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Abstract. We are concerned here with relating the spectral properties of a bounded linear

operator T on a Banach space to the behaviour of the means (1/s(n))
n
∑

k=0
(∆s)(n− k)T k,

where s is a nondecreasing sequence of positive real numbers, and ∆ denotes the inverse of
the automorphism on the vector space of scalar sequences which maps each sequence into
the sequence of its partial sums. In a previous paper, we obtained a uniform ergodic theorem
for the means above, under the hypotheses lim

n→∞
s(n) = ∞, lim

n→∞
s(n+ 1)/s(n) = 1, and

∆qs ∈ l1 for a positive integer q: indeed, we proved that if T
n/s(n) converges to zero in

the uniform operator topology for such a sequence s, then the averages above converge in
the same topology if and only if 1 is either in the resolvent set of T , or a simple pole of the
resolvent function of T . In this paper, we prove that if lim inf

n→∞
s(n+ 1)/s(n) = 1, and the

averages above converge in the uniform operator topology, then 1 is either in the resolvent
set of T , or a simple pole of the resolvent function of T . The converse is not true, even if the
sequence s satisfies all the hypotheses of the theorem recalled above, except membership
of ∆qs in l1 for a positive integer q. We also prove that if lim

n→∞

n
√

s(n) = 1, and the function

hs(z) =
∞
∑

n=0
s(n)zn has no zeros in the open unit disk, then operator norm boundedness

of the averages of the sequence Tninduced by s implies that the spectral radius of T is
less than or equal to 1. This result fails if the assumption about hs is dropped. Indeed, it
may happen that the averages converge in the uniform operator topology for a sequence s
satisfying lim

n→∞
s(n) = ∞, lim

n→∞
s(n+ 1)/s(n) = 1, and ∆qs ∈ l1 for a positive integer q,

and nevertheless the spectral radius of T is strictly larger than 1.
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1. Introduction

Throughout this paper, we will write N and Z+ for the sets of nonnegative integers

and of strictly positive integers, respectively. Also, for each ν ∈ N we will write Nν

for the set of all nonnegative integers n satisfying n > ν. For each x ∈ R, [x] will

stand for the integer part of x. For each complex vector space V , let 0V and IV
denote respectively the zero element of V and the identity operator on V . If V and

W are complex vector spaces and Λ: V → W is a linear map, let N (Λ) and R(Λ)

stand respectively for the kernel and the range of Λ.

For each complex normed spaceX , we will write ‖·‖X for the norm ofX , and L(X)

for the complex normed algebra of all bounded linear operators onX . Henceforth, by

convergence in L(X) of a sequence of bounded linear operators on X , we will mean

convergence with respect to the topology induced by ‖·‖L(X), that is, the uniform

operator topology.

IfX is a complex nonzero Banach space, then L(X) is a complex Banach algebra—

with identity IX . For each T ∈ L(X), let r(T ) and σ(T ) stand respectively for the

spectral radius and for the spectrum of T . Also, let ̺(T ) and RT stand respectively

for the resolvent set and for the resolvent function of T . Namely, ̺(T ) = C \ σ(T )

and RT : ̺(T ) ∋ λ 7→ (λIX − T )−1 ∈ L(X). It is well known that RT is analytic on

the open set ̺(T ).

The classical uniform ergodic theorem, obtained by Dunford in [4] as a special case

of a result—recorded here as Theorem 2.2—about convergence of the sequence fn(T )

in L(X) (where T ∈ L(X) for a complex Banach space X , and each fn is a complex-

valued function, holomorphic in an open neighborhood of σ(T )), establishes equiv-

alence between convergence of the sequence (1/n)
n−1
∑

k=0

T k in L(X) and 1 being ei-

ther in ̺(T ) or a simple pole of RT , under the hypothesis lim
n→∞

(1/n)‖T n‖L(X) = 0

(see 3.16 of [4], see also comments following Theorem 8 in [5]). Notice that if the se-

quence (1/n)
n−1
∑

k=0

T k converges in L(X), then (1/n)‖T n‖L(X) necessarily converges to

zero, as (1/n)T n = ((n+ 1)/n)
(

(1/(n+ 1))
n
∑

k=0

T k
)

− (1/n)
n−1
∑

k=0

T k for each n ∈ Z+.

Further improvements of the uniform ergodic theorem, still dealing with the arith-

metic means of the sequence T n, have been subsequently obtained in [11], [13], [10].

Examples of non power-bounded operators to which the uniform ergodic theorem

applies can be found in [12], in which the relationship between convergence in L(X)

of the sequence of the arithmetic means above and the asymptotic behaviour of T n

is considered.

A partial extension of the uniform ergodic theorem to more general means of the

sequence of the iterates of the bounded linear operator T than the arithmetical ones
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was obtained by Hille in [8], in which the (C,α) means (1/Aα(n))
n
∑

k=0

Aα−1(n−k)T k,

n ∈ N, are considered (where α ∈ (0,∞), and Aα and Aα−1 denote, respectively,

the sequences of Cesàro numbers—whose definition is recalled here in Section 2—of

order α and α − 1; notice that for α = 1 we have (1/Aα(n))
n
∑

k=0

Aα−1(n − k)T k =

(1/(n+ 1))
n
∑

k=0

T k for each n ∈ N). Indeed, in Theorem 6 of [8] it is shown that if

the sequence (1/Aα(n))
n
∑

k=0

Aα−1(n − k)T k converges to some E ∈ L(X) in L(X),

then ‖T n‖L(X)/n
α → 0 as n → ∞ and lim

λ→1+
‖(λ− 1)RT (λ)− E‖L(X) = 0. Notice

that the former of these two conditions yields r(T ) 6 1, and then the latter can

be replaced by 1 being either in ̺(T ), or a simple pole of RT , and moreover E

being the residue of RT at 1 (see 1.3 of [6], or 18.8.1 of [9]). Theorem 6 of [8]

also provides a partial converse of this, establishing that if T is power-bounded and

lim
λ→1+

‖(λ− 1)RT (λ)− E‖L(X) = 0, then

lim
n→∞

∥

∥

∥

∥

1

Aα(n)

n
∑

k=0

Aα−1(n− k)T k − E

∥

∥

∥

∥

L(X)

= 0

for each α ∈ (0,∞). More recently, an improvement of this partial converse was

obtained by Yoshimoto, who in Theorem 1 of [16] replaced power-boundedness of T

by lim
n→∞

‖T n‖L(X)/n
ω = 0 (where ω = min{1, α}).

Finally, in [6], Ed-dari was able to complete the (C,α) uniform ergodic theorem,

by proving that the sequence (1/Aα(n))
n
∑

k=0

Aα−1(n− k)T k converges to E in L(X)

if and only if ‖T n‖L(X)/n
α → 0 as n → ∞ and lim

λ→1+
‖(λ− 1)RT (λ) − E‖L(X) = 0.

Ed-dari’s result is recorded here as Theorem 2.3.

In a previous paper (see [2]), we obtained a uniform ergodic theorem for the

Nörlund means of the sequence T n, that is, for the means (1/s(n))
n
∑

k=0

(∆s)(n−k)T k,

n ∈ N, where s is a nondecreasing sequence of strictly positive real numbers (and ∆

is as in the abstract; the definition of ∆ is also recalled in Section 2 here). We point

out that for s = Aα, α ∈ (0,∞), one obtains the (C,α) means. Indeed, in 6.7 of [2],

we proved that if lim
n→∞

s(n) = ∞, lim
n→∞

s(n+ 1)/s(n) = 1, ∆qs ∈ l1 for some q ∈ Z+,

and ‖T n‖L(X)/s(n) → 0 as n → ∞, then the sequence (1/s(n))
n
∑

k=0

(∆s)(n − k)T k

converges in L(X) if and only if 1 is either in ̺(T ) or a simple pole of RT , in which

case the sequence of the Nörlund means of the iterates of T converges in L(X) to the

residue of RT at 1 (this result is recorded here as Theorem 2.6; see also Theorem 2.1

here). Contrary to the special case of the (C,α) means, convergence of the sequence

(1/s(n))
n
∑

k=0

(∆s)(n − k)T k in L(X) does not imply lim
n→∞

‖T n‖L(X)/s(n) = 0, as
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a convenient example—provided in 6.10 of [2]—shows. In this paper we continue

to investigate the relationships between the behaviour of the Nörlund means of the

sequence T n and the spectral properties of T . Section 2 presents some preliminaries

for the purpose of making this paper as self-contained as possible. Sections 3 and 4

contain the results.

In Section 3 we derive a consequence of the above-mentioned Dunford’s result

about convergence of the sequence fn(T ), and use this consequence to prove that if

for a bounded linear operator T on a complex Banach space X and a nondecreasing

sequence s of strictly positive real numbers, satisfying lim inf
n→∞

s(n+ 1)/s(n) = 1, the

sequence (1/s(n))
n
∑

k=0

(∆s)(n − k)T k converges in L(X), then 1 is either in ̺(T ),

or a simple pole of RT (Theorem 3.2). Notice that any nondecreasing sequence

s of strictly positive real numbers necessarily satisfies lim inf
n→∞

s(n+ 1)/s(n) > 1.

