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A PROJECTION-FREE DYNAMICS
FOR NONSMOOTH COMPOSITE OPTIMIZATION

Wei Ni, Yangfan Qiu, and Yanyan Xiao

This paper proposes a projection-free primal-dual dynamics for the nonsmooth composite
optimization problems with equality and inequality constraints. To deal with optimization
constraints, this paper departs from the use of gradient projection method, but resorts to
the idea of mirror descent to design a continuous-time smooth optimization dynamics which
advantageously leads to easier convergence analysis and more efficient numerical simulation.
Also, the strategy of proximal augmented Lagrangian (PAL) is extended to incorporate general
convex equality-inequality constraints and the strong convexity-concavity of the primal-dual
variables is achieved, ensuring exponential convergence of the resulting algorithm. Furthermore,
the convergence result in this paper extends existing exponential convergence which either takes
no account of constraints or considers only affine linear constraints, and it also enhances existing
asymptotic convergence under convex constraints which unfortunately depends on the complex
gradient projection scheme.

Keywords: composite optimization, proximal augmented Lagrangian, projection-free

Classification: 90C25, 90C30, 90C90

1. INTRODUCTION

Composite optimization with nonsmooth regularization has been a topic of a large
amount of research. This problem consists in minimizing the sum of a differentiable
function f(x) and a possibly nonsmooth one φ(Tx), with the latter being a composition
of an extended-valued function φ with a linear operator T . A prominent example is the
empirical risk minimization with nonsmooth regularization as parameter choice rule in
deep neural network [44]. As another example, the typical signal processing problem
of restoration of a continuous signal from its digital counterparts is tackled by solving
an optimization problem known as the lasso [65] which is a specific case of the problem
considered in this paper. Applications in other fields include inverse problem [7], statis-
tical estimation [10], and control [46]. Due to the presence of the nondifferentiable part
φ in the objective function, classical gradient based optimization algorithms, such as
gradient descent, conjugate gradient, and Newton methods, cannot be directly applied.
To tackle non-smoothness, a direct research line is the nonsmooth optimization method,
including subgradient method [62], stochastic approximation [50] and bundle method
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[47], but the convergence is very slow. As a parallel, the smooth optimization method
[52] replaces the nonsmooth component with smooth approximations parameterized by
a positive parameter and then resorts to smooth optimization routines; however, as the
parameter approaches zero, the problem becomes increasingly involved. A breakthrough
was made via proximal operator in a series of milestone papers which do not require
explicit gradient [7, 14, 60, 66]. In these methods, the smooth part of the objective
function is processed by evaluation of its gradient operator, while a nonsmooth part
is handled via its Moreau proximal operator [49], resulting in iterations of the form
x+ ∈ proxγψ(T (x))(x − γ∇f(x)) for some suitable stepsize γ. Proximal method can be
derived from operator splitting techniques (see Douglas [27], Passty [55] and Bruck [17])
which find their roots in the works of Browder [16] and Minty [48], and now it is devel-
oped in the more general setting of maximal monotone operators [1]. The more recent
work by Combettes and Wajs [23] provides important insights into the proximal method
and has popularized the method for a wide audience. Nowdays the proximal method
becomes an important part of convex analysis, optimization, and nonlinear functional
analysis.

The above proximal method involves the proximal calculation with respect to the
composite function φ ◦ T which is however difficult to evaluate for general case. To
overcome this, a frequently used technique is the variable splitting which constructs a
new variable y to serve as the argument of φ and imposes additional constraint y = Tx.
Then this constrained optimization problem can be tackled by using an augmented
Lagrangian (AL†) method [54] originally due to Hestenes [39] and Powell [56] and by
designing corresponding primal-dual algorithms [4]. The AL here extends the classical
Lagrangian by including an extra quadratic term, without changing the optimal solu-
tion but facilitating the proximal operator to be used here. The proximal version of
this method is earlier developed by Rockafellar [60] and its connection to alternating
direction of multiplier method is recently explored by Boyd [14], followed by a burst of
research activities in subsequent years. Note that the AL function mentioned above still
contains a nondifferentiable term and thus precludes the standard strategy of gradient
descent on primal variables and gradient ascent on dual variables. To conquer the non-
differentiablity in the traditional AL, Dhingra et al. [24] recently propose a new kind
of differentiable Lagrangian, called PAL, which is obtained by taking infimum over the
AL with respect to the primal variable of the nonsmooth function. Compared with the
AL in [54], a coming advantage of the PAL is that it is continuously differentiable on
both primal and dual variables so that direct primal-dual dynamics can be applied on
the PAL.

With the help of PAL, the original optimization problem is transformed into the
computation of the saddle point of this PAL, and various formulations of primal-dual
dynamics have been explored in the literature with focus on investigating asymptotic
or exponential convergence under different conditions [25, 28, 32, 33, 37, 41, 64]. In a
broader view, ever since von Neumann’s celebrated min-max theorem [53], the problem of

†For convenience, other acronyms defined in this paper are also summarized here:

AL: augmented Lagrangian, PAL: proximal augmented Lagrangian,
IQC: integral quadratic constraints, SCQ: Slater’s constrained qualification,
KKT: Karush-Kuhn-Tucker, LICQ: linear independence constraint qualification.
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finding a saddle point for a convex-concave function has been a major focus of disciplines
like machine learning [34], robust optimization [8], robust control [38] and game theory
[6]. For the abstract gradient descent-ascent algorithm which performs gradient descent
in convex variable and gradient ascent in concave variable, there is a vast literature
obtaining asymptotic convergence if either the convexity or concavity are strict [4, 19, 43,
63]; exponential convergence can be further ensured if strongly convex strongly concave
condition is imposed [19]. However, when specialized to the case of classical Lagrangian
which is only linear on the dual variables, exponential stability can not be obtained
directly for the primal-dual dynamics. This has also been highlighted in [68] that the
combination of general convex constraints and nonsmooth objectives poses a significant
challenge to achieving exponential stability. To prove exponential stability under extra
conditions, other routines include the contraction analysis [22] and the technique of
spectral bounds of saddle matrices [9]. In this paper, instead of building on the classical
Lagrangian but on the PAL, we develop a primal-dual optimization dynamics. Aside
from the advantage of variable splitting inherent in the PAL, we will show that the PAL
induces strong concavity on dual variable under appropriate conditions and renders the
corresponding primal-dual optimization dynamics to achieve exponential stability by
taking the method of Lyapunov function and convex analysis. Obviously, improved
upon asymptotic stability, exponential stability offers explicit convergence rate of the
optimization algorithms.

When considering constraints in the PAL method, most existing results have been
successful in proving exponential stability either for equality constraints [22, 68] or for
(affine) linear inequality constraints [2, 57]. When only asymptotic stability is required,
general convex inequality constraints can be tackled either by making use of the frame-
work of hybrid dynamical system [30] or by referring to techniques involving projection
[33, 64], where the former invokes a generalized Lasalle invariance principle developed
for hybrid systems and the latter utilizes the sophisticated nonsmooth analysis. This
generalized Lasalle invariance principle is also improved to be used for the projection
approach; see Cherukuri et al. [20, 21]. Unfortunately, both the hybrid system approach
and the projection approach would result in discontinuity of the primal-dual dynamics
and could bring difficulties in the convergence proof. To overcome this difficulty, this
paper pursues a projection free method to design a smooth primal-dual optimization dy-
namics by utilizing the technique of mirror descent [51, 58] under the general framework
of barrier operator [12]. Our method avoids projection and thus reduces the difficulties
of convergence analysis and iterative computation.

