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ON THE NUMBER OF ITERATIONS IN THE
ALTERNATING METHOD FOR INTEGER MATRICES
IN MAX-ALGEBRA

Bojana Stojčetović

The Alternating Method in max-algebra is an efficient approach for solving two-sided max-
linear systems of the form A ⊗ x = B ⊗ y, where A, B are matrices and x, y are vectors
of compatible sizes. This iterative procedure typically begins with a randomly chosen initial
vector. In the case when matrices A and B are integer matrices and one is finite while the
other has at least one finite element in each row and in each column, and provided that the
initial vector is also an integer vector, an upper bound on the number of iterations can be
determined. This paper proposes starting the Alternating Method with a vector selected based
on the matrix elements of Ã = (−A⊤) ⊗ A, where A is a finite matrix of the given system,
instead of using a randomly selected vector. This choice of initial vector aims to minimize
the number of iterations in the Alternating Method. We have proved that, with the proposed
choice of initial vector, the number of iterations is bounded above by the expression containing
the maximum element of matrix Ã. From this statement, we derive additional conclusions
regarding this bound. Finally, we compare the number of iterations in the Alternating Method
when it starts from a randomly chosen vector versus when it starts from the vector we propose
in this study.

Keywords: max-algebra, Alternating Method, two-sided systems, integer matrices

Classification: 15A80, 15A24

1. INTRODUCTION

Max-algebra is an analogue of linear algebra developed over the set R = R ∪ {−∞},
equipped with two binary operations that we call max-algebraic addition (⊕) and max-
algebraic multiplication (⊗), respectively. The structure (R,⊕,⊗) is a (commutative
idempotent) semiring.

Throughout this paper, when we say “max-algebra” we mean “max-plus algebra”.
Also, some authors refer to max-algebra as “extremal algebra” [30], “path algebra” [11]
or “schedule algebra” [21]. “Tropical algebra” has recently been used as a common
synonym for “max-algebra”, though distinctions may still apply depending on context.

DOI: 10.14736/kyb-2025-5-0595

http://doi.org/10.14736/kyb-2025-5-0595


596 B. STOJČETOVIĆ

The development of max-algebra began with the papers of R. A. Cuninghame-Green
[17], B.A. Carre [11], N.N. Vorobyov [30], M. Gondran and M. Minoux, [22], B. Giffler
[21], and others. To date, a substantial body of literature has addressed this topic. For
detailed treatments of max-algebra, see [1, 5, 9, 14, 16].

The strong interest in max-algebra stems from the fact that it allows nonlinear prob-
lems to be viewed and solved using linear-like operations. Its applications are numerous,
like, for example, in discrete event systems, scheduling problems, synchronization prob-
lems, traffic light control, and transportation, among others (see [4, 12, 19, 20, 23]).

From the very beginning of the development of max-algebra, those questions that
are the main ones in the conventional linear algebra were considered: solving systems of
equations and inequalities, linear independence, the problem of eigenvalues and eigen-
vectors, dimension and rank of matrices, among other properties.

When it comes to max-algebraic systems of equations and inequalities, these systems
arise in practical applications. In this regard, let us consider the following two motiva-
tional examples, the first of which is the Multi-Machine Interactive Production Process
(MMIPP) [18] and which is the basis for other models.

Example 1.1. Let n machines take part in the production of m products Pi, i = 1,m,
by producing components. We start from the assumption that each of the n machines
can work on all products simultaneously and that all actions on a machine start as soon
as it starts working. Let aij be the time required for the jth machine to produce a
component for product Pi (i = 1,m, j = 1, n). Denote by xj starting time of machine
j. Then, product Pi will be ready at time

max(x1 + ai1, . . . , xn + ain).

If b1, . . . , bm are target completion times, then we come to the system of equations

max(x1 + ai1, . . . , xn + ain) = bi, i = 1,m.

Using the notation a⊕ b = max {a, b} and a⊗ b = a+ b for a, b ∈ R extended to matrices
and vectors in the same way as in linear algebra, this system can be written compactly
as

A⊗ x = b, (1)

which is a one-sided max-linear system. The matrix A is called the production matrix.