By means of a convenient example, we will show that if the following sequence

(1/s(n))
n
∑

k=0

(∆s)(n − k)T k converges in L(X) for a nondecreasing sequence s of

strictly positive real numbers, satisfying lim inf
n→∞

s(n+ 1)/s(n) > 1, then 1 may nei-

ther be in ̺(T ), nor be a pole of RT (Example 3.5). A further example is provided

in order to show that the converse of Theorem 3.2 does not hold even if the sequence

s is assumed to satisfy all the hypotheses of 6.7 in [2] except membership of ∆qs in l1
for a positive integer q (Example 3.6). More precisely, Example 3.6 shows that in 6.7

of [2], membership of ∆qs in l1 for some q ∈ Z+ cannot be replaced by membership

of ∆rs in l∞ for some r ∈ Z+ (see also Remark 4.14).

In Section 4, starting from the fact recalled above that convergence of the se-

quence (1/s(n))
n
∑

k=0

(∆s)(n− k)T k in L(X) does not imply lim
n→∞

‖T n‖L(X)/s(n) = 0

even if s satisfies all the remaining hypotheses of 6.7 in [2], we search for conditions

(on the sequence s and on the Nörlund means of the sequence T n induced by s)

which imply a weaker property than lim
n→∞

‖T n‖L(X)/s(n) = 0, that is, r(T ) 6 1.

In Theorem 4.8 we prove that if for a bounded linear operator T on a complex

Banach space X and a nondecreasing sequence s of strictly positive real numbers

satisfying lim
n→∞

n
√

s(n) = 1 and such that the function hs(z) =
∞
∑

n=0
s(n)zn has no

zeros in the open unit disk, the sequence (1/s(n))
n
∑

k=0

(∆s)(n − k)T k is bounded

in L(X), then r(T ) 6 1. Also, in Theorem 4.12 we prove that if s is a nonde-

creasing sequence of strictly positive real numbers such that lim
n→∞

s(n+ 1)/s(n) = 1,

lim
n→∞

s(n) = ∞, ∆rs is bounded for a positive integer r, and the function hs has

a zero z0 in the open unit disk, then the Nörlund means—induced by s—of the

complex sequence 1/zn0 converge to zero (notice that s(0) > 0 yields z0 6= 0). As

a consequence of this, in Corollary 4.13 we derive that if s is as in Theorem 4.12, for
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each complex nonzero Banach space X there exists T ∈ L(X) such that the sequence

(1/s(n))
n
∑

k=0

(∆s)(n − k)T k converges in L(X), and nevertheless r(T ) = 1/|z0| > 1.

We conclude the paper with an example of a nondecreasing sequence s of strictly pos-

itive real numbers such that lim
n→∞

s(n+ 1)/s(n) = 1, lim
n→∞

s(n) = ∞, ∆2s ∈ l1, and

hs(−
1
2 ) = 0 (Example 4.15). This, by virtue of Corollary 4.13, shows that if the se-

quence (1/s(n))
n
∑

k=0

(∆s)(n−k)T k converges in L(X) for a bounded linear operator T

on a complex Banach space X and a nondecreasing sequence s of strictly positive real

numbers, satisfying all the hypotheses of 6.7 in [2] except lim
n→∞

‖T n‖L(X)/s(n) = 0,

it may even happen that r(T ) > 1.

2. Preliminaries

If X is a Banach space and Y , Z are closed subspaces of X satisfying X = Y ⊕Z,

by the projection of X onto Y along Z we mean the bounded linear map P : X → X

such that Px ∈ Y and x − Px ∈ Z for every x ∈ X . Notice that IX − P is the

projection of X onto Z along Y , and that P 2 = P . On the other hand, if E ∈ L(X)

satisfies E2 = E, it is easily seen that R(E) is closed in X , X = R(E) ⊕ N (E),

and E is the projection of X onto R(E) along N (E).

The following is a classical characterization of simple poles of RT .

Theorem 2.1 (V, 10.1, 10.2, 6.2–6.4, and IV, 5.10 in [15]). Let X be a complex

nonzero Banach space, T ∈ L(X) and λ0 ∈ C. If λ0 is a simple pole of RT , then λ0

is an eigenvalue of T , N ((λ0IX − T )n) = N (λ0IX − T ) and R((λ0IX − T )n) =

R(λ0IX − T ) for every n ∈ Z+, R(λ0IX − T ) is closed in X , X = N (λ0IX − T ) ⊕

R(λ0IX−T ), and the projection ofX onto N (λ0IX−T ) alongR(λ0IX−T ) coincides

with the residue ofRT at λ0. Conversely, ifX = N (λ0IX−T )⊕R(λ0IX−T ), then λ0

is either in ̺(T ), or else a simple pole of RT .

If X is a complex nonzero Banach space and T ∈ L(X), following Definition

on page 310 in [15], we denote by A(T ) the set of all complex-valued holomorphic

functions f whose domain Dom(f) is an open neighbourhood of σ(T ). For each

f ∈ A(T ), the operator f(T ) ∈ L(X) is defined as follows:

f(T ) =
1

2πi

∫

+∂D

f(λ)RT (λ) dλ,

where +∂D denotes the positively oriented boundary of D, and D is any open

bounded subset of C such that D ⊇ σ(T ), D ⊆ Dom(f), D has a finite number of
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components with pairwise disjoint closures, and ∂D consists of a finite number of sim-

ple closed rectifiable curves, no two of which intersect; the integral above does not de-

pend on the particular choice ofD (see [15], comment 2 on pages 310–311; see also 2.2,

2.3 and 2.6 in [4]). We recall that for each polynomial p : C ∋ λ 7→
n
∑

k=0

akλ
k ∈ C

(where n ∈ N, and a0, . . . , an ∈ C), we have p(T ) =
n
∑

k=0

akT
k (see [15], V, 8.1).

In the sequel, we will also need the following convergence result for the elements

of A(T ) (due to Dunford), a special case of which is the classical uniform ergodic

theorem.

Theorem 2.2 ([4], 3.16; see also comments following Theorem 8 in [5], and [2],

2.3). Let X be a complex nonzero Banach space, T ∈ L(X), and (fn)n∈N
be a se-

quence in A(T ) such that 1 ∈ Dom(fn) for each n ∈ N, lim
n→∞

fn(1) = 1 and

(IX − T )fn(T ) → 0L(X) in L(X) as n → ∞. Then the following conditions are

equivalent:

(i) the sequence (fn(T ))n∈N
converges in L(X);

(ii) 1 is either in ̺(T ), or a simple pole of RT ;

(iii) R(IX −T ) is closed, X = N (IX −T )⊕R(IX−T ), and the sequence (fn(T ))n∈N

converges in L(X) to the projection of X onto N (IX − T ) along R(IX − T ).

For each α ∈ R let Aα : N → R denote the sequence of the Cesàro numbers of

order α. That is,

Aα(n) =

(

n+ α

n

)

=







1 if n = 0,
∏n

j=1(α+ j)

n!
if n ∈ Z+.

Notice that A0(n) = 1 for all n ∈ N. Also, if α > −1, then Aα(n) > 0 for each

n ∈ N. Furthermore, we point out that for each p ∈ Z+ we have A−p(n) = 0 for

every n ∈ Np. We recall that

(2.1)
n
∑

k=0

Aα(k) = Aα+1(n) for each n ∈ N and each α ∈ R

and

(2.2) lim
n→∞

Aα(n)

nα
=

1

Γ(α + 1)
for each α ∈ R \ {−k : k ∈ Z+},

where Γ denotes Euler’s gamma function (see for instance [17], III, (1–11) and

(1–15)).
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The improvement of Hille’s uniform ergodic theorem for the (C,α) means obtained

by Ed-dari in [6] can be rephrased as follows, by taking also Theorem 2.1 and Theo-

rem 2.2 (as well the latter’s consequence 18.8.1 in [9]—recorded in [6] as Lemma 1.3)

into account.

Theorem 2.3 (see [6], Theorem 1). Let X be a complex nonzero Banach space,

T ∈ L(X), and α ∈ (0,∞). Then the following conditions are equivalent:

(i) the sequence
( n
∑

k=0

Aα−1(n− k)T k/Aα(n)
)

n∈N

converges in L(X);

(ii) lim
n→∞

‖T n‖L(X)/n
α = 0 and 1 is either in ̺(T ), or a simple pole of RT ;

(iii) lim
n→∞

‖T n‖L(X)/n
α = 0 and X = N (IX − T )⊕R(IX − T );

(iv) lim
n→∞

‖T n‖L(X)/n
α = 0, R(IX −T ) is closed, and X = N (IX −T )⊕R(IX −T ).

Furthermore, if the equivalent conditions (i)–(iv) are satisfied, and P ∈ L(X) is such

that
n
∑

k=0

Aα−1(n− k)T k/Aα(n) → P in L(X) as n → ∞, then P is the projection

of X onto N (IX − T ) along R(IX − T ).

R em a r k 2.4. As remarked in 2.8 of [2], it is easily seen that if a bounded linear

operator T on a complex nonzero Banach spaceX is such that lim
n→∞

‖T n‖L(X)/n
α = 0

for some α ∈ (0,∞), then r(T ) 6 1. The converse is not true: if r(T ) = 1, there

may exist no α ∈ (0,∞) for which lim
n→∞

‖T n‖L(X)/n
α = 0 (if r(T ) < 1, then

clearly lim
n→∞

‖T n‖L(X)/n
α = 0 for every α ∈ (0,∞), being lim

n→∞

‖T n‖L(X) = 0).