Aside from merit of yielding a smooth optimization dynamics, further advantage of
our method lies in its ability to deal with general nonlinear convex optimization con-
straints. For optimization algorithm design and corresponding exponential convergence
analysis, a popular choice is the IQC framework [29, 45] which provides linear matrix
inequality based conditions for exponential stability of the feedback interconnection of
a linear system with a nonlinearity satisfying IQC. Although the gradient mapping or
the proximal mapping individually satisfies IQC, composition of each with a nonlinear
map generally does not satisfy IQC; instead, IQC holds for compositions with affine
operations [29]. In view of this fact, most exponential convergence of PAL methods
based on IQC deals with either equality constraints [24, 36, 37, 68, 26] (which should
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be affine in decision variables in view of the convex nature of the problem) or affine
inequality constraints [5, 35], with general nonlinear convex inequality constraints not
touched. Similar situations occur in other literature; for one example in [2], the au-
thors proposed another projection-free method to deal with inequality constraints, but
only limited to affine inequality constraints and for another in [57], exponential stabil-
ity is obtained but limited only to affine inequality constraints. Our method does not
rely on IQC analysis and exponential stability can be achieved under general convex
inequality constraints. Although general convex inequality constraints are considered in
[33] and [11, 64], the former can only guarantees asymptotic convergence and the later
attains semi-globally exponential convergence. These deficiencies of asymptotic conver-
gence and semi-global exponential convergence are improved to exponential convergence
in this paper. We also note the works [2, 11, 57] which handle inequality constraints
without explicit projection. However, [2, 11, 57] replace projection-based updates with
max-based regularization (specifically algorithm (9a) – (9c) in [2], (9a) – (9b) in [57], and
(1b) in [11]), implicitly ensuring nonnegativity of the multiplier associated with inequal-
ity constraint. While this improves computational simplicity, the max operator still
makes the optimization dynamics nonsmooth in the classical sense. In contrast, our
projection-free dynamics is fully smooth, and this smooth nature enables rigorous sta-
bility certification via classical Lyapunov techniques, bypassing the need for nonsmooth
analysis tools like differential inclusions. More important, the max-based method in
[2, 57] are limited to affine inequality constraints, with no extension to general convex
inequality constraints. Our approach overcomes this limitation and extends to general
convex inequality constraints.

To summarize, this paper proposes a projection-free method for nonsmooth composite
optimization with constraints. The contributions of this paper are as follows.

• Firstly, equality and general inequality optimization constraints are taken into the
nonsmooth composite optimization problem and a projection-free optimization dy-
namics is proposed. Unlike existing projection or max based methods of dealing
with constraints which render nonsmooth optimization dynamics, the optimiza-
tion dynamics proposed in this paper is smooth, with the benefit of reducing the
difficulties of convergence analysis and iteration complexity, bypassing the need
for nonsmooth analysis tools like differential inclusions.

• Secondly, improved on the classical Lagrangian which is only linear on the dual
variable, the PAL method is adopted and it extends existing PAL method by con-
sidering optimization constraints. Strong concavity on dual variable is obtained
in this paper so that exponential stability is achieved, thereby improving upon
existing results that offer only asymptotic stability. In contrast to asymptotic sta-
bility, exponential stability provides explicit convergence rates for the optimization
algorithms.

• Lastly, the method of achieving exponential stability in this paper differs existing
IQC-based approaches that work only for equality constraints or affine inequality
constraints. our method does not rely on IQC analysis and is capable of handling
general nonlinear convex inequality constraints while still ensuring exponential
convergence, going beyond the limitations of existing IQC-based approaches.

The rest of this paper is structured as follows. Preliminaries are put in Section 2.
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Section 3 describes the nonsmooth and composite optimization problem. Section 4 is
devoted the design of the optimization dynamics and the analysis of algorithm conver-
gence. A simulation example is introduced in Section 5 and a brief conclusion is made
in Section 6.

2. PRELIMINARIES

We use Rn to denote the set of n-dimensional real-valued vectors and Rn+ those vectors
with nonnegative components. For a ∈ Rn, by a ≺ 0 (a ≼ 0) we mean that each entry
of a is less than (less than or equal to) zero. Euclidian norm of a vector is denoted
by ∥ · ∥. Letting a = (a1, . . . , an)

⊤ ∈ Rn and b = (b1, . . . , bn)
⊤ ∈ Rn, we define a ⊙ b =

(a1b1, . . . , anbn)
⊤ and a⊘ b=(a1/b1, . . . , an/bn)

⊤. For vectors α1, . . . , αm, the notation
col{αi}mi=1 denotes a new vector (α⊤

1 , . . . , α
⊤
m)⊤.

An extended value function φ : Rm → R∪{+∞} with effective domain dom(φ) ≡ {y |
φ(y) < ∞} is proper if φ(y) < +∞ for at least one y ∈ dom(φ) and φ(y) > −∞ for all

y ∈ dom(φ). A function φ : Rm → [−∞,∞] is lower semicontinuous if {φ ≤ c} ∆
= {y ∈

Rm : φ(y) ≤ c} is a closed subset of Rm for all c ∈ R. A function φ : Rm → R ∪ {+∞}
is closed if its epigraph {(y, c) ∈ Rm × R | φ(y) ≤ c} is a closed set. For a convex and
lower semicontinous function φ, its conjugate function (or Fenchel-Legendre transform)
φ∗ : R → R∪{+∞} is defined as φ∗(v) = supu∈dom(φ){uv−φ(u)}, which is also convex
and lower-semicontinuous. Clearly only those u in dom(φ) are relevant in the calculation
of this supremum.

For an extended value function φ : Rm → R ∪ {+∞}, its subdifferential at the point
y ∈ dom(φ) is denoted as ∂φ(y) = {v ∈ Ry | φ(z)− φ(y) ≥ ⟨v, z − y⟩ for all z} which is
always closed and convex for y ∈ int(domφ); if φ is convex then it is nonempty and if
φ is differentiable then ∂φ(y) = {∇φ(y)}, the usual gradient.

A differentiable function f is mf -strongly convex if for any x and x̂, f(x̂) ≥ f(x) +
⟨∇f(x), x̂ − x⟩ + mf

2 ∥x̂ − x∥22, or equivalently, ∥∇f(x̂) − ∇f(x̂)∥2 ≥ mf∥x − x̂∥2, or
equivalently,x→ f(x)− mf

2 ∥x∥2 is convex. The gradient of a continuously-differentiable
function f is Lipschitz continuous with parameter ℓf if for any x and x̂, f(x̂) ≤ f(x) +

⟨∇f(x), x̂−x⟩+ ℓf
2 ∥x̂−x∥

2
2, or equivalently, ∥∇f(x)−∇f(x̂)∥2 ≤ ℓf∥x− x̂∥2. Moreover,

if an mf -strongly convex function f has an ℓf -Lipschitz continuous gradient, then any

x and x̂ it holds ⟨∇f(x)−∇f(x̂), x− x̂⟩ ≥ mf ℓf
mf+ℓf

∥x− x̂∥22 + 1
mf+ℓf

∥∇f(x)−∇f(x̂)∥22.
We say that f is strongly concave if −f is strongly convex.

Let K ⊆ Rn+m be nonempty, closed and convex set. We say that a function φ(x, y) :
K → R is concave-convex on K if for any (x, y) ∈ K, φ (x, y) is a concave function of
y and φ(x, y) is a convex function of x. If either the concavity or convexity is always
strict, we say that is strictly concave-convex on K. For a concave-convex function
φ : Rn×Rm → R , we say that (x̄, ȳ) ∈ Rn+m is a saddle point if for all x ∈ Rn and y ∈
Rm we have the inequality φ(x, ȳ)≤φ(x̄, ȳ) ≤ φ(x̄, y). If φ is in addition continuously
differentiable, then (x̄, ȳ) is a saddle point if and only if ∇x̄φ(x̄, ȳ)=0 and ∇ȳφ(x̄, ȳ)=0.

For a non-differentiable extended value function φ : Rm → R ∪ {+∞}, its Moreau
envelope φµ is defined as

φµ(v)
∆
= min
y∈Rm

{
φ(y) +

1

2µ
∥y − v∥2

}
≤ φ(v). (2.1)
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Even though φ may not be differentiable, its Moreau envelope may be, with dom(φµ) =
Rm. We also note that φµ is convex since the function in the curly brackets is jointly
convex in (x, y) and thus the epigraph of φµ is the projection of a convex set. The
Moreau envelope φµ provides a smooth approximation of φ from below and retains the
same minimizers [61]. The minimizer of the problem (2.1) is called as the proximal
operator which is defined and calculated as follows,

Proxµφ(v) = argmin
y∈Rm

{
φ(y) +

1

2µ
∥y − v∥2

}
(2.2)

= y − µ∇φµ(y), (2.3)

where the second equality can be seen by noting that the gradient of the Moreau is

∇φµ(y) =
1

µ
[y − Proxµφ(v)].

