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Abstract. We consider a new family of recurrence sequences, the (g, k)-generalized Fi-
bonacci numbers. These sequences naturally extend the well-known sequences of k-genera-
lized Fibonacci numbers and generalized k-order Pell numbers. Further, we obtain the
Binet formula and study the asymptotic behavior of the dominant root of the characteristic
equation. The proof methods exploit pairs of characteristic polynomials which allow several
auxiliary results.
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1. INTRODUCTION

The study of recurrence sequences has implications in many areas such as Dio-
phantine equations, combinatorial problems and others [3], [4], [6], [7], [8], [11], [16].
For instance, the Fibonacci sequence and its generalizations have been widely stud-
ied due to interesting results obtained by the Fibonacci recursion, Binet formula,
generating function and matrix methods [9], [10], [11], [14], [15], [16].

The Fibonacci numbers have been generalized in a variety of ways, some of which
are reviewed below. The aim of this paper is to define and prove properties of
a new family of generalized recurrence sequences. For integers k > 2 and g > 3, the
(g, k)-generalized Fibonacci numbers are defined recursively by

(1.1) FR =qf®) 4 FY 4+ FR  vnz2
with initial conditions Fq(’ki)(kﬁ) = F;i)(k73) =...= Fq(ff)) =0 and Fq(ﬁ) =
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When ¢ =1 and &k = 2 in (1.1), we have the well-known sequence of Fibonacci
numbers (F),)n>0 defined recursively by F,,11 = F, + F,,_1 with initial conditions
Fy = 0 and F; = 1. The Fibonacci sequence appears in The Online Encyclopedia
of Integers Sequences, OEIS, [18], A000045 and has been studied and generalized by
many authors [9], [11], [12], [16], [17].

When ¢ =2 and k = 2 in (1.1), we obtain the Pell numbers [18], A000129, defined
recursively by

(12) P,=2P, 1+ P, 2 Yn=>=2,

with initial conditions Py = 0 and P, = 1, see [9], [12].
When ¢ =1 and k& > 2 in (1.1), we obtain the k-generalized Fibonacci sequences
defined recursively by

(1.3) FW=F® + 4+ F®  vnx2
with initial conditions Fy&d) = Fﬁk()kf:s) = ... = Fék) = 0 and Fl(k) =1,

see [10], [14]. For example, when k = 3, we obtain the Tribonacci numbers that ap-
pear in OEIS [18], A000073. Moreover, for k = 4 we get the Tetranacci numbers [18],
A000078.

For integers ¢ > 2 and k = 2 in (1.1), we get

(14) Fq’n = qF, n—1+ F, n—2 Vn > 2,

with initial conditions Fy, o = 0 and Fj, 1 = 1, see [9], [12]. For example, when ¢ = 3
and ¢ = 4, this sequence appears in OEIS [18], A006190 and A001076.

Moreover, when ¢ = 2 and k > 3 in (1.1), we obtain the sequences of order-k Pell
numbers recursively defined by

(1.5) p® =2P® 1 PM, 4+ PP yn>2
with initial conditions Pfk()kﬁ) = Pfk()kﬁg) =...= Pék) =0 and Pl(k) =1, see [5], [6].

For example, the case k = 3 appears in OEIS [18], A077939.

Reference [6] presents some combinatorial interpretations for (1.5), while [5] de-
termines the Binet formula for these sequences. Moreover, several results are proved
about the asymptotic behavior of the dominant roots of their characteristic polyno-
mials.

The generating function for (1.1) is given by

T

far(x) =Y Fifla" =

S l—gr—a22—... —zF
= qr — T T
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In the case ¢ = 3, the first terms of (1.1) are given by

ED"3 4 5 6 7 8 9 10
2 10 33 109 360 1189 3927 12970 42837
3 10 34 115 389 1316 4452 15061 50951
4 10 34 116 395 1345 4580 15596 53108
5 10 34 116 396 1351 4609 15724 53644

while for ¢ =4 in (1.1) we get:

n

k 3 4 5 6 7 8 9 10
2 17 72 305 1292 5473 23184 98209 416020
3 17 73 313 1342 5754 24671 105780 453545
4 17 73 314 1350 5804 24953 107280 461227
5 17 73 314 1351 5812 25003 107562 462728

Importantly, some of these sequences do not appear in OEIS, for example when ¢ = 4
and k = 3.