See for instance 6.3 of [2] for an example in which r(T ) = 1, and nevertheless

lim
n→∞

‖T n‖L(X)/n
α = ∞ for every α ∈ (0,∞). We recall that a necessary and

sufficient condition in order that r(T ) 6 1 has been provided by Allan and Ransford

in [1]: r(T ) 6 1 if and only if there exists a sequence µ of strictly positive real

numbers such that lim
n→∞

µ(n+ 1)/µ(n) = 1 and ‖T n‖L(X) 6 µ(n) for every n ∈ N

(see 2.1 in [1]). We point out that the sequence µ can in fact be chosen so that it

is also nondecreasing: indeed, in the power-bounded case the desired inequality is

satisfied by a suitable constant—and thus nondecreasing—sequence µ (see [1], proof

of 2.1). In the non power-bounded case, by applying 3.9 in [2], we conclude that the

least concave majorant (σn)n∈N
of the sequence (̺n)n∈N

in the proof of 2.1 in [1], is

strictly increasing, being lim
n→∞

̺n/n = 0, and ̺n positive and unbounded. Then so

is µ, as µ(n) = eσn for every n ∈ N.

Henceforth, we will denote by C
N the complex vector space of all sequences of

complex numbers. Also, let Σ, ∆: C
N → C

N denote the linear operators defined by

(Σa)(n) =
n
∑

k=0

a(k) and (∆a)(n) =

{

a(0) if n = 0,

a(n)− a(n− 1) if n ∈ Z+
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for every n ∈ N and a ∈ C
N. We remark that both Σ and ∆ are bijective. Moreover,

they are mutually inverse, that is, ∆Σ = Σ∆ = ICN . We also remark that ∆(l1) ⊆ l1.

Finally, notice that if a real sequence s satisfies lim
n→∞

s(n) = ∞, and q ∈ N is such

that ∆qs ∈ l1, then we must have q > 2.

Following Definition 5.1 of [2], for each real sequence a : N → R we set

H(a) = inf{m ∈ N : the sequence (a(n)/nm)n∈Z+
is bounded from above}.

Notice that H(a) ∈ N ∪ {∞}, and the infimum above is attained if and only if

H(a) < ∞. Clearly, H(a) < ∞ if and only if the sequence (a(n)/nβ)n∈Z+
is bounded

from above for some β ∈ [0,∞). Also, a is bounded from above if and only

if H(a) = 0. We remark that H(Aα) < ∞ for every α ∈ R. Indeed, for each

α ∈ (−∞, 0] we have H(Aα) = 0 (because Aα is eventually constant if α is a nega-

tive integer; otherwise, by virtue of (2.2)). For each α ∈ (0,∞), from (2.2) we derive

that

H(Aα) =

{

α if α ∈ Z+,

[α] + 1 if α /∈ Z+.

The following result—proved in [2]—relates finiteness of H(a) to being ∆qa ∈ l1

for suitable q.

Proposition 2.5 ([2], 5.4). Let a : N → R be a real sequence, and q ∈ Z+ be

such that ∆qa ∈ l1. Then H(a) 6 q − 1.

The following uniform ergodic theorem for Nörlund means has been proved in [2]:

indeed, by taking Proposition 2.5 into account, it is an immediate consequence of

the main result of [2], that is, of [2], 6.7.

Theorem 2.6 ([2], 6.7; see also Proposition 2.5). Let X be a complex nonzero

Banach space, T ∈ L(X), and s : N → R be a nondecreasing sequence of strictly

positive real numbers such that lim
n→∞

s(n) = ∞, lim
n→∞

s(n+ 1)/s(n) = 1, ∆qs ∈ l1

for some q ∈ N2, and lim
n→∞

‖T n‖L(X)/s(n) = 0. Then r(T ) 6 1, and the following

conditions are equivalent:

(i) the sequence
( n
∑

k=0

(∆s)(n− k)T k/s(n)
)

n∈N

converges in L(X);

(ii) 1 is either in ̺(T ) or a simple pole of RT ;

(iii) X = N (IX − T )⊕R(IX − T );

(iv) R(IX − T ) is closed in X and X = N (IX − T )⊕R(IX − T ).

Finally, if the equivalent conditions (i)–(iv) are satisfied and P ∈ L(X) is such that
n
∑

k=0

(∆s)(n− k)T k/s(n) → P in L(X) as n → ∞, then P is the projection of X onto

N (IX − T ) along R(IX − T ).
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R em a r k 2.7. Fix α ∈ (0,∞). Then Aα is a strictly increasing sequence of

strictly positive real numbers (see for instance [17], III, (1–17)). Moreover, from (2.2)

it follows that lim
n→∞

Aα(n) = ∞ and lim
n→∞

Aα(n+ 1)/Aα(n) = 1. Finally, if we set

q =

{

α+ 1 if α ∈ Z+,

[α] + 2 if α /∈ Z+,

we have q ∈ N2, and from (2.1) we derive that ∆qAα = Aα−q. Then ∆qAα ∈ l1: if

α ∈ Z+, this follows being Aα−q(n) = A−1(n) = 0 for every n ∈ Z+; if α /∈ Z+, it

follows from (2.2), being α− q < −1.

However, as remarked in [2], Theorem 2.8 does not completely extend Theorem 2.3

from the class of all sequences of Cesàro numbers of strictly positive order to the

larger one of all divergent nondecreasing sequences s of strictly positive real numbers

for which lim
n→∞

s(n+ 1)/s(n) = 1 and ∆qs ∈ l1 for some q ∈ N2, as the condition

lim
n→∞

‖T n‖L(X)/s(n) = 0 is assumed in the hypotheses of Theorem 2.6, whereas the

condition lim
n→∞

‖T n‖L(X)/n
α = 0 is not in the hypotheses of Theorem 2.3. Indeed,

ifX is a complex nonzero Banach space, T ∈ L(X), and s is a nondecreasing sequence

of strictly positive real numbers such that lim
n→∞

s(n) = ∞, lim
n→∞

s(n+ 1)/s(n) = 1,

∆qs ∈ l1 for some q ∈ N2, and the sequence
(

(1/s(n))
n
∑

k=0

(∆s)(n − k)T k
)

n∈N

con-

verges in L(X), then ‖T n‖L(X)/s(n) need not converge to zero as n → ∞: an

example, in which the sequence s is even strictly increasing, is provided in [2], 6.10.

Finally, the following classical result about real sequences will be useful to us.

Theorem 2.8 ([14], 3.37). Let a : N → R be a sequence of strictly positive real

numbers. Then

lim inf
n→∞

a(n+ 1)

a(n)
6 lim inf

n→∞

n
√

a(n) and lim sup
n→∞

n
√

a(n) 6 lim sup
n→∞

a(n+ 1)

a(n)
.

In particular, if lim
n→∞

a(n+ 1)/a(n) = l for some l ∈ [0,∞], then also

lim
n→∞

n
√

a(n) = l.
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3. Spectral consequences of convergence of Nörlund means in L(X)

We begin by deriving a consequence of Theorem 2.2.

Theorem 3.1. Let X be a complex nonzero Banach space, T ∈ L(X), and

(fn)n∈N
be a sequence in A(T ) such that 1 ∈ Dom(fn) for each n ∈ N and

lim
n→∞

fn(1) = 1. Suppose that there exist two subsequences (fnk
)k∈N

and (fmk
)k∈N

of (fn)n∈N
, and a sequence (Tk)k∈N

in L(X) such that Tk → T in L(X) and

fmk
(T ) − Tkfnk

(T ) → 0L(X) in L(X) as k → ∞. If the sequence (fn(T ))n∈N
con-

verges in L(X), then 1 is either in ̺(T ), or a simple pole of RT (and consequently

R(IX − T ) is closed, and X = N (IX − T )⊕R(IX − T )). Furthermore, (fn(T ))n∈N

converges in L(X) to the projection of X onto N (IX − T ) along R(IX − T ).

P r o o f. Let E ∈ L(X) be such that fn(T ) → E in L(X) as n → ∞. Then

fnk
(T ) → E and fmk

(T ) → E in L(X) as k → ∞, from which we derive that

(IX − T )fnk
(T ) = (fnk

(T )− fmk
(T )) + (fmk

(T )− Tkfnk
(T ))

+ (Tk − T )fnk
(T ) −→

k→∞

0L(X) in L(X).

By applying Theorem 2.2 to the sequence (fnk
(T ))k∈N

, we conclude that 1 is ether

in ̺(T ), or a simple pole ofRT (which yieldsR(IX−T ) closed, andX = N (IX−T )⊕

R(IX − T )), and E is the projection of X onto N (IX − T ) along R(IX − T ). This

finishes the proof. �

Now we are going to apply Theorem 3.1 to the Nörlund means of the sequence of

the iterates of a bounded linear operator.