The proximal operator expressed in the equality (2.3) can be viewed as a gradient descent
for the Moreau envelope φµ. It can also be viewed as a generalization of the notion of
Euclidean projection if one takes φ to be the indicator function of some convex set C so
that Proxµφ(y) = argminz∈C ∥y− z∥2. For some choices of φ, the corresponding Proxµφ
has well known closed forms. For example, if φ(x) = ∥x∥1, then Proxµφ = soft(y, µ),
where soft(·, µ) denotes the component-wise application of the soft-threshold function
y 7→ sign(y)max{|y|− µ, 0}. In general the proximal operator may be set-valued, but it
is scalar-valued if f(x) is proper and convex.

3. PROBLEM FORMULATION

Consider the following nonsmooth composite optimization problem with equality and
inequality constraints:

P :


minimize
x∈Rn

f(x) + φ(Tx),

subject to g(x) ≼ 0,

h(x) = 0,

(3.1a)

(3.1b)

(3.1c)

where x ∈ Rn is the decision variable, T ∈ Rm×n is a given matrix of full column rank,
f : Rn → R and φ : Rm → R∪{+∞} are proper, convex, and lower semicontinuous, with
f continuously differentiable and φ non-differentiable, g = (g1, . . . , gr)

⊤ : Rn → Rr, and
h = (h1, . . . , hs)

⊤ : Rn → Rs are respectively the inequality and the equality constraints,
with gj , j = 1, . . . , r being convex and continuously differentiable and hj , j = 1, . . . , s
being affine. This makes the optimization problem (3.1) a convex one. In the problem
(3.1), the T can represent a convolution operator for the image deconvolution problem
and represents operation of tomographic projections in the general image reconstruction
problems [3].

By introducing an auxiliary variable y
∆
= Tx and by imposing additional constraint

y = Tx, the original optimization problem (3.1) can be equivalently transformed into
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the following one

P̃ :


minimize
x∈Rn,y∈Rm

f(x) + φ(y),

subject to g(x) ≼ 0,

h(x) = 0,

Tx = y.

(3.2a)

(3.2b)

(3.2c)

(3.2d)

Clearly, (x∗, y∗) is an optimal solution to (3.2) if and only if x∗ is an optimal solution to
the original optimization (3.1). The above procedure of creating a new variable y to serve
as the argument of φ and imposing the constraint y = Tx is a standard technique called
variable splitting. As will be seen, the transformed optimization problem (3.2) is easier
to solve than the original one (3.1). The following assumptions are made throughout
this paper.

Assumption 1. The function f is α-strongly convex for some α > 0 and continuously
differentiable.

Assumption 2. The function φ is a convex and subdifferentiable function whose sub-
gradient is 1/ℓ-Lipschtz continous for some ℓ > 0; that is, for all y, ỹ ∈ Rm, it has

[d(y)− d(ỹ)]
T
(y − ỹ) ≤ 1/ℓ∥y − ỹ∥2, where d(y) ∈ ∂g(y) and d(ỹ) ∈ ∂g(ỹ).

Let (x∗, y∗) be an optimal solution to the problem (3.2). By assuming additional
assumptions on the constraint functions, called constrained qualifications, the follow-
ing Karush–Kuhn–Tucker (KKT) systems hold at the minimizer (x∗, y∗): there exist
multipliers (λ∗, λ̄∗, ¯̄λ

∗) ∈ Rr+ × Rs × Rm such that

KKT :



g(x∗) ⪯ 0,

h(x∗) = 0,

Tx∗ = y∗,

λ∗ ⪰ 0,

λ∗ ⊙ g(x∗) = 0,

∇f(x∗)+∂ϕ(y∗)+
∑r

i=1
λ∗i∇gi(x∗) +

∑s

i=1
λ̄∗i∇hi(x∗)+T⊤ ¯̄λ

∗ ∋ 0.

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

(3.3f)

A widely used constrained qualification is the Slater’s constrained qualification (SCQ):
there exist (x, y) ∈ Rn × Rm such that g(x)≺ 0, h(x)= 0 and Tx= y. In other words,

assuming SCQ, “(x∗, y∗) solves (P̃)” ⇒ “∃ a set of (λ∗, λ̄∗, ¯̄λ
∗) together with (x∗, y∗)

solving (KKT )”. Furthermore, for convex problem, this implication is bidirectional.
Refer to [13] for details. Although SCQ guarantees existence of multipliers satisfying the
KKT system (3.3), it does not ensure uniqueness. A stronger constrained qualification,
named the linear independence constraint qualification (LICQ), can achieve this goal.
Using ∇Jg(x∗) to denote the submatrix of ∇g(x∗) given by rows with indices in J(x∗)=
{i|gi (x∗)=0}, the LICQ is defined as

rank

[
∇h(x∗)
∇Jg(x∗)

]
= s+ |J(x∗)|, (3.4)
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here | · | denotes the set cardinality. By assuming LICQ, one obtains a result [67] on the
existence and uniqueness of multipliers satisfying (3.3),

“(x∗, y∗) solves (P̃)” ⇒ “∃! (λ∗ij , λ̄
∗
ij , ¯̄λ

∗
ij) together with (x∗, y∗) solving (KKT)”, (3.5)

where the notation ∃! stands for ”there exists a unique”. This direction is bidirectional
if the problem is convex. In view of above considerations, the following assumption is
made.

Assumption 3. The constraint functions in (3.2b) – (3.2c) satisfy LICQ.

4. OPTIMIZATION DYNAMICS AND CONVERGENCE ANALYSIS

This section proposes an exponentially stable primal-dual dynamical system without
using gradient projection to solve the optimization problem (3.1) or (3.2) building on
the construction of a PAL.

4.1. Design of PAL

For the optimization problem (3.2), define the following AL function

Lµ(x, y;λ, λ̄, ¯̄λ)=f(x)+φ(y)+λ⊤g(x)+λ̄
⊤h(x)+¯̄λ

⊤(Tx−y)+ 1

2µ
∥Tx−y∥2, (4.1)

where (x, y) ∈ Rn×Rm are the primal variables and (λ, λ̄, ¯̄λ) ∈ Rr+×Rs×Rm are the dual
variables. Under the LIQC conditions in Assumption 3, (x∗, y∗) is an optimal solution
to the optimization problem (3.2) if and only if there exists (λ∗, λ̄∗, ¯̄λ

∗) ∈ Rr+×Rs×Rm
such that the following saddle point inequality

Lµ(x∗, y∗;λ, λ̄, ¯̄λ) ≤ Lµ(x∗, y∗;λ∗, λ̄∗, ¯̄λ
∗) ≤ Lµ(x, y;λ∗, λ̄∗, ¯̄λ

∗) (4.2)

holds for all (x, y) ∈ Rn × Rm and (λ, λ̄, ¯̄λ) ∈ Rr+ × Rs × Rm.
The saddle point property (4.2) leads us naturally to consider designing naive primal-

dual dynamics based on the augmented Lagrangian Lµ with gradient descent on (x, y)
and gradient ascent on (λ, λ̄, ¯̄λ), with the aim to seek the optimal solution (x∗, y∗) of
the optimal problem (3.2). However, this naive primal-dual dynamics can only achieve
asymptotic stability since Lµ is only linear on (λ, λ̄, ¯̄λ); to achieve exponential stability
of primal-dual dynamics, strong concavity on (λ, λ̄, ¯̄λ) should be required. Toward this
goal, the subsequent paragraph introduces a PAL which is strongly concave in (λ, λ̄, ¯̄λ).

Note that the AL in (4.1) can be rewritten via completing of squares as

Lµ(x, y;λ, λ̄, ¯̄λ)=f(x)+φ(y)+λ⊤g(x)+λ̄
⊤h(x)+

1

2µ
∥y−(Tx+µ¯̄λ)∥2−

µ

2
∥¯̄λ∥2.