The problem of solving such systems in max-algebra was considered in the earliest
published papers in this field, see [15, 17, 30, 31]. This question has also been discussed
later, for example, in [9].

Example 1.2. As part of a wider MMIPP, suppose that t other machines produce
components for products Qi, i = 1,m, and the duration and starting times are bij
and yj , respectively. The synchronization problem is to find starting times of all n + t
machines, so that each pair (Pi, Qi) is completed at the same time. The corresponding
system of equations now has the form

max(x1 + ai1, . . . , xn + ain) = max(y1 + bi1, . . . , yt + bit), i = 1,m.
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In the max-algebraic notation, we have

A⊗ x = B ⊗ y. (2)

We call such systems two-sided max-linear systems. These systems (considered, among
other papers, in [13]) can be reformulated as

A⊗ x = B ⊗ x, (3)

a two-sided systems that were studied in the papers of Butkovič, such as [6] and [7],
as well as in the later papers by the same author. The solution set of (3) is finitely
generated [8].

In [10], the Stepping Stone Method for solving systems of the form (3) was presented.
On the other hand, one of the principal methods for solving systems of the form (2)
is the Alternating Method [13]. This method typically begins with a randomly chosen
initial vector and generates sequences that converge to the (finite) solution of the given
system (if such a solution exists). Given that system (2) can be transformed into system
(3), these two methods can be compared [3].

This paper focuses on the Alternating Method.

It is shown in [13] that if A and B are integer matrices, with one being finite and
the other has at least one finite element in each row and in each column, and if the
initial vector is also an integer, then we can estimate the upper bound on the number of
iterations in the Alternating Method (for simplicity, we use the term ‘bound’ to refer to
the upper bound). Based on that estimation, this paper proposes that the Alternating
Method starts not from a randomly chosen vector, but from the vector chosen based on
the elements of the matrix Ã. This matrix is computed as the max-algebraic product of
−A⊤ and A, where A is the finite matrix of the given two-sided system. This proposal
aims to reduce the number of required iterations in the Alternating Method as much as
possible. To calculate this bound, we use the properties of the operations ⊕ and ⊗ that
apply to numbers, vectors, and matrices, without needing tools specific to max-algebra,
such as maximum cycle mean, max-algebraic eigenvalues/eigenvectors, or max-algebraic
permanent (see Sect. 1.6 in [5] for more details).

This paper is organized as follows. After this introductory section, in Section 2,
we provide the basics of max-algebra and describe the properties that are applicable
here, which will be used throughout the present study. In Section 3, we briefly describe
(one-sided and two-sided) max-linear systems. We also provide a description of the
Alternating Method, along with the corresponding algorithm. The main results are
presented in Section 4, with the key theorem being Theorem 4.1. We propose a method
for defining the initial vector in the Alternating Method, and we calculate the bound on
the number of iterations for that initial vector. Additionally, we outline the conditions
under which the number of iterations matches the bound and describe when it may be
less. Examples supporting the claims are provided at appropriate places in the text. In
the final part of the paper, in Section 5, we compare whether the Alternating Method
has a smaller bound on the number of iterations when starting with a randomly chosen
initial vector or with the vector we propose. The numerical results of this comparison
are presented and discussed in this section.
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2. PRELIMINARIES

Over the set R = R∪ {−∞}, we can define two binary operations, denoted as ⊕ and ⊗,
as follows:

a⊕ b = max {a, b} and a⊗ b = a+ b.

The structure (R,⊕,⊗) is a semiring known as max-plus algebra or simply max-algebra.
Operations ⊕ and ⊗ are called max-algebraic addition and max-algebraic multiplication,
respectively. This terminology is justified because many properties from conventional
linear algebra carry over max-algebra, if we replace “+” with “⊕” and “×” with “⊗”. In
terms of operations priority, there is no difference compared to linear algebra, i. e., max-
algebraic multiplication has higher priority than max-algebraic addition. Zero and unity,
i. e. additive and multiplicative identity for the operations ⊕ and ⊗ are elements −∞
and 0, respectively. Both max-algebraic operations are commutative and associative,
and ⊗ is distributive over ⊕, which is easy to prove. In addition, the operation ⊕ in R
is not invertible.

