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SEQUENTIAL GAMES WITH TURN SELECTION PROCESS
AND FUZZY UTILITY FUNCTIONS

Rubén Becerril-Borja

A particular group of models of sequential games is studied where the order of the turns is
not known beforehand by the players, and where the utility functions for each player are fuzzy
numbers. For these models, a series of results are proven to show the existence of equilibria
under two criteria, and a brief application is described where it usually is not possible to give
utilities a precise value, hence, where fuzzy numbers are adequate.

Keywords: sequential game, risk sensitive, turn selection process, fuzzy numbers, fuzzy
utility functions

Classification: 91A06, 91A10, 91A18, 91A50

1. INTRODUCTION

Game theory focuses on studying situations where the choices of the individuals involved
affect everyone’s utility. Many interactions that we have every day can be thought in
this way, so it is of great interest to be able to think about how to go about them.

In the classical theory ([7, 9, 13] among many others), we can group games according
to how the decisions are taken: simultaneously or sequentially. In simultaneous games,
every player makes their decision at the same time, or if not exactly so, it would seem
like it since they don’t know about other player’s choices. In sequential games, players
make their choices in order and the players that choose later may know about some of
the choices made previously to inform their own. Moreover, whichever group a game
is on, players must decide how to maximize their utility, subject to the fact that each
player can only change their own choices.

In the case of sequential games, many changes have been made to accommodate
situations where some randomness may happen, leading to adding a player called Nature,
so the initial structure could be different. Later on, since only changing the structure
of the game at the beginning didn’t fit other interesting situations, led to the study of
what’s known as stochastic games, where random events may happen between periods of
time where decisions are made, though for this, the approach was to study simultaneous
games that are played in sequence after which the utility of the whole game is calculated
as some sort of discounted sum (more so in the case of infinite stochastic games).
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Previously, a model that maintains the sequential structure without introducing si-
multaneous games was studied where players do not know previous to the game in which
periods of time they will make a decision ([1, 2]). Only until it’s their turn to choose
do they learn about it, making it so they are able to make a decision according to what
they have learned up to that point, and not being able to game the model by expecting
to be able to make a specific choice in some point in the future, rather, by only knowing
they have a certain probability they might make a decision in the future. In such a case,
it was possible to show that an equilibrium exists, though in many cases it’s not easy to
compute due to the added complexity.

In the work presented here, a generalization of that model is presented, by means of
taking fuzzy utility functions. The idea behind this approach is that many times, utility
functions in games are not backed up by something real, being rather just numbers that
are put in place so they reflect very general order relations between the utilities obtained
by different choices. Or in other instances, such information may only be known with
some certainty, for example, when companies study their opposition, they might have
an idea of what the costs and profits of the opposition are, but not with total certainty.
Moreover, in such situations, it is not in our best interest to consider a random process,
since in many situations the utilities are not random, but they are not well known to
every player. In such cases, working with fuzzy utility functions gives more freedom to
model the situations. As can be seen in [10], this is an idea that has been considered for
a while in many models of game theory.

Such fuzzy utility functions will be founded on the fuzzy theory proposed by Zadeh
[14]. The utility functions that will be used are of the trapezoidal kind, which gives a
first approach into how to generalize them into this framework (see [4, 8]). To have an
order defined for the fuzzy utility functions and be able to define an equilibrium, we will
use what is known as the average ranking of the trapezoidal numbers (following ideas
from [5, 6]). Other approaches include using other averaging methods that also obtain
non-fuzzy numbers that can be compared directly and may be of interest in future work,
to see their advantages and disadvantages.

The structure of the paper is as follows: Section 2 defines the preliminaries for the
model, as well as establishing the base model to be studied. Section 3 introduces the
basics of fuzzy theory that will be used to define the utility functions for our model. In
section 4 we give the results that will guarantee the existence of at least an equilibrium
in our model for the average ranking criterion. Section 5 gives the corresponding results
to ensure at least an equilibrium for games with utility functions based on a trapezoidal
number for each player under the fuzzy expected utility criterion. Section 6 shows a
basic application of our model where it is easy to make the computations and show the
equilibrium. Finally, in Section 7 we give conclusions and some future work that can
occur from what has been discussed.

2. PRELIMINARIES

Throughout the article we use standard notation, as in [13]. A game consists of the
following elements:

• A set I = {1, 2, . . . , N} of players.
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• A finite set of pure strategies Si for each i ∈ I.

• A real-valued utility function ui : Σ → R for each i ∈ I, with Σ = ST × · · · × S1

where each St is the finite set of all the strategies available for any of the one of
the players in I at time t.