According to the proximal mapping defined in (2.2), the minimizer y∗x,¯̄λ of Lµ with
respect to y is

y∗x,¯̄λ = proxµφ(Tx+ µ¯̄λ). (4.3)
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Evaluation of Lµ(x, y;λ, λ̄, ¯̄λ) at this minimizer gives the following PAL

Lµ(x;λ, λ̄, ¯̄λ) = f(x) + φµ(Tx+ µ¯̄λ) + λ⊤g(x) + λ̄⊤h(x)− µ

2
∥¯̄λ∥2. (4.4)

By definition (2.1), this function is exactly the Moreau envelope of Lµ and thus is
continuously differentiable with respect to both x and (λ, λ̄, ¯̄λ).

The PAL was proposed in [24], but without considering optimization constraints.
When such constraints are taken into account, a recent study [68] identifies three funda-
mental challenges in extending PAL to settings with non-smooth objectives, with expo-
nential stability analysis emerging as a critical theoretical obstacle. To prove exponential
stability, the IQC framework [29, 45] provides systematic tools for exponential conver-
gence analysis via linear matrix inequalities for systems in feedback interconnections
involving linear dynamics and IQC-satisfying nonlinearities. While gradient and proxi-
mal mappings individually comply with IQC criteria, their compositions with nonlinear
operators generally violate such constraints unless combined with affine operations [29].
Consequently, existing IQC-based PAL analyses for exponential convergence predomi-
nantly address equality constraints [24, 26, 36, 37, 68] or affine inequalities [5, 35, 57],
leaving nonlinear convex inequality constraints unexplored. While some existing works
address general constraints, they either guarantee only asymptotic convergence [33] or
achieve semi-global exponential convergence [64]. To handle general optimization con-
straints while ensuring exponential convergence, we bypass the IQC framework. Instead,
we establish in the following lemma that the PAL Lµ(x;λ, λ̄, ¯̄λ) is strongly convex in the
primal variable x and strongly concave in the dual variable (λ, λ̄, ¯̄λ), a vital property for
proving exponential convergence of our optimization algorithm.

Lemma 4.1. Under Assumptions 1 and 2, the PAL defined in (4.4) is α-strongly convex

in x and
(
µℓ
µ+ℓ + 2µ

)
-strongly concave in (λ, λ̄, ¯̄λ).

P r o o f . Obviously Lµ in (4.1) is convex in (x, y) since it is a linear combination of the
convex and affine functions f(x), φ(y), g(x), h(x), Tx− y and ∥Tx− y∥2 (the convexity
of the last one can be shown by a simple calculation) with the combination coefficients
for convex functions being non-negative; furthermore, Lµ is strongly convex in x since
f(x) is strongly convex due to Assumption 1.

We now show that Lµ(x;λ, λ̄, ¯̄λ) is strongly concave in (λ, λ̄, ¯̄λ). Note

Lµ(x;λ, λ̄, ¯̄λ) = f(x) + λ⊤g(x) + λ̄⊤h(x)− µ

2
∥¯̄λ∥2

− sup
y∈Rm

{
−φ(y)− 1

2µ
∥y − (Tx+ µ¯̄λ)∥2

}
= f(x) + λ⊤g(x) + λ̄⊤h(x)− µ

2
∥¯̄λ∥2 −

1

2µ
∥Tx+ µ¯̄λ∥2

− sup
y∈Rm

{
−φ(y)− 1

2µ
∥y∥2 + y⊤(

1

µ
Tx+ ¯̄λ)

}
=f(x)+λ⊤g(x)+λ̄⊤h(x)−µ

2
∥¯̄λ∥2−

µ

2
∥Tx
µ

+¯̄λ∥2−φ̃∗(
1

µ
Tx+¯̄λ),
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where φ̃∗ is the Fenchel conjugate of the function φ̃(y) = φ(y)+ 1
2µ∥y∥

2. Noting that φ̃ is

1/µ-strongly convex, it then follows from [40, Theorem 4.2.2] that φ̃∗ is µ-smooth. Also,
in view of the 1/ℓ-Lipschtz continuous of φ assumed in Assumption 2 or equivalently the
(1/ℓ + 1/µ)-Lipschtz continuous of φ̃, one has µℓ

µ+ℓ -strong convexity of φ∗. Therefore,

φ̃∗( 1µTx+ ¯̄λ) is a
µℓ
µ+ℓ -strongly convex function of ¯̄λ. Also, both µ

2 ∥¯̄λ∥
2 and µ

2 ∥
Tx
µ + ¯̄λ∥2

are µ-strongly convex functions of ¯̄λ. Therefore, Lµ(x;λ, λ̄, ¯̄λ) is a
(
µℓ
µ+ℓ + 2µ

)
-strongly

concave function of (λ, λ̄, ¯̄λ). □

With the above lemma, we are directed toward utilizing Lµ(x;λ, λ̄, ¯̄λ) as a Lagrangian
to design corresponding primal-dual dynamics. A preliminary work should be done to
relate the optimal solution x∗ of (3.1) to the saddle point of Lµ(x;λ, λ̄, ¯̄λ). This is shown
in the following lemma.

Lemma 4.2. Consider the optimization problem (3.1) under Assumptions 1 – 3.

(1) Suppose there exists a point x∗ ∈ Rn and multipliers (λ∗, λ̄∗, ¯̄λ
∗) ∈ Rr+ ×Rs×Rm

such that

Lµ(x
∗;λ, λ̄, ¯̄λ) ≤ Lµ(x

∗, λ∗; λ̄∗, ¯̄λ
∗) ≤ Lµ(x;λ

∗, λ̄∗, ¯̄λ
∗) (4.5)

holds for all (x;λ, λ̄, ¯̄λ) ∈ Rn × Rr+ × Rs × Rm. Then x∗ is an optimal solution to
the optimization problem (3.1).

(2) Suppose x∗ ∈ Rn is an optimal solution to the optimization problem (3.1). Then
there exist (λ∗, λ̄∗, ¯̄λ

∗) ∈ Rr+ × Rs × Rm such that (4.5) holds.

P r o o f . (1) We show that (x∗, y∗;λ∗, λ̄∗, ¯̄λ
∗) with y∗ = y∗x,¯̄λ defined in (4.3) satisfies

the KKT system (3.3) so that (x∗, y∗) is an optimal solution to (3.2) and consequently
x∗ is an optimal solution to (3.1).

Firstly, we use the first inequality in (4.5), i. e.,

f(x∗) + φ(y∗x∗,¯̄λ) + λ∗⊤g(x∗) + λ̄⊤h(x∗) + ¯̄λ
⊤(Tx∗ − y∗x∗,¯̄λ) +

1

2µ
∥Tx∗ − y∗x,¯̄λ∥

2

≤ Lµ(x∗;λ∗, λ̄∗, ¯̄λ∗).

Noting that the right side of the above inequality is a constant and this inequality holds
for all λ ⪰ 0, we must have g(x∗) ⪯ 0. Similarity, this inequality holds for all λ̄ so that
one must have h(x∗) = 0. Also, this inequality holds for all λ̄, implying Tx∗ = y∗x,¯̄λ.

On the one hand, taking (λ, λ̄) = (0, λ̄∗) in the first inequality in (4.5) gives λ∗⊤g(x∗) ≥
0; on the other hand, λ∗ ⪰ 0 and g(x∗) ⪯ 0 give λ∗⊤g(x∗) ≤ 0. Therefore, g(x∗) ⪯ 0
gives λ∗⊤g(x∗) = 0.