The main goal of this paper is to generalize the results on asymptotic behavior
presented in [5] to the sequences defined by (1.1). We have the following main
theorem that is proved in Section 3.

Theorem 1.1 (Main theorem). With the notations of (1.1) we have

(a)

k
(1.6) FR =" gon(ri) Vn>—(k—2),
i=1
where 1,72, - ..,k are roots of the characteristic polynomial ®, 1, (t), given by
(1.7) By p(t) =th —qth~ 1 —tF=2 -t -1,
and
z—1
1.8 = .
(18) 90k () = G — (g DR ¥ (q = D= 1)
(b)
(k) n 1
(19) |Fq,n - gq,k(W)W | < E Vn > _(k - 2))
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where «y = ~y; is the dominant root of ®, 1 (t). Moreover,
—1 2
(1.10) A2 < 'y"_l(—q . ) < Fq(’jl) < 7”_1(—(]—; ) <A

for alln > 1.

2. PROOF METHOD

We would like to note that the cases ¢ = 1 and ¢ = 2 of Theorem 1.1 were proved
in [10] and [5], respectively. Thus, for the rest of the paper let

(2.1) q>3.
To study (1.1), we consider (1.7) and the auxiliary function
(2.2) hgi(t) = (t — 1)@qi(t) =" — (g + 1)t* + (¢ — 1)t ' + 1.

The technique of considering characteristic polynomials and auxiliary functions is
similar to those found in [5], [10], [13]. Since @ x(t) divides hqx(t), we obtain the
first identity involving (1.1), given by the following theorem.

Theorem 2.1. For all integer k > 2 we have

(2.3) F® = (q+1)FY | —(q-1DEX , —F" Vn > 3.

i gn—1" q,n—2 qn—k—1

Proof. Indeed, since (Fq(kn)) is a linear recurrence of order k with the char-
acteristic polynomial @, (t) and @, () divides the auxiliary function hyx(t), we
deduce that (Fq(];)) is also a linear recurrence of order k + 1 with the characteristic
polynomial hg (). This completes the proof. O

Theorem 2.1 motivates considering the following recursive sequences, which give
us an alternative way to compute Fq(kyz Let (Ugn)n>1 be the sequence given by

Ugn = (@ 4+ DUgn—1 — (¢ = 1)Ugn—2 Vn >3,

with U, 1 =1 and Uy 2 = ¢; these sequences are considered in [1]. The Binet formula

for (Ugn)n>1 is given by

((¢=3)+va*>—2q+5)af +(B—q) ++/a*> —2¢+5)8;

2(¢ - 1)\/¢® -2 +5 ’

Ugn =
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where o, and 3, are the roots of
(2.4) 2 —(g+Dt+(g—1)=0

given by

(@+1)+Va*—2¢+5 (¢+1)—Va*—2¢+5
(2.5) g = 5 and [y = 5

For future reference, we note that
(2.6) g<a;<g+1 and 0<p,<1.
We similarly define the sequence (V; ,)n>1 by
Van =@+ DVgn-1 —(@=1)Vgn—2 Vn =3,

with V51 = 1 and Vg2 = ¢+ 1. There are important relationships between these
sequences and (1.1). For example, we have that Fq(kn) < Uy for all m > 1. More
generally, we have the following theorem.

Theorem 2.2. For all integers k > 2 we have

F®) =Upn V1<n<k+1,

and
n—k—1

F{l) = Uygn — Z Vq,jF;ﬁl),k,j Vn>k+2.
j=1

Proof. The proof of the first identity is an immediate consequence of Theo-
rem 2.1, and the second identity may be proven inductively using (2.3) for n. Since
this proof is completely analogous to the proof of Theorem 2.2 in [5], its details are
omitted. O

In the next sections, in order to prove the Main Theorem, we determine the Binet
formula and study the asymptotic behavior of the dominant root of (1.1).
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3. PROOF OF MAIN THEOREM — PART (A)