Theorem 3.2. Let X be a complex nonzero Banach space, T ∈ L(X), and

s : N → R be a nondecreasing sequence of strictly positive real numbers such

that lim inf
n→∞

s(n+ 1)/s(n) = 1. If the sequence
( n
∑

k=0

(∆s)(n− k)T k/s(n)
)

n∈N

con-

verges in L(X), then 1 is either in ̺(T ), or a simple pole of RT (and consequently

R(IX − T ) is closed, and X = N (IX − T ) ⊕ R(IX − T )). Furthermore, the se-

quence
( n
∑

k=0

(∆s)(n − k)T k/s(n)
)

n∈N

converges in L(X) to the projection of X onto

N (IX − T ) along R(IX − T ).

P r o o f. Let P ∈ L(X) be such that
n
∑

k=0

(∆s)(n− k)T k/s(n) → P in L(X) as

n → ∞. For each n ∈ N let fn : C → C be defined by

fn(z) =

∑n
k=0(∆s)(n− k)zk

s(n)
for every z ∈ C.
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Clearly, fn ∈ A(T ). Also,

fn(1) =

∑n
k=0(∆s)(n− k)

s(n)
=

∑n
j=0(∆s)(j)

s(n)
=

(Σ∆s)(n)

s(n)
=

s(n)

s(n)
= 1

and

fn(T ) =

∑n
k=0(∆s)(n− k)T k

s(n)
.

Hence lim
n→∞

fn(1) = 1, and fn(T ) → P in L(X) as n → ∞.

Now let (nk)k∈N
be a strictly increasing sequence of nonnegative integers such that

(3.1) lim
k→∞

s(nk + 1)

s(nk)
= 1.

We prove that fnk+1(T ) − (s(nk)/s(nk + 1))Tfnk
(T ) → 0L(X) in L(X) as k → ∞.

Indeed, it suffices to observe that for each k ∈ N we have

fnk+1(T )−
s(nk)

s(nk + 1)
Tfnk

(T )

=

∑nk+1
j=0 (∆s)(nk + 1− j)T j

s(nk + 1)
−

s(nk)

s(nk + 1)

∑nk

j=0(∆s)(nk − j)T j+1

s(nk)

=

∑nk+1
j=0 (∆s)(nk + 1− j)T j −

∑nk+1
j=1 (∆s)(nk + 1− j)T j

s(nk + 1)

=
(∆s)(nk + 1)IX

s(nk + 1)
=

(

1−
s(nk)

s(nk + 1)

)

IX ,

and now (3.1) yields the desired result. Then we are enabled to apply Theorem 3.1

with mk = nk + 1 and Tk = (s(nk)/s(nk + 1))T for every k ∈ N, which finishes the

proof. �

R em a r k 3.3. Let s : N → R be a nondecreasing sequence of strictly posi-

tive real numbers. Then s(n+ 1)/s(n) > 1 for every n ∈ N, and consequently,

lim inf
n→∞

s(n+ 1)/s(n) > 1. From Theorem 2.8 we also derive that lim inf
n→∞

n
√

s(n) > 1.

Corollary 3.4. Let X be a complex nonzero Banach space, T ∈ L(X), and

s : N → R be a nondecreasing sequence of strictly positive real numbers such

that lim inf
n→∞

n
√

s(n) = 1. If the sequence
( n
∑

k=0

(∆s)(n− k)T k/s(n)
)

n∈N

converges

in L(X), then 1 is either in ̺(T ), or a simple pole of RT (and consequently

R(IX − T ) is closed, and X = N (IX − T ) ⊕ R(IX − T )). Furthermore, the se-

quence
( n
∑

k=0

(∆s)(n − k)T k/s(n)
)

n∈N

converges in L(X) to the projection of X onto

N (IX − T ) along R(IX − T ).
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P r o o f. From Theorem 2.8 and Remark 3.3 we conclude that

lim inf
n→∞

s(n+ 1)

s(n)
= 1.

Now the desired result follows from Theorem 3.2. �

The next example shows that if T is a bounded linear operator on a complex

nonzero Banach space X such that the sequence
( n
∑

k=0

(∆s)(n− k)T k/s(n)
)

n∈N

con-

verges in L(X) for a nondecreasing sequence s of strictly positive real numbers satis-

fying lim inf
n→∞

s(n+ 1)/s(n) > 1, then 1 may neither be in ̺(T ), nor be a pole of RT .

Henceforth, we will denote the open unit disk in C by D. Also, for each r ∈ [0,∞]

we set

Dr = {z ∈ C : |z| < r}.

Notice that D∞ = C, D0 = ∅, and D1 = D.

E x am p l e 3.5. First of all, fix two real numbers α and β satisfying 1 6 β < α.

Now let aα : N → R be the real sequence defined by

aα(n) = αn for every n ∈ N

and set sα = Σaα. Then sα is strictly increasing, being aα(n) > 0 for every n ∈ N.

Furthermore,

(∆sα)(n) = aα(n) = αn and sα(n) =

n
∑

k=0

αk =
αn+1 − 1

α− 1
for every n ∈ N,

and consequently,

lim
n→∞

sα(n+ 1)

sα(n)
= lim

n→∞

αn+2 − 1

αn+1 − 1
= α > 1.

Finally, let Tβ ∈ L(l2) be defined by Tβ = βS, where S denotes the unilateral shift

operator on l2. Namely, S : l2 → l2 is the bounded linear operator defined by

Sx =

∞
∑

n=0

x(n)en+1 for every x ∈ l2

(where {en : n ∈ N} denotes the canonical orthonormal basis of l2).
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We recall that σ(S) = D (see for instance [7], Solution 67). Hence, σ(Tβ) = Dβ

and consequently, r(Tβ) = β. Since β > 1, it follows that 1 is neither in ̺(Tβ), nor

is a pole of RTβ
. Nevertheless, we prove that the sequence

(

∑n
k=0(∆sα)(n− k)T k

β

sα(n)

)

n∈N

converges in L(l2).

We begin by remarking that for each n ∈ N we have

(3.2)

∑n
k=0(∆sα)(n− k)T k

β

sα(n)
=

( α− 1

αn+1 − 1

)

n
∑

k=0

aα(n− k)T k
β

=
( α− 1

αn+1 − 1

)

n
∑

k=0

αn−kT k
β =

(α − 1)αn+1

αn+1 − 1

n
∑

k=0

T k
β

αk+1
.

Since α > β = r(Tβ), it follows that α ∈ ̺(Tβ) and the sequence
( n
∑

k=0

T k
β /α

k+1
)

n∈N

converges to (αIl2 − Tβ)
−1 in L(l2) (see for instance [15], V, 3.1). Being

lim
n→∞

(α− 1)αn+1

αn+1 − 1
= α− 1,

from (3.2) we conclude that
∑n

k=0(∆sα)(n− k)T k
β

sα(n)
−→
n→∞

(α− 1)(αIl2 − Tβ)
−1 in L(l2),

which gives the desired result.

The following example shows that if s : N → R is a nondecreasing sequence of

strictly positive real numbers satisfying lim inf
n→∞

s(n+ 1)/s(n) = 1, and 1 is either

in ̺(T ) or a simple pole of RT for a bounded linear operator T on a complex

nonzero Banach space X , then the sequence
( n
∑

k=0

(∆s)(n − k)T k/s(n)
)

n∈N

need not

converge in L(X) (not even if in addition s is strictly increasing, lim
n→∞

s(n) = ∞,

lim
n→∞

s(n+ 1)/s(n) = 1, lim
n→∞

‖T n‖L(X)/s(n) = 0, and H(s) < ∞). Hence, the

converse of Theorem 3.2 does not hold unless some additional conditions on

the sequence s are assumed. Indeed, Theorem 2.6 provides a converse of Theo-

rem 3.2, under the additional hypotheses lim
n→∞

s(n) = ∞, lim
n→∞

s(n+ 1)/s(n) = 1,

lim
n→∞

‖T n‖L(X)/s(n) = 0, and ∆qs ∈ l1 for some q ∈ N2 (which implies H(s) < ∞;

indeed, H(s) 6 q − 1 by virtue of Proposition 2.5). In particular, the converse of

Theorem 3.2 holds for s = Aα, where α ∈ (0,∞) is such that lim
n→∞

‖T n‖L(X)/n
α = 0:

this can be derived either from Theorem 2.3, or from Theorem 2.6 together with

Remark 2.7 and (2.2).
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E x am p l e 3.6. Let X be a complex nonzero Banach space. We set T = −IX .

Then σ(T ) = {−1}, and consequently 1 ∈ ̺(T ). Now let τ : N → R be the sequence

of strictly positive real numbers defined by

τ(2k) = 1 and τ(2k + 1) =
1

2k
for every k ∈ N.

We set s = Στ . Then ∆s = τ . Since τ(n) > 0 for every n ∈ N, it follows that s

is a strictly increasing sequence of strictly positive real numbers. Furthermore, we

have s(0) = τ(0) = 1, and for each k ∈ Z+,

s(2k) =

2k
∑

h=0

τ(h) =

k
∑

j=0

τ(2j) +

k−1
∑

j=0

τ(2j + 1) = k + 1 +

k−1
∑

j=0

1

2j

= k + 1 + 2
(

1−
1

2k

)

= k + 3−
1

2k−1
.

Then for each k ∈ N we have

(3.3) s(2k) = k + 3−
1

2k−1
,

which in turn gives

(3.4) s(2k + 1) = s(2k) + τ(2k + 1) = k + 3−
1

2k−1
+

1

2k
= k + 3−

1

2k
.

