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Abstract. We consider a new family of recurrence sequences, the (q, k)-generalized Fi-
bonacci numbers. These sequences naturally extend the well-known sequences of k-genera-
lized Fibonacci numbers and generalized k-order Pell numbers. Further, we obtain the
Binet formula and study the asymptotic behavior of the dominant root of the characteristic
equation. The proof methods exploit pairs of characteristic polynomials which allow several
auxiliary results.
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1. Introduction

The study of recurrence sequences has implications in many areas such as Dio-

phantine equations, combinatorial problems and others [3], [4], [6], [7], [8], [11], [16].

For instance, the Fibonacci sequence and its generalizations have been widely stud-

ied due to interesting results obtained by the Fibonacci recursion, Binet formula,

generating function and matrix methods [9], [10], [11], [14], [15], [16].

The Fibonacci numbers have been generalized in a variety of ways, some of which

are reviewed below. The aim of this paper is to define and prove properties of

a new family of generalized recurrence sequences. For integers k > 2 and q > 3, the

(q, k)-generalized Fibonacci numbers are defined recursively by

(1.1) F (k)
q,n = qF

(k)
q,n−1 + F

(k)
q,n−2 + . . .+ F

(k)
q,n−k ∀n > 2,

with initial conditions F
(k)
q,−(k−2) = F

(k)
q,−(k−3) = . . . = F

(k)
q,0 = 0 and F

(k)
q,1 = 1.
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When q = 1 and k = 2 in (1.1), we have the well-known sequence of Fibonacci

numbers (Fn)n>0 defined recursively by Fn+1 = Fn + Fn−1 with initial conditions

F0 = 0 and F1 = 1. The Fibonacci sequence appears in The Online Encyclopedia

of Integers Sequences, OEIS, [18], A000045 and has been studied and generalized by

many authors [9], [11], [12], [16], [17].

When q = 2 and k = 2 in (1.1), we obtain the Pell numbers [18], A000129, defined

recursively by

(1.2) Pn = 2Pn−1 + Pn−2 ∀n > 2,

with initial conditions P0 = 0 and P1 = 1, see [9], [12].

When q = 1 and k > 2 in (1.1), we obtain the k-generalized Fibonacci sequences

defined recursively by

(1.3) F (k)
n = F

(k)
n−1 + . . .+ F

(k)
n−k ∀n > 2,

with initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = . . . = F

(k)
0 = 0 and F

(k)
1 = 1,

see [10], [14]. For example, when k = 3, we obtain the Tribonacci numbers that ap-

pear in OEIS [18], A000073. Moreover, for k = 4 we get the Tetranacci numbers [18],

A000078.

For integers q > 2 and k = 2 in (1.1), we get

(1.4) Fq,n = qFq,n−1 + Fq,n−2 ∀n > 2,

with initial conditions Fq,0 = 0 and Fq,1 = 1, see [9], [12]. For example, when q = 3

and q = 4, this sequence appears in OEIS [18], A006190 and A001076.

Moreover, when q = 2 and k > 3 in (1.1), we obtain the sequences of order-k Pell

numbers recursively defined by

(1.5) P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + . . .+ P

(k)
n−k ∀n > 2,

with initial conditions P
(k)
−(k−2) = P

(k)
−(k−3) = . . . = P

(k)
0 = 0 and P

(k)
1 = 1, see [5], [6].

For example, the case k = 3 appears in OEIS [18], A077939.

Reference [6] presents some combinatorial interpretations for (1.5), while [5] de-

termines the Binet formula for these sequences. Moreover, several results are proved

about the asymptotic behavior of the dominant roots of their characteristic polyno-

mials.

The generating function for (1.1) is given by

fq,k(x) =

∞
∑

n=0

F (k)
q,nx

n =
x

1− qx− x2 − . . .− xk
.
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In the case q = 3, the first terms of (1.1) are given by

k
n
3 4 5 6 7 8 9 10 . . .

