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KYBERNETIKA — VOLUME 61 (2025), NUMBER 5, PAGES 635-646

A NOTE ON THE UNIFORMITY OF STRONG
SUBREGULARITY AROUND THE REFERENCE POINT

ToMAS ROUBAL

This paper investigates strong metric subregularity around the reference point as introduced
by H. Gfrerer and J. V. Outrata in [9]. In the setting of Banach spaces, we analyse its stability
under Lipschitz continuous perturbations and establish its uniformity over compact sets. Our
results ensure that the property is preserved under small Lipschitz perturbations, which is
crucial for maintaining robustness in variational analysis. Furthermore, we apply the developed
theory to parametric inclusion problems. The analysis demonstrates that the uniformity of
strong metric subregularity provides a theoretical foundation for addressing stability issues in
parametrized optimization and control applications.
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Classification: 49J53, 49J52, 90C33

1. INTRODUCTION

Stability and robustness of solutions in optimization and control are central issues in
variational analysis, where understanding local solution behavior and its sensitivity to
perturbations is essential. Recently, inspired by the Newton method, H. Gfrerer and J.
V. Outrata [8] introduced the semismooth* method, bringing renewed attention to the
concept of strong metric subregularity, e. g., [3]. The property was extended by the same
authors to strong metric subregularity around the reference, which enables the analysis
of solution stability and the convergence of the method, see [2].

The aim of this study is to demonstrate that strong metric subregularity is preserved
and even becomes uniform using Lipschitz continuous perturbations. Building upon
these foundations, we prove the existence of uniform constants and domains that ensure
the subregularity property holds uniformly across compact sets. Such uniformity plays
a crucial role in the robustness of numerical methods and path-following techniques for
solving parametric inclusion problems, e.g., [1,/5,6].

In the sections that follow, we first establish the basic notation and necessary defi-
nitions within the framework of Banach spaces. We then present the main theoretical
results, demonstrating that local strong metric subregularity can be extended to uni-
form subregularity on compact sets. This extension not only extends the theoretical
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foundations of variational analysis but also opens up new avenues for the construction
and analysis of efficient algorithms in optimization, control, and economic modelling.

2. PRELIMINARIES

Throughout the whole paper, we assume that X and Y are Banach spaces and P is a
metric space. The closed ball and open ball of radius § centred at a point z € X are
defined respectively as

Bx[z,0] ={ue X : ||z —u| <6} and Bx(z,0)={ue X :|z—ul <d}.

The distance from a point € X to a set A is denoted by dist(z, A) and is defined as
the shortest distance between 2 and any point in A, expressed as dist(x, A) = inf,ca ||u—

The graph of a set-valued mapping F', represented as gph F, comprises all pairs
(x,y) such that y € F(z). Additionally, the domain of F', denoted by dom F, includes
all points x for which the set F'(x) is nonempty, indicating the extent of the definition
of F. The inverse of a set-valued mapping F, denoted by F~!, is defined such that
y € F(x) implies x € F~!(y). This is expressed as F~!(y) = {zr € X |y € F(x)}.

In modern variational analysis, examining the regularity of set-valued mappings is
essential for interpreting various mathematical models, especially in fields such as opti-
mization, control theory, and economics. The regularity of these mappings refers to the
characteristics that determine the local behaviour of the mapping around a point in its
domain. Here, we focus solely on properties that are relevant to our research.

Definition 2.1. Let F': X = Y be a set-valued mapping and let (Z,y) € gph F' be a
given point. We say that F is:

(i) metrically subregular at (Z,7) if there exists k > 0 along with some neighbor-
hood U of & such that

dist(z, F~1(9)) < rdist(g, F(z)) for each =€ U;

(ii) strongly metrically subregular at (z,q) if there exists £ > 0 and a neighborhood U
of T such that

lz — z|| < kdist(y, F(z)) foreach z €U,

(iii) (strongly) metrically subregular around (Z,y) € gph F' if there is a neighborhood W
of (zZ,y) and k > 0 such that at each (x,y) € gph FNW there is a neighborhood U
of x such that

lu — z|| < kdist(y, F(u)) for each ueU.