From (3.3) and (3.4) we conclude that for each n ∈ N we have

s(n) =
[n

2

]

+ 3−
1

2[(n−1)/2]
>

[n

2

]

+ 3−
1

2−1
=

[n

2

]

+ 1 >
n

2
.

Notice also that

s(n) <
[n

2

]

+ 3 6
n

2
+ 3 for every n ∈ N.

Hence

(3.5) lim
n→∞

s(n) = ∞ and H(s) = 1 < ∞.

Since

s(n) < s(n+ 1) = s(n) + τ(n+ 1) 6 s(n) + 1 for every n ∈ N,

from (3.5) we conclude that lim
n→∞

s(n+ 1)/s(n) = 1. Finally, (3.5) also gives

lim
n→∞

‖T n‖L(X)

s(n)
= lim

n→∞

‖(−1)
n
IX‖L(X)

s(n)
= lim

n→∞

1

s(n)
= 0.
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We prove that the sequence
( n
∑

k=0

(∆s)(n− k)T k/s(n)
)

n∈N

does not converge in L(X).

Since ∆s = τ , by virtue of (3.3) and (3.4) for each k ∈ Z+ we have

(3.6)

∑2k
j=0(∆s)(2k − j)T j

s(2k)

=

∑2k
j=0 τ(2k − j)(−1)

j
IX

s(2k)
=

(

∑2k
j=0 (−1)

j
τ(2k − j)

s(2k)

)

IX

=

(∑k
h=0 τ(2k − 2h)−

∑k−1
h=0 τ(2k − (2h+ 1))

s(2k)

)

IX

=

(

k + 1−
∑k−1

h=0 τ(2(k − h− 1) + 1)

s(2k)

)

IX

=

(

k + 1−
∑k−1

j=0 τ(2j + 1)

s(2k)

)

IX =

(

k + 1−
∑k−1

j=0 2
−j

k + 3− 21−k

)

IX

=

(

k + 1− 2(1− 2−k)

k + 3− 21−k

)

IX =

(

k − 1 + 21−k

k + 3− 21−k

)

IX

and

(3.7)

∑2k+1
j=0 (∆s)(2k + 1− j)T j

s(2k + 1)

=

∑2k+1
j=0 τ(2k + 1− j)(−1)jIX

s(2k + 1)
=

(

∑2k+1
j=0 (−1)jτ(2k + 1− j)

s(2k + 1)

)

IX

=

(∑k
h=0 τ(2k + 1− 2h)−

∑k
h=0 τ(2k + 1− (2h+ 1))

s(2k + 1)

)

IX

= −

(∑k
h=0 τ(2k − 2h)−

∑k
h=0 τ(2(k − h) + 1)

s(2k + 1)

)

IX

= −

(

k + 1−
∑k

j=0 τ(2j + 1)

s(2k + 1)

)

IX = −

(

k + 1−
∑k

j=0 2
−j

s(2k + 1)

)

IX

= −

(

k + 1− 2(1− 2−k−1)

s(2k + 1)

)

IX = −

(

k − 1 + 2−k

k + 3− 2−k

)

IX .

Now from (3.6) and (3.7) we conclude that

∑2k
j=0(∆s)(2k − j)T j

s(2k)
−→
k→∞

IX and

∑2k+1
j=0 (∆s)(2k + 1− j)T j

s(2k + 1)
−→
k→∞

−IX

in L(X). Hence, the sequence
( n
∑

k=0

(∆s)(n− k)T k/s(n)
)

n∈N

does not converge in

L(X). Notice also that no subsequence of
( n
∑

k=0

(∆s)(n− k)T k/s(n)
)

n∈N

converges
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in L(X) to 0L(X), that is (being 1 ∈ ̺(T )), to the projection of X onto N (IX − T )

along R(IX − T ).

From Example 3.6 we conclude that the assumption that ∆qs ∈ l1 for some q ∈ N2

cannot be dropped from Theorem 2.6, and cannot even be replaced by the weaker

(see Proposition 2.5) condition H(s) < ∞.

R em a r k 3.7. From Theorem 2.6 it follows that the sequence s of Example 3.6

satisfies ∆qs ∈ l1 for no q ∈ N. Then Example 3.6 also shows that if t is a divergent

nondecreasing—or even strictly increasing—sequence of strictly positive real numbers

satisfying lim
n→∞

t(n+ 1)/t(n) = 1 and H(t) < ∞, there may exist no q ∈ N for which

∆qt ∈ l1. Hence, the converse of Proposition 2.5 does not hold.

4. Spectral consequences of boundedness of Nörlund means in L(X)

As recalled in Remark 2.7, convergence of
( n
∑

k=0

(∆s)(n− k)T k/s(n)
)

n∈N

in L(X)

(where X is a complex nonzero Banach space, T ∈ L(X), and s is a nonde-

creasing sequence of strictly positive real numbers such that lim
n→∞

s(n) = ∞,

lim
n→∞

s(n+ 1)/s(n)= 1, and∆qs∈ l1 for some q ∈ N2) does not imply lim
n→∞

‖T n‖L(X)/

s(n) = 0. Since if s is as above, then condition lim
n→∞

‖T n‖L(X)/s(n) = 0 in turn

implies r(T ) 6 1 (see 6.1 in [2], or 2.1 in [1], or else check it directly by using Propo-

sition 2.5 and Remark 2.4), one could wonder whether convergence in L(X) of the

aforementioned sequence of Nörlund means implies the weaker (than convergence to

zero of ‖T n‖L(X)/s(n)) condition r(T ) 6 1. This question is one of our concerns in

this section. Also, for more general nondecreasing sequences s of strictly positive

real numbers than those satisfying the conditions above, we are going to seek for

sufficient conditions in order that if for a bounded linear operator T on a complex

nonzero Banach space X the sequence
( n
∑

k=0

(∆s)(n − k)T k/s(n)
)

n∈N

is bounded in

L(X), then r(T ) 6 1. We begin by deriving from 2.1 in [1], and from Remark 2.4

a result that somehow suggests us the class of nondecreasing sequences s of strictly

positive real numbers for which to consider the latter problem.

Proposition 4.1. Let X be a complex nonzero Banach space, and T ∈ L(X).

Then the following conditions are equivalent:

(i) r(T ) 6 1;

(ii) there exists a strictly increasing sequence s of strictly positive real numbers such

that lim
n→∞

s(n) = ∞, lim
n→∞

s(n+ 1)/s(n) = 1, and lim
n→∞

‖T n‖L(X)/s(n) = 0;
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(iii) there exists a nondecreasing sequence s of strictly positive real numbers such

that lim
n→∞

n
√

s(n) = 1 and lim
n→∞

‖T n‖L(X)/s(n) = 0;

(iv) there exists a sequence s of strictly positive real numbers such that

lim
n→∞

n
√

s(n) = 1

and the real sequence (‖T n‖L(X)/s(n))n∈N is bounded.

P r o o f. If r(T ) 6 1, from 2.1 in [1] and from Remark 2.4 it follows that

there exists a nondecreasing sequence s of strictly positive real numbers such that

lim
n→∞

s(n+ 1)/s(n) = 1 and ‖T n‖L(X) 6 s(n) for every n ∈ N. By going to the

sequence ((n+ 1)s(n))n∈N
if necessary, it is not restrictive to assume that in addi-

tion s is strictly increasing, lim
n→∞

s(n) = ∞, and lim
n→∞

‖T n‖L(X)/s(n) = 0. Hence (i)

implies (ii). Furthermore, it follows from Theorem 2.8 that (ii) implies (iii). Also, it

is clear that (iii) implies (iv). Finally, suppose that condition (iv) holds. Then we

can proceed as in Remark 2.8 of [2], and similarly to the beginning of the proof of

2.1 in [1]: if we fix M ∈ (0,∞) such that ‖T n‖L(X)/s(n) 6 M for every n ∈ N, we

have

r(T ) = lim
n→∞

‖T n‖
1/n
L(X) = lim

n→∞

(‖T n‖L(X)/s(n))
1/n 6 lim

n→∞

M1/n = 1

and therefore condition (i) is satisfied. The proof is now complete. �

In Theorem 4.8 we will give a sufficient condition on a nondecreasing sequence s of

strictly positive real numbers, satisfying lim
n→∞

n
√

s(n) = 1, in order that any bounded

linear operator T on a complex nonzero Banach space X for which the sequence of

the Nörlund means of the powers of T induced by s is bounded in L(X) must satisfy

r(T ) 6 1 (which, by virtue of Proposition 4.1, is a weaker condition than convergence

to zero, and even than boundedness, of ‖T n‖L(X)/s(n)).

Definition 4.2. For each a ∈ C
N, let κ(a) ∈ [0,∞] be the radius of convergence

of the power series
∞
∑

n=0
a(n)zn.

We recall that

κ(a) =



























0 if lim sup
n→∞

n
√

|a(n)| = ∞,

1

lim sup
n→∞

n
√

|a(n)|
if lim sup

n→∞

n
√

|a(n)| ∈ (0,∞),

∞ if lim
n→∞

n
√

|a(n)| = 0.
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Following the notation we have introduced before Example 3.5, the disk of con-

vergence of the power series
∞
∑

n=0
a(n)zn coincides with Dκ(a). In particular, if

lim sup
n→∞

n
√

|a(n)| = 1, we have Dκ(a) = D1 = D.