2 10 33 109 360 1 189 3 927 12 970 42 837 . . .
3 10 34 115 389 1 316 4 452 15 061 50 951 . . .
4 10 34 116 395 1 345 4 580 15 596 53 108 . . .
5 10 34 116 396 1 351 4 609 15 724 53 644 . . .

while for q = 4 in (1.1) we get:

k
n
3 4 5 6 7 8 9 10 . . .

2 17 72 305 1 292 5 473 23 184 98 209 416 020 . . .
3 17 73 313 1 342 5 754 24 671 105 780 453 545 . . .
4 17 73 314 1 350 5 804 24 953 107 280 461 227 . . .
5 17 73 314 1 351 5 812 25 003 107 562 462 728 . . .

Importantly, some of these sequences do not appear in OEIS, for example when q = 4

and k = 3.

The main goal of this paper is to generalize the results on asymptotic behavior

presented in [5] to the sequences defined by (1.1). We have the following main

theorem that is proved in Section 3.

Theorem 1.1 (Main theorem). With the notations of (1.1) we have

(a)

(1.6) F (k)
q,n =

k
∑

i=1

gq,k(γi)γ
n
i ∀n > −(k − 2),

where γ1, γ2, . . . , γk are roots of the characteristic polynomial Φq,k(t), given by

(1.7) Φq,k(t) = tk − qtk−1 − tk−2 − . . .− t− 1,

and

(1.8) gq,k(x) :=
x− 1

(k + 1)x2 − (q + 1)kx+ (q − 1)(k − 1)
.

(b)

(1.9) |F (k)
q,n − gq,k(γ)γ

n| 6 1

q
∀n > −(k − 2),
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where γ = γ1 is the dominant root of Φq,k(t). Moreover,

(1.10) γn−2 < γn−1
(q − 1

q

)

< F (k)
q,n < γn−1

(q + 2

q

)

< γn

for all n > 1.

2. Proof method

We would like to note that the cases q = 1 and q = 2 of Theorem 1.1 were proved

in [10] and [5], respectively. Thus, for the rest of the paper let

(2.1) q > 3.

To study (1.1), we consider (1.7) and the auxiliary function

(2.2) hq,k(t) = (t− 1)Φq,k(t) = tk+1 − (q + 1)tk + (q − 1)tk−1 + 1.

The technique of considering characteristic polynomials and auxiliary functions is

similar to those found in [5], [10], [13]. Since Φq,k(t) divides hq,k(t), we obtain the

first identity involving (1.1), given by the following theorem.

Theorem 2.1. For all integer k > 2 we have

(2.3) F (k)
q,n = (q + 1)F

(k)
q,n−1 − (q − 1)F

(k)
q,n−2 − F

(k)
q,n−k−1 ∀n > 3.

P r o o f. Indeed, since (F
(k)
q,n ) is a linear recurrence of order k with the char-

acteristic polynomial Φq,k(t) and Φq,k(t) divides the auxiliary function hq,k(t), we

deduce that (F
(k)
q,n ) is also a linear recurrence of order k + 1 with the characteristic

polynomial hq,k(t). This completes the proof. �

Theorem 2.1 motivates considering the following recursive sequences, which give

us an alternative way to compute F
(k)
q,n . Let (Uq,n)n>1 be the sequence given by

Uq,n = (q + 1)Uq,n−1 − (q − 1)Uq,n−2 ∀n > 3,

with Uq,1 = 1 and Uq,2 = q; these sequences are considered in [1]. The Binet formula

for (Uq,n)n>1 is given by

Uq,n =
((q − 3) +

√

q2 − 2q + 5)αn
q + ((3− q) +

√

q2 − 2q + 5)βn
q

2(q − 1)
√

q2 − 2q + 5
,
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where αq and βq are the roots of

(2.4) t2 − (q + 1)t+ (q − 1) = 0

given by

(2.5) αq =
(q + 1) +

√

q2 − 2q + 5

2
and βq =

(q + 1)−
√

q2 − 2q + 5

2
.

For future reference, we note that

(2.6) q < αq < q + 1 and 0 < βq < 1.

We similarly define the sequence (Vq,n)n>1 by

Vq,n = (q + 1)Vq,n−1 − (q − 1)Vq,n−2 ∀n > 3,

with Vq,1 = 1 and Vq,2 = q + 1. There are important relationships between these

sequences and (1.1). For example, we have that F
(k)
q,n 6 Uq,n for all n > 1. More

generally, we have the following theorem.

