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Abstract. We are concerned here with relating the spectral properties of a bounded linear

n
operator T on a Banach space to the behaviour of the means (1/s(n)) 3 (As)(n — k)T*,
k=0
where s is a nondecreasing sequence of positive real numbers, and A denotes the inverse of
the automorphism on the vector space of scalar sequences which maps each sequence into
the sequence of its partial sums. In a previous paper, we obtained a uniform ergodic theorem
for the means above, under the hypotheses lim s(n) = oo, lim s(n+1)/s(n) = 1, and
n—oo n— oo
AYs € [ for a positive integer ¢: indeed, we proved that if 7" /s(n) converges to zero in
the uniform operator topology for such a sequence s, then the averages above converge in
the same topology if and only if 1 is either in the resolvent set of T', or a simple pole of the
resolvent function of 7. In this paper, we prove that if linrgioréf s(n+1)/s(n) = 1, and the

averages above converge in the uniform operator topology, then 1 is either in the resolvent
set of T', or a simple pole of the resolvent function of T'. The converse is not true, even if the
sequence s satisfies all the hypotheses of the theorem recalled above, except membership
of AYs in I for a positive integer q. We also prove that if nli_)moo Y/s(n) = 1, and the function

o0
hs(z) = Y s(n)z" has no zeros in the open unit disk, then operator norm boundedness
n=0
of the averages of the sequence T"induced by s implies that the spectral radius of T is
less than or equal to 1. This result fails if the assumption about hs is dropped. Indeed, it
may happen that the averages converge in the uniform operator topology for a sequence s
satisfying li_>m s(n) = oo, li_>m s(n+1)/s(n) = 1, and A%s € I for a positive integer g,
n oo n oo

and nevertheless the spectral radius of T is strictly larger than 1.
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1. INTRODUCTION

Throughout this paper, we will write N and 7 for the sets of nonnegative integers
and of strictly positive integers, respectively. Also, for each v € N we will write N,
for the set of all nonnegative integers n satisfying n > v. For each z € R, [z] will
stand for the integer part of z. For each complex vector space V, let Oy and Iy
denote respectively the zero element of V' and the identity operator on V. If V' and
W are complex vector spaces and A: V — W is a linear map, let N (A) and R(A)
stand respectively for the kernel and the range of A.

For each complex normed space X, we will write ||-|| y for the norm of X, and L(X)
for the complex normed algebra of all bounded linear operators on X. Henceforth, by
convergence in L(X) of a sequence of bounded linear operators on X, we will mean
convergence with respect to the topology induced by ||-|| L(x)» that is, the uniform
operator topology.

If X is a complex nonzero Banach space, then L(X) is a complex Banach algebra—
with identity Ix. For each T' € L(X), let 7(T") and o(T') stand respectively for the
spectral radius and for the spectrum of T'. Also, let o(T) and Ry stand respectively
for the resolvent set and for the resolvent function of T. Namely, o(T) = C\ o(T)
and Rr: o(T) > A~ (Mx —T)~1 € L(X). It is well known that Ry is analytic on
the open set o(T).

The classical uniform ergodic theorem, obtained by Dunford in [4] as a special case
of a result—recorded here as Theorem 2.2—about convergence of the sequence f,,(T)
in L(X) (where T' € L(X) for a complex Banach space X, and each f, is a complex-
valued function, holomorphic in an open neighborhood of o(T)), establishes equiv-

n—1
alence between convergence of the sequence (1/n) >° T* in L(X) and 1 being ei-
k=0

ther in o(T") or a simple pole of R, under the hypojchesis lim (1/n)[|T"||x) =0
n— oo

(see 3.16 of [4], see also comments following Theorem 8 in [5]). Notice that if the se-

n—1
quence (1/n) >_ T* converges in L(X), then (1/n)|IT" || (x) necessarily converges to
k=0

zero, as (1/m)T" = ((n+1)/n) ((1/(n +1)) éo )~ (1/n) :2: T* for each n € 7.

Further improvements of the uniform ergodic theorem, still &ealing with the arith-
metic means of the sequence T™, have been subsequently obtained in [11], [13], [10].
Examples of non power-bounded operators to which the uniform ergodic theorem
applies can be found in [12], in which the relationship between convergence in L(X)
of the sequence of the arithmetic means above and the asymptotic behaviour of T
is considered.

A partial extension of the uniform ergodic theorem to more general means of the
sequence of the iterates of the bounded linear operator T than the arithmetical ones
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was obtained by Hille in [8], in which the (C, o) means (1/44(n)) 3. Aa_1(n—k)T¥,
k=0
n € N, are considered (where a € (0,00), and A, and A,_1 denote, respectively,
the sequences of Cesaro numbers—whose definition is recalled here in Section 2—of
order o and a — 1; notice that for @ = 1 we have (1/4,(n)) 3. Aa_1(n — k)T* =
n k=0
(1/(n+1)) 3. T* for each n € N). Indeed, in Theorem 6 of [8] it is shown that if
k=0 n
the sequence (1/A4(n)) > Aq_1(n — k)T* converges to some E € L(X) in L(X),
k=0
then [T x),/n® — 0 as n — oo and )\111{5r [(A = DR () — Bl ,x) = 0. Notice
—
that the former of these two conditions yields 7(T') < 1, and then the latter can
be replaced by 1 being either in o(T"), or a simple pole of Ry, and moreover E
being the residue of Sy at 1 (see 1.3 of [6], or 18.8.1 of [9]). Theorem 6 of [§]

also provides a partial converse of this, establishing that if T" is power-bounded and

li A—DRr(N) - F =0, th
Jim [ = DRe () = Ellx) =0, then

=0
L(X)

1 n
lim ||—— A, 1(n—k)T* - E
n:%oHAa(m,; 1= H)

for each a € (0,00). More recently, an improvement of this partial converse was
obtained by Yoshimoto, who in Theorem 1 of [16] replaced power-boundedness of T'
by nhﬁrrgo 1T, (x)/n* =0 (where w = min{1, ar}).

Finally, in [6], Ed-dari was able to complete the (C, «) uniform ergodic theorem,
by proving that the sequence (1/A4(n)) i Aq—1(n — k)T* converges to E in L(X)
if and only if [|[T"|,(x)/n* = 0 as n —>ko:ooand )\13111+ [(A=DR2(A) — El(x) = 0.
Ed-dari’s result is recorded here as Theorem 2.3.

In a previous paper (see [2]), we obtained a uniform ergodic theorem for the
n

Noérlund means of the sequence T™, that is, for the means (1/s(n)) > (As)(n—k)T*,

n € N, where s is a nondecreasing sequence of strictly positive real numbers (and A
is as in the abstract; the definition of A is also recalled in Section 2 here). We point
out that for s = A,, a € (0,00), one obtains the (C, @) means. Indeed, in 6.7 of [2],

we proved that if lim s(n) = oo, lim s(n+1)/s(n) =1, A%s € l; for some q € Z,
n—oo n—oo n

and ||T"(|,x,/s(n) — 0 as n — oo, then the sequence (1/s(n)) > (As)(n — k)T*
k=0

converges in L(X) if and only if 1 is either in o(7") or a simple pole of Ry, in which

case the sequence of the Norlund means of the iterates of T' converges in L(X) to the

residue of Ry at 1 (this result is recorded here as Theorem 2.6; see also Theorem 2.1

here). Contrary to the special case of the (C, «) means, convergence of the sequence
n

(1/s(n)) 3 (As)(n — k)T* in L(X) does not imply nlLrI;O|\T”||L(X)/s(n) =0, as
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a convenient example—provided in 6.10 of [2]—shows. In this paper we continue
to investigate the relationships between the behaviour of the Norlund means of the
sequence T™ and the spectral properties of T'. Section 2 presents some preliminaries
for the purpose of making this paper as self-contained as possible. Sections 3 and 4
contain the results.