Strong metric subregularity around the reference point was first introduced in [9];
also see [7},/10] for the additional properties.
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Remark 2.2. In contrast to the subregularity notions above—which fix one argument
at g or allow perturbations only “around” the graph—one can also consider the full
metric regularity and its strong variant:

(a) Metric reqularity. F is said to be metrically regular at (Z, ) € gph F' if there exist
constants £ > 0 and § > 0 such that for each (z,y) € Bx|Z,d] x By|[y, ] we have

dist(z, F~'(y)) < & dist(y, F(z)).

(b) Strong metric regularity. F is strongly metrically regular at (z, ) if, in addition, the
inverse F'~! admits a single-valued localization s: V — U around % (with s(j) = Z)
which is Lipschitz continuous: there exist £ > 0 and neighborhood U x V of (Z,7)
such that

F'y) nU={s(y)} and |s(y1)—sy)ll <rllyr — vl foreach yi,y2 € V.

Moreover, (strong) metric regularity at (Z, ) implies (strong) metric subregularity
around (Z,y) with the same constant x and uniform neighborhoods .

The following example presents set-valued mappings that exhibit strong metric sub-
regularity property at every point on their graph.

Example 2.3. (i) Define a set-valued mapping F : R = R given by
gph F := {(x,a:), (:m—x) cx e [-1, 1]} :
The graph of F is in Figure (a).

(ii) Define a set-valued mapping F': R = R given by

Hr+1 for x>0,
F(z) =< [-1,1] for = =0,
Yr—1 for x<0.
The graph of F' is in Figure (b)
(iii) Define a set-valued mapping F : R = R given by
gph F := {(cos(z),z) :x € R}.
The graph of F' is in Figure (c)
Definition 2.4. Let F': X = Y be a set-valued mapping and let (Z,7) € gph F. We
say that

(i) F is calm at (Z,7) if there exist u > 0 and a neighborhoodU x V of (Z, %) such
that
F(x)NV C F(Z) + p|lxz — z||By for all x € U;
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Fig. 1. Graphs of set-valued mappings having strong metric
subregularity around every point of their graph from Example

(ii) F is isolated calm at (Z,7) if there exist u > 0 and a neighborhoodU x V of (Z,7)
such that

Flx)nV c{y}+ pllz —z||By forall zeU.

Remark 2.5. Note that a single-valued mapping f : X — Y is (isolated) calm at Z if
there exist © > 0 and a neighborhood U of T such that

If(x) = f(@)| < pllx —z|| foreach zeU.

It is known that strong metric subregularity is stable under a calm single-valued
perturbation [3].

Theorem 2.6. Let a, x, i be positive constants such that xu < 1. Consider a mapping
F : X = Y which is strongly subregular at (z,y) with the constant x and a neighbor-
hood Bx|[Z, @], and a function g : X — Y which is calm at Z with constant p and a
neighborhood Bx [z, 3]. Then g + F' is strongly metrically subregular at (Z,4 + g(Z))
with the constant /(1 — ku) and the neighborhood B [Z, o].

It should be noted that metric subregularity does not necessarily hold when a calm
single-valued perturbation is applied. The example below illustrates this with a coun-
terexample.

Example 2.7. Define two functions f and g such that

0, z<0, 2?2, 2 <0,
f(ar)={ and g(w)={ )

z, x>0, -z, x>0,

where f is metrically subregular at 0 and g is calm at 0.
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Since |g(x)| < |z| near 0, g is (isolated) calm. Now, consider the function h := f + g:
x2, xz <0,
h(z) =
z—x2, x>0.
Metric subregularity of A at 0 would require the existence of k£ > 0 such that

|z < 5 |h(z)]

in a neighborhood of 0. For z < 0, we have h(x) = 22, so

1
I 5 = <k

|z] < K|z
|z|

This inequality fails as the left-hand side goes to infinity when z | 0.