Theorem 2.2. For all integers k > 2 we have

F (k)
q,n = Uq,n ∀ 1 6 n 6 k + 1,

and

F (k)
q,n = Uq,n −

n−k−1
∑

j=1

Vq,jF
(k)
q,n−k−j ∀n > k + 2.

P r o o f. The proof of the first identity is an immediate consequence of Theo-

rem 2.1, and the second identity may be proven inductively using (2.3) for n. Since

this proof is completely analogous to the proof of Theorem 2.2 in [5], its details are

omitted. �

In the next sections, in order to prove the Main Theorem, we determine the Binet

formula and study the asymptotic behavior of the dominant root of (1.1).
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3. Proof of main theorem – part (a)

3.1. Binet formula. Kalman in [14] proved that if (un)n>0 is a linear recurrence

sequence of order k > 2 satisfying the recurrence

un+k = ck−1un+k−1 + ck−2un+k−2 + . . .+ c1un+1 + c0un ∀n > 0,

with initial condition u0 = u1 = . . . = uk−2 = 0 and uk−1 = 1, where c0, c1, . . . , ck−1

are constants, then

un =

k
∑

i=1

αn
i

P ′(αi)
,

where P (t) = tk−ck−1t
k−1− . . .−c1t−c0 is the characteristic polynomial of (un)n>0

and α1, α2, . . . , αk are the distinct roots of P (t).

Taking the sequence (un)n>0 = (F
(k)
q,n−(k−2))n>0, we get P (t) = Φq,k(t). By

Brauer’s criterion [2], we have that (1.7) is irreducible over Z[t]; moreover, (1.7)

is primitive over Z[t]. Thus, by Gauss’s lemma, we conclude that (1.7) is irreducible

over Q[t]; hence, it has no repeated zeros in C. Therefore

(3.1) F (k)
q,n =

k
∑

i=1

γ
n+(k−2)
i

Φ′

q,k(γi)

with γ1, γ2, . . . , γk the distinct roots of (1.7). Using (2.2), we have

Φq,k(t) =
hq,k(t)

t− 1
.

Differentiating this we get

Φ′

q,k(t) =
h′

q,k(t)(t− 1)− hq,k(t)

(t− 1)2
.

Using (2.2) again and noting that for each i, 1 6 i 6 k, hq,k(γi) = 0, we obtain for

each 1 6 i 6 k

(3.2) Φ′

q,k(γi) =
(k + 1)γk

i − (q + 1)kγk−1
i + (q − 1)(k − 1)γk−2

i

γi − 1
.

By (3.1) and (3.2), we conclude that

F (k)
q,n =

k
∑

i=1

gq,k(γi)γ
n
i ,

where gq,k is given by (1.8). This proves item (a).
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3.2. Asymptotic behavior. For integers k > 2 and n > 2− k we define E
(k)
q,n as

the error of the approximation of the nth (q, k)-generalized Fibonacci number with

the dominant term of (1.6), i.e.,

(3.3) E(k)
q,n = F (k)

q,n − gq,k(γ)γ
n

for γ = γ1 the dominant root of Φq,k.

It follows by (3.3) that E
(k)
q,n satisfies (1.1) with F

(k)
q,n replaced by E

(k)
q,n. Moreover,

by (2.3),

(3.4) E(k)
q,n = (q + 1)E

(k)
q,n−1 − (q − 1)E

(k)
q,n−2 − E

(k)
q,n−k−1.

By [19], we have that for all integer numbers a1 > a2 > . . . > am > 1 with m > 2,

the polynomial

f(x) = xm − a1x
m−1 − a2x

m−2 − . . .− a1x− am

has exactly one positive real zero α with a1 < α < a1 + 1 and the other m− 1 zeros

of f(x) lie in the unit circle. Thus, (1.7) has a dominant root q < γ < q + 1 and the

other roots are in the unit circle.