In this article we study sequential games (also called dynamic games), therefore a
horizon of play T ∈ N is also required, which will tell us the number of decision points in
the game. A decision point will be the equivalent of what is known as an information
set, except the game also has to choose which player will act at that point. This is
because the change made in this paper to models of games is introducing uncertainty
for players regarding the order in which they will make a choice. This modification is
in part due to how some models are made in which it is determined that players have
to decide in a given order, but in reality that might not be the case, and the order is
completely different or can even be considered to be random for all intents and purposes.

From the basic elements described above we can obtain for each player i ∈ I their
set of mixed strategies Mi, which is made of the probability distributions that have
the set Si as their support. A profile of mixed strategies x = (x1, x2, . . . , xN ) is
defined as a vector made of strategies xi ∈ Mi for each player i, that is, a profile of
mixed strategies x describes the strategies followed by all players in the game. The set
of profiles of mixed strategies is denoted here by M .

If there is a profile x = (x1, x2, . . . , xN ), and x̃i ∈ Mi, it is possible to combine them
to make the profile

(x̃i, x−i) = (x1, x2, . . . , xi−1, x̃i, xi+1, . . . , xN ),

that is, to replace in x the strategy xi corresponding to player i with the strategy x̃i.

Let us notice that each player can be chosen to make a move at every decision point
in the game, therefore forcing every player to select a strategy for each possible decision
point. Players learn who has made a move in previous decision points, and it may
or may not be that they also learn the actions other players have made. In either
case we assume players have perfect recall and as such their decision is conditioned
by the actions (or possible actions) of all players. Pi is defined as the set of plans
of conditioned strategies for player i, which can be defined as the strategies (si |
r1, . . . , rk−1) ∈ Pi where player i observes the actions (r1, . . . , rk−1) taken before the
current turn k ∈ T . In an analogous manner it is possible to consider mixed plans of
conditioned strategies for player i, xi(si | r1, . . . , rk−1) at each decision point k ∈ T ,
which consist of probability distributions that have Pi as their support; the set of mixed
conditioned strategies for player i is denoted by Qi. Finally, it is possible to define
profiles of plans of (mixed) conditioned strategies as the vectors that consider
(mixed) plans of conditioned strategies for each player i ∈ I. The set of these is denoted
by P (resp. Q). When referring to the sets of profiles of plans of (mixed) conditioned
strategies of players other than i, we denote them by P−i (resp. Q−i).

It would be desirable to define a concept of solution for the games, that is, profiles
that satisfy some properties. Such a property is that once the strategies for all players
are chosen, no player would like to deviate from their choice. A profile that satisfies this
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is called an equilibrium. These equilibria shall be defined for each of the models in the
following section.

For the games that will be studied in the rest of the article, it is considered that
players can be chosen to make many or few decisions in the game, anywhere from 0 to
T . Therefore the information of how many decisions as well as when in the game players
will be making them is hidden from every player until they reach each of the decision
points in the game. Many variations on this idea can be made, as shown in [1]. For
purposes of sumamrizing the ideas that can be applied to all of such variations, we work
with the following model.

A sequential game without a predetermined order of turns is a game with
a horizon of play T and a set of probability densities P = {p1, . . . , pN}, where pi(m) is
the probability according to player i that player m is chosen at each decision point.

In other words, the games that will be studied all have the characteristic that before
the game, it is not known what player will decide when. As the game goes on and it is
required for a decision to be made, the game decides, via a randomized process (or what
at least seems to be for the players), who gets to move and then the player chosen acts.
Notice that it is allowed for each player to have their own model for the turn selection
process, which are known to every player, which also means that, if it is not explicitly
required that no player has an advantage, if such advantage exists, it is not known to
the other players, so each considers their density to be the most adequate model for the
turn selection process. As such, it can be assumed that however players come up with
their probability distribution model, they consider it to be the most adequate.

In order to work with these games, and be able to give a reasonable idea of how players
should choose their strategies, the expected utility is the way to go. The expected
utility of each player i when the profile of plans of mixed conditioned strategies x ∈ Q
is played and ui is player i’s utility is given by

Ei(x, ui) =
∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

ui(s
T , . . . , s1)

× xT
n (s

T | sT−1, . . . , s1)pi(n
T ) · · ·xn1(s1)pi(n

1).

As it stands, fixed probabilities for selecting players are considered but it is possible
to adapt the model to accept variable probabilities at each stage. One thing that should
be noticed is that these probabilities are known by every player, so it is known how each
player views the turn selection process. An equilibrium, therefore, is a profile x∗ ∈ Q
such that for every player i ∈ I and every plan of mixed conditioned strategies xi ∈ Qi

it holds that

Ei(x
∗, ui) ≥ Ei((xi, x

∗
−i), ui).

3. SOME PREREQUISITES ON FUZZY THEORY

Let Λ be a non-empty set. A fuzzy set Γ on Λ is defined in terms of its membership
function Γ′ which assigns to each element of Λ a real value from the interval [0, 1]. The
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α-cut of Γ, denoted Γα is defined as

Γα = {x ∈ Λ | Γ′(x) ≥ α},

for 0 ≤ α ≤ 1. The set Γ0 is the closure of {x ∈ Λ | Γ′(x) > 0}, denoted by cl{x ∈ Λ |
Γ′(x) > 0}.