3.1. Binet formula. Kalman in [14] proved that if (uy),>0 is a linear recurrence
sequence of order k > 2 satisfying the recurrence

Untk = Ck—1Untk—1 + Ck—2Untk—2 + ... + ClUny1 + CoUnp V1N =0,

with initial condition ug = u1 = ... = ugp_o = 0 and uyp_1 = 1, where cg,c1,...,Cp_1
are constants, then

o
Up = Y —A—
! = FPrled)

where P(t) = t* —c,_1t* 71 — ... —c1t — ¢y is the characteristic polynomial of (w,)n>0
and aq,ag, ..., q are the distinct roots of P(t).
. k
Taking the sequence (up)n>0 = (Fq(,,z_(k_Q))nw, we get P(t) = @qk(t). By

Brauer’s criterion [2], we have that (1.7) is irreducible over Z[t]; moreover, (1.7)
is primitive over Z[t]. Thus, by Gauss’s lemma, we conclude that (1.7) is irreducible
over Q[t]; hence, it has no repeated zeros in C. Therefore

ko mt(e=2)
(3.1) FR =25

= Pon(n)

with 41,72, ...,7% the distinct roots of (1.7). Using (2.2), we have

g,k (t)
(b(bk(t) = t(I/_]_ :
Differentiating this we get
RO 1) = ha(®)
qu(t) - (t _ 1)2 )

Using (2.2) again and noting that for each i, 1 < i < k, hqx(v:) = 0, we obtain for
each 1 <i<k

k+1DyF = (g + Dk + (g = D(k = 1)yf 2
v —1

(3-2) COES
By (3.1) and (3.2), we conclude that
k
FR =" gon(viy),
i=1

where gq4 1 is given by (1.8). This proves item (a).
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3.2. Asymptotic behavior. For integers & > 2 and n > 2 — k we define Eékﬁ as

the error of the approximation of the nth (g, k)-generalized Fibonacci number with
the dominant term of (1.6), i.e.,

(3.3) ER) = F®) — g0 r(n)y"

for v = 7, the dominant root of @, .

It follows by (3.3) that Eék,z satisfies (1.1) with Fq(]il) replaced by Eékg Moreover,
by (2.3),
—(g—1) nNeg® gk

q,n—2 qg,n—k—1"

(3.4) E®) = (¢ +1)E")

gn—1

By [19], we have that for all integer numbers a1 > a2 > ... 2 ay, = 1 with m > 2,
the polynomial

flz)y=2a™— arz™ T —ax™r — . — a1 — am

has exactly one positive real zero o with a; < o < a3 + 1 and the other m — 1 zeros
of f(x) lie in the unit circle. Thus, (1.7) has a dominant root ¢ < v < ¢ + 1 and the
other roots are in the unit circle.

Using the fact that nlLII;O |vi|™ = 0 for 2 < ¢ < k and taking into account that

k
BRI < lgantu)llvl™,
j=2

we also deduce that

(3.5) lim |EX)| = 0.

n—oo
Lemma 3.1. Let v(I) and (k) be the dominant roots of ®,,;(t) and @, (t),
respectively. Then
(i) for I > k we have that (1) > v(k);
(ii)
1
0y <1 - q_k> < (k) < aq4.

In particular,

lim (k) = aq.

k—o0
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Proof. For the proof of item (i), we proceed by contradiction. Let us assume
that (k) > ~v(I). Thus, v(k)~% < v(I)~% holds for all i > 1. Taking into account
that @, ,(v(k)) = 0, we get

and the same conclusion remains valid for (). Since k < [, we have that

1= 2 4 1 ]
(k) (k)2 v(k)k
S B TS S SIS S
(1) ()2 YOk (kT it

which is a contradiction. Thus, we conclude that (1) > (k) and this proves item (i).
Next we prove item (ii). By (2.2), (2.4) and (2.5),

1
ag—1

(I)q’k(()éq) = > 0,

while by (1.7) and (2.1)
Pq(q) = _qk_Q - qk_3 —...—q—1<0.