Using the fact that lim
n→∞

|γi|n = 0 for 2 6 i 6 k and taking into account that

|E(k)
q,n| 6

k
∑

j=2

|gq,k(γj)||γj |n,

we also deduce that

(3.5) lim
n→∞

|E(k)
q,n| = 0.

Lemma 3.1. Let γ(l) and γ(k) be the dominant roots of Φq,l(t) and Φq,k(t),

respectively. Then

(i) for l > k we have that γ(l) > γ(k);

(ii)

αq

(

1− 1

qk

)

< γ(k) < αq.

In particular,

lim
k→∞

γ(k) = αq.
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P r o o f. For the proof of item (i), we proceed by contradiction. Let us assume

that γ(k) > γ(l). Thus, γ(k)−i 6 γ(l)−i holds for all i > 1. Taking into account

that Φq,k(γ(k)) = 0, we get

γ(k)k = qγ(k)k−1 + γ(k)k−2 + . . .+ γ(k) + 1,

and the same conclusion remains valid for γ(l). Since k < l, we have that

1 =
q

γ(k)
+

1

γ(k)2
+ . . .+

1

γ(k)k

<
q

γ(l)
+

1

γ(l)2
+ . . .+

1

γ(l)k
+

1

γ(l)k+1
+ . . .+

1

γ(l)l
= 1,

which is a contradiction. Thus, we conclude that γ(l) > γ(k) and this proves item (i).

Next we prove item (ii). By (2.2), (2.4) and (2.5),

Φq,k(αq) =
1

αq − 1
> 0,

while by (1.7) and (2.1)

Φq,k(q) = −qk−2 − qk−3 − . . .− q − 1 < 0.

Since γ = γ(k) is the only root of (1.7) bigger than 1, we obtain q < γ < αq.

By (2.4) and (2.5)

α2
q − (q + 1)αq + (q − 1) = 0,

while by (2.2)

γ2 − (q + 1)γ + (q − 1) =
−1

γk−1
.

Taking the difference of these two equations, we obtain

(αq − γ)(αq + γ − (q + 1)) =
1

γk−1
.

Since αq > γ > q and (αq + γ − (q + 1)) > q/αq, we obtain that αq − γ < αqq
−k.

Hence,

γ > αq

(

1− 1

qk

)

,

and this concludes the proof of (ii). �
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In preparation for the next lemma giving properties of gq,k, (1.8), since αq is a root

of (2.4), we get

gq,k(αq) =
αq − 1

α2
q − (q − 1)

.

In particular, using (2.6),

(3.6)
1

q + 1
< gq,k(αq) <

1

q
.

Lemma 3.2. The rational function gq,k has a vertical asymptote at

(3.7) cq,k :=
(q + 1)k +

√

k2(q2 − 2q + 5) + 4(q − 1)

2(k + 1)
.

Moreover, gq,k(x) is positive, continuous, and decreasing for all x in (cq,k,∞).

P r o o f. Since cq,k is the largest root of the denominator of (1.8), we have that

the denominator is different from 0 in (cq,k,∞). As both the numerator and the

denominator of (1.8) are positive and continuous, we conclude that (1.8) is positive

and continuous in this interval. Further,

g′q,k(x) =
−[(k + 1)(x− 1)2 + q + k − 2]

[(k + 1)x2 − (q + 1)kx+ (q − 1)(k − 1)]2

is negative in (cq,k,∞). Indeed, the denominator of g′q,k is positive for all x > cq,k
and −[(k + 1)(x − 1)2 + q + k − 2] < 0 for all k > 2 and x real. Hence, gq,k(x) is

decreasing in the same interval. �

Taking advantage of this approach, we can prove the following technical lemma.

Lemma 3.3. Let γ be the dominant root of Φq,k(t). Then

1

q + 1
< gq,k(γ) <

1

q
.

P r o o f. In order to prove this lemma, we consider three cases. First, we consider

k = 2. In this case we have that

gq,2(x) =
x− 1

3x2 − 2(q + 1)x+ (q − 1)
,

and γ is the largest root of t2 − qt− 1 = 0 given by γ =
(

q+
√

q2 + 4
)

/2. Therefore,

we get
1

q + 1
< gq,2(γ) <

1

q
.
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Second, we consider the case 3 6 k 6 q. By (3.7) and (2.1),

cq,k =
(q + 1) +

√

q2 − 2q + 5 + 4k−2(q − 1)

2

(

1− 1

k + 1

)

.