Using ideas from [3], the following proposition establishes the stability of strong metric
subregularity at the reference point under set-valued perturbations.

Proposition 2.8. Consider a set-valued mapping F : X = Y and a point (Z,y) €
gph F. Assume that there are k > 0 and « > 0 such that F' is strongly metrically
subregular at (Z, ) with the constant x and the neighborhood B x[Z,«]. Let u > 0 be
such that ku < 1 and let k" > /(1 — k).

Then for each 3 € (0, ] and for each set-valued mapping G : X = Y satisfying

G(z) ={z} and G(x) C {2z} + pllr — z||By foreach =z € Bx|[z,f], (1)

we have that the mapping G + F is strongly metrically subregular at (Z,§ + z) with the
constant £’ and the neighborhood B x|z, 3].

Proof. Fix any g > 0, 8 > 0, and any mapping G as in the conclusion. Fix any
r € Bx [f, 5]
If G(z) + F(x) = 0, we are done. If not, fix any z € G(z), then

|2 = 2|l < pllz — 2.
Then

kdist(g, F(z)) < kdist(§ + Z, z + F(x)) + k|2 — Z||
kdist(g+ 2,z + F(x)) + kullz — Z|.

o — x|

IAINA

Taking into account that xu < 1 and %w < k' and that z is fixed arbitrary, we obtain

lz—z| < £ dist(yg+ 2z G(z)+ F(z)) < £ dist(y + z, G(x) + F(z)).

— 1—kp

O

Note that the property in is stronger than isolated calmness at (Z, z). Moreover,
since G(Z) is a singleton and G is upper semicontinuous at Z, it follows that F' and G
are sum-stable in the sense of [11].
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3. UNIFORMITY OF STRONG SUBREGULARITY

We are investigating uniformity of strong metric subregularity around the reference point
on compact subsets of Banach spaces of mappings which are defined as a sum of a single-
valued (possibly nonsmooth) mapping and a set-valued mapping. We are following ideas
of the proofs from [4, Section 2].

First, we present a statement concerning perturbed strong metric subregularity on a
set.

Theorem 3.1. Consider a set-valued mappings F' : X = Y and a point (Z,y) €
gph F. Assume that there are positive constants a, b, and & such that for each (x,y) €
(Bx|[z,a] x Byly,b]) Ngph F there is r > 0 such that for each u € Bx[x,r] we have

lu —z|| < rdist(y, F(u) N By [y, b]). (2)

Let > 0 be such that ku < 1 and let k" > /(1 — k). Then for every positive o and
B such that 2a < a and 25 + pa < b and for every mapping g : X — Y satisfying

lg(@) </ and |lg(z) —g(u)]| < pllz —u] for each z,u € Bx[z,a],

we have that for each y € Byly, 8] and each z € (g + F)~'(y) N Bx[Z,qa] there is
r € (0, @] such that each u € Bx|z,r] and each v € (g + F)(u) N By [y, f] we have

lu = || < &lly — ol
Proof. Fix any a > 0 and § > 0 and any mapping g as in the conclusion. Then
fix any y € By[y,8]. Fix any x € (g9 + F)"'(y) N Bx[Z,a] and find a corresponding

r € (0,a] such that (2), for each u € Bx|z, 7], holds. Fix any u € Bx[z,r]. Then
u € Bx|Z, a] since

lu =2 <llu—zl[+ ]z -2z <r+a<2a<a
Note that By [y, 5] C By[y + g(x), b], since for each v € By [y, 5] we have
15+ 9(z) vl <y = ol + llg(@) — 9@ + lg(@)I| < B+ pr + 8 <26 + pa < b;

so is y — g(z) € By[y,b]. If (g(u) + F(u)) N By[y, 8] = 0, we are done. If not, fix any
v € (g(u) + F(u)) 0 By[g, ). Then