In Section 3 we derive a consequence of the above-mentioned Dunford’s result
about convergence of the sequence f,(7'), and use this consequence to prove that if
for a bounded linear operator 7' on a complex Banach space X and a nondecreasing
sequence s of strictly positive real numbers, satisfying 1inrri>ior<1>fs(n +1)/s(n) =1, the

sequence (1/s(n)) Y. (As)(n — k)T* converges in L(X), then 1 is either in o(T),

or a simple pole of R (Theorem 3.2). Notice that any nondecreasing sequence
s of strictly positive real numbers necessarily satisfies liminfs(n 4+ 1)/s(n) > 1.
By means of a convenient example, we will show that if the following sequence

n
(1/s(n)) 3 (As)(n — k)T* converges in L(X) for a nondecreasing sequence s of

strictly positive real numbers, satisfying lirg inf s(n+1)/s(n) > 1, then 1 may nei-
ther be in o(T), nor be a pole of Ry (Exa?npije 3.5). A further example is provided
in order to show that the converse of Theorem 3.2 does not hold even if the sequence
s is assumed to satisfy all the hypotheses of 6.7 in [2] except membership of A%s in [
for a positive integer ¢ (Example 3.6). More precisely, Example 3.6 shows that in 6.7
of [2], membership of A%s in I; for some ¢ € Z cannot be replaced by membership
of A”s in [ for some r € Z (see also Remark 4.14).

In Section 4, starting from the fact recalled above that convergence of the se-
quence (1/s(n)) zn: (As)(n — k)T* in L(X) does not imply nh_{r;o 17" 1 (x)/5(n) =0
even if s satisﬁesk ;(1)1 the remaining hypotheses of 6.7 in [2], we search for conditions
(on the sequence s and on the Norlund means of the sequence T" induced by s)
which imply a weaker property than nlgngo 1T (x)/s(n) = 0, that is, r(T') < 1.
In Theorem 4.8 we prove that if for a bounded linear operator 7' on a complex
Banach space X and a nondecreasing sequence s of strictly positive real numbers

(oo}

satisfying lim {/s(n) =1 and such that the function hs(z) = > s(n)z™ has no
n—oo n n—=0
zeros in the open unit disk, the sequence (1/s(n)) Y. (As)(n — k)T* is bounded
k=0

in L(X), then r(T') < 1. Also, in Theorem 4.12 we prove that if s is a nonde-
creasing sequence of strictly positive real numbers such that 1Lm s(n+1)/s(n) =1,
lim s(n) = oo, A”s is bounded for a positive integer r, arrlldo‘she function h, has
g_;%oro zo in the open unit disk, then the Norlund means—induced by s—of the
complex sequence 1/z{' converge to zero (notice that s(0) > 0 yields zp # 0). As

a consequence of this, in Corollary 4.13 we derive that if s is as in Theorem 4.12, for
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each complex nonzero Banach space X there exists T' € L(X) such that the sequence
n

(1/s(n)) 3 (As)(n — k)T* converges in L(X), and nevertheless 7(T) = 1/|z| > 1.

We conclude the paper with an example of a nondecreasing sequence s of strictly pos-
itive real numbers such that lim s(n+1)/s(n) = 1, lim s(n) = oo, AZs € l;, and
n—oo n—oo
hs(—%) = 0 (Example 4.15). This, by virtue of Corollary 4.13, shows that if the se-
n
quence (1/s(n)) > (As)(n—k)T* converges in L(X) for a bounded linear operator T

on a complex Banach space X and a nondecreasing sequence s of strictly positive real

numbers, satisfying all the hypotheses of 6.7 in [2] except lim [ T"(| x/s(n) =0,
n—oo

it may even happen that r(T) > 1.

2. PRELIMINARIES

If X is a Banach space and Y, Z are closed subspaces of X satisfying X =Y & Z,
by the projection of X ontoY along Z we mean the bounded linear map P: X — X
such that Px € Y and © — Px € Z for every x € X. Notice that Ix — P is the
projection of X onto Z along Y, and that P? = P. On the other hand, if £ € L(X)
satisfies E? = E, it is easily seen that R(E) is closed in X, X = R(E) ® N(E),
and E is the projection of X onto R(E) along N (E).

The following is a classical characterization of simple poles of SR

Theorem 2.1 (V, 10.1, 10.2, 6.2-6.4, and IV, 5.10 in [15]). Let X be a complex
nonzero Banach space, T € L(X) and A\g € C. If )\ is a simple pole of Ry, then Xg
is an eigenvalue of T, N((MoIx —T)") = N(MoIx —T) and R((M\olx —T)") =
R(MoIx —T) for every n € 74, R(MIx —T) is closed in X, X = N(AoIx —T) @
R(MoIx —T), and the projection of X onto N'(A\ogIx —T) along R(AoIx —T') coincides
with the residue of Rt at \g. Conversely, if X = N(Aolx—T)BR(MIx—T), then \g
is either in o(T), or else a simple pole of Ry .

If X is a complex nonzero Banach space and T' € L(X), following Definition
on page 310 in [15], we denote by 2((T) the set of all complex-valued holomorphic
functions f whose domain Dom (f) is an open neighbourhood of ¢(T). For each
f € 20(T), the operator f(T') € L(X) is defined as follows:

1
) = o= [ PR,
T J+oD
where +0D denotes the positively oriented boundary of D, and D is any open
bounded subset of C such that D D o(T), D C Dom (f), D has a finite number of
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components with pairwise disjoint closures, and 9D consists of a finite number of sim-
ple closed rectifiable curves, no two of which intersect; the integral above does not de-
pend on the particular choice of D (see [15], comment 2 on pages 310-311; see also 2.2,

n
2.3 and 2.6 in [4]). We recall that for each polynomial p: C > A — > apA* € C
k=0

n =
(where n € N, and ay, . .., a, € C), we have p(T) = > arT* (see [15], V, 8.1).

k=0
In the sequel, we will also need the following convergence result for the elements

of A(T") (due to Dunford), a special case of which is the classical uniform ergodic
theorem.

Theorem 2.2 ([4], 3.16; see also comments following Theorem 8 in [5], and [2],
2.3). Let X be a complex nonzero Banach space, T € L(X), and (fn),cy be a se-
quence in A(T) such that 1 € Dom (f,) for each n € N, nlirlgo fn(l) = 1 and
(Ix =T)fa(T) = Op(x)y in L(X) as n — oo. Then the following conditions are
equivalent:

(i) the sequence (fn(T)),c
(ii) 1 is either in o(T'), or a simple pole of Rr;
(iil) R(Ix =T) is closed, X = N'(Ix —T)®R(Ix —T), and the sequence (f(T)), e
converges in L(X) to the projection of X onto N'(Ix —T) along R(Ix — T).

n converges in L(X);

For each v € R let A,: N — R denote the sequence of the Cesaro numbers of
order a. That is,

=3 Il (e +7)
n!

"t a> 1 if n =0,
lf n e Z+.
Notice that Ag(n) = 1 for all n € N. Also, if & > —1, then A,(n) > 0 for each

n € N. Furthermore, we point out that for each p € Z we have A_,(n) = 0 for
every n € N,. We recall that

(2.1) Z Ay(k) = Agg1(n) for each n € N and each a € R
k=0

and

(2.2) lim Aa(n) = ! for each o € R\ {—k: k€ 74},

n—oo & Na+1)

where T' denotes Euler’s gamma function (see for instance [17], III, (1-11) and
(1-15)).
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The improvement of Hille’s uniform ergodic theorem for the (C, o) means obtained
by Ed-dari in [6] can be rephrased as follows, by taking also Theorem 2.1 and Theo-
rem 2.2 (as well the latter’s consequence 18.8.1 in [9]—recorded in [6] as Lemma 1.3)
into account.