Since v = 7y(k) is the only root of (1.7) bigger than 1, we obtain ¢ < v < ay.
By (2.4) and (2.5)
ag = (q+1ag+(¢—1) =0,
while by (2.2)

-1
’72—((1+1)’Y+(q—1):F~

Taking the difference of these two equations, we obtain

(g —7)(ag +7 - (g+ 1)) = 7,},1.

Since oy > v > g and (ag +7v — (¢ + 1)) > g/ay, we obtain that a; —v < agzq~F.
Hence,
> (1 ! )
Y « - )
q e
and this concludes the proof of (ii). O
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In preparation for the next lemma giving properties of g4 1, (1.8), since « is a root
of (2.4), we get
og—1

9a.k(0rg) = m~

In particular, using (2.6),

(3.6) < gg.r(ayg) <

| =

q+1

Lemma 3.2. The rational function g, ) has a vertical asymptote at

g+ DE+VE (2 —2¢+5) +4(g— 1)
(37) Cq,k ‘= Z(k—l- 1) .

Moreover, g, k() is positive, continuous, and decreasing for all x in (cq x, 00).

Proof. Since ¢qy is the largest root of the denominator of (1.8), we have that
the denominator is different from 0 in (¢qx,00). As both the numerator and the
denominator of (1.8) are positive and continuous, we conclude that (1.8) is positive
and continuous in this interval. Further,

) D=1 k=2
a8 = [k ¥ 1)a? — (¢ + Dka + (¢ — (k- D2

is negative in (cgk,00). Indeed, the denominator of g; ; is positive for all z > ¢,
and —[(k+1)(x —1)2+q+k —2] <0 for all k > 2 and = real. Hence, g, (z) is
decreasing in the same interval. (I

Taking advantage of this approach, we can prove the following technical lemma.

Lemma 3.3. Let v be the dominant root of ®, j(t). Then

1 < ()<1
q+1 9q.k\Y q-

Proof. Inorderto prove this lemma, we consider three cases. First, we consider
k = 2. In this case we have that
z—1
322 —2(q+ Dz + (g —1)°

9q,2(7) =

and 7 is the largest root of t2 — gt — 1 = 0 given by v = (q +q® + 4)/2. Therefore,
we get

1 - ()<1
q+1 g‘L2’y q'
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Second, we consider the case 3 < k < ¢. By (3.7) and (2.1),

(Q+1)+\/q2—2q+5+4k—2(q—1)<1 1 )

ok = 2 Tkl

By (2.5) and the inequality

2v/q—1
V@@ —2q+5+4k2(q—1) < \/q> —2q+5+ (2, :
we get
Vvg—1 1 q—+vq—1 1
3.8 ; —_— (1——) - -
(3.8) cq7k<(aq+ 3 1 < oy o < oy =1

On the other hand, by (2.6), we have that

1 qg+1 q+1 1
3.9 oagll——=)>a,— o > g — ————.
(3.9) q( q") gk “p 7 qlg-1)

By (3.8), (3.9) and Lemma 3.1, we conclude

1 1
Cogk < ———~ <« 1——>< < ay.
q T g —1) q< P Y q
Therefore, using Lemma 3.2 and (3.6), we get

1

3.10 —_—
( ) q+1

< ggk(g) < ggr(7) < Gypr,

where G 1, denotes g4 k(g —1/(q(q¢ — 1))). However,

1
g — ——— —
-1
G qg—1)

(k:—l—l)(aq— ﬁ)z—(q—i—l)k(aq— ﬁ) Flg-1)(k-1)

1 1
w1
qlg—-1)

agk+1)\  k(g+1) k+1
qQQ+(aq_q)_q+2(1_ Q(q—l)) da-1) " @Elg-17
By (2.5),
B Cagk+ )Y | kg+D) | k+1 1
(e q)+2(1 Q(q—1)> da-1)  @-12° q-1
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From this we derive

1

Oéq —
(3.11) G < atg 1) =

1
1 q
gl g — ———~ — 1)
( *oae-1)
Hence, by (3.10) and (3.11), we conclude that g4 x(7) < 1/¢ in this case.
Finally, we consider the case k > ¢+ 1. By (3.8),

1
k(k+1)