Lastly, we prove (x∗;λ∗, λ̄∗, ¯̄λ
∗) satisfies (3.3f). With y∗ = y∗x∗,¯̄λ∗ and by referring to

the right hand side of the inequality (4.5), one has

Lµ(x∗, y∗x∗,¯̄λ∗ ;λ∗, λ̄∗, ¯̄λ
∗)

=Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗) ≤ Lµ(x;λ
∗, λ̄∗, ¯̄λ

∗) ≤ Lµ(x, y∗x,¯̄λ∗ ;λ∗, λ̄∗, ¯̄λ
∗).
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This means that x∗ is a minimizer of x → Lµ(x, y∗x,¯̄λ∗ ;λ∗, λ̄∗, ¯̄λ
∗) so that its subdiffer-

ential set includes 0. Noting that Lµ(x∗, y;λ∗, λ̄∗, ¯̄λ
∗) achieves it minimum at y∗x∗,¯̄λ∗ , its

derivative with respect to y at y∗x∗,¯̄λ∗ is zero. Now the necessary conditions for x∗ to be
a minimizer of x→ Lµ(x, y∗x,¯̄λ∗ ;λ∗, λ̄∗, ¯̄λ

∗) becomes

0=∇f(x∗)+
r∑
i=1

λ∗⊤∇gi(x∗)+
s∑
i=1

λ̄∗⊤∇hi(x∗)+T⊤ ¯̄λ
∗+

1

µ
T⊤(Tx∗−y∗x∗,¯̄λ∗) (4.6)

Also noting that y∗x∗,¯̄λ∗ is a minimizer of the function y → Lµ(x∗, y;λ∗, λ̄∗, ¯̄λ
∗), the

following optimality condition holds

∂φ(y∗x∗,¯̄λ∗)− ¯̄λ
∗ − 1

µ
(Tx∗ − y∗x∗,¯̄λ∗) ∋ 0 (4.7)

These two results (4.6) and (4.7), together with y∗x∗,¯̄λ∗ = Tx∗, give

∇f(x∗) +
r∑
i=1

λ∗⊤∇gi(x∗) +
s∑
i=1

λ̄∗⊤∇hi(x∗) + T⊤ ¯̄λ
∗p ∋ 0.

Therefore, (x∗;λ∗, λ̄∗, ¯̄λ
∗) satisfies the KKT system (3.3), implying that (x∗, y∗) is an

optimal solution of (3.2) and consequently x∗ is an optimal solution of (3.1).

(2) Suppose x∗ ∈ Rn is an optimal solution to the optimization problem (3.1) so
that (x∗, y∗) with y∗ = Tx∗ is an optimal solution to (3.2), implying the existence of
(λ∗, λ̄∗, ¯̄λ

∗) such that (x∗, y∗;λ∗, λ̄∗, ¯̄λ
∗) satisfies the KKT system (3.3). Therefore,

Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗) ≤ Lµ(x∗, y∗;λ∗, λ̄∗, ¯̄λ
∗) = f(x∗) + φ(y∗). (4.8)

On the other hand, the strong duality for the problem (3.2) implies

f(x∗) + φ(y∗)=min
x,y

{
f(x) + φ(y) + λ∗⊤g(x) + λ̄∗⊤h(x) + ¯̄λ

∗⊤(Tx− y)
}

≤ f(x) + φ(y) + λ∗⊤g(x) + λ̄∗⊤h(x) + ¯̄λ
∗⊤(Tx− y)

≤ Lµ(x;λ
∗, λ̄∗, ¯̄λ

∗). (4.9)

Combing the inequalities (4.8) and (4.9), one obtains Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗) ≤ Lµ(x;λ
∗, λ̄∗, ¯̄λ

∗)
which is the second inequality in (4.5).

To prove the first inequality in (4.5), we recall the KKT systems (3.3) and have the
following inequality

Lµ(x
∗;λ, λ̄, ¯̄λ) = f(x∗) + φ(y∗x∗,¯̄λ∗) + λ⊤g(x∗) + λ̄⊤h(x∗) + ¯̄λ

⊤(Tx∗ − y∗x∗,¯̄λ∗)

+ (1/2µ)∥Tx∗ − y∗x∗,¯̄λ∗∥2

= f(x∗) + φ(y∗x∗,¯̄λ∗)+λ∗⊤g(x∗)+λ̄∗⊤h(x∗)+¯̄λ
∗⊤(Tx∗−y∗x∗,¯̄λ∗)

+ (1/2µ)∥Tx∗ − y∗x∗,¯̄λ∗∥2

= Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗).

This completes the second part of the proof. □
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4.2. Projection-free primal-dual optimization dynamics

We are now in a position to design a primal-dual dynamics building on the PAL (4.4)
to seek the optimal solution (x∗, y∗) of the optimization problem (3.2) with exponential
convergence. This algorithm excuses gradient descent on x and gradient ascent on
(λ, λ̄, ¯̄λ). However, the gradient descent of Lµ on λ requires a projection onto the
positive quadrant to keep the resulting λ dynamics stay non-negative; more specifically,
λ̇ = [∇λLµ]+, which has a discontinuous right-hand side. In this paper, we propose
a new design procedure for this Lagrangian dynamics without using projection but
referring to mirror ascent; it comes with the advantage that the resulting dynamics is
smooth so that its convergence analysis and numerical simulations are relatively simple
compared with non-smooth projection based dynamics. More specifically, we propose the
following projection-free algorithm which, for the PAL (4.4), performs gradient descent
on the primal variable x, gradient ascent on the dual variables (λ̄, ¯̄λ), and mirror ascent
on the dual variable λ, specified as follows,

ẋ = −∇f(x)− T⊤∇φµ(Tx+ µ¯̄λ)− λ⊤∇g(x)− λ̄⊤∇h(x),
λ̇ = [λ⊘ (1 + η ⊙ λ)]⊙ g(x), λ(0) ⪰ 0,

˙̄λ = h(x),

˙̄̄λ = µ∇φµ(Tx+ µ¯̄λ)− µ¯̄λ.

(4.10a)

(4.10b)

(4.10c)

(4.10d)

Remark 4.3. Some remarks are given regarding the intuition behind the projection-free
dynamics (4.10b). Recall that the mirror descent algorithm is devoted to the constrained
minimization problem miny∈Y𭟋(y), where Y is a convex set in an Euclidian space. Let
ϕ : Y→R be a function which is strictly convex and twice differentiable. Its conjugate
convex function ϕ∗ : Y →R is defined as ϕ∗(ω) = supy∈Y{(y, ω)−ϕ(y)}, which can be
shown as convex and differentiable [59, Theorem 26.3]. Let Z = {z|z =∇ϕ(y), y ∈ Y}
be the image of Y under the mapping ∇ϕ. Then ∇ϕ : Y → Z and ∇ϕ∗ : Z → Y.
The continuous-time mirror descent algorithm for the above constrained minimization
problem takes the following form ([58, e.q. (5)]): ż=−∇𭟋(y), y=∇ϕ∗(z). The second
equation y=∇ϕ∗(z) is equivalent to z=∇ϕ(y). Taking derivative yields ż=∇2ϕ(y)ẏ.
Therefore the first equation in the mirror descent becomes ẏ = −[∇2ϕ(y)]−1∇𭟋(y).
Choosing the constraint set as Y = {y|yi ≥ 0} and ϕ(y) = η

2∥y∥
2+

∑n
i=1 yi ln yi which

is well defined on Y, the above mirror dynamics can be written as ẏ = −diag[yi/(1 +
ηyi)]

n
i=1∇𭟋(y). Letting y = λi and 𭟋(λi) be a function of λi defined as the right hand

side of equation (4.4), then the above dynamics is exactly (4.10b).

Before carrying out the convergence analysis of the algorithm (4.10), the relationship
between the equilibrium of (4.10) and the optimal solution of (3.1) is revealed in the
following lemma.

Lemma 4.4. A point (x∗;λ∗, λ̄∗, ¯̄λ
∗) ∈ Rn×Rr+ ×Rs×Rm is the equilibrium of (4.10)

if and only if x∗ is the optimal solution to the optimization problem (3.2).
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P r o o f . Suppose x∗ is an optimal solution. It follows from Lemma 4.2 that there exists
(λ∗, λ̄∗, ¯̄λ

∗) ∈ Rr+×Rs×Rm such that the saddle point inequality (4.5) holds. This implies
that at (λ∗, λ̄∗, ¯̄λ

∗) it holds ∂Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗)/∂x = 0, ∂Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗)/∂λ̄ = 0 and
∂Lµ(x

∗;λ∗, λ̄∗, ¯̄λ
∗)/∂ ¯̄λ = 0. These three equations exactly shows that the right hands of

the equations (4.10a), (4.10c), and (4.10d) vanish at (λ∗, λ̄∗, ¯̄λ
∗). The right hand of the

equation (4.10b) also takes zero value at (λ∗, λ̄∗, ¯̄λ
∗) in view of KKT subsystem (3.3e).

Therefore, (x∗;λ∗, λ̄∗, ¯̄λ
∗) is the equilibrium of (4.10).