Theorem 2.3 (see [6], Theorem 1). Let X be a complex nonzero Banach space,
T € L(X), and @ € (0,00). Then the following conditions are equivalent:

n
(i) the sequence (Z Ag—1(n — k)Tk/Aa(n)) |, converges in L(X);
k=0 ne
(i) nlgngo Tl (x)/n* =0 and 1 is either in o(T), or a simple pole of Rr;
(iii) lim |77,y /n® = 0 and X = N(Ix = T) & R(Ix = T);
(iv) Jim. 17" x)/n® =0, R(Ix —T) is closed, and X = N(Ix —T)®&R(Ix —T).
Furthermore if the equivalent conditions (i)—(iv) are satisfied, and P € L(X) is such
that Z Aa—1(n —Kk)T*/Ay(n) — P in L(X) as n — oo, then P is the projection
of X onto N(Ix —T) along R(Ix —T).

Remark 2.4. Asremarked in 2.8 of [2], it is easily seen that if a bounded linear
operator 1" on a complex nonzero Banach space X is such that 1Lm 17" (x)/n* =0
for some « € (0,00), then r(T') < 1. The converse is not true: if #(T) = 1, there
may exist no a € (0,00) for which 1i_>m 1T xy/n® = 0 (if r(T") < 1, then

n—oo
1 n [6 2 3 3 n —
clearly nh—>120 1T, (x)/n™ = 0 for every a € (0,00), being nh_rr;oHT o) = 0)-

See for instance 6.3 of [2] for an example in which r(T) = 1, and nevertheless
li_rn |7 1(x)/n* = oo for every a € (0,00). We recall that a necessary and
n—oo

sufficient condition in order that 7(T") < 1 has been provided by Allan and Ransford
in [1]: »(T) < 1 if and only if there exists a sequence p of strictly positive real
numbers such that nh—>120 p(n+1)/p(n) =1 and [T x) < p(n) for every n € N
(see 2.1 in [1]). We point out that the sequence p can in fact be chosen so that it
is also nondecreasing: indeed, in the power-bounded case the desired inequality is
satisfied by a suitable constant—and thus nondecreasing—sequence p (see [1], proof
of 2.1). In the non power-bounded case, by applying 3.9 in [2], we conclude that the
least concave majorant (0y,), oy of the sequence (¢n),, oy in the proof of 2.1 in [1], is
strictly increasing, being nh—>120 on/n = 0, and p,, positive and unbounded. Then so

is u, as p(n) = e for every n € N.

Henceforth, we will denote by CV the complex vector space of all sequences of
complex numbers. Also, let ¥, A: CN — CN denote the linear operators defined by

a)(n) = a(k) and (Aa)(n)=
(¥a)(n) kZZO (k) (Aa)(n) {a(n)—a(n—l) if n€ 7,
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for every n € N and a € CV. We remark that both ¥ and A are bijective. Moreover,
they are mutually inverse, that is, AY = ¥A = Icv. We also remark that A(l;) C I;.
Finally, notice that if a real sequence s satisfies lim s(n) = oo, and ¢ € N is such
that A%s € 1, then we must have g > 2. e

Following Definition 5.1 of [2], for each real sequence a: N — R we set

H(a) = inf{m € N: the sequence (a(n)/n"™)ncz, is bounded from above}.

Notice that H(a) € N U {oo}, and the infimum above is attained if and only if
H(a) < co. Clearly, H(a) < oo if and only if the sequence (a(n)/n?)nez, is bounded
from above for some 8 € [0,00). Also, a is bounded from above if and only
if H(a) =0. We remark that H(A,) < oo for every o € R. Indeed, for each
a € (—o00,0] we have H(A,) = 0 (because A, is eventually constant if « is a nega-
tive integer; otherwise, by virtue of (2.2)). For each a € (0, 00), from (2.2) we derive
that

o ifaeZ,,

[a] +1 faé¢Z,.

The following result—proved in [2]—relates finiteness of H(a) to being A%a € Iy

H(Aa) = {

for suitable gq.

Proposition 2.5 ([2], 5.4). Let a: N — R be a real sequence, and q € Z4 be
such that A% € ly. Then H(a) < g —1.

The following uniform ergodic theorem for Noérlund means has been proved in [2]:
indeed, by taking Proposition 2.5 into account, it is an immediate consequence of
the main result of [2], that is, of [2], 6.7.

Theorem 2.6 ([2], 6.7; see also Proposition 2.5). Let X be a complex nonzero
Banach space, T € L(X), and s: N — R be a nondecreasing sequence of strictly
positive real numbers such that nhﬁrglo s(n) = oo, nhﬁngo s(n+1)/s(n) =1, AYs € [
for some q € Ny, and nh—>H;<> HT”HL(X)/s(n) = 0. Then r(T) < 1, and the following
conditions are equivalent:

(i) the sequence (iO(As)(n - If)T’“/s(n))nEN converges in L(X);

k=
(ii) 1 is either in o(T) or a simple pole of Rr;

(i) X = N(Ix - T)®R(Ix — T);
(iv) R(Ix —T)isclosedin X and X =N(Ix —T)®R(Ix - T).
Finally, if the equivalent conditions (i)—(iv) are satisfied and P € L(X) is such that

S (As)(n — k)T /s(n) — P in L(X) asn — oo, then P is the projection of X onto
k=0
N(Ix —T) along R(Ix —T).
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Remark 2.7. Fix a € (0,00). Then A, is a strictly increasing sequence of
strictly positive real numbers (see for instance [17], III, (1-17)). Moreover, from (2.2)
it follows that li_>m Aq(n) = oo and li_}rn As(n+1)/A,(n) = 1. Finally, if we set

n—oo n o0

a+l faelZy,
o] +2 ifa¢Zy,

we have ¢ € Ny, and from (2.1) we derive that AYA, = A,—4. Then AYA, € [;: if
a € 74, this follows being Aq_q(n) = A_1(n) =0 for every n € Z4; if o ¢ 74, it
follows from (2.2), being o — ¢ < —1.

However, as remarked in [2], Theorem 2.8 does not completely extend Theorem 2.3
from the class of all sequences of Cesaro numbers of strictly positive order to the
larger one of all divergent nondecreasing sequences s of strictly positive real numbers
for which li_>m s(n+1)/s(n) =1 and A%s € [; for some g € Nj, as the condition
nl;ngo ||T"||Z(Xoj/s(n) = 0 is assumed in the hypotheses of Theorem 2.6, whereas the
condition nl;ngo Il (x)/n* = 0 is not in the hypotheses of Theorem 2.3. Indeed,
if X is a complex nonzero Banach space, T € L(X), and s is a nondecreasing sequence
of strictly positive real numbers such that lim s(n) = oo, lim s(n+1)/s(n) =1,

n—oo n—oo

Als € [ for some ¢ € Ny, and the sequence ((1/s(n)) > (As)(n — k)Tk) | com
k=0 ne

verges in L(X), then [T, y)/s(n) need not converge to zero as n — oo: an
example, in which the sequence s is even strictly increasing, is provided in [2], 6.10.

Finally, the following classical result about real sequences will be useful to us.