Cqk < Qq —

By (2.6), we get k(k + 1)a, < ¢*. Using this inequality and Lemma 3.1, we obtain

1 1
< —— < 1—— ) <v<a
Cq,k < Qq Kk + 1) O‘tI< qk> Y < Qq
Therefore, by Lemma 3.2 and (3.6) we obtain

(3.12) < gar(ag) < gar(v) < Gor,

q+1

where Gy i denotes g, (g — 1/(k(k +1))). We claim that G, < 1/g. Indeed, we
have that

1
g — 75— —1
Gyr = 1 i k(k+1) 1
1
B YT Rk
B ag\ K (g+1)+1°
oy + o =) —a-+2(1- 5) + —r
By (2.5),
ay kK2(g+1)+1 q
(O‘q_qHQ(l_?) TTReGrD R
Therefore,
gt 1
(3.13) Gor < Rk +1) _1

oo )

Hence, by (3.12) and (3.13), we obtain that g, x(v) < 1/¢, concluding the proof of
the lemma. O

q
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4. PROOF OF MAIN THEOREM — PART (B)

We first prove (1.9). By (1.1) and (3.3), we have that

E®) = —ggn(y)7"

for all 2 — k < n < 0. Suppose n = 0. By Lemma 3.3, we get

IEX| = g (7) < 1/q.

Moreover, if 2 — k <n < —1, then 4" < 'y’l <1 and

Ia k(" < ggk(v) <1/q

for all k > 2
Using Lemma 3.3, we have that v/(q + 1) < gq.5(7)y < ¥/g. Since ¢ <y < q+1,
weget 1 —1/(¢+1) < ggr(v)y <1+41/q and

where we use that Fq(kl) = 1. Hence, we obtain that |[E¥,| < 1/q.

We give a proof by contradiction. Assume to the contrary that |E(§k,)L| > 1/q for
an integer n > 2. Let ng be the smallest positive integer with this property. Since
|E(k)0 11 <1/qand |Egno—i| < 1/q, we get

(g —1)EX) |+ Eqno—k| < L.

q,no—1
By (3.4),
k k k
ES al = @+ DIEE [~ [(g-DEYS), +BS .
Hence,
k k k
EX il = B8] = al B ~ (g~ DES),  +EX >0,
implying
k
Bl > B8, |
Since ng — k + 1 < ng, we infer that
(k) (k)
|Eq,no—k+1| < |E(§k7)m| < |Eq n0+1|a
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and therefore
k k
(g — 1)E§k,10 + E( )O gl < Q|E¢§,rzo+1|'
By (3.4),

k k k
IEX ol > @+ DIES, L~ 1a—DER, +ES

and we obtain that |Eq n0+2| > |Eq n0+1|

Suppose that |E(§ky)m| < |E(k)0+1| < ... < |Er(l]§)+l 1| for an integer ¢ > 3. We
distinguish two cases according to whether ng+i—k—1<ngorng < ng+i—k—1.
First, if ng +7 — k — 1 < ng, then we get

k 1 k k)
|E;,,10+i,k,1|<q ER < |EE) << |EP

If ng<nog+i—%k—1<ng+i— 1, then we obtain that

k k
|E¢§,rzo+i—k71| < IEé,melI-

In either case, we conclude that |E(§ Tzoﬂ pe1l < | q!noﬂ 1|, implying

(k) |

k k
|( )E( ) 2 +E¢§ ZOH k— 1| < q|Eq,no+i71 )

q,no+i—

Using (3.4) again, we get

k k k k k
S =@+ DIES,, |~ 1a—1DEE L+ ES > B

k k k k

Therefore, |E(§ y)m| < |E(§ ,10+1| < ... < |E,(LO)_H 1< |E§LO)+z

Hence, we conclude that |E¢§kg| <1 / q for all integers n > 2 — k, proving (1.9).
We next prove (1.10). By (1.9),

| contradicting (3.5).

1 1
Ja (V)" — ;< FR) < gar(y)y" + 7

By Lemma 3.3, we obtain that

Hence,
,yn—2 < ,yn—l(q ; 1) < Fq(,kn) < Wn—l(q";'z) < ,yn
for all n > 1, completing the proof of (1.10) and Theorem 1.1.

Acknowledgements. The authors are grateful to the referee for their valu-
able comments about this work.
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