By (2.5) and the inequality

√

q2 − 2q + 5 + 4k−2(q − 1) <
√

q2 − 2q + 5 +
2
√
q − 1

k
,

we get

(3.8) cq,k <

(

αq +

√
q − 1

k

)

(

1− 1

k + 1

)

< αq −
q −√

q − 1

k + 1
< αq −

1

q(q − 1)
.

On the other hand, by (2.6), we have that

(3.9) αq

(

1− 1

qk

)

> αq −
q + 1

qk
> αq −

q + 1

q3
> αq −

1

q(q − 1)
.

By (3.8), (3.9) and Lemma 3.1, we conclude

cq,k < αq −
1

q(q − 1)
< αq

(

1− 1

qk

)

< γ < αq.

Therefore, using Lemma 3.2 and (3.6), we get

(3.10)
1

q + 1
< gq,k(αq) < gq,k(γ) < Gq,k,

where Gq,k denotes gq,k(αq − 1/(q(q − 1))). However,

Gq,k =

αq −
1

q(q − 1)
− 1

(k + 1)

(

αq −
1

q(q − 1)

)2

− (q + 1)k

(

αq −
1

q(q − 1)

)

+ (q − 1)(k − 1)

=

αq −
1

q(q − 1)
− 1

qαq + (αq − q)− q + 2

(

1− αq(k + 1)

q(q − 1)

)

+
k(q + 1)

q(q − 1)
+

k + 1

q2(q − 1)2

.

By (2.5),

(αq − q) + 2

(

1− αq(k + 1)

q(q − 1)

)

+
k(q + 1)

q(q − 1)
+

k + 1

q2(q − 1)2
> − 1

q − 1
.
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From this we derive

(3.11) Gq,k <

αq −
1

q(q − 1)
− 1

q

(

αq −
1

q(q − 1)
− 1

) =
1

q
.

Hence, by (3.10) and (3.11), we conclude that gq,k(γ) < 1/q in this case.

Finally, we consider the case k > q + 1. By (3.8),

cq,k < αq −
1

k(k + 1)
.

By (2.6), we get k(k + 1)αq < qk. Using this inequality and Lemma 3.1, we obtain

cq,k < αq −
1

k(k + 1)
< αq

(

1− 1

qk

)

< γ < αq.

Therefore, by Lemma 3.2 and (3.6) we obtain

(3.12)
1

q + 1
< gq,k(αq) < gq,k(γ) < Gq,k,

where Gq,k denotes gq,k(αq − 1/(k(k + 1))). We claim that Gq,k < 1/q. Indeed, we

have that

Gq,k =

αq −
1

k(k + 1)
− 1

(k + 1)

(

αq −
1

k(k + 1)

)2

− (q + 1)k

(

αq −
1

k(k + 1)

)

+ (q − 1)(k − 1)

=

αq −
1

k(k + 1)
− 1

qαq + (αq − q)− q + 2
(

1− αq

k

)

+
k2(q + 1) + 1

k2(k + 1)

.

By (2.5),

(αq − q) + 2
(

1− αq

k

)

+
k2(q + 1) + 1

k2(k + 1)
> − q

k(k + 1)
.

Therefore,

(3.13) Gq,k <

αq −
1

k(k + 1)
− 1

q

(

αq −
1

k(k + 1)
− 1

) =
1

q
.

Hence, by (3.12) and (3.13), we obtain that gq,k(γ) < 1/q, concluding the proof of

the lemma. �
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4. Proof of main theorem – part (b)

We first prove (1.9). By (1.1) and (3.3), we have that

E(k)
q,n = −gq,k(γ)γ

n

for all 2− k 6 n 6 0. Suppose n = 0. By Lemma 3.3, we get

|E(k)
q,0 | = gq,k(γ) < 1/q.