In the following, we will denote −∞ by ε (it will also be the notation for every vector
or matrix whose elements are all equal to −∞). Besides, we will denote by M and N
the sets {1, . . . ,m} and {1, . . . , n}, respectively, where m,n are natural numbers.

The basic max-algebraic operations are extended to matrices as follows: if A = (aij),
B = (bij) and C = (cij) are matrices of compatible sizes with entries from R, then
we write C = A ⊕ B if cij = aij ⊕ bij , for all i ∈ M , j ∈ N and C = A ⊗ B if
cij =

⊗
k(aik ⊗ bkj) = maxk(aik + bkj), for all i ∈ M , j ∈ N .

The operation ⊕, when it comes to matrices and vectors, is commutative and associative,
while⊗ is only associative. Also, for matrices A,B and C of compatible sizes, distributive
laws hold:

(A⊕B)⊗ C = A⊗ C ⊕B ⊗ C and A⊗ (B ⊕ C) = A⊗B ⊕A⊗ C. (4)

The transpose of matrix A is denoted A⊤. In addition to the transposed matrix,
the matrix A∗ = −A⊤ is also of great importance in max-algebra. This is called the
conjugate matrix [14] of A. In fact, this matrix partially replaces the role of the inverse
matrix (which does not exist in the general case in max-algebra, making many linear
algebra procedures inapplicable here). As we shall see, A∗ plays a very important role
in solving max-linear systems. It is easy to show that the max-algebraic product of
the matrix A and its conjugate matrix is a square matrix with a zero diagonal (matrix
A⊗A∗, as well as A∗⊗A, has other characteristic properties (described in [29]) that are
not essential for the purposes of this paper. Therefore, here we only state the property
that we will use: the existence of a zero diagonal in matrices A⊗A∗ and A∗ ⊗A).

Definition 2.1. The matrix A = (aij) ∈ Rm×n
is called a column (row) R−astic matrix

[15], if A does not contain a column (row) whose elements are all equal to ε, that is, if∑⊕
i∈M aij ∈ R for all j ∈ N (if

∑⊕
j∈N aij ∈ R for all i ∈ M).

In simpler terms, a matrix is column (row) R−astic if there is at least one finite
element in each column (row) of that matrix.
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Definition 2.2. The matrix A = (aij) ∈ Rm×n
is a double R−astic matrix if it has at

least one finite element in each column and row, that is, if it is both column and row
R-astic.

The matrix A is finite, if none of its elements is ε. The same holds for vectors and
scalars.

For matrices A,B ∈ Rm×n
ordering is defined pointwise:

A ≤ B ⇔ aij ≤ bij , i ∈ M, j ∈ N.

Many problems in conventional algebra are solved using inverse operations, such as
subtraction instead of addition. Since max-algebraic addition is not invertible, many
standard algebraic procedures are not applicable. To overcome this problem, we define
a dual pair of operations (⊕′,⊗′):

a⊕′ b = min {a, b} and a⊗′ b = a+ b,

for all a, b ∈ R = R ∪ {+∞}. Operations (⊕′,⊗′) are extended to matrices and vectors
in the same way as (⊕,⊗). Here, we adopt the following convention:

(−∞)⊗ (+∞) = (+∞)⊗ (−∞) = −∞

and
(−∞)⊗′ (+∞) = (+∞)⊗′ (−∞) = +∞.

3. MAX-ALGEBRAIC SYSTEMS OF EQUATIONS

A system of the form
A⊗ x = b, (5)

where A ∈ Rm×n
and b ∈ Rm

, is called a one-sided max-linear system. This system is
closely related to the corresponding max-algebraic system of inequalities:

A⊗ x ≤ b. (6)

There are two basic approaches for solving one-sided systems: combinatorial and alge-
braic.

The combinatorial method ensures that for each linear system, there exists a finite
set and a subset collection such that solvability is equivalent to a set covering condition,
while the unique solvability is equivalent to minimum set covering (see [9, 31]).