A fuzzy number Γ is a fuzzy set defined on the set of real numbers R (that is, we
take Λ = R) which satisfies

1. Γ′ is normal, that is, there exists x ∈ R with Γ′(x) = 1.

2. Γ′ is convex, that is, Γα is convex for all α ∈ [0, 1].

3. Γ′ is upper-semicontinuous.

4. Γ0 is compact.

The set of fuzzy numbers will be denoted by F(R).
A fuzzy number Γ is called a trapezoidal fuzzy number if its membership function

has the form

Γ′(x) =



0 if x ≤ ℓ,
x− ℓ

m− ℓ
if ℓ < x ≤ m,

1 if m < x ≤ n,
p− x

p− n
if n < x ≤ p,

0 if p < x,

where ℓ ≤ m ≤ n ≤ p are real numbers. We denote such trapezoidal fuzzy number as
(ℓ,m, n, p).

Remark 3.1. For a trapezoidal fuzzy number Γ = (ℓ,m, n, p) the corresponding α-cuts
are the intervals Γα = [(m− ℓ)α+ ℓ, p− (p− n)α] for α ∈ [0, 1].

Let Γ and Υ be fuzzy numbers. If ⋆ denotes the addition or the scalar multiplication,
then the fuzzy number Γ ⋆Υ has the membership function

(Γ ⋆Υ)′(u) = sup
u=x⋆y

min{Γ′(x),Υ′(y)}.

Therefore, the next result holds true for trapezoidal fuzzy numbers.

Lemma 3.2. If Γ = (a, b, c, d) and Υ = (e, f, g, h) are two trapezoidal fuzzy numbers,
and λ > 0, then

1. λΓ = (λa, λb, λc, λd).

2. Γ +∗ Υ = (a + e, b + f, c + g, d + h). This also holds for a sum of finitely many
trapezoidal fuzzy numbers.
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Let the set of closed bounded intervals be denoted by D. For Ψ = [a, b],Φ = [c, d] ∈ D
we define the metric

d = (Ψ,Φ) = max{|a− c|, |b− d|},

so (D, d) is a complete metric space. In a similar fashion, if Γ ∈ F(R), then Γα is a
compact set since its membership function is upper semicontinuous and has compact
support. Let Γ,Υ ∈ F(R), and define

d∗(Γ,Υ) = sup
α∈[0,1]

d(Γα,Υα),

which is a metric in F(R).
A sequence (Γh)

∞
h=0 of fuzzy numbers is convergent to the fuzzy number Γ, which

we denote
lim∗
h→∞

Γt = Γ,

if d∗(Γh,Γ) → 0 when h → ∞.
Let Γ,Υ ∈ F(R), with α-cuts Γα = [wα, xα] and Υα = [yα, zα] for α ∈ [0, 1]. Then

we say that Γ ≤∗ Υ if and only if wα ≤ yα and xα ≤ zα for every α ∈ [0, 1]. This way,
≤∗ is a partial order on F(R).

We define another comparison that will be used. Given a trapezoidal number Γ =
(a, b, c, d), we define its average ranking as

R(Γ) =
a+ b+ c+ d

4
,

which defines a real number that represents Γ; and we say for two trapezoidal numbers
Γ and Υ that Γ ≤ Υ if

R(Γ) ≤ R(Υ).

Considering what is done in [11] and [12] we define a fuzzy random variable and its
expectation. We consider C(R) to be the class of non-empty compact subsets of R.

Given a measurable space (Ω,A) and the measurable space of real numbers (R,B(R))
we define a fuzzy random variable (associated with (Ω,A)) as a function X∗ : Ω →
F(R) such that for each α ∈ [0, 1], the α-cut function X∗

α(ω) = (X∗(ω))α satisfies

Gr(X∗
α) = {(ω, x) ∈ Ω× R | x ∈ (X∗(ω))α} ∈ A ⊗ B(R),

where A⊗ B(R) is the product σ-algebra associated with Ω× R.
In order to define the expectation of a random variable we consider only integrably

bounded random variables. Let (Ω,A, P ) be a probability space. Then X∗ is an in-
tegrably bounded random variable (with respect of (Ω,A, P )) if there exists a
function h : Ω → R, h ∈ L1(Ω,A, P ) such that |x| ≤ h(ω) for all (ω, x) ∈ Ω × R with
x ∈ (X∗(ω))0 = X∗

0 (ω).
With this, let (Ω,A, P ) be a probability space and X∗ be an integrably bounded

random variable. The fuzzy expected value of X∗ (in the sense of Aumann) is the
unique fuzzy set of R, denoted by E∗(X∗) that satisfies for each α ∈ [0, 1]:

(E∗(X∗))α =

{∫
Ω

f(ω) dP (ω)

∣∣∣∣ f : Ω → R, f ∈ L1(Ω,A, P ), f(ω) ∈ (X∗(ω))α a.s.