[u—z| < f@dlst(y 9(z), F(u) N By[y,b]) < rdist(y — g(u), F'(u)
By [y,b]) + &llg(u) — g(2)||
< ndlst(y,(g() F(u)) N By [y + g(u),b]) + spllu — |
< kdist(y, (g(u) + F(u)) N By [y, ]) + kpflu — x|
< fiIIy—v||+fw||u—:vH-

[u—=| <

1—% Hy ol < Klly =l
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Theorem not only refines |4, Theorem 2.3] by extending pointwise strong metric
subregularity (around the reference point) to uniform strong metric subregularity around
the reference point, but also complements the parametric stability results for general-
ized equations in [4) Section 2]. As a consequence, we obtain the following immediate
corollaries on strong subregularity in a neighborhood of the reference.

We will now demonstrate that strong metric subregularity around each point of a
compact set implies uniform strong metric subregularity. In other words, it is possible
to find the same constant and neighborhood for all points within this set.

Theorem 3.2. Let Q C P x X be a compact set. Consider a set-valued mapping
F: X =Y and a continuous single-valued mapping f : P x X — Y such that for each
(t,Z) € Q we have:

(i) the mapping X > x — Gy(x) := f(¢t,x) + F(x) is strongly metrically subregular
around (Z,0);

(ii) for each g > 0 there is a > 0 such that for each z,u € Bx|[Z,a] and each
s € Bp[t,a] we have

1f(s,u) = f(tu) = (f(s,2) = [t 2)]] < pllz—ull.

Then:

(iii) there are positive constants k£ and a,b such that for each (¢,Z) € Q the map-
ping G is strongly metrically subregular around (Z,0) with the constant x and
neighborhoods Bx|[Z,a] and By [0, b];

(iv) there are k > 0 and a > 0 such that for each (¢,z) € Q the mapping G is strongly

metrically subregular at (x,0) with the constant x’ and the neighborhood B x|z, al.

Proof. We are showing only (iii). The proof of (iv) follows similarly from Proposition
see also [4, Theorem 2.6]. Fix any (¢,Z) € Q. Find positive a,b, and &, such
that for each (z,y) € (Bx|[z,a] x By|0,b]) N gph Gy there is r > 0 such that for each
u € Bx|z,r] we have

lu — || < kdist(y, G¢(u)).

Let p := 1/(2k) and &’ := 3k. Then su < 1 and " > 2k = k/(1 — kp). Find
a € (0,b/(2u)) such that each z,u € Bx[Z,2a] and each s € Bplt,a] we have

1f (s, u) = f(t,u) = (f(s,2) = FG ) < pllz =l

Let 8 :=b/4. Then 28+ pa < b/2+b/2 = b. Since f is continuous, there is v’ € (0, /2]
such that

| f(s,z) — f(t,z)|| < B foreach se Bplt,r'].
Fix any (s,z) € (]Bp[t,r’] x Bx|z, r’]) N Q. Define a mapping g : X — Y such that

g(u) :== f(s,u) — f(t,u) for uweX.
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Then G5 = g + G and for each x,u € Bx|[Z,2a] we have

l9(x) = g(w)]| < pllz —ull and [lg(@)] < 5.

Theorem with G := Gy and g := 0, implies that for each y € By |0, ] and each
z € (g + Gy)"Yy) N Bx|[Z,a] there is r € (0,a] such that for each u € Bx[z,r] and
each v € (g + G;)(u) N Bx|0, 8] we have

lu— 2|l < &[ly —o]|.

We are showing that for each (z,y) € (Bx[Z, a/3] x By |0, 3/3]) Ngph G, there is r > 0
such that for each v € Bx|[z,r] we have

|lu— || < & dist(y, Gs(u)).