In the algebraic approach, the following relation plays a crucial role [14]: for A ∈
Rm×n

, b ∈ Rm
and x ∈ Rn

it holds

A⊗ x ≤ b ⇔ x ≤ A∗ ⊗′ b. (7)

It turns out that A∗ ⊗′ b is always a solution to the system of inequalities (6) (it is its
greatest solution), while a system of equations (5) has a solution if and only if A∗ ⊗′ b
is its solution. Due to the importance of this solution, we call it the principal solution
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[15] and denote it by x. This result can be extended to matrix equations and matrix
inequalities of more general form, that is, for A ⊗ X = B and A ⊗ X ≤ B, where

A ∈ Rm×n
, B ∈ Rm×k

and X = A∗ ⊗′ B.
A system of the form

A⊗ x⊕ c = B ⊗ x⊕ d, (8)

where A,B ∈ Rm×n
and c, d ∈ Rm

, is called a two-sided max-linear system. The solution
set of this system is finitely generated [8].

For c = d = ε, we have the system

A⊗ x = B ⊗ x, (9)

which is called homogeneous system. Otherwise, the system is non-homogeneous.

For A ∈ Rm×n
and B ∈ Rm×k

, a system of the form

A⊗ x = B ⊗ y (10)

represents a special homogeneous system called system with separated variables.
It is also important to note the following: non-homogeneous systems can be trans-

formed into homogeneous systems, and homogeneous systems can be transformed into
systems with separated variables.

3.1. Alternating Method

The Alternating Method, as presented in [13], is an algorithm for solving two-sided sys-
tems with separated variables. Without loss of generality, we assume that the matrices A
and B are double R−astic. Considering that the principal solution x plays a significant
role at one-sided systems, the idea is to use it to solve two-sided systems as well.

Therefore, in the Alternating Method, we start with a randomly chosen initial vector
x(0), calculate A⊗x(0), and then find y(0) as the principal solution for B⊗y = A⊗x(0),
i. e., y(0) = B∗ ⊗′ (A ⊗ x(0)). Next, for the obtained y(0), we calculate x(1) as the
principal solution for A ⊗ x(1) = B ⊗ y(0), then y(1) as the principal solution for
B ⊗ y(1) = A⊗ x(1), and so on. In this way, we get sequences {x(t)}∞t=0 and {y(t)}∞t=0

that converge, for any initial vector, to a final solution whenever a final solution exists.
The following presents the algorithm of the Alternating Method.

Algorithm 1 Alternating Method

Input: A ∈ Rm×n, B ∈ Rm×k
, x ∈ Rn.

Output: A solution (x, y) to A⊗ x = B ⊗ y or an indication that there is no solution.
1: r = 0, x(0) = x.
2: y = B∗ ⊗′ (A⊗ x), y(r) = y.
3: If r ≥ 1, y(r) < y(r − 1), STOP (’no solution’).
4: x = A∗ ⊗′ (B ⊗ y), x(r + 1) = x.
5: If x(r + 1) < x(r), STOP (’no solution’).
6: r = r + 1.
7: If A⊗ x = B ⊗ y, STOP.
8: Go to 2.
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In the next theorem, without loss of generality, it is assumed that A is finite and B
is double R−astic matrix.

Theorem 3.1. (Butkovič [13]) If A ∈ Zm×n, B ∈ Zm×k
and the Alternating Method

starts with x(0) ∈ Zn, then it will terminate after at most

Ω = (n− 1)(1 + x(0)∗ ⊗A∗ ⊗A⊗ x(0)) (11)

iterations.

The proof, as well as additional features of the Alternating Method, can be found
in [13].

4. CHOICE OF INITIAL VECTOR

We now present the key theorem of this paper, which establishes a method for choosing
the initial vector and determining the upper bound on the number of iterations.
As in the previous sections, we assume that A is finite and B is a double R−astic matrix.

Theorem 4.1. Let A ∈ Zm×n and B ∈ Zm×k
. If we define the initial column vector

x(0) as

x(0) = (xi(0)) =

(
max

j
{ãij}

)
, i, j ∈ N, (12)

then the number of iterations in the Alternating Method will be less than or equal to

Ω = (n− 1)

(
1 + max

i,j
{ãij}

)
, i, j ∈ N, (13)

where Ã = (ãij) = A∗ ⊗A.