Theorem 2.8 ([14], 3.37). Let a: N — R be a sequence of strictly positive real
numbers. Then

1 1
liminf ———= aln + ) < liminf {/a and limsup {/a hmsupw.

n—oo  a(n) n—00 n—o0 n— o0 a(n)

In particular, if li_>m a(n+1)/a(n) =1 for some [ € [0, 00|, then also
n o0

lim {/a(n)=1.

n—oo
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3. SPECTRAL CONSEQUENCES OF CONVERGENCE OF NORLUND MEANS IN L(X)
We begin by deriving a consequence of Theorem 2.2.

Theorem 3.1. Let X be a complex nonzero Banach space, T € L(X), and
(fn)pen be a sequence in A(T) such that 1 € Dom/(f,) for each n € N and
nlggo fn(1) = 1. Suppose that there exist two subsequences (fn, )cny and (frm,)pen
of (fn),en, and a sequence (Ty),cy in L(X) such that T, — T in L(X) and
Jm(T) = T fr (T) = Op(x) in L(X) as k — oo. If the sequence (f,(T)), cy con-
verges in L(X), then 1 is either in o(T), or a simple pole of Ry (and consequently
R(Ix —T) is closed, and X = N(Ix —T)® R(Ix —T)). Furthermore, (fn(T)), cn
converges in L(X) to the projection of X onto N'(Ix —T) along R(Ix — T).

Proof. Let E € L(X) be such that f,(T) — E in L(X) as n — oo. Then
fro(T) = E and f,,,(T) = E in L(X) as k — 00, from which we derive that

(Ix = T) i (T) = (fni(T) = i (T)) + (fin (T) = Tk fru,, ()
+ (Tk = T) fn, (T) 2 Onx) in L(X).

By applying Theorem 2.2 to the sequence (fy, (T')),cn, We conclude that 1 is ether
in o(T'), or a simple pole of Ry (which yields R(Ix —T') closed, and X = N(Ix—-T)®
R(Ix —T)), and E is the projection of X onto N (Ix —T') along R(Ix — T). This
finishes the proof. O

Now we are going to apply Theorem 3.1 to the Norlund means of the sequence of
the iterates of a bounded linear operator.

Theorem 3.2. Let X be a complex nonzero Banach space, T € L(X), and
s: N — R be a nondecreasing sequence of strictly positive real numbers such

that 1in_1>inf s(n+1)/s(n) = 1. If the sequence (Z (As)(n — k;)Tk/s(n)) | con-
n—o0 0 ne

verges in L(X), then 1 is either in o(T'), or a simple pole of Ry (and consequently
R(Ix —T) is closed, and X = N(Ix —T)® R(Ix — T)). Furthermore, the se-

quence (Z (As)(n — k)Tk/s(n)) |, converges in L(X) to the projection of X onto
k=0 ne
N(Ix —T) along R(Ix — T).
Proof. Let P € L(X) be such that > (As)(n —k)T%/s(n) — P in L(X) as

k=0
n — co. For each n € N let f,: C — C be defined by

_ Dheo(As)(n — k)2F

for every z € C.
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Clearly, f,, € A(T). Also,

_ YieoBs)(n—k) _ Xio(B9)() _ (BAs)(n) _ s(n) _

fa(1) s(n) B s(n) - s(n)  s(n)
and . .
Hence nlirlgo fn(1)=1,and f,(T) — P in L(X) as n — oo.

Now let (nx),cy be a strictly increasing sequence of nonnegative integers such that

(3.1) lim 20D

=1.
k—o00 s(nk)

We prove that fn, +1(T) — (s(nx)/s(ng + 1))T fr, (T) = Opx) in L(X) as k — oo.
Indeed, it suffices to observe that for each k € N we have

Fua @) = 2, ()

(nk+1)
S (As) (g + 1 — §)TY Cs(ne) XEe(As)(ny — )TV
s(nk +1) s(nk +1) s(nk)
370 (As) (g + 1= HTY = 32741 (As) (g + 1 = )TV
N s(nk +1)
(As)(nk + 1)Ix s(ng)
T st D) _<1‘s<nk+1>)b"

and now (3.1) yields the desired result. Then we are enabled to apply Theorem 3.1
with my = ni + 1 and T}, = (s(ng)/s(ni + 1))T for every k € N, which finishes the
proof. ([

Remark 3.3. Let s: N — R be a nondecreasing sequence of strictly posi-

tive real numbers. Then s(n+1)/s(n) > 1 for every n € N, and consequently,
liminf s(n + 1)/s(n) > 1. From Theorem 2.8 we also derive that liminf {/s(n) > 1.
n—00 n—00

Corollary 3.4. Let X be a complex nonzero Banach space, T € L(X), and
s: N — R be a nondecreasing sequence of strictly positive real numbers such

that liminf {/s(n) = 1. If the sequence (Z (As)(n — k‘)T’“/s(n)) | converges
ne

in L(X), then 1 is either in o(T), or a simple pole of Ry (and consequently
R(Ix —T) is closed, and X = N(Ix —T)® R(Ix — T)). Furthermore, the se-

quence (Z (As)(n — k)Tk/s(n)) |, converges in L(X) to the projection of X onto
k=0 ne
N(Ix —T) along R(Ix —T).
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Proof. From Theorem 2.8 and Remark 3.3 we conclude that

lim inf M

=1.
n—00 s(n)

Now the desired result follows from Theorem 3.2. O

The next example shows that if 7" is a bounded linear operator on a complex
nonzero Banach space X such that the sequence (i (As)(n — k‘)T’“/s(n))nEN con-
verges in L(X) for a nondecreasing sequence s of st];izc(‘;ly positive real numbers satis-
fying liminf s(n + 1)/s(n) > 1, then 1 may neither be in o(T"), nor be a pole of Rr.

Henge_fﬁ;th, we will denote the open unit disk in C by D. Also, for each r € [0, 00|
we set

D,={z€C: |z| <r}.

Notice that Do, = C, Dy = 0, and D; = D.

Example 3.5. First of all, fix two real numbers a and § satisfying 1 < 8 < a.
Now let an: N — R be the real sequence defined by

n

aq(n) =a™ for every n € N

and set s, = Ya,. Then s, is strictly increasing, being a,(n) > 0 for every n € N.

Furthermore,
= a™tt —1
(Asy)(n) = an(n) =a™ and s4(n) = kz_(:)ak =— for every n € N,
and consequently,
Y ) B el SN
n=oo  so(n)  moocoantl—1 :

Finally, let T3 € L(l3) be defined by Tz = S, where S denotes the unilateral shift
operator on ly. Namely, S: ls — ls is the bounded linear operator defined by

o0
St = Z x(n)enpt1 for every x € Iy
n=0

(where {e,: n € N} denotes the canonical orthonormal basis of I3).
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We recall that o(S) = D (see for instance [7], Solution 67). Hence, o(T3) = Dg
and consequently, 7(Tg) = 5. Since § > 1, it follows that 1 is neither in o(7%), nor
is a pole of Mr,. Nevertheless, we prove that the sequence

(EZ:a(ASa)(n — k)T )
neN

sa(n)

converges in L(l3).
We begin by remarking that for each n € N we have

(3.2) Dizo(bsa)n — )TF ( a1 ) zn:aa(n - k)T§
k=0

Sa(n) antl — 1

n (a — 1ot & Tgk

a—1 n—kmk
:<a"+1—1)za Ts = antl —1 Zak“'

k=0 k=0

n
Since a > 5 = (1), it follows that a € p(T) and the sequence ( > Tg/a’”l) N
k=0 ne

converges to (aly, —Ts)~ " in L(ly) (see for instance [15], V, 3.1). Being

-1 n+1
lim (a Ja

— = a-1
n—soo antl —1 ’

from (3.2) we conclude that

ZZ:O(ASa)(n B k)T§ — (a—1)(ady, — T,B)_l in L(la),

Sa(n) n—00

which gives the desired result.