Fix any such (z,y) and find a corresponding r € (0,2«'(/3] as in the claim and fix any
u € Bx|x,r]. Thus x € (94 G¢) ' (y) N Bx|[Z, a]. Fix any v € G4(u). If |Jv]| < B, using
the claim, we get |Ju — z|| < K|y — v||.

If [[o]l > B, then [ly — v[| = [|lv]| — [ly]| > 8 —B8/3 =2/3p and so

lu— 2| <7 <26'B/3 < K|y = v]|.

To sum up, we show that for each (¢,Z) € Q there are constants " > 0, a > 0,
B> 0, and r’ € (0,/2) such that for each (s,u) € (Bp[t,r'] x Bx[z,r']) N and each
(z,y) € (Bxlu,a] x By|0,8]) Ngph G there is r > 0 such that for each v € Bx[x,7]
we have

o — il < ' dist(y, G (0)).

Note that Bx[u,r'] C Bx[Z,a], then G is strongly metrically subregular around (z,0)
with the constant k' and neighborhoods B x [z, «] and By [0, 5]

So k', a, B, and 7’ depends only on the choice (¢,Z) € Q. Then from open covering
Us—toyen (Bp(t 1) x Bx(z,1.)) of compact set Q find a finite subcovering O; :=
(Bp(ti,r;) X Bx(z;,r})) for i = 1,2,3,...,N. Let a := min{e; : i = 1,2,3,...,N},
b= min{f8 : ¢ = 1,2,3,...,N}, and £ := max{x; : i = 1,2,3,...,N}. For any
(t,x) € §Q there is an index i € {1,2,3,...,N} such that (t,x) € O;. Hence the
mapping G; is strongly metrically subregular around (z,0) with the constant x and
neighborhoods Bx [z, a] and By [0, b). O

Note that if f is continuously differentiable, then condition (ii) is satisfied and that
while (i) asserts pointwise subregularity at each (¢,z) € , statement (iii) furnishes
uniform constants on whole (2.

Example 3.3. Consider a single-valued mapping g : R> — R3 given by
g(w,y) = (x,y,2° +y?) for z,yeR.
Then

g Nx,y,v) = (z,y) for z,y,v€R with v=2a?+y°
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Then for each Z,9,v € R with ¥ = 22 + §? and each z,y € R we have

H(a:,y) - g_l(jj7g76)H = H(x,y) - ("Eag)H < H(Z‘,y,l‘Q + y2) - (i‘,:l%f))“
= ||g(:c,y) - (SZ',:IL’T))H :

So g is strongly metrically regular at each point (z,y) of its graph. So g is strongly
metrically regular around each point (Z,7) of its graph.

Choose any compact subset Q C {(g(z),z) € R® x R? : z € R?} and for ¢t € R3 define
mapping Gy : R? — R? given by Gy: X — Y, Gy(z) =g(x) —t for z € R% Then
assumptions of Theorem are satisfied for this setting with F' = 0.

Theorem 3.4. Let 2 C P x X be a compact set. Consider a set-valued mapping
F: X =Y and a continuous single-valued mapping f : P x X — Y such that for each
(t,Z) € Q we have:

(i) the mapping X 3 2 +—— Gy(z) := f(t,x) + F(z) is strongly metrically subregular
at (z,0);

(ii) for each p > 0 there is a > 0 such that for each z,u € Bx|[Z,a] and each
s € Bp[t,a] we have

1f(s,u) = f(tu) = (f(s,2) = f(t, 2)]| < pllz—ull.

Then there are k > 0 and ¢ > 0 such that for each (¢, z) € Q the mapping G; is strongly
metrically subregular at (z,0) with the constant  and the neighborhood Bx [z, c|.

Proof. The proof is similar to the proof of Theorem [3.2] but instead of using Theorem
we apply Proposition 2.8 O

The following statement guarantees that uniform strong metric subregularity is pre-
served along continuous solution trajectories for the widely studied parametric general-
ized equation, for T' > 0, given by

p(t) € f(t,z(t)) + F(z(t)) foreach te[0,T],

where p: [0,T] — Y, z:[0,T] — X, f:[0,T]x X — Y, and F: X Y.