P r o o f . Based on Theorem 3.1, the number of iterations in the Alternating Method

for A ∈ Zm×n, B ∈ Zm×k
and an arbitrary initial vector x(0) ∈ Zn is less than or equal

to (11). We first observe that the matrix Ã = A∗ ⊗A ∈ Rn×n, as defined in (11), has a
zero diagonal.

Let us denote T = x(0)∗ ⊗ A∗ ⊗ A ⊗ x(0) = x(0)∗ ⊗ Ã ⊗ x(0), where we define the
vector x(0) as in (12). We now prove that T ≤ maxi,j {ãij}. Considering the dimensions

of the matrix Ã and the vector x(0), it is clear that T will be an integer.
From (12), it follows that xi(0), for each i ∈ N , is the maximal element in the ith

row of Ã. Thus, xi(0) ≥ ãij , for every j ∈ N , that is:

xi(0) ≥ ãij , ⇔ −xi(0) + ãij ≤ 0, for every i, j ∈ N. (14)

Since Ã is a square matrix with a zero diagonal, all coordinates of the vector x(0) are
non-negative:

xi(0) ≥ 0, for every i ∈ N. (15)

Let x∗(0) = −x(0)⊤. Then, for each i ∈ N , the entries of x∗(0) satisfy x∗
i (0) = −xi(0).

So, from (15) we have that x∗
i (0) ≤ 0, for every i ∈ N .
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In the following, we will use the notations:

x∗
i (0) + ãij = pij , i, j ∈ N, (16)

and
max

i
{pij} = qj , j ∈ N. (17)

From (14), we obtain the following expression for pij :

pij = x∗
i (0) + ãij = −xi(0) + ãij ≤ 0, i, j ∈ N. (18)

Since all the values are non-positive, each qj is also non-positive for every j ∈ N .
Using the properties of ⊗ and the introduced notations, we have:

T = x∗(0)⊗A∗ ⊗A⊗ x(0) = x∗(0)⊗ Ã⊗ x(0) =
(
x∗(0)⊗ Ã

)
⊗ x(0)

= (max {p11, p21 . . . , pn1} , . . . ,max {p1n, p2n, . . . , pnn})⊗

x1(0)
...

xn(0)


=

(
max

i
{pi1} , . . . ,max

i
{pin}

)
⊗

x1(0)
...

xn(0)


= (q1, . . . , qn)⊗

x1(0)
...

xn(0)

 .

Given that all coordinates of the vector q are non-positive and for xi(0) (15) holds, it
follows that the iteration bound T further satisfies:

T = (q1, . . . , qn)⊗

x1(0)
...

xn(0)

 (19)

= max {q1 + x1(0), . . . , qn + xn(0)} (20)

≤ max {x1(0), . . . , xn(0)} = max
i

{xi(0)} (21)

= max
i

(
max

j
{ãij}

)
= max

i,j
{ãij} . (22)

This establishes that T ≤ maxi,j {ãij}, completing the proof. □

Given the initial vector defined in Theorem 4.1, we conclude that, in the worst case,
T equals the greatest element of the matrix Ã, although this value may be reduced de-
pending on the other elements of this matrix. However, it remains inconclusive whether
Ω would be smaller for arbitrary initial vectors (a comparison and discussion of results
is given in Section 5).
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The proposed initial vector enables the iteration bound to be calculated using only
standard max-algebraic operations, without requiring tools such as maximum cycle mean
or max-algebraic eigenvalue analysis.

Corollary 4.2. In the trivial case where A = ρ ⊗ O, with O being a matrix whose
entries are all 0 and ρ ∈ Z (observe that Ã also consists of entries equal to 0, i. e.
maxi,j {ãij} = 0), the number of iterations in the Alternating Method, with the choice
of the initial vector specified in Theorem 4.1, will be bounded by

(n− 1)(1 + 0) = n− 1.

In the nontrivial case, the smallest possible upper bound for the number of iterations is
2(n− 1), because the smallest value that maxi,j {ãij} can take is 1, since A is an integer

matrix (clearly, maxij {ãij} cannot be negative because Ã has a zero diagonal). Thus,
the number of iterations will be less than or equal to

(n− 1)(1 + 1) = 2(n− 1).