The following example shows that if s: N — R is a nondecreasing sequence of
strictly positive real numbers satisfying liminf s(n 4+ 1)/s(n) = 1, and 1 is either
n— oo

in o(T) or a simple pole of Ry for a bounded linear operator T on a complex

n
nonzero Banach space X, then the sequence (Z (As)(n — k‘)T’“/s(n)) need not
k=0 neN
converge in L(X) (not even if in addition s is strictly increasing, lim s(n) = oo,
n—oo

nh_)II;O s(n+1)/s(n) = 1, nli_>n;o|\T”||L(X)/s(n) = 0, and H(s) < o0). Hence, the
converse of Theorem 3.2 does not hold unless some additional conditions on
the sequence s are assumed. Indeed, Theorem 2.6 provides a converse of Theo-
rem 3.2, under the additional hypotheses nlirlgo s(n) = oo, nlirlgo s(n+1)/s(n) =1,
nlggo Il (x)/s(n) = 0, and A?s € I, for some g € Ny (which implies H(s) < oo;
indeed, H(s) < g — 1 by virtue of Proposition 2.5). In particular, the converse of
Theorem 3.2 holds for s = A, where « € (0, 00) is such that nh—>120 1T 15/ = 0
this can be derived either from Theorem 2.3, or from Theorem 2.6 together with
Remark 2.7 and (2.2).
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Example 3.6. Let X be a complex nonzero Banach space. We set T = —Ix.
Then o(T) = {—1}, and consequently 1 € o(T"). Now let 7: N — R be the sequence
of strictly positive real numbers defined by

1
T(2k) =1 and 7(2k+1)= ok for every k € N.
We set s = ¥7. Then As = 7. Since 7(n) > 0 for every n € N, it follows that s
is a strictly increasing sequence of strictly positive real numbers. Furthermore, we
have s(0) = 7(0) = 1, and for each k € 7,

>
|

—
w
H

k
1
s(2k) =Y r(h) =) 7(2)+ > T(2j+1) =k+1+ %
h=0 §=0 §=0 3=0
1
—k+1+2(1-55) =k+3- 5
Then for each k € N we have
1
which in turn gives
1 1

(3.4) s2k+1)=s2k)+72k+1)=k+3— o= 1—1—2—k—k—|—3 ok
From (3.3) and (3.4) we conclude that for each n € N we have

(n) = n 3 1 S [n 3 1 1> "

o =[3]+3- g > 5] +3-F= = 5]+ 1> 5
Notice also that

n n
s(n) < [—} +3< =-+4+3 foreveryneN.
2 2
Hence
(3.5) lim s(n) =00 and H(s)=1< occ.
n—oo

Since

s(n) <s(n+1)=sn)+7(n+1)<s(n)+1 foreveryneN,

from (3.5) we conclude that lim s(n +1)/s(n) = 1. Finally, (3.5) also gives
n—oo

™" —1)"I 1
o Iy D I 1
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We prove that the sequence ( S (As)(n — k;)Tk/s(n)) does not converge in L(X).
k=0 neN
Since As = 7, by virtue of (3.3) and (3.4) for each k € Z; we have

Yoo (As)(2k — )TV
( k)
STk - )(-)Ix (Z?’“o (—1)3'7(%—3'))
(2k) s(2k)
—2h) — ’;_37(2k—(2h+1))>
5(2k)
k+1-S0 k- h—1)+1)>IX

(=
( s(2k)
(
(

(3.6)

Ix

Ix

k+1-— (2;+1) k+1-Y 527
IX IX
k43— 21—k
k+1—21—2 k—1+217F
k+3—21-k k+3—21-k

S (As) 2k + 1 — )TV
s(2k+1)
O R R GV SO it i GV C R T I
s(2k+1) n ( s(2k + 1) ) X
_ (ZheoTh 12— ST (k41— 2k 1)
N ( s(2k +1) ) X
_ (ZLOT(% —2h) = 3f_, T2k —h) + 1))1
s(2k+1) X

k+1-35 (725 +1) k11— g2

- _< s(2k +1) >IX__< s(2k+1) )IX

C(k+1-20 =271 e - k—1+27F /
s(2k + 1) X7 \k43—27k )T

Now from (3.6) and (3.7) we conclude that

S o(As)(2k — )7 e and ST (As) (2k + 1 — )T o
S(Zk) k—o0 8(2](3 + 1) k—o0

(3.7)

in L(X). Hence, the sequence ( > (As)(n — k;)Tk/s(n)) N does not converge in
k=0 ne
n

L(X). Notice also that no subsequence of (Z (As)(n — k)Tk/s(n)) | converges
k=0 ne
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in L(X) to Op(x), that is (being 1 € o(T')), to the projection of X onto N'(Ix —T)
along R(Ix — T).

From Example 3.6 we conclude that the assumption that A%s € [; for some g € Ng
cannot be dropped from Theorem 2.6, and cannot even be replaced by the weaker
(see Proposition 2.5) condition H(s) < oco.

Remark 3.7. From Theorem 2.6 it follows that the sequence s of Example 3.6
satisfies A?s € [; for no ¢ € N. Then Example 3.6 also shows that if ¢ is a divergent
nondecreasing—or even strictly increasing—sequence of strictly positive real numbers
satisfying nlingot(n +1)/t(n) =1 and H(t) < oo, there may exist no ¢ € N for which

A% € [;. Hence, the converse of Proposition 2.5 does not hold.

4. SPECTRAL CONSEQUENCES OF BOUNDEDNESS OF NORLUND MEANS IN L(X)

As recalled in Remark 2.7, convergence of (E (As)(n — k)Tk/s(n)> N in L(X)
k=0 ne

(where X is a complex nonzero Banach space, T € L(X), and s is a nonde-
creasing sequence of strictly positive real numbers such that li_>m s(n) = oo,
lim s(n+1)/s(n) =1, and A%s €, for some ¢ € N3) does not impI; ﬁom 1T Lexy/
n—oo n—oo

s(n) = 0. Since if s is as above, then condition nlirlgo [T (x)/s(n) = 0 in turn
implies 7(T") < 1 (see 6.1 in [2], or 2.1 in [1], or else check it directly by using Propo-
sition 2.5 and Remark 2.4), one could wonder whether convergence in L(X) of the
aforementioned sequence of Nérlund means implies the weaker (than convergence to
zero of ||T"||1(x)/s(n)) condition r(T') < 1. This question is one of our concerns in
this section. Also, for more general nondecreasing sequences s of strictly positive
real numbers than those satisfying the conditions above, we are going to seek for
sufficient conditions in order that if for a bounded linear operator 1" on a complex

nonzero Banach space X the sequence (Z (As)(n — k)Tk/s(n)) N is bounded in
k=0 ne
L(X), then r(T) < 1. We begin by deriving from 2.1 in [1], and from Remark 2.4

a result that somehow suggests us the class of nondecreasing sequences s of strictly
positive real numbers for which to consider the latter problem.

Proposition 4.1. Let X be a complex nonzero Banach space, and T € L(X).
Then the following conditions are equivalent:
(i) r(T) < 1;
(ii) there exists a strictly increasing sequence s of strictly positive real numbers such
hat 1i = li 1 =1 li Al =0;
that lim s(n) = oo, lim s(n+1)/s(n) = 1, and lim |7} ;x/5(n) =0
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(iii) there exists a nondecreasing sequence s of strictly positive real numbers such
that lim ¥ =1 and li ™ =0;
at lim §/3(m) = 1 and lim [T x)/s(n) = 0;
(iv) there exists a sequence s of strictly positive real numbers such that

lim {/s(n) =1

n— oo
and the real sequence (||T"| 1 x)/s(n))nen is bounded.