Definition 4.3. For each a ∈ C
N, let ha : Dκ(a) → C be the holomorphic func-

tion defined by

ha(z) =

∞
∑

n=0

a(n)zn for every z ∈ Dκ(a).

Notice that if κ(a) = 0, then the domain of ha is the empty set.

Lemma 4.4. Let a ∈ C
N. Then κ(∆a) > κ(a) (which gives Dκ(a) ⊆ Dκ(∆a)), and

if κ(a) 6= 1, we have κ(∆a) = κ(a). Furthermore,

(4.1) h∆a(z) = (1− z)ha(z) for every z ∈ Dκ(a),

and consequently, ha and h∆a have exactly the same zeros inDκ(a)\{1}; in particular,

they have exactly the same zeros in D1∧κ(a).

P r o o f. We begin by observing that for each z ∈ C for which the series
∞
∑

n=0
a(n)zn

converges, the series
∞
∑

n=0
(∆a)(n)zn also converges. Hence, κ(∆a) > κ(a), which in

turn gives Dκ(a) ⊆ Dκ(∆a). Also, for each z ∈ Dκ(a) we have

h∆a(z) =

∞
∑

n=0

(∆a)(n)zn =

∞
∑

n=0

a(n)zn −
∞
∑

n=1

a(n− 1)zn

=
∞
∑

n=0

a(n)zn − z
∞
∑

n=0

a(n)zn = (1− z)
∞
∑

n=0

a(n)zn = (1− z)ha(z).

We have thus proved (4.1), of which the final claim about zeros is an immediate

consequence. Now we prove that κ(a) 6= 1 implies κ(∆a) = κ(a).

Since being a = Σ∆a, the power series
∞
∑

n=0
a(n)zn is the Cauchy product of

the two power series
∞
∑

n=0
zn (whose radius of convergence is 1) and

∞
∑

n=0
(∆a)(n)zn,

from [3], III, 1.6, we conclude that κ(a) > 1 ∧ κ(∆a). Then if κ(a) < 1, it fol-

lows that 1 ∧ κ(∆a) = κ(∆a), and consequently, κ(a) > κ(∆a), which in turn gives

κ(a) = κ(∆a). Finally, we suppose κ(a) > 1. Then 1 ∈ Dκ(a) ⊆ Dκ(∆a). Now we

define the holomorphic function

ϕ : Dκ(∆a) \ {1} ∋ z 7→
h∆a(z)

1− z
∈ C.
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From (4.1) it follows that ϕ(z) = ha(z) for every z ∈ Dκ(a) \ {1}. Since ha is

holomorphic in Dκ(a), we conclude that ϕ has a removable singularity at 1. Since

in turn ha(z) =
∞
∑

n=0
a(n)zn for every z ∈ Dκ(a), we derive that the series

∞
∑

n=0
a(n)zn

converges for every z ∈ Dκ(∆a), which gives κ(a) > κ(∆a). Hence κ(∆a) = κ(a),

which finishes the proof. �

Corollary 4.5. Let a ∈ C
N. Then κ(Σa) 6 κ(a) (which gives Dκ(Σa) ⊆ Dκ(a)).

Furthermore, we have:

(i) if κ(a) 6 1, then κ(Σa) = κ(a);

(ii) if κ(a) > 1, then κ(Σa) coincides either with 1 or with κ(a).

Hence κ(Σa) > 1 ∧ κ(a) (which gives Dκ(Σa) ⊇ D1∧κ(a)). Finally,

(4.2) hΣa(z) =
ha(z)

1− z
for every z ∈ Dκ(Σa) \ {1},

and consequently, ha and hΣa have exactly the same zeros in Dκ(Σa) \ {1}; in par-

ticular, they have exacly the same zeros in D1∧κ(a).

P r o o f. Since a = ∆Σa, the inequality κ(Σa) 6 κ(a) (which yields Dκ(Σa) ⊆

Dκ(a)) follows from Lemma 4.4. From Lemma 4.4 we also derive that κ(a) > κ(Σa)

implies κ(Σa) = 1. This in turn gives (i) and (ii), from which we derive that κ(Σa) >

1∧κ(a) (and consequentlyDκ(Σa) ⊇ D1∧κ(a)). Finally, (4.2) is a consequence of (4.1).

�

R em a r k 4.6. Let a ∈ C
N. Proceeding by induction, from Lemma 4.4 we derive

that for each p ∈ N we have κ(∆pa) > κ(a), and consequently, Dκ(a) ⊆ Dκ(∆pa).

Furthermore, if κ(a) 6= 1, it follows that κ(∆pa) = κ(a) for every p ∈ N. If κ(a) = 1,

we either have κ(∆pa) = 1 for every p ∈ N, or there exists p0 ∈ Z+ such that

κ(∆p0a) > 1 and

κ(∆pa) =

{

1 for p = 0, . . . , p0 − 1,

κ(∆p0a) for p ∈ Np0
.

Also, from Corollary 4.5 we derive that for each p ∈ N we have κ(Σpa) 6 κ(a),

and consequently, Dκ(Σpa) ⊆ Dκ(a). Furthermore, if κ(a) 6 1, then κ(Σpa) = κ(a)

for every p ∈ N. If, instead, κ(a) > 1, then either κ(Σpa) = κ(a) for every p ∈ N, or

there exists p0 ∈ Z+ such that

κ(Σpa) =

{

κ(a) for p = 0, . . . , p0 − 1,

1 for p ∈ Np0
.
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Hence, in any case (namely, whatever is the value of κ(a)), we have κ(Σpa) > 1∧κ(a)

for every p ∈ N.

Finally, by virtue of Lemma 4.4 and Corollary 4.5, for each p ∈ N we have

h∆pa(z) = (1− z)pha(z) for every z ∈ Dκ(a)

and

hΣpa(z) =
ha(z)

(1− z)
p for every z ∈ Dκ(Σpa) \ {1} ⊇ D1∧κ(a).

Hence, ha, h∆pa and hΣpa have exactly the same zeros in D1∧κ(a).

R em a r k 4.7. If s : N → R is a nondecreasing sequence of strictly positive

real numbers, since lim inf
n→∞

n
√

s(n) > 1 (see Remark 3.3), it follows that κ(s) 6 1.

Furthermore, we have

κ(s) = 1 ⇔ lim sup
n→∞

n
√

s(n) = 1 ⇔ lim
n→∞

n
√

s(n) = 1,

in which case the domain Dκ(s) of hs is the open unit disk D.

Theorem 4.8. Let X be a complex nonzero Banach space, T ∈ L(X), and

s : N → R be a nondecreasing sequence of strictly positive real numbers such that

lim
n→∞

n
√

s(n) = 1 and the holomorphic function hs has no zeros in D. If the sequence
( n
∑

k=0

(∆s)(n − k)T k/s(n)
)

n∈N

is bounded in L(X), then r(T ) 6 1.

P r o o f. Let R denote the radius of convergence of the power series
∞
∑

n=0
znT n in

L(X). Since lim
n→∞

‖T n‖
1/n
L(X) = r(T ), it follows that

R =

{

1/r(T ) if r(T ) > 0,

∞ if r(T ) = 0.

Hence, R ∈ (0,∞], which givesDR 6= ∅. Let Φ: DR → L(X) be the analytic function

defined by

Φ(z) =

∞
∑

n=0

znT n for every z ∈ DR.

Notice that Φ(z) = (1/z)RT (1/z) for every z ∈ DR \ {0}. Now let M ∈ (0,∞) be

such that
∥

∥

∥

∥

∑n
k=0(∆s)(n − k)T k

s(n)

∥

∥

∥

∥

L(X)

6 M for every n ∈ N.
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Then

lim sup
n→∞

∥

∥

∥

∥

n
∑

k=0

(∆s)(n− k)T k

∥

∥

∥

∥

1/n

L(X)

6 lim
n→∞

M1/n n
√

s(n) = 1.

Hence, the power series
∞
∑

n=0
zn

( n
∑

k=0

(∆s)(n−k)T k
)

in L(X) has radius of convergence

greater than or equal to 1, and consequently converges in L(X) for every z ∈ D. Let

Ψ: D → L(X) be the analytic function defined by

Ψ(z) =

∞
∑

n=0

zn
( n
∑

k=0

(∆s)(n − k)T k

)

for every z ∈ D.

Since lim
n→∞

n
√

s(n) = 1, from Lemma 4.4 it follows that κ(∆s) > κ(s) = 1, and

consequently, Dκ(∆s) ⊇ D. We remark that

h∆s(z)Φ(z) =
∞
∑

n=0

zn
( n
∑

k=0

(∆s)(n− k)T k

)

= Ψ(z) for every z ∈ D ∩DR.

Since h∆s has no zeros in D by Lemma 4.4, it follows that

(4.3)
∞
∑

n=0

znT n = Φ(z) =
1

h∆s(z)
Ψ(z) for every z ∈ D ∩DR.