On the other hand, letting (x∗;λ∗, λ̄∗, ¯̄λ
∗) be the equilibrium of (4.10) and inserting

it into (4.10a), (4.10c), and (4.10d), one obtains

∂Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗)

∂x
= 0, (4.11)

∂Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗)

∂λ̄
= 0, (4.12)

∂Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗)

∂ ¯̄λ
= 0. (4.13)

Recall the fact that, for a differentiable convex (concave) function F (x), a necessary and
sufficient condition for x̄ to be the minima (maxima) of F is ∇F (x̄) = 0. By using this
fact, the result (4.11) gives the minima inequality

Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗) ≤ Lµ(x, λ
∗, λ̄∗, ¯̄λ

∗), (4.14)

and the results in (4.12) – (4.13) indicates the maxima inequality Lµ(x
∗;λ∗, λ̄, ¯̄λ) ≤

Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗) with respect to (λ̄, ¯̄λ). Due to the decoupling of λ with (λ̄, ¯̄λ) in the
PAL (4.4), this inequality holds for all λ rather than only on λ∗,

Lµ(x
∗;λ, λ̄, ¯̄λ) ≤ Lµ(x

∗;λ, λ̄∗, ¯̄λ
∗). (4.15)

Inserting (x∗;λ∗, λ̄∗, ¯̄λ
∗) into (4.10b) give λ∗⊙ g(x∗) = 0; i. e., λ∗i gi(x

∗) = 0, i = 1, . . . , r.
This shows that gi(x

∗) = 0 or λ∗i = 0. The former is nothing but ∂Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗)/∂λ
= 0 so that the function λ → Lµ(x

∗;λ, λ̄∗, ¯̄λ
∗) is maximized at λ∗; the latter, together

with gi(x
∗) ≤ 0, shows that the function λ → Lµ(x

∗;λ, λ̄∗, ¯̄λ
∗) is maximized at λ∗.

Both cases indicate that

Lµ(x
∗;λ, λ̄∗, ¯̄λ

∗) ≤ Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗). (4.16)

The combination of (4.15) and (4.16) gives

Lµ(x
∗;λ, λ̄, ¯̄λ) ≤ Lµ(x

∗;λ∗, λ̄∗, ¯̄λ
∗). (4.17)

The two inequalities (4.14) and (4.17) tell us that (x∗;λ∗, λ̄∗, ¯̄λ
∗) is the saddle point

of Lµ. According to the first result in Lemma 4.2, x∗ is an optimal solution to the
optimization problem (3.2). □

With the relationship between the equilibrium of the optimization dynamics (4.10)
and the optimal solution to the problem (3.2) discovered in the above lemma, we have
the following result which proves the exponential stability of our algorithm (4.10).
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Theorem 4.5. For the optimization problem (3.2) under Assumptions 1 – 3, consider
the optimization algorithm (4.10). Then, for any trajectory of (4.10) with initial condi-
tions x(0) ∈ Rn and (λ(0), λ̄(0), ¯̄λ(0)) ∈ Rr+×Rs×Rm, the sub-trajectory x(t) converges
to the optimal solution x∗ exponentially as t→ +∞.

P r o o f . Construct a Lyapunov candidate V (x;λ, λ̄, ¯̄λ) = V1 + V2 + V3 + V4 with

V1 =
1

2
∥x− x∗∥2,

V2 =
1

2

∑r

i=1
ηi(λi − λ∗i )

2,

V3 =
∑

i∈Ω
Dψ(λi, λ

∗
i ) +

∑
i/∈Ω

(λi − λ∗i )
2,

V4 =
1

2

∑s

i=1
(λ̄i − λ̄∗i )

2 +
1

2

∑s

i=1
(¯̄λi − ¯̄λ

∗
i )

2,

where Ω = {i|λ∗i ̸=0} and Dψ(λi, λ
∗
i ) ≥ 0 is the Bregman divergence [15] between λi and

λ∗i with respect to ψ(t) = t ln t. Therefore, V ≥ 0, and also V (x;λ, λ̄, ¯̄λ) = 0 if and only
if (x;λ, λ̄, ¯̄λ) = (x∗;λ∗, λ̄∗, ¯̄λ

∗). We now use this candidate Lyapunov function to prove
exponential stability of the equilibrium (x∗;λ∗, λ̄∗, ¯̄λ

∗) of the system (4.10) by referring
to the criterion in [42, Corollary 3.4]. To this end, we will show that V is lower and
upper bounded by quadratic functions and the time derivative of V is upper bounded
by a negative quadratic function. The following two parts are the details.

(1) We first show that V can be upper and lower bounded by quadratic functions
of (x;λ, λ̄, ¯̄λ) (we only prove this for V3 since this is obvious for V1, V2, V4). For i ∈ Ω
which implies λ∗i > 0, the Bregman Dψ(λi, λ

∗
i ) can be calculated as

Dψ(λi, λ
∗
i ) = ψ(λi)− ψ(λ∗i )− ψ′(λ∗i )(λi − λ∗i ) =

1

2ςi
(λi − λ∗i )

2.

with ςi lying between λ∗i and λi. In view of λ∗i > 0 and λi → λ∗i , ςi is a positive constant.
Denoting ã = min

i∈Ω
{1/2ςi} and b̃ = max

i∈Ω
{1/2ςi}, one has ã ≤ Dψ(λi, λ

∗
i ) ≤ b̃. With this,

one can obtain the following lower and upper quadratic bounds for V3,

a∥λ− λ∗∥2 ≤
∑
j∈Ω

ã|λi − λ∗i |2 +
∑
j /∈Ω

(λj − λ∗j )
2

≤ V3 ≤
∑
j∈Ω

b̃|λi − λ∗i |2 +
∑
j /∈Ω

(λj − λ∗j )
2 ≤ b∥λ− λ∗∥2,

where a = min(ã, 1) > 0 and b = max(b̃, 1) > 0. Therefore, the function V has quadratic
lower and upper bounds.

(2) The time derivative of V along the trajectories of (4.10) is,

V̇ |(4.10) = −(x− x∗)⊤
∂Lµ

∂x
+

r∑
i=1

ηiλi(λi − λ∗i )

1 + ηiλi

∂Lµ

∂λ
+

r∑
i=1

λi
1 + ηiλi

∂Lµ

∂λ
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−
∑
i∈Ω

λ∗i
1 + ηiλi

∂Lµ

∂λ
+

s∑
i=1

(λ̄i − λ̄∗i )
∂L̄

∂λ̄
+

m∑
i=1

(¯̄λi − ¯̄λ
∗
i )
∂Lµ
∂ ¯̄λ

= −(x−x∗)⊤ ∂Lµ

∂x
+(λ−λ∗)⊤ ∂Lµ

∂λ
+(λ̄−λ̄∗)⊤ ∂Lµ

∂λ̄
+(¯̄λ− ¯̄λ

∗)⊤
∂Lµ

∂ ¯̄λ

= −(x− x∗)⊤
∂Lµ

∂x
+ (Λ− Λ∗)⊤

∂Lµ

∂Λ
,

where Λ = (λ, λ̄, ¯̄λ) and Λ∗ = (λ∗, λ̄∗, ¯̄λ
∗). Noting that Lµ(x;λ, λ̄, ¯̄λ) has been proved

in Lemma 4.1 to be strongly convex in x and strongly concave in (λ, λ̄, ¯̄λ), the above
inequality becomes

V̇ |(4.10) ≤ [Lµ(x
∗;λ, λ̄, ¯̄λ)− Lµ(x;λ, λ̄, ¯̄λ)] + [Lµ(x;λ, λ̄, ¯̄λ)− Lµ(x;λ

∗, λ̄∗, ¯̄λ
∗)]

− α∥x− x∗∥2 −
(

µℓ

µ+ ℓ
+ 2µ

)
∥Λ− Λ∗∥2. (4.18)

This shows that V̇ has minus quadratic upper bound. □

Usually, in designing algorithms for constrained optimization problem, either hard
constraints or soft constraints can be considered. In the former, the optimization con-
straints should be satisfied on the fly (e. g., the interior algorithms), while in the latter,
rather than forcing each transient state of the iterate to obey the constraints, one re-
quires the optimization constraints to be satisfied only at the asymptotic state. Since
the ultimate objective is to compute the optimal solution that satisfies the constraints,
our algorithm just follows the second line of soft constraints and therefore there is no
need in this paper to show positive feasibility for each transient state λ(t) but feasibility
for the asymptotic state of λ(t) only. This is indeed the case in view of the equilibrium
analysis in Lemma 4.4.