Moreover, if 2− k 6 n 6 −1, then γn 6 γ−1 < 1 and

gq,k(γ)γ
n
6 gq,k(γ) < 1/q

for all k > 2.

Using Lemma 3.3, we have that γ/(q + 1) < gq,k(γ)γ < γ/q. Since q < γ < q + 1,

we get 1− 1/(q + 1) < gq,k(γ)γ < 1 + 1/q and

−1

q
< F

(k)
q,1 − gq,k(γ)γ <

1

q + 1
,

where we use that F
(k)
q,1 = 1. Hence, we obtain that |Ek

q,1| < 1/q.

We give a proof by contradiction. Assume to the contrary that |E(k)
q,n| > 1/q for

an integer n > 2. Let n0 be the smallest positive integer with this property. Since

|E(k)
q,n0−1| < 1/q and |Eq,n0−k| < 1/q, we get

|(q − 1)E
(k)
q,n0−1 + Eq,n0−k| < 1.

By (3.4),

|E(k)
q,n0+1| > (q + 1)|E(k)

q,n0
| − |(q − 1)E

(k)
q,n0−1 + E

(k)
q,n0−k|.

Hence,

|E(k)
q,n0+1| − |E(k)

q,n0
| > q|E(k)

q,n0
| − |(q − 1)E

(k)
q,n0−1 + E

(k)
q,n0−k| > 0,

implying

|E(k)
q,n0+1| > |E(k)

q,n0
|.

Since n0 − k + 1 < n0, we infer that

|E(k)
q,n0−k+1| 6

1

q
< |E(k)

q,n0
| < |E(k)

q,n0+1|,
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and therefore

|(q − 1)E(k)
q,n0

+ E
(k)
q,n0−k+1| < q|E(k)

q,n0+1|.
By (3.4),

|E(k)
q,n0+2| > (q + 1)|E(k)

q,n0+1| − |(q − 1)E(k)
q,n0

+ E
(k)
q,n0−k+1|,

and we obtain that |E(k)
q,n0+2| > |E(k)

q,n0+1|.
Suppose that |E(k)

q,n0
| < |E(k)

q,n0+1| < . . . < |E(k)
n0+i−1| for an integer i > 3. We

distinguish two cases according to whether n0+ i−k− 1 < n0 or n0 6 n0+ i−k− 1.

First, if n0 + i− k − 1 < n0, then we get

|E(k)
q,n0+i−k−1| <

1

q
6 |E(k)

q,n0
| < |E(k)

q,n0+1| < . . . < |E(k)
n0+i−1|.

If n0 6 n0 + i− k − 1 < n0 + i − 1, then we obtain that

|E(k)
q,n0+i−k−1| < |E(k)

q,n0+i−1|.

In either case, we conclude that |E(k)
q,n0+i−k−1| < |E(k)

q,n0+i−1|, implying

|(q − 1)E
(k)
q,n0+i−2 + E

(k)
q,n0+i−k−1| < q|E(k)

q,n0+i−1|.

Using (3.4) again, we get

|E(k)
q,n0+i| > (q + 1)|E(k)

n0+i−1| − |(q − 1)E
(k)
q,n0+i−2 + E

(k)
q,n0+i−k−1| > |E(k)

q,n0+i−1|.

Therefore, |E(k)
q,n0

| < |E(k)
q,n0+1| < . . . < |E(k)

n0+i−1| < |E(k)
n0+i| contradicting (3.5).

Hence, we conclude that |E(k)
q,n| < 1/q for all integers n > 2− k, proving (1.9).

We next prove (1.10). By (1.9),

gq,k(γ)γ
n − 1

q
< F (k)

q,n < gq,k(γ)γ
n +

1

q
.

By Lemma 3.3, we obtain that

γn

q + 1
− 1

q
< F (k)

q,n <
γn

q
+

1

q
.

Hence,

γn−2 < γn−1
(q − 1

q

)

< F (k)
q,n < γn−1

(q + 2

q

)

< γn

for all n > 1, completing the proof of (1.10) and Theorem 1.1.

A c k n ow l e d g em e n t s. The authors are grateful to the referee for their valu-

able comments about this work.
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