifold
is equivalent to condition (1.1) of recurrent manifold.

Proof. By taking account of (1.3), we have from VRic = 0 the equivalence
between relations (1.4) and (1.5). In particular, if the manifold is Einstein, it is well
known [2] that

S

C(X,Y,Z,U):R(X,Y,Z,U)—m

(g(Xv U)Q(Ya Z) - g(Xv Z)g(Y, U))a
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which yields

(2.3) C(X,Y,Z,U)=Ws(X,Y,Z U)
and
(2.4) (VxO)Y,Z,U,V)=(VxR)(Y,Z,UYV)

because of (1.3) and Ric = sg/n (and hence s = constant). Therefore by taking
account of (2.3) and (2.4), we conclude that relation (1.5) holds if and only if relation
(1.2) holds. Furthermore, considering Ric = 0 and (1.3), we can easily see that
relation (1.5) holds true when relation (1.1) holds, and vice versa. O

From now on, a vector field A* on a quasirecurrent manifold (M™,g) denotes
a vector field associated with the 1-form A in (1.5), i.e., g(Af, X) = A(X).

Theorem 2.4. Let (M™,g) be a quasirecurrent manifold. Then s/n is an eigen-
value of the Ricci tensor corresponding to the vector field A*.

Proof. By virtue of the second Bianchi identity, we have
(VxR)Y,Z,UV)+ (VzR)(X,Y,U,V)+ (VyR)(Z,X,U,V) =0,
which using (1.5) yields
AXOWL(Y,Z,U, V) + A(Z)Wo(X,Y,U, V) + A(Y)Wo(Z,X,U,V) = 0.

Contracting the last relation with respect to Y and V, from (2.1) we get

A(X)( ) [Ric(z, U) - %g(Z, U)} n A(Z)(%) [ ~Rie(X,U) + Zg(X, U)

+ Wa(Z, X, U, A%) = 0.

n—1

Contracting the last relation with respect to Z and U, we have

(20) [ et 2a0x,0] o,

n —

which yields

(2.5) Ric(X, Af) = Sg(X, AP,
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Now we give some sufficient conditions for a quasirecurrent manifold to be Einstein.

Theorem 2.5. Let (M™,g) be a quasirecurrent manifold which is conformally
flat. Then the manifold is Einstein.

Proof. It is well known [2] that a conformally flat manifold (M™,g) satisfies
the relation

(VxRic)(Y, Z) — (VzRic)(Y, X) = [9(Y, Z) ds(X) — g(X,Y) ds(Z)].

2(n—1)
From Theorem 2.1, it follows that the last relation yields
(VxRic)(Y, Z) = (VzRic)(Y, X).

By virtue of (2.2), the last relation leads to

AX) (=7 ) [Rie(v. 2) = Zg(Y, 2)| = A(2) (7 ) |Rie(Y: X) = Zg(Y, X)]

n—1 n—

which using X = A and (2.5) yields
2 " IR; _s —
A== [Rie(v, 2) - Zg(v, 2)| = 0.
Hence, from the last relation and A # 0 it follows that
Ric(Y, Z) = ~g(Y, Z),
n

showing that the manifold is Einstein. O

A Riemannian manifold is called a cyclic Ricci symmetric manifold provided that
its Ricci tensor Ric satisfies the relation:

(2.6) (VxRic)(Y, Z) + (VzRic)(X,Y) + (VyRic)(Z,X) = 0.
Now we get the following theorem.

Theorem 2.6. Let (M™, g) be a quasirecurrent manifold which is of cyclic Ricci
symmetry. Then the manifold is Einstein.
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Proof. Taking account of (2.2) and (2.6), we have

@7 AX)RiC(Y, 2) - Zg(V. 2)] + A(Z) [Rie(X,Y) = Zg(X, )]

+ A(Y) [Rie(Z, X) = Z9(2,X)| = 0.
In Walker’s lemma [11], it is said that if ¢(X) and b(X,Y") are the numbers satisfying
b(X,Y)=0b(Y,X) and a(X)b(Y, Z)+a(Y)b(Z, X)+a(Z)b(X,Y)=0forall X, Y, Z,
then either all the a(X) are zero or all the b(X,Y") are zero. Therefore from (2.7) and
Walker’s lemma, we get either A(X) =0 or Ric(Y, Z) — (s/n)g(Y, Z) = 0. However,

A(X) = 0 is inadmissible by the defining condition of quasirecurrent manifold and
hence we find

Ric(Y, Z) = ~g(Y, 2) = 0,
showing that the manifold is Einstein. O

A vector field V on a Riemannian manifold (M™,g) is said to be torse-forming
provided that it satisfies

(2.8) VxV = fX +wX)V,

where f is a nonzero scalar and w is a 1-form.
Concerning a torse-forming vector field in a quasirecurrent manifold, we get the
following theorem.