Example 4.3. Let the matrix A be given by:

A =

 1 3 5
2 −1 4
−9 4 6

 .

Then:

A∗ =

−1 −2 9
−3 1 −4
−5 −4 −6

 and Ã =

 0 13 15
3 0 5
−2 −2 0

 .

If we choose the vector x(0) as in (12), we get

x(0) =
(
15 5 0

)⊤
.

We compute:

T = x∗(0)⊗ Ã⊗ x(0) =
(
−15 −5 0

)
⊗

(
18 18 13

)⊤
= 13.

We obtained that T = 13 ≤ 15 = maxi,j {ãij}. Hence, the total number of iterations is
bounded above by

(3− 1)(1 + 13) = 28.

The following are some values of T obtained using randomly selected initial vectors:

x(0) =
(
−2 −4 3

)⊤ ⇒ T = 15;

x(0) =
(
3 9 −2

)⊤ ⇒ T = 20;

x(0) =
(
9 20 4

)⊤ ⇒ T = 31;

x(0) =
(
1 2 1

)⊤ ⇒ T = 15.

The smallest value of T is achieved when the initial vector is chosen as in (12), though
this may not generalize to all cases.
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Lemma 4.4. Let A ∈ Zm×n and B ∈ Zm×k
be given matrices. Let each column of

Ã = A∗ ⊗A contains the maximal element of some row of that matrix. If this condition
holds and the initial vector x(0) is defined as in (12), then the bound on the number of
iterations in the Alternating Method will be equal to

(n− 1)

(
1 + max

i,j
{ãij}

)
, i, j ∈ N.

P r o o f . Following the notation of Theorem 4.1, inequality (21) becomes an equality if
q is the zero vector, i. e., if qj = 0, for all j ∈ N .

The coordinates of the vector x∗(0) are the negative maxima of the rows of Ã. When
calculating the sth element of the vector q (for some s ∈ N), these coordinates are added
(i. e., max-algebraically multiplied) with the elements of the sth column of Ã. By the
condition of the lemma, each column of this matrix contains maximal element of some
row. Let ãts denote the element of the sth column that is the maximum of the tth row:
ãts = max {ãt1, ãt2, . . . , ãtn}, for some t ∈ N . However, considering (12), this implies
that

ãts = xt(0) = −x∗
t (0).

From here and from (18), for fixed index j = s ∈ N , we have:

qs = max
i

{pis} = max {p1s, . . . , pts, . . . , pns} = max {p1s, . . . , x∗
t (0) + ãts, . . . , pns}

= max {p1s, . . . ,−ãts + ãts, . . . , pns} = max {p1s, . . . , 0, . . . , pns}
= 0.

Hence, all entries of the vector q are zero in this case. This completes the proof. □

Remark 4.5. If the row-wise maximum is attained by a single element, then, since Ã
is a square matrix, in each column there will be exactly one maximal element of some
row. On the other hand, the row-wise maximum may also be attained by multiple
elements simultaneously. In such cases, when calculating the coordinates of q, within
the corresponding maximum, more than one element will be equal to zero. Nonetheless,
this does not affect the correctness of the statement or the proof.

Example 4.6. Let the matrix A be given:

A =

−1 −3 0
−2 2 1
1 0 −1

 . Then: Ã =

 0 4 3

2 0 3

2 1 0

 .

The row-wise maximal elements of the matrix Ã appear in distinct columns.

If we define the initial vector as in (12), we get

x(0) =
(
4 3 2

)⊤
.
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Now, we have:

T = x∗(0)⊗ Ã⊗ x(0) =
(
−4 −3 −2

)
⊗

0 4 3
2 0 3
2 1 0

⊗

4
3
2


=

(
0 0 0

)
⊗

4
3
2

 = 4 = max
i,j

{ãij} .

As established in Lemma 4.4, all entries of the vector q are zero in this case.

Lemma 4.4 provides a necessary condition for T < maxi,j {ãij}.

Corollary 4.7. Let the initial vector be chosen as in (12). The value of T can be smaller
than maxi,j {ãij} only if Ã has at least one column that does not contain the maximal
element of any row.