Since the function from D into L(X) which maps each z ∈ D into (1/h∆s(z))Ψ(z)

is analytic in D, being so both h∆s and Ψ, from (4.3) we conclude that the power

series
∞
∑

n=0
znT n converges in L(X) for every z ∈ D. Hence R > 1, which in turn

gives r(T ) 6 1. The proof is now complete. �

We are now going to address the first problem introduced at the beginning of

this section. That is, if for a bounded linear operator T on a complex nonzero

Banach space X , and a nondecreasing sequence s of strictly positive real numbers

satisfying all the hypotheses stated in Theorem 2.6 except lim
n→∞

‖T n‖L(X)/s(n) = 0,

the sequence of the Nörlund means of the powers of T induced by s converges in L(X),

can we conclude that r(T ) 6 1? As we shall see, the answer to this question is in

the negative.

Definition 4.9. For each n ∈ N let τn : C
N → C

N be the linear operator de-

fined by

(τna)(k) =

{

0 for k = 0, . . . , n

a(k) for k ∈ Nn+1

for every a ∈ C
N.
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Notice that κ(τna) = κ(a) for every n ∈ N and every a ∈ C
N.

In the next result we give a formula—which will be useful to us in the sequel—for

∆mτna, where m ∈ Z+, n ∈ N.

Lemma 4.10. Let a ∈ C
N. Then for each n ∈ N and each m ∈ Z+ we have

(∆mτna)(k) =































0 for k = 0, . . . , n,
k−n
∑

j=1

(−1)k−n−j

(

m− j

k − n− j

)

(∆j−1a)(n+ j)

for k = n+ 1, . . . , n+m,

(∆ma)(k) for k ∈ Nn+m+1.

P r o o f. We proceed by induction onm. Fix n ∈ N, and let Sn denote the set of all

positive integers m for which the desired formula holds. We begin by remarking that

(4.4) (∆τna)(k) =











0 for k = 0, . . . , n,

a(n+ 1) for k = n+ 1,

(∆a)(k) for k ∈ Nn+2.

Since

(n+1)−n
∑

j=1

(−1)(n+1)−n−j

(

1− j

(n+ 1)− n− j

)

(∆j−1a)(n+ j)

=
1

∑

j=1

(−1)1−j

(

1− j

1− j

)

(∆j−1a)(n+ j) = (∆0a)(n+ 1) = a(n+ 1),

from (4.4) we conclude that 1 ∈ Sn.

Now let m ∈ Sn. We prove that m + 1 ∈ Sn. From the inductive hypothesis it

follows that

(4.5) (∆m+1τna)(k) = (∆(∆mτna))(k) = 0 for k = 0, . . . , n.

Furthermore,

(4.6) (∆m+1τna)(n+ 1)

= (∆mτna)(n+ 1) =

1
∑

j=1

(−1)
1−j

(

m− j

1− j

)

(∆j−1a)(n+ j)

= a(n+ 1) =
1

∑

j=1

(−1)1−j

(

m+ 1− j

1− j

)

(∆j−1a)(n+ j)

=

(n+1)−n
∑

j=1

(−1)(n+1)−n−j

(

m+ 1− j

(n+ 1)− n− j

)

(∆j−1a)(n+ j).
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We also remark that for each k ∈ N satisfying n+ 2 6 k 6 n+m, we have

(∆m+1τna)(k)(4.7)

= (∆mτna)(k)− (∆mτna)(k − 1)

=

k−n
∑

j=1

(−1)
k−n−j

(

m− j

k − n− j

)

(∆j−1a)(n+ j)

−
k−n−1
∑

j=1

(−1)k−n−j−1

(

m− j

k − n− j − 1

)

(∆j−1a)(n+ j)

=

k−n−1
∑

j=1

(−1)
k−n−j

((

m− j

k − n− j

)

+

(

m− j

k − n− j − 1

))

(∆j−1a)(n+ j)

+ (∆k−n−1a)(k)

=
k−n−1
∑

j=1

(−1)k−n−j

(

m+ 1− j

k − n− j

)

(∆j−1a)(n+ j) + (∆k−n−1a)(k)

=

k−n
∑

j=1

(−1)
k−n−j

(

m+ 1− j

k − n− j

)

(∆j−1a)(n+ j).

In addition,

(∆m+1τna)(n+m+ 1)(4.8)

= (∆mτna)(n+m+ 1)− (∆mτna)(n+m)

= (∆ma)(n+m+ 1)−
m
∑

j=1

(−1)
m−j

(

m− j

m− j

)

(∆j−1a)(n+ j)

= (∆ma)(n+m+ 1) +

m
∑

j=1

(−1)
m+1−j

(∆j−1a)(n+ j)

=

m+1
∑

j=1

(−1)
m+1−j

(∆j−1a)(n+ j)

=

(n+m+1)−n
∑

j=1

(−1)
(n+m+1)−n−j

(

m+ 1− j

(n+m+ 1)− n− j

)

(∆j−1a)(n+ j).

Now from (4.6)–(4.8) we conclude that

(4.9) (∆m+1τna)(k) =

k−n
∑

j=1

(−1)
k−n−j

(

m+ 1− j

k − n− j

)

(∆j−1a)(n+ j)
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for k = n+ 1, . . . , n+m+ 1. Finally, from the inductive hypothesis we derive that

(4.10) (∆m+1τna)(k) = (∆mτna)(k)− (∆mτna)(k − 1)

= (∆ma)(k)− (∆ma)(k − 1)

= (∆m+1a)(k) for every k ∈ Nn+m+2.

Now it suffices to observe that (4.5), (4.9) and (4.10) yield m + 1 ∈ Sn, which

completes the proof. �

R em a r k 4.11. Let s : N → R be a sequence of strictly positive real num-

bers such that κ(s) ∈ (0,∞]. Then hs(0) = s(0) > 0. Indeed, we have hs(t) =
∞
∑

n=0
s(n)tn > 0 for every t ∈ [0, κ(s)). Hence, any zero z0 of hs must belong to

Dκ(s) \ [0, κ(s)).

Theorem 4.12. Let s : N → R be a nondecreasing sequence of strictly positive

real numbers such that lim
n→∞

s(n+ 1)/s(n) = 1, lim
n→∞

s(n) = ∞ and ∆rs is bounded

for some r ∈ Z+, and let z0 ∈ D be such that hs(z0) = 0. Then z0 6= 0 and

lim
n→∞

( n
∑

k=0

(∆s)(n− k) · z−k
0

)

/s(n) = 0.

P r o o f. First of all, we observe that κ(s) = 1, and consequently the domain

of hs is D (see Theorem 2.8 and Remark 4.7). From Remark 4.11 it follows

that z0 6= 0 (indeed, z0 ∈ D \ [0, 1)). Also, from Lemma 4.4 it follows that

κ(∆s) > 1 (and consequently Dκ(∆s) ⊇ D ∋ z0), and h∆s(z0) = 0. We prove that

lim
n→∞

( n
∑

k=0

(∆s)(n− k) · z−k
0

)

/s(n) = 0.

Let M ∈ [0,∞) be such that |(∆rs)(n)| 6 M for every n ∈ N. We begin by

remarking that for each n ∈ N we have κ(τn∆s) = κ(∆s) > 1 (from which we derive

that the domain of hτn∆s contains D), and besides,

(4.11)
n
∑

k=0

(∆s)(n− k) ·
1

zk0
=

∑n
k=0(∆s)(n− k)zn−k

0

zn0
=

∑n
k=0(∆s)(k)zk0

zn0

=

∑n
k=0(∆s)(k)zk0 − h∆s(z0)

zn0
= −

∑

∞

k=n+1(∆s)(k)zk0
zn0

= −
hτn∆s(z0)

zn0
.

If r = 1, we have |∆s(n)| 6 M for every n ∈ N. Then from (4.11) we conclude that

∣

∣

∣

∣

∑n
k=0(∆s)(n− k) · z−k

0

s(n)

∣

∣

∣

∣

=

∣

∣

∑n
k=0(∆s)(n− k) · z−k

0

∣

∣

s(n)
=

∣

∣

∑

∞

k=n+1(∆s)(k)zk0
∣

∣

|z0|ns(n)
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6

∑

∞

k=n+1 |(∆s)(k)||z0|
k

|z0|ns(n)
6 M

(

∑

∞

k=n+1 |z0|
k

|z0|ns(n)

)

=
M |z0|

n+1

|z0|
n
(1 − |z0|)s(n)

=
M |z0|

1− |z0|

1

s(n)
−→
n→∞

0

(as lim
n→∞

s(n) = ∞), which gives the desired result.