Remark 4.6. We note that our method is capable of achieving fully smooth dynam-
ics while handling general convex inequality constraints. In primal-dual optimization
dynamics based on the PAL framework, the multiplier λ associated with inequality
constraint must remain nonnegative. Existing methods enforce this by incorporating a
projection onto the positive quadrant [30, 33, 64], but this introduces nonsmooth dynam-
ics that complicate stability analysis. To address this, smooth alternatives have been
proposed to eliminate projection. The works [2, 11, 57] handle inequality constraints
without explicit projection, instead they replace projection-based updates with max-
based regularization (specifically algorithm (9a) – (9c) in [2], (9a) – (9b) in [57], and (1b)
in [11]), implicitly ensuring nonnegativity of the multiplier associated with inequality
constraint. While this improves computational simplicity, the max operator still makes
the optimization dynamics nonsmooth in the classical sense. In contrast, our projection-
free dynamics (4.10b) is fully smooth, and this smooth nature enables rigorous stability
certification via classical Lyapunov techniques, bypassing the need for nonsmooth anal-
ysis tools like differential inclusions. More important, the max-based method in [2, 57]
are limited to affine inequality constraints, with no extension to general convex inequal-
ity constraints. Our approach overcomes this limitation and extends to general convex
inequality constraints.
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Remark 4.7. Asides from its ability to obtain fully smooth optimization dynamics
and deal with general convex inequality constraints, our method can yield exponential
convergence rather than asymptotic convergence. As noted in [68], the combination
of general convex constraints and nonsmooth objectives poses a significant challenge
to achieving exponential stability. For instance, existing studies on general inequality
constraints typically ensure only asymptotic convergence [33] or semi-global exponential
convergence [64]. IQC is a widely used framework for exponential convergence analysis.
However, existing IQC-based approaches primarily address affine-constrained settings,
such as equality constraints [24, 26, 36, 37, 68] or affine linear inequalities [?], leav-
ing nonlinear convex inequality constraints unexamined. Similar limitations appear in
projection-free methods [2] and exponential stability analyses [57], which remain re-
stricted to affine inequalities. We do not use the IQC method, we can prove exponential
stability without assuming affine linearity assumption on inequality constraints.

Note that, in the proof of Theorem 4.5, the strong concavity of the PAL function Lµ

on (λ, λ̄, ¯̄λ) depends only on the Lipschitz continuous of φ in the sense of Assumption 2,
but not on the strong convexity of f . If the strong convexity assumption on f made in
Assumption 1 is weaken to be convex, the PAL Lµ in (4.4) is only convex on x, but still
strongly concave on (λ, λ̄, ¯̄λ). In this case, only asymptotic stability of the optimization
dynamics (4.10) can be ensured. Before presenting the result in this case, the following
assumption is given.

Assumption 1′. The function f is convex and continuously differentiable.

Theorem 4.8. For the optimization problem (3.2) under Assumptions 1′, 2 and 3,
consider the optimization algorithm (4.10). Then, for any trajectory of (4.10) with
initial conditions x(0) ∈ Rn and (λ(0), λ̄(0), ¯̄λ(0)) ∈ Rr+ × Rs × Rm, the sub-trajectory
x(t) converges to the optimal solution x∗ asymptotically as t→ +∞.

P r o o f . Consider also the Lyapunov function constructed in the proof of Theorem 4.5.
The time derivative of V calculated in (4.18) is now modified as

V̇ |(4.10) ≤ [Lµ(x
∗;λ, λ̄, ¯̄λ)− Lµ(x;λ, λ̄, ¯̄λ)]

+ [Lµ(x;λ, λ̄, ¯̄λ)− Lµ(x;λ
∗, λ̄∗, ¯̄λ

∗)]−
(

µℓ

µ+ ℓ
+ 2µ

)
∥Λ− Λ∗∥2.

≤ [Lµ(x
∗;λ, λ̄, ¯̄λ)− Lµ(x

∗;λ∗, λ̄∗, ¯̄λ
∗)]

+ [Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗)− Lµ(x;λ
∗, λ̄∗, ¯̄λ

∗)]−
(

µℓ

µ+ ℓ
+ 2µ

)
∥Λ− Λ∗∥2. (4.19)

Note that the x-related quadratic form in the right hand side of (4.18) is dropped due
to the lack of strong convexity of Lµ. Since (x∗;λ∗, λ̄∗, ¯̄λ

∗) is a saddle point of Lµ, the
two curl brackets are both nonnegative. Therefore, the right hand side of (4.19) is less
than or equal to zero. Thus V̇ ≤ 0.

We now apply the LaSalle’s invariance principle to prove the asymptotic stability;
that is, we only need to prove that V̇ = 0 implies (x;λ, λ̄, ¯̄λ) = (x∗;λ∗, λ̄∗, ¯̄λ

∗). To this
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end, letting V̇ = 0 gives Λ = Λ∗ and Lµ(x;λ
∗, λ̄∗, ¯̄λ

∗) = Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗). Noting
again Λ = Λ∗, one has

Lµ(x;λ, λ̄, ¯̄λ) = Lµ(x;λ
∗, λ̄∗, ¯̄λ

∗) = Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗) ≤ Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗),

or Lµ(x;λ, λ̄, ¯̄λ) ≤ Lµ(x;λ
∗, λ̄∗, ¯̄λ

∗) ≤ Lµ(x
∗;λ∗, λ̄∗, ¯̄λ

∗). This shows that (x;λ∗, λ̄∗, ¯̄λ
∗)

is a saddle point of Lµ and therefore x is the optimal solution of the problem (3.2) in
view of the first result in Lemma 4.2. By uniqueness of the optimal solution, we have
x = x∗. Thus, (x;λ, λ̄, ¯̄λ) = (x∗;λ∗, λ̄∗, ¯̄λ

∗). As a consequence of LaSalle’s invariance
principle, the equilibrium (x∗;λ∗, λ̄∗, ¯̄λ

∗) is asymptotically stable. □

Remark 4.9. Although small values of the regularization parameter µ would cause slow
convergence, this slowness can be alleviated via the “continuation schemes” carried out
in the following way. Firstly, given a particular parameter µ, one runs the algorithm to
obtain a solution. With this solution as the “warm-start” and taking it as the initial
state of the second round of execution of the optimization dynamics with a smaller
parameter µ, one obtains a second solution. Continuing this procedure with a sequence
of decreasing µ, the optimal solution can be computed in succession. This kind of
“continuation schemes” have been found quite effective in speeding up the algorithm
[3, 31].

5. SIMULATION EXAMPLE

As an example, we applied our algorithm to the following distributed optimization prob-
lem on a network with N nodes,

minimize
∑N
i=1 fi(x),

subject to gi(x) ≼ 0,

hi(x) = 0, i = 1, . . . , N.

(5.1)

Here x ∈ Rn is the decision variable, fi : Rn → R is the local cost function on node i,
gi = (gi1, . . . , giri)

⊤ : Rn → Rri is the inequality constrained function on node i, and
hi = (hi1, . . . , hisi)

⊤ : Rn → Rsi is the equality constrained function on node i. If there
is no constraints for agent i, one simply sets corresponding constraint functions to be
zero.

In view of large N , it is difficult for a single agent to do the optimization task.
Instead, one usually uses N agents to cooperatively solve the problem, where each agent
i executes a subtask of local optimization by only using information from agent i (i. e., the
information fi, gi, hi as well as their gradients) and those information from its neighbors
Ni. The neighboring relationship encodes the cooperation among these agents and is
described by a graph. The cooperation makes local optimization algorithms compute
the optimal solution in a consensus way. That is, letting xi ∈ Rn denote the estimation
of the optimal solution x∗ by local algorithm of agent i ∈ {1, . . . , N}, the cooperation
among these agents should be directed toward rendering x1 = x2 = . . . = xN = x∗.
Denoting respectively the graph Laplacian and incidence matrix of the graph by L and
T so that L = T⊤T , the consensus x1 = x2 = . . . = xN among agents can be enforce by
imposing the equality constraint (T ⊗ In)x = 0 with x = col(x1, . . . , xn) ∈ RnN if the
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graph is connected. By adding to the objective function in (5.1) the following penalty
function

φ(Tx) =

{
0, Tx = 0
+∞, otherwise,

(5.2)

the optimization problem (5.1) can be represented as the following form
minimize

∑N
i=1 fi(xi) + φ(Tx),

subject to gi(xi) ≼ 0,

hi(xi) = 0, i = 1, . . . , N.