Proof. If »(T) < 1, from 2.1 in [1] and from Remark 2.4 it follows that
there exists a nondecreasing sequence s of strictly positive real numbers such that
nh—>120 s(n+1)/s(n) = 1 and |T"|;(x) < s(n) for every n € N. By going to the
sequence ((n + 1)s(n)), oy if necessary, it is not restrictive to assume that in addi-
tion s is strictly increasing, nh_{r;o s(n) = oo, and nh_{r;o 17", (x)/5(n) = 0. Hence (i)
implies (ii). Furthermore, it follows from Theorem 2.8 that (ii) implies (iii). Also, it
is clear that (iii) implies (iv). Finally, suppose that condition (iv) holds. Then we
can proceed as in Remark 2.8 of [2], and similarly to the beginning of the proof of
2.1in [1]: if we fix M € (0,00) such that [T"([; y)/s(n) < M for every n € N, we
have

— 1 n|l/n 1 n /n < 1/n _
r(T) = T [Ty = lim ([T x)/5(n)) " < lim M 1
and therefore condition (i) is satisfied. The proof is now complete. O

In Theorem 4.8 we will give a sufficient condition on a nondecreasing sequence s of
strictly positive real numbers, satisfying lim {/s(n) = 1, in order that any bounded
linear operator 7" on a complex nonzeron];a?;ach space X for which the sequence of
the Norlund means of the powers of T' induced by s is bounded in L(X) must satisfy
r(T) < 1 (which, by virtue of Proposition 4.1, is a weaker condition than convergence
to zero, and even than boundedness, of |17, x)/s(n)).

Definition 4.2. For each a € CV, let x(a) € [0, ] be the radius of convergence
&)
of the power series > a(n)z".

n=0

‘We recall that

0 if limsup ¥
n— oo

1
- ) ——————— if limsup {/|a(n)| € (0, ),
(e) limsup {/]a(n)| n—)oop (] € )

n—oo

00 if lim {/|a(n)| =0.

n—oo

a(n)| = oo,
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Following the notation we have introduced before Example 3.5, the disk of con-

o0
vergence of the power series ) a(n)z" coincides with D, (. In particular, if

n
limsup {/|a(n)| = 1, we have D, 4y = D1 = D.

n—oo

Definition 4.3. For each a € CV, let hy: Dy (a) = C be the holomorphic func-
tion defined by

= Z a(n)z" for every z € Dy (y).
Notice that if k(a) = 0, then the domain of h, is the empty set.

Lemma 4.4. Let a € CV. Then x(Aa) > x(a) (which gives D) € Dy(aa)), and
if k(a) # 1, we have k(Aa) = (a). Furthermore,

(4.1) haa(z) = (1 — 2)ha(2) for every z € Dy (q),

and consequently, h, and ha, have exactly the same zeros in D,,(4)\{1}; in particular,
they have exactly the same zeros in Dipy(q)-

Proof. We begin by observing that for each z € C for which the series Z a(n)z"
converges, the series E (Aa)(n)z™ also converges. Hence, k(Aa) > k(a ), Wthh in

turn gives D, q) C DR(AG). Also, for each z € D,;(,) we have

Aa Z ian—l
n=1

n

o0 oo
a(n)z" — z Z
-

hAa

M8 I M8

=0
a(n)z" =(1-2) Z a(n)z™ = (1 — 2)hq(2).
0 n=0

n=0

We have thus proved (4.1), of which the final claim about zeros is an immediate
consequence. Now we prove that x(a) # 1 implies k(Aa) = k(a).

Since being a = ZAa the power series Z a(n)z™ is the Cauchy product of
=0
the two power series Z ™ (whose radius of convergence is 1) and Z (Aa)(n)z",
from [3], III, 1.6, we conclude that k(a) > 1 A k(Aa). Then if /@(a) < 1, it fol-
lows that 1 A k(Aa) = k(Aa), and consequently, x(a) > k(Aa), which in turn gives
k(a) = k(Aa). Finally, we suppose k(a) > 1. Then 1 € Dy (,) C Dyaq). Now we
define the holomorphic function
h
: Dpaay \ {1} 3 2> f“(z) ecC.
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From (4.1) it follows that ¢(z) = ha(z) for every z € D, \ {1}. Since h, is
holomorphic in D,.i(a), we conclude that ¢ has a removable singularity at 1. Since

in turn he(z) = Z a(n)z" for every z € D, (,), we derive that the series Z a(n)z"

n=0 =0
converges for every z € D, (aq), Which gives r(a) > x(Aa). Hence R(Aa) = k(a),
which finishes the proof. O

Corollary 4.5. Let a € CV. Then x(3a) < k(a) (which gives Dy sa)y C Dy(a))-
Furthermore, we have:

(i) if k(a) < 1, then k(Xa) = k(a);
(ii) if k(a) > 1, then k(Xa) coincides either with 1 or with x(a).

Hence k(Xa) > 1 A k(a) (which gives Dy, sq) 2 Dipg(a))- Finally,

ha(2)
1—2

(4.2) hsa(2) = for every z € D50y \ {1},
and consequently, h, and hs, have exactly the same zeros in D, (s, \ {1}; in par-
ticular, they have exacly the same zeros in Dipy(a)-

Proof. Since a = AXa, the inequality x(¥a) < x(a) (which yields D xq) C
D,;(a)) follows from Lemma 4.4. From Lemma 4.4 we also derive that x(a) > x(Xa)
implies k(Xa) = 1. This in turn gives (i) and (ii), from which we derive that x(Xa) >
1Ak(a) (and consequently D, (sq) 2 Diax(a))- Finally, (4.2) is a consequence of (4.1).

O

Remark 4.6. Let a € CV. Proceeding by induction, from Lemma 4.4 we derive
that for each p € N we have k(APa) > k(a), and consequently, D) € Dy(ara)-
Furthermore, if x(a) # 1, it follows that xK(APa) = k(a) for every p € N. If k(a) =1,
we either have k(APa) = 1 for every p € N, or there exists pg € Z4 such that
Kk(APoa) > 1 and

1 forp=0,...,p0—1,
k(APa) =
(4%) {R(Apoa) for p e Ny, .

Also, from Corollary 4.5 we derive that for each p € N we have x(¥Pa) < k(a),
and consequently, Dy (srq) € Dy (q). Furthermore, if x(a) < 1, then x(XPa) = k(a)
for every p € N. If, instead, x(a) > 1, then either x(¥Pa) = k(a) for every p € N, or
there exists pg € Z4 such that

k(a) forp=0,....,p90—1,
(sray = { " ’
1 for p € Ny, .
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Hence, in any case (namely, whatever is the value of k(a)), we have k(XPa) > 1Ak(a)
for every p € N.
Finally, by virtue of Lemma 4.4 and Corollary 4.5, for each p € N we have

hara(z) = (1 — 2)ha(z) for every z € D,y

and
ha(2)

(1-2)"

Hence, hq, hare and hsp, have exactly the same zeros in Diak(a)-

hspa(z) = for every z € Dyyswa) \ {1} 2 Dian(a)-

Remark 4.7. If s: N — R is a nondecreasing sequence of strictly positive
real numbers, since liminf {/s(n) > 1 (see Remark 3.3), it follows that x(s) < 1.
n—oo

Furthermore, we have

k(s) =1 & limsup {/s(n) =1 & lim {/s(n) =1,

n—00 n—co

in which case the domain D,y of hs is the open unit disk D.