Now suppose r ∈ N2. For each n ∈ N, by virtue of Remark 4.6 we have

κ(∆r−1τn∆s) > κ(τn∆s) > 1 (which places z0 in the domain of h∆r−1τn∆s, being

z0 ∈ D); besides, from (4.11), Remark 4.6 and Lemma 4.10 we derive that

n
∑

k=0

(∆s)(n− k) ·
1

zk0

= −
hτn∆s(z0)

zn0
= −

(1− z0)
r−1hτn∆s(z0)

zn0 (1 − z0)
r−1

= −
h∆r−1τn∆s(z0)

zn0 (1− z0)
r−1 = −

∑

∞

k=n+1(∆
r−1τn∆s)(k)zk0

zn0 (1− z0)
r−1

= −

∑n+r−1
k=n+1

(
∑k−n

j=1 (−1)
k−n−j(r−1−j

k−n−j

)

(∆js)(n+ j)
)

zk0 +
∑

∞

k=n+r(∆
rs)(k)zk0

zn0 (1− z0)
r−1 ,

and consequently,

∣

∣

∣

∣

∑n
k=0(∆s)(n− k) · z−k

0

s(n)

∣

∣

∣

∣

(4.12)

=

∣

∣

∑n+r−1
k=n+1

(
∑k−n

j=1 (−1)
k−n−j(r−1−j

k−n−j

)

(∆js)(n+ j)
)

zk0 +
∑

∞

k=n+r(∆
rs)(k)zk0

∣

∣

|z0|
n|1− z0|

r−1
s(n)

6

∑

∞

k=n+r |(∆
rs)(k)||z0|

k

|z0|
n|1− z0|

r−1
s(n)

+

∑n+r−1
k=n+1

(
∑k−n

j=1

(

r−1−j
k−n−j

)

|(∆js)(n+ j)|
)

|z0|
k

|z0|
n|1− z0|

r−1
s(n)

6
M

∑

∞

k=n+r |z0|
k

|z0|
n|1− z0|

r−1
s(n)

+
|z0|

∑n+r−1
k=n+1

(
∑k−n

j=1

(

r−1−j
k−n−j

)

|(∆js)(n+ j)|
)

|z0|
k−n−1

|1− z0|
r−1

s(n)

=
M |z0|

r

(1− |z0|)|1− z0|
r−1s(n)

+
|z0|

∑r−1
m=1

(
∑m

j=1

(

r−1−j
m−j

)

|(∆js)(n+ j)|
)

|z0|
m−1

|1− z0|
r−1s(n)

=
M |z0|

r

(1− |z0|)|1− z0|
r−1

s(n)
+

|z0|
∑r−1

j=1 |(∆
js)(n+ j)|

∑r−1
m=j

(

r−1−j
m−j

)

|z0|
m−1

|1− z0|
r−1

s(n)

=
M |z0|

r

(1− |z0|)|1− z0|
r−1

s(n)
+

|z0|
∑r−1

j=1 |(∆
js)(n+ j)|

∑r−1−j
k=0

(

r−1−j
k

)

|z0|
k+j−1

|1− z0|
r−1

s(n)
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=
M |z0|

r

(1− |z0|)|1− z0|
r−1

s(n)
+

|z0|
∑r−1

j=1 |(∆
js)(n+ j)||z0|

j−1 ∑r−1−j
k=0

(

r−1−j
k

)

|z0|
k

|1− z0|
r−1

s(n)

=
M |z0|

r

(1− |z0|)|1− z0|
r−1

1

s(n)
+

|z0|

|1− z0|
r−1

r−1
∑

j=1

|z0|
j−1(1 + |z0|)

r−1−j |(∆
js)(n+ j)|

s(n)
.

Since lim
n→∞

s(n) = ∞, we conclude that

(4.13) lim
n→∞

M |z0|r

(1 − |z0|)|1 − z0|
r−1

1

s(n)
= 0.

Furthermore, since lim
n→∞

s(n+ 1)/s(n) = 1, it follows that

lim
n→∞

(∆ks)(n)

s(n)
= 0 and lim

n→∞

s(n+ k)

s(n)
= 1 for every k ∈ Z+

(see [2], 6.5). Hence

(4.14)
(∆js)(n+ j)

s(n)
=

(∆js)(n+ j)

s(n+ j)
·
s(n+ j)

s(n)
−→
n→∞

0 for j = 1, . . . , r − 1.

Now (4.13)–(4.14) together with (4.12) yield lim
n→∞

( n
∑

k=0

(∆s)(n − k) · z−k
0

)

/s(n) = 0,

which completes the proof. �

Corollary 4.13. Let s : N → R be a nondecreasing sequence of strictly positive

real numbers such that lim
n→∞

s(n+ 1)/s(n) = 1, lim
n→∞

s(n) = ∞ and ∆rs is bounded

for some r ∈ Z+, and let z0 ∈ D be such that hs(z0) = 0. Then 0 < |z0| < 1.

Furthermore, for each complex nonzero Banach space X ,

∑n
k=0(∆s)(n − k)(z−1

0 IX)k

s(n)
−→
n→∞

0L(X) in L(X),

and consequently there exists T ∈ L(X) such that the sequence

(∑n
k=0(∆s)(n − k)T k

s(n)

)

n∈N

converges in L(X), and r(T ) = 1/|z0| > 1.
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P r o o f. First of all, we recall that 0 < |z0| < 1 (see Theorem 4.12, or Re-

mark 4.11). Now let X be a complex nonzero Banach space. Since for each n ∈ N

we have
∑n

k=0(∆s)(n − k)(z−1
0 IX)k

s(n)
=

∑n
k=0(∆s)(n − k) · z−k

0

s(n)
IX ,

from Theorem 4.12 it follows that
( n
∑

k=0

(∆s)(n − k)(z−1
0 IX)k

)

/s(n) −→
n→∞

0L(X) in

L(X). Now, in order to obtain the final claim of the corollary, it suffices to set

T = z−1
0 IX . �

Notice that if the sequence
(( n

∑

k=0

(∆s)(n− k)(λIX )
k
)

/s(n)
)

n∈N

(where X is

a complex nonzero Banach space, λ ∈ C \ {1}, and s is a nondecreasing sequence of

strictly positive real numbers satisfying lim inf
n→∞

s(n+ 1)/s(n) = 1) converges in L(X),

then it must converge to 0L(X), by virtue of Theorem 3.2. Indeed, for T = λIX ,

being λ 6= 1 we have 1 ∈ ̺(T ), and consequently, the projection of X onto N (IX−T )

along R(IX − T ) coincides with 0L(X).

R em a r k 4.14. Let a ∈ C
N. It is easily seen that if ∆ra is bounded for some

r ∈ N, then ∆ka is bounded for every k ∈ Nr. Also, proceeding by induction on r

(and using (2.1)), it is not difficult to verify that if |(∆ra)(n)| 6 M for every n ∈ N

and for some r ∈ N, M ∈ [0,∞), then |a(n)| 6 M
(

n+r
n

)

for every n ∈ N, and

consequently, H(a) 6 r < ∞.

A sufficient condition in order that∆ra be bounded for some r ∈ N is that∆qa ∈ l1

for some q ∈ N: indeed, ∆qa ∈ l1 clearly yields ∆qa bounded; actually, if q ∈ Z+,

then ∆q−1a = Σ∆qa, being convergent, is also bounded, and consequently, ∆ka is

bounded for every k ∈ Nq−1. We remark that the converse is not true. Indeed,

if ∆ra is bounded for some r ∈ N, there may exist no q ∈ N for which ∆qa ∈ l1:

an example—with r = 1—is the divergent strictly increasing sequence s of strictly

positive real numbers of Example 3.6 (see also Remark 3.7). Hence, Example 3.6

does not only show how in Theorem 2.6 the assumption that ∆qs ∈ l1 for some

q ∈ N2 cannot be replaced by H(s) < ∞: actually, it cannot even be replaced by the

assumption that ∆rs be bounded for some r ∈ Z+.

By virtue of Corollary 4.13 and Remark 4.14, in order to conclude that the answer

to the question we have posed at the beginning of this section is in the negative,

it suffices to show that there exists a nondecreasing sequence s of strictly positive

real numbers such that lim
n→∞

s(n) = ∞, lim
n→∞

s(n+ 1)/s(n) = 1, ∆qs ∈ l1 for some

q ∈ N2, and hs(z0) = 0 for some z0 ∈ D. This is what we are going to do in the

following example.
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E x am p l e 4.15. Let s : N → R be the sequence of strictly positive real numbers

defined by

s(n) =
3n+ 1

2
for every n ∈ N.

We remark that s is strictly increasing. Furthermore, we have

(4.15) (∆s)(n) =















1

2
for n = 0,

3

2
for n ∈ Z+

and (∆2s)(n) =















1

2
for n = 0,

1 for n = 1,

0 for n ∈ N2.

Hence ∆2s ∈ l1 (and ∆s is bounded). We also observe that lim
n→∞

s(n) = ∞ and

lim
n→∞

s(n+ 1)/s(n) = 1, which gives κ(s) = 1 (and consequently Dκ(s) = D) by

Theorem 2.8. Finally, we prove that hs(z0) = 0 for some z0 ∈ D.

From (4.15) it follows that κ(∆2s) = ∞. Furthermore, for each z ∈ C we have

h∆2s(z) =
1
2 + z. Hence h∆2s(−

1
2 ) = 0, which gives hs(−

1
2 ) = 0 by Lemma 4.4.

Example 4.15 together with Corollary 4.13 shows that convergence in L(X) of the

sequence
(( n

∑

k=0

(∆s)(n− k)T k
)

/s(n)
)

n∈N

, where X is a complex nonzero Banach

space, T ∈ L(X), and s is a nondecreasing sequence of strictly positive real numbers,

satisfying all the hypotheses of Theorem 2.6 except lim
n→∞

‖T n‖L(X)/s(n) = 0, does

not imply r(T ) 6 1. Also, Example 4.15 and Corollary 4.13 show that the hypothesis

about hs having no zeros in D cannot be removed from Theorem 4.8.
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