This means that as one follows a continuous path within the domain, the property of
strong metric subregularity remains consistent and uniform, providing stability in the
behaviour of the system

Theorem 3.5. Let T' > 0 be given. Consider a set-valued mapping F': X = Y and a
continuous single-valued mapping f : [0,7] x X — Y, and two continuous mappings
2:[0,7] — X and p: [0,7] — Y such that

(i) for each t € [0,T] the mapping X 3> z —— Gi(x) = f(t,z) + F(x) is strongly
metrically subregular around (z(t), p(t));
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(ii) foreacht € [0,7] and each p > 0 there is § > 0 such that for each z,u € Bx[z(t), d]
and each s € (t — 0,t + J) we have

1f(s,u) = f(t,u) = (f(s,2) = f(t; @) < plle — ull.

Then:

(iii) there are positive constants a, b, and & such that for each ¢ € [0,7] the mapping
G, is strongly metrically subregular around (x(¢),p(t)) with the constant x and
neighborhoods B x[z(t), a] and By [p(t), b];

(iv) there are ¢ > 0 and «’ > 0 such that for each ¢t € [0,7] the mapping G; is

strongly metrically subregular at (x(t),p(t)) with the constant " and neighbor-
hood B x[z(t), c].

Proof. For (iii), apply Theorem and for (iv), apply Theorem both with
= [0,T] x Y, the compact set Q := {J;¢(o 7 (¢, p(t), z(t)), and the function f(t,z) :=
f(p,z) —y for t = (p,y) € P and z € X. O

Example 3.6. Let F: R™ = R” be defined by

where, for each i € {1,2,...,k}, G;: R® = R" is maximally monotone, i.e. for every
z,u € R™ and every y € G;(x), v € G;(u), one has

<y—v, x—u> > 0,

and moreover, if a monotone mapping (satisfying the previous property) G:R" = R"
satisfies gph G; C gth then necessarily G; = = G. Further, consider a single-valued
mapping f : R® — R”, which is strongly monotone, i.e., there is ¢ > 0 such that

(f(x) — f(u),r —u) >c|lz —ul|* for each x,ucR".

By [12, 12.54 Proposition|, for each ¢ € {1,2,...,k} the mapping R” > « —— (f +
G;)~!(x) is single-valued and Lipschitz continuous on R™ with the constant % Then

the mapping R" > 2 — (f + F)"!(z) = Uz (f + Gi)"Y(x); therefore the mapping
is union of k£ Lipschitz continuous mappings with the constant 1 Hence the mapping
f + F is strongly metrically subregular around each point of its graph Fix any T > 0
and any continuous mapping p : [0,7] — R"™. Fix any ¢ € {1,2,...,k} and let

z(t) == (f + G;) "' (p(t)) for each te[0,T].

Since the mapping (f +G;) ™" is single-valued and Lipschitz continuous on R™, then the
mapping [0,7] > t — x(t) is continuous on [0,7] and we have

p(t) € f(x(t)) + F(x(t)) foreach ¢e][0,T).
Assumptions of Theorem [3.5] with f(¢,z) := f(x) for x € R™ and ¢ € [0, T, are satisfied.
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4. CONCLUSION

In this paper, we have provided a comprehensive study of strong metric subregularity
and its uniformity in Banach spaces. Our investigation has led to the following key
contributions. We extended the local concept of strong metric subregularity to a uni-
form version over compact sets, thereby enabling the use of a common constant and
neighborhood for all points in a given compact set.

These findings not only reinforce the theoretical underpinnings of variational anal-
ysis but also offer new avenues for the development of robust computational schemes
in the context of generalized equations. Future work may explore further extensions
of these uniformity results to broader classes of perturbations and more general frame-
works, thereby enhancing both the theory and practical applications in optimization and
control.

(Received April 9, 2025)
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