Example 4.8. The row-wise maximal elements of matrix Ã from Example 4.3 lie in the
same column, i. e., Ã has two columns that does not contain a maximal element of any
row. Since this condition holds, the value of T is less than maxi,j {ãij} in this case.

However, this condition is not sufficient: a reduction in the value of T is not guaran-
teed even if Ã has a column lacking a row-maximal element.

5. NUMERICAL RESULTS

We now compare the number of iterations in two cases: using a random initial vector
and using the proposed initial vector from (12). For this purpose, we generated 10,000
random 3× 3 matrices whose entries were taken from three different intervals to ensure
statistically reliable results. For each matrix A(i), i ∈ [1, 10, 000], we generated 10
random vectors, calculated the bound on the number of iterations for each of those
vectors, and then compared the obtained results with the bound we got for the vector
chosen as proposed in this paper.

Here, we present results for the first 10 matrices and 10 corresponding random vectors,
whose entries are from [−10, 10]. In the table below, A(i) denotes randomly generated
matrices, where i = 1, 10. With Ω(i, j) we denote the value of Ω (calculated by (11)) for

the matrix A(i) and random initial vector x
(i)
j (0), j = 1, 10:

Ω(i, j) = (n− 1)
(
1 +

(
x
(i)
j (0)

)∗
⊗ (A(i))

∗ ⊗A(i)⊗
(
x
(i)
j (0)

))
= 2

(
1 +

(
x
(i)
j (0)

)∗
⊗ Ã(i)⊗

(
x
(i)
j (0)

))
,

for all i = 1, 10 and j = 1, 10. The initial vector from (12) will be denoted by x(0), and
the corresponding bound for that initial vector will be denoted by Ω(i):

Ω(i) = 2
(
1 + x(0)∗ ⊗ (A(i))

∗ ⊗A(i)⊗ x(0)
)
, for every i ∈ N. (23)
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To calculate the bound Ω(i, j) we apply formula (11) (we have no other option in the
case of random initial vector); from the other side, if we choose initial vector like in (12),
we can calculate Ω(i) not only by (11), but also by (13). However, as shown in Section 4
(Corollary 4.7), substituting the proposed vector into (11) can produce a smaller bound
than the one obtained via (13). Therefore, here we have used (11) to compute Ω(i).

In the following, “best (better) result” refers to the smallest (smaller) bound on the
number of iterations.
R1 denotes the number of random vectors for which x(0) yields a better result. R2 equals
1 if x(0) outperforms more than half of the 10 random vectors; otherwise, it equals 0.
R3 equals 1 if x(0) produces the best result among all random vectors; otherwise, 0.
R4 equals 1 if x(0) gives the second-best result (i. e., better than 9 out of 10 random
vectors); otherwise, 0.

Tab. 1. Representation of results for the first 10 randomly generated

matrices.

In the table below, R2′, R3′ and R4′ denote the total number of ones observed for
R2, R3 and R4, respectively. Total values obtained from 10,000 matrices are:

[−5, 5] [−10, 10] [−100, 100] Percentage
R2′ 9860 9912 9939 99%
R3′ 3067 3832 4497 38%
R4′ 2780 2714 2620 27%

Tab. 2. Total obtained values for 10, 000 matrices.
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From the results presented, we conclude that the proposed initial vector yields better
performance in 99% of the cases. According to R3, the percentage of cases where the
proposed vector gives the best result is 38%, and the percentage that it gives the second
best result is 27%. Hence, the percentage that the solution obtained for the proposed
vector choice will be the best or second best solution is 65%.

Therefore, the obtained results support our choice of the initial vector, increasing the
likelihood that the bound on the number of iterations in the Alternating Method will
be minimized.

CONCLUSIONS

In this study, we proposed a vector with which the Alternating Method should start,
and we determined an upper bound on the number of iterations for that initial vector.
We then compared the upper bound for random initial vectors with the upper bound
for the initial vector we proposed. The obtained results justify our choice of the initial
vector. As a continuation of this work, future research could compare the exact number
of iterations (and not just the upper bound) after which the Alternating Method for
random vectors and for the vector proposed here ends.
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