(5.3)

Defining the objective function F (x) =
∑N
i=1 fi(xi) and stack constraint functions

G(x) = col[g1(x1), . . . , gN (xN )], H(x) = col[h1(x1), . . . , hN (xN )], the problem (5.3)
can be written in a compact form as

minimize F (x) + φ(Tx),

subject to G(x) ≼ 0,

H(x) = 0.

(5.4)

We now apply the algorithm (4.10) to the nonsmooth composite optimization problem
(5.4). Note that, for the function φ defined in (5.2), it is easy to show that ∇φ(y) = 1

µy.

Furthermore, corresponding to the multipliers λ and λ̄ in (4.10) for a single agent, we
use λi = (λi1, . . . , λiri)

⊤ and λ̄i = (λ̄i1, . . . , λ̄isi)
⊤ to respectively denote multipliers

corresponding to constraints gi(x) ⪯ 0 and hi(x) = 0; more specifically λij is the
multiplier for gij(x) ≤ 0 for j = 1, . . . , ri and λ̄ij is the multiplier for hij(x) = 0 for
j = 1, . . . , si. Note that if there is no inequality or equality constraint for agent i, we
simply set λi or λ̄i to be zero vector of appropriate dimension. As for the multiplier ¯̄λ
(bold lambda used here to account for multiple agents) for the constraints Tx = y in
(4.10), we introduce a new multiplier ¯̄λ

′ = T ¯̄λ with partition ¯̄λ
′ = col[¯̄λ

′
1, . . . , ¯̄λ

′
N ]. With

this new multiplier, the subequatons (4.10a) and (4.10d) have a simpler forms. More
specifically, the resulting optimization algorithm has the following distributed form

ẋi=
1

µ

∑
j∈Ni

(xj−xi)−∇fi(xi)−
ri∑
j

λij∇gij(xi)−
si∑
j

λ̄ij∇hij(xi)− ¯̄λ
′
i

λ̇ij =
λij

1 + ηijλij
gij(xi), j = 1, . . . , ri,

˙̄λij = hij(xi), j = 1, . . . , si,

˙̄̄λ
′
i = −

∑
j∈Ni

(xj − xi),

(5.5a)

(5.5b)

(5.5c)

(5.5d)

where Ni = {j|(i, j) ∈ E} is the neighboring agents of agent i. This algorithm is
distributed since the optimization dynamics for agent i depends on information from
its neighboring agents. See also [24] for distributed implementation without considering
optimization constraints.
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1

2 3

4 5

Fig. 1. The topology of five agents described by a graph.

We now apply the above distributed optimization algorithm to the following Rosen–
Suzuki problem [18]

min x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4

s.t. −8 + x1 − x2 + x3 − x4 + x21 + x22 + x23 + x24 ≤ 0,

−10− x1 − x4 + x21 + 2x22 + x23 + 2x24 ≤ 0,

−5 + 2x1 − x2 − x4 + 2x21 + x22 + x23 = 0.

The optimal solution is shown in [18] to be x∗ = (0, 1, 2,−1).
We now use our distributed algorithm (5.5) to recover this result. Note the function

corresponding to the equality constraint is not affine which is not satisfied by our the-
orems. However, since our theorems only give sufficient conditions, this mean that our
algorithms may work even if these sufficient conditions are not satisfied. Our simulation
shows that this is indeed the case for the above example. To run the simulation, we
use five agents whose coupling is described by the graph in Figure 1. The state of each
agent lies in R4. To run simulation under this setup, define x = (x1, x2, x3, x4)

⊤ and let
f1(x) = x21 + x22, f2(x) = 2x23 + x24, f3(x) = −5x1 − 5x2, f4(x) = −21x3, f5(x) = 7x4,
g1(x) = −8+x1−x2+x3−x4+x21+x22+x23+x24, g2(x) = −10−x1−x4+x21+2x22+x

2
3+2x24,

h1(x) = −5+ 2x1 − x2 − x4 +2x21 + x22 + x23. We assume that agent 1 has only access to
f1, g1, h1, agent 2 has only access to f2, g2, and agent i has only access to fi for i = 3, 4, 5.
The parameters ηij in (5.5) is only required to be positive so that we chose them to be
1 for briefly. The initial states of the five agents are x1(0) = (3, 4,−3, 4)⊤, x2(0) =
(1,−2, 4, 2)⊤, x3(0) = (−3,−4, 3, 3)⊤, x4(0) = (3, 1, 2,−3)⊤, x5(0) = (4,−2,−4, 1)⊤,
the initial states for the multipliers corresponding to the inequality constraints of agents
1 and 2 are given as λ1(0) = λ2(0) = 3, the initial state for the multiplier corresponding
to the equality constraints of agents 1 is given asλ̄1(0) = 3, the initial states for the trans-
formed multiplier ¯̄λi of the five agents are given as ¯̄λ1(0) = . . . = ¯̄λ5(0) = (1, 2, 3, 4)⊤.
The simulation result, shown in Figure 2, indicates that the first, second, third, and
fourth components of five agents converge to 0, 1, 2,−1 respectively. To save place, the
time evolutions of the multipliers are not plotted here.

Obviously, we can also use, say 7 agents, to simulate the optimal solution. Which
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(a) Time evolution of the first components of states for 5 agents

The first component of state for agent 1

The first component of state for agent 2
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(b) Time evolution of the second components of states for 5 agents

The second component of state for agent 1

The second component of state for agent 2

The second component of state for agent 3

The second component of state for agent 4

The second component of state for agent 5
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(c) Time evolution of the  third components of states for 5 agents

The third component of state for agent 1

The  third component of state for agent 2

The  third component of state for agent 3

The  third component of state for agent 4

The  third component of state for agent 5
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(d) Time evolution of the fourth components of states for 5 agents

The fourth component of state for agent 1

The fourth component of state for agent 2

The fourth component of state for agent 3

The fourth component of state for agent 4

The fourth component of state for agent 5

Fig. 2. The time evolution of the states for 5 agents. (a) The first

components of the five agents all converge to 0; (b)The second

components of the five agents all converge to 1; (c) The third

components of the five agents all converge to 2; (d)The fourth

components of the five agents all converge to −1. Therefore, each

state of the 5 agents converges to the optimal solution (0, 1, 2,−1).
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number to use is application depend. Due to space limitation, the simulation result is
omitted here.

6. CONCLUSIONS

This paper introduces a projection-free optimization dynamics for nonsmooth compos-
ite optimization problems involving both equality and convex inequality constraints.
Unlike conventional projection-based approaches, which introduce nonsmooth dynamics
and involve complicate stability analysis, the proposed method avoids using projection
and ensures a fully smooth optimization process. This smoothness allows for rigorous
stability analysis using classical Lyapunov techniques, eliminating the need for nons-
mooth analysis tools such as differential inclusions.

Although several studies have also attempted to design constrained optimization al-
gorithms without explicitly relying on projection methods, they instead substitute the
projection operator with the relatively easier-to-compute max operator, still rendering
the resulting optimization dynamics nonsmooth in the classical sense. Our optimization
dynamics, which operates without projection, is entirely smooth and facilitates stability
analysis through traditional Lyapunov methods, eliminating the necessity for nonsmooth
techniques such as differential inclusions. More importantly, unlike the max-based ap-
proach which is confined to affine inequality constraints, our method overcomes this
limitation and extends to general convex inequality constraints.

Our algorithm also has the ability to achieve exponential convergence and this rep-
resents an advancement over existing works that typically ensure only asymptotic or
semi-global exponential convergence. On the other hand, our method follows a new line
of exponential convergence analysis. Unlike existing methods of proving exponential
stability by using the tool of IQC which are valid only when the additional constraints
are linear or affine, this paper extends the PAL framework to incorporate general convex
inequality constraints and achieves strong convexity-concavity in the primal-dual vari-
ables, coming with the capability of dealing with general convex nonlinear constraints.
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