Theorem 2.7. Let (M™, g) be a quasirecurrent manifold with nonvanishing scalar
curvature s. If its associated vector field A* is a unit torse-forming vector field, then
the integral curve o of A% in M™ is geodesic.

Proof. Taking account of (2.2) and (2.5), we have
(2.9) (VxRic)(Y, Af) = A(X)% Ric(Y, A%) — %g(Y, 49| =o.
On the other hand, we get
(2.10) (VxRic)(Y, A*) = Vx[Ric(Y, A*)] — Ric(VxY, A*) — Ric(Y, Vx A).
From (2.5), (2.9), (2.10) and Theorem 2.1, it follows that
0= %g(Y, VxAb) — Ric(Y, Vy A),
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which using torse-forming vector field A* yields

(2.11) 0= %(VXA)(Y) — fRic(Y, X) — w(X) Ric(Y, A%).
Putting Y = A% in (2.11), from (2.5) and g(A¥, A¥) = A(A*) =1 we get
(2.12) 0= %(VXA)(A“) - f%A(X) - %w(X).

From (2.12), s # 0 and (Vx A)(A*) = —A(Vx A%), it follows that

(2.13) A(Vx A*) = —fA(X) — w(X).
However, from torse-forming vector field A* we know that
VxA* = X +w(X)AF
and hence
(2.14) A(Vx AY) = fA(X) + w(X).
Taking account of (2.13) and (2.14), we have
fAX) +w(X)=0.
Putting X = A" in the last relation, we get
f=—w(Ah),

which using torse-forming vector field A* yields

Vx AP = —w(AHX +w(X)A%
Putting X = A" in the last relation, we have

Vi Af =0,

showing that the integral curve v of A% in M™ is geodesic.
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3. QUASIRECURRENT PRODUCT MANIFOLDS

Let (M™, g) be a Riemannian product manifold (M? x M"™ P, g+ g). In local co-
ordinates, we adopt the Latin indices (or the Greek indices) for tensor components
which are constructed on (MP,q) (or (M™P,g)). Therefore, the Latin indices take
the values from 1, ..., p, whereas the Greek indices run over the range p+ 1,...,n.
A Riemannian product manifold (M? x M™ P, g+ g) is called a quasirecurrent prod-
uct manifold provided that the product manifold is quasirecurrent. Now we have the
following theorem.

Theorem 3.1. Let (MP x M™ P, g+ q) be a quasirecurrent product manifold.
Then either one decomposition manifold (MP,g) is locally symmetric or the other
decomposition manifold (M™?,g) is Einstein.

Proof. Since any tensor components of R and its covariant derivatives with
both Latin and Greek indices together should be zero, from (1.5) we have

0= Raﬁ—yé;p = ApWQOLﬁ’Y(S)

which leads to either

(3.1) A, =0

or

(3.2) Waapys = 0.

Here semicolon “;” indicates covariant differentiation.

In the case of A, =0, from (1.5) we have
Rijkl;p - Oa
showing that the manifold (M?,9) is locally symmetric.
On the other hand, if we assume that A, # 0, then from (1.3) and (3.2) we have

1 . .
(33) Raﬂ'yé + m(ga'y RlC,Bé — 9By Rlcaé) =0.

Contracting (3.3) over «, d, we obtain

. s
(Rlcﬁv - Egﬁv) =0,

n—1
which implies
Ricg, = —
By = 987
showing that (M™?,q) is Einstein.
Therefore, either one decomposition manifold (M?,g) is locally symmetric or the
other decomposition manifold (M™~P,g) is Einstein. O
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Now we show a proper example of quasirecurrent manifold.

Example 3.1. Let (M",g.) be a space of constant curvature. It is well
known [2] that a space of constant curvature is Einstein. Therefore from (1.3) and
Ric = sg/n, we have

Wa(X,Y,Z,U) = R(X.Y. Z,U) + ﬁ(g(& Z)g(Y,U) - (Y, Z)g(X,U)),
which leads to
(3.4) Wy =0

because (M™, g.) is a space of constant curvature.
On the other hand, it is also well known [2] that a space of constant curvature is
locally symmetric, that is,

(3.5) VR =0.

Hence, both (3.4) and (3.5) imply that (1.5) holds for any nonzero 1-form A.
Therefore (M™, g.) is a quasirecurrent manifold.
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