Theorem 4.8. Let X be a complex nonzero Banach space, T € L(X), and
s: N — R be a nondecreasing sequence of strictly positive real numbers such that

lim {/s(n) =1 and the holomorphic function hs has no zeros in D. If the sequence
n—oo

(Zn: (As)(n — k)Tk/s(n)) is bounded in L(X), then r(T) < 1.
k=0 neN

(oo}
Proof. Let R denote the radius of convergence of the power series >  z"T" in
n=0

. . nnl/n .
L(X). Since nh_>ngo I ||L(X) = r(T), it follows that

)

R 1/r(T) ifr(T)>0
RS if 7(T) =0
Hence, R € (0, o0], which gives D # (). Let ®: D — L(X) be the analytic function
defined by
o)
D(z) = Z 2"T"  for every z € Dp.
n=0

Notice that ®(z) = (1/2)Rr(1/z) for every z € Dy \ {0}. Now let M € (0,00) be

such that
Sor_o(As)(n — k)T*
s(n)

< M for every n € N.
L(X)
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Then

n 1/n

Z(As)(n — k)T

k=0 L(X)

< lim MY"/s(n) =1.

n—oo

lim sup
n—roo

o0 n

Hence, the power series > 2" ( > (As)(n—k‘)T’“) in L(X) has radius of convergence
n=0 k=0

greater than or equal to 1, and consequently converges in L(X) for every z € D. Let

U: D — L(X) be the analytic function defined by

U(z) = i 2" (zn:(As)(n — k)T’“) for every z € D.

n=0 k=0

Since 1i_>m V/s(n) = 1, from Lemma 4.4 it follows that xk(As) > k(s) = 1, and
n—oo

consequently, Dy as) 2 D. We remark that
has(2)®(z) = Z 2" (Z(As)(n - k;)Tk) =U(z) forevery z€ DN Dg.
n=0 k=0

Since hag has no zeros in D by Lemma 4.4, it follows that

1
- hAS(Z)

U(z) for every z € DN Dp.

(4.3) D 2T = 2(2)

Since the function from D into L(X) which maps each z € D into (1/has(2))¥(z)
is analytic in D, being so both has and ¥, from (4.3) we conclude that the power

o0
series > z™T™ converges in L(X) for every z € D. Hence R > 1, which in turn
n=0
gives r(T') < 1. The proof is now complete. O
We are now going to address the first problem introduced at the beginning of
this section. That is, if for a bounded linear operator 7' on a complex nonzero
Banach space X, and a nondecreasing sequence s of strictly positive real numbers
satisfying all the hypotheses stated in Theorem 2.6 except lim [|T"(; y)/s(n) =0,
n— oo
the sequence of the Norlund means of the powers of T' induced by s converges in L(X),
can we conclude that 7(T') < 1?7 As we shall see, the answer to this question is in
the negative.

Definition 4.9. For each n € N let 7,,: CV — CM be the linear operator de-
fined by
0 fork=0,...,n

for every a € CV.
a(k) for ke Npyq

(Tna) (k) = {
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Notice that k(7,a) = k(a) for every n € N and every a € CV.
In the next result we give a formula—which will be useful to us in the sequel—for
A™7,a, where m € Z, n € N.

Lemma 4.10. Let a € CV. Then for each n € N and each m € 7, we have
0 fork=0,...,n,
k—n m j
—1)k—n—J - AJ-1 :
Aty - | S (.7 )@
fork=n+1,...,n+m,
(A™a) (k) for k € Npjppmt1.

Proof. We proceed by induction on m. Fixn € N, and let S,, denote the set of all
positive integers m for which the desired formula holds. We begin by remarking that

0 for k=0,...,n,
(4.4) (Arpa)(k) =< a(n+1) fork=n+1,
(Aa)(k) for k € Nyyo.
Since
(ngjn(—w‘"*”‘”‘j ( L ) (A a)(n + j)
= (n+1)—n—j ’

= ([T A a4 = @)+ ) = an+ ),

j=1

from (4.4) we conclude that 1 € S,,.
Now let m € S,,. We prove that m + 1 € S,,. From the inductive hypothesis it
follows that

(4.5) (A™ M 1a) (k) = (A(A™7,0)) (k) =0 for k=0,...,n.
Furthermore,

(4.6) (A™Hr,a)(n + 1)

1 .
_ mo_ N\(n _ =i fm=] =14\ (n .
- @ nan ) =3 (1) (727 )@ o)
=a(n = - _yyi (Mt Ita)(n+j
=aln+1) =321 ("))
(n+1)—mn _
= 2 1)<"+”“((nrf1+)1_nj_])w1a>(n+j>.
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We also remark that for each k € N satisfying n + 2 < k < n + m, we have

(4.7) (A™ M 1,a) (k)
= (A"7a)(k) — (A" 1ha)(k — 1)

S o (M Y

p k—n—j

1
k—n—1

S (T et

-—n—j—1

=3 o (e 2T @ e )+ A5
k—n .

_ k—n—j m+1 J j— .

-3 (r 2 )@ o),

In addition,

(4.8) (A" ra)(n+m+1)
= (A"ma)(n+m+1) — (A™7,a)(n +m)

—(@ma)(n 1) = 30 (0" () A a0+ )

- (et (T @ )

@9 @minam =3 0 (T T e a0 )
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fork=n+1,...,n+m+ 1. Finally, from the inductive hypothesis we derive that

(4.10) (A" 1.a) (k) = (A™7ha) (k) — (A™7a)(k — 1)
= (A™a)(k) — (A™a)(k — 1)
= (A™*a)(k) for every k € N,y yo.

Now it suffices to observe that (4.5), (4.9) and (4.10) yield m + 1 € S,,, which
completes the proof. O

Remark 4.11. Let s: N — R be a sequence of strictly positive real num-
bers such that x(s) € (0,00]. Then hs(0) = s(0) > 0. Indeed, we have hs(t) =

> s(n)t™ > 0 for every t € [0,x(s)). Hence, any zero zo of hs must belong to
n=0

Do) \ [0, 5(s)).

Theorem 4.12. Let s: N — R be a nondecreasing sequence of strictly positive

real numbers such that lim s(n+1)/s(n) =1, lim s(n) = co and A"s is bounded
n— o0 n—r00

for some r € Z, and let zo € D be such that hs(z9) = 0. Then zy # 0 and

lim (i (As)(n = k) - 2™) /s(n) = 0.

n—o00 \;_

Proof. First of all, we observe that x(s) = 1, and consequently the domain
of hy is D (see Theorem 2.8 and Remark 4.7). From Remark 4.11 it follows
that zp # 0 (indeed, zp € D \ [0,1)). Also, from Lemma 4.4 it follows that
k(As) > 1 (and consequently Dyas) 2 D 3 zp), and has(20) = 0. We prove that

n
lim (z (As)(n — k) - zo_k)/s(n) =0.

Let M € [0,00) be such that |(A”s)(n)| < M for every n € N. We begin by
remarking that for each n € N we have x(7,As) = k(As) > 1 (from which we derive

that the domain of h,, as contains D), and besides,

L SRR S (A (e
(4.11) kZ:O(A Y(n — k) x = - — =
_ D h—o(As)(k)zh — has(z0) _ a1 (As)(k)zg
hTﬂ,As(ZO)

20
If r = 1, we have |As(n)| < M for every n € N. Then from (4.11) we conclude that

Shoo(As)(n—k) 2" | [ Sioo(As)(n—k) 2" [ 32,0 (As)(k)25)|

s(n) s(n) |20]™5(n)

438



k k
< Z:inﬂ |(As)(K)|]zo] < M(Zl?;nﬂ |20 )
h |z0|™s(n) h |z0|™s(n)

M |z|" M|z| 1

[20["(1 = [z0)s(nn) 1= [z0] s(n) n-ree

(as nh—>néo s(n) = 00), which gives the desired result.
Now suppose 7 € Nj. For each n € N, by virtue of Remark 4.6 we have
k(A" 1, As) > k(1,As) = 1 (which places zp in the domain of har-1,, A, being
2o € D); besides, from (4.11), Remark 4.6 and Lemma 4.10 we derive that

- 1
Z(As n— -
k=0 0

__hras(z) (0= 20)" " e, as(20)

zy 20 (1 — zo)rfl
_ hA"*lTnAS(ZO) _ _ZIiinJrl(AT_lT"AS)(k)Z(I)€
20 (1 — zo)r*1 20 (1 — zo)r*1
o (02 D ) A s)(n )2+ 0 (A7) (k)=
25 (1—20)"" ,

and consequently,

| 0T (DM (AT s) (n+ ) 26 + 3, (A7) (k)26 |
|20]"]1 = 20"~ "s(n)

T (A7 >< Mzl Srinia (S5 a0 1(ATs)(n + 5)]) 20|

[20]"[1 = 20| "s(n) l20["[1 = 20| "s(n)

MYzt el SR (DI (e s)(n 4 5)) 20l
7zl "1 — 20" ts(n) 11— 2" s(n)
- Mz 20l Sy (X7 () (A ) (n+ )) 20 ™
(1= 201 — 20" 's(n) 11— 20| s(n)
- Mz 20l S5t (A7) (n+ )| Sy (7 7) 2™
T oDl — o s() 11— 2o s(n)
- M|z 20 Y021 1(ATs)(n + ) Shzo ? () 2o
(1= z0))1 — 20" 's(n) 11— 2" s(n)
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- -1 ; . i—1 —1—j r—1—j k
M|z N |20 32021 (AT s)(n+ )z 30027 ("7 77) |20l

(1= Jz0])[1 = 20" "s(n) |1 — 20" s(n)

M|z|" 1 B = 1 |(ATs)(n + )|
=30 — > |20l (1 + |z0)) e
(1= |21 — 2" " 8(n) " |12 " s(n

Since lim s(n) = oo, we conclude that
n—oo
M|zo|" 1

im P =0.
00 (1 = |z0[)[1 = 20| 5(n)

(4.13)
Furthermore, since li_>m s(n+1)/s(n) =1, it follows that
n o0

k

S ey =1 forevery ke Z4

(see [2], 6.5). Hence

(As)n+j) _ (AIs)n+5) sin+) S
(4.14) ORIy ) 0 forj=1..,r—1L

Now (4.13)—(4.14) together with (4.12) yield lim (Z (As)(n — k) - zgk) /s(n) =0,
. n—oo k=0
which completes the proof. ([

Corollary 4.13. Let s: N — R be a nondecreasing sequence of strictly positive
real numbers such that nlgngo s(n+1)/s(n) =1, nlgngo s(n) = oo and A's is bounded
for some r € 74, and let zg € D be such that hs(z9) = 0. Then 0 < |z| < 1.
Furthermore, for each complex nonzero Banach space X,

Sheo(B8)(n = k) (2 I)* Orx) in L(X),

s(n) n—oo

and consequently there exists T' € L(X) such that the sequence

(=55

converges in L(X), and r(T) = 1/|z0| > 1.
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Proof. First of all, we recall that 0 < |z] < 1 (see Theorem 4.12, or Re-
mark 4.11). Now let X be a complex nonzero Banach space. Since for each n € N
we have

Sh_o(As)(n — k) (25 ' Ix)* _ S o(As)(n —k) - 2" I
s(n) s(n) ’

from Theorem 4.12 it follows that (Z (As)(n — k)(zo_llx)k)/s(n) — O in
E—0 n—oo
L(X). Now, in order to obtain the final claim of the corollary, it suffices to set

T =2"Ix. 0

Notice that if the sequence ((zn:(As)(n—k)(/\IX)k>/s(n)> N (where X is
k=0 ne

a complex nonzero Banach space, A € C\ {1}, and s is a nondecreasing sequence of
strictly positive real numbers satisfying lim inf s(n + 1)/s(n) = 1) converges in L(X),
then it must converge to Or(x), by virt%zogf Theorem 3.2. Indeed, for T' = Ay,
being A # 1 we have 1 € o(T'), and consequently, the projection of X onto N (Ix —T)
along R(Ix — T') coincides with Or(x).

Remark 4.14. Let a € CV. It is easily seen that if A"a is bounded for some
r € N, then AFq is bounded for every k € N,.. Also, proceeding by induction on 7
(and using (2.1)), it is not difficult to verify that if |(A"a)(n)| < M for every n € N
and for some r € N, M € [0,00), then |a(n)| < M(™!") for every n € N, and
consequently, H(a) < r < oo.

A sufficient condition in order that A"a be bounded for some r € N is that A%a € 4
for some ¢ € N: indeed, A% € [y clearly yields A% bounded; actually, if ¢ € Z,
then A9"lq = ¥ A%, being convergent, is also bounded, and consequently, A¥q is
bounded for every £ € N,_;. We remark that the converse is not true. Indeed,
if A"a is bounded for some r € N, there may exist no ¢ € N for which A%q € I;:
an example—with r = 1—is the divergent strictly increasing sequence s of strictly
positive real numbers of Example 3.6 (see also Remark 3.7). Hence, Example 3.6
does not only show how in Theorem 2.6 the assumption that A%s € [; for some
g € N2 cannot be replaced by H(s) < co: actually, it cannot even be replaced by the
assumption that A”s be bounded for some r € 7.

By virtue of Corollary 4.13 and Remark 4.14, in order to conclude that the answer
to the question we have posed at the beginning of this section is in the negative,
it suffices to show that there exists a nondecreasing sequence s of strictly positive
real numbers such that lim s(n) = oo, lim s(n+1)/s(n) = 1, A%s € Iy for some

n— oo n—oo
q € Ny, and hs(z9) = 0 for some zg € D. This is what we are going to do in the
following example.
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Example 4.15. Let s: N — R be the sequence of strictly positive real numbers

defined by
3n+1
s(n) = =

We remark that s is strictly increasing. Furthermore, we have

for every n € N.

1
% for n =0, 3 for n =0,
(415)  (As)m) =1 and  (A%8)(n) =1 forp =1,
— f Z
5 lorn&lfy 0 forneNs.

Hence A%s € I; (and As is bounded). We also observe that lim s(n) = oo and

n—o0

nl;rgo s(n+1)/s(n) = 1, which gives s(s) = 1 (and consequently D, = D) by
Theorem 2.8. Finally, we prove that hs(zo) = 0 for some zg € D.

From (4.15) it follows that r(A%s) = co. Furthermore, for each z € C we have
hazs(z) = 3 + z. Hence hazs(—2) = 0, which gives hs(—3) = 0 by Lemma 4.4.

Example 4.15 together with Corollary 4.13 shows that convergence in L(X) of the
n
sequence ((Z (As)(n — k)Tk)/s(n)) y where X is a complex nonzero Banach
k=0 ne

space, T' € L(X), and s is a nondecreasing sequence of strictly positive real numbers,
satisfying all the hypotheses of Theorem 2.6 except lim [T} x/s(n) = 0, does
n— oo

not imply r(T") < 1. Also, Example 4.15 and Corollary 4.13 show that the hypothesis
about hs having no zeros in D cannot be removed from Theorem 4.8.
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