}
.
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4. GAMES WITH FUZZY UTILITY FUNCTIONS USING AVERAGE RANKING

In our case we will be considering the model presented before but with trapezoidal fuzzy
utility functions. That is, ui : Σ → F(R). Therefore, we need to define an expected
utility operator in this framework. Given x ∈ Q, and ui = (ai, bi, ci, di), the fuzzy
expected utility of x is defined as:

E∗
i (x, ui) = (Ei(x, ai), Ei(x, bi), Ei(x, ci), Ei(x, di)) ,

and an equilibrium is defined in an analogous way, with x∗ ∈ Q be such that for every
player i ∈ I and every plan of mixed conditioned strategies xi ∈ Qi we have

E∗
i (x

∗, ui) ≥ E∗
i ((x

∗
−i, xi), ui).

With this, we can show the following results.

Proposition 4.1. The average ranking of the fuzzy expected utility function is contin-
uous in each player’s plan of strategies.

P r o o f . Notice that each component in the fuzzy expected utility function can be split
in the following way:

Ei(x,A) =

 ∑
s1∈Si

· · ·
∑

sT∈Si

A(sT , . . . , s1)xi(s
T | sT−1, . . . , s1)pi(i) · · ·xi(s

1)pi(i)


+

 ∑
n1∈I\{i}

∑
s1∈Sn1

∑
s2∈Si

· · ·
∑

sT∈Si

A(sT , . . . , s1)xi(s
T | sT−1, . . . , s1)

× pi(i) · · ·xi(s
2 | s1)pi(i)xn1(s1)pi(n

1) + · · ·

+
∑
s1∈Si

· · ·
∑

sT−1∈Si

∑
nT∈I\{i}

∑
sT∈SnT

A(sT , . . . , s1)xnT (sT | sT−1, . . . , s1)

× pi(n
T )xi(s

T−1 | sT−2, . . . , s1)pi(i) · · ·xi(s
1)pi(i)

+ · · ·

+

 ∑
n1∈I\{i}

∑
s1∈Sn1

· · ·
∑

nT∈I\{i}

∑
sT∈SnT

A(sT , . . . , s1)

× xnT (sT | sT−1, . . . , s1)pi(n
T ) · · ·xn1(s1)pi(n

1)

 ,

where the terms in the first bracket are those in which player i was selected T times, the
terms in the second bracket are those in which player i was selected T − 1 times, and
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so on, ending with the terms in the last bracket in which player i was selected 0 times.
It can be easily seen that each of these terms is continuous in the plan of strategies for
player i, so the whole sum is continuous in the plan of strategies of player i. This works
for A being either ai, bi, ci or di. As such, the whole fuzzy expected utility function
is continuous. Finally, the average ranking as a sum of each component of the fuzzy
number is also continuous on each component, which are continuous. □

The next proposition follows in the same way as in [2].

Proposition 4.2. The set of profiles of conditioned strategies Q is a non-empty, com-
pact and convex subset of some Rq.

We define for each player i the best response correspondence BRi to the partial profile
x−i ∈ Q−i as

BRi(x−i) = {xi ∈ Qi | E∗
i (x−i, xi) ≥ E∗

i (x−i, yi) for all yi ∈ Qi},

and the best response correspondence BR : Q → Q as

BR(x) = (BR1(x−1), BR2(x−2), . . . , BRN (x−N )).

Proposition 4.3. The best response correspondence BR is a non-empty correspon-
dence with a closed graph.

P r o o f . Since the average ranking of the expected utility function is a continuous
function defined on a compact set, it must achieve its maximum at some point xi ∈ Qi

for each x−i ∈ Q−i for each player i. Therefore, BRi is non-empty for each player i,
and this means BR(x) is a non-empty correspondence for every x ∈ Q.

Now let (xh)
∞
h=1 be a sequence of profiles of conditioned strategies and (x′

h)
∞
h=1 the

best responses, that is x′
h ∈ BR(xh) for every h. Let x∗ = limh→∞ xh and x′∗ =

limh→∞ x′
h. For player i, we have that x′

h,i ∈ BR(xh,−i), which means that

E∗
i ((xh,−i, x

′
h,i), ui) ≥ E∗

i ((xh,−i, yi), ui),

for every yi ∈ Qi. Taking limits on both sides, by the continuity of E∗
i we have that

lim
h→∞

E∗
i ((xh,−i, x

′
h,i), ui) ≥ lim

h→∞
E∗

i ((xh,−i, yi), ui),

and interchanging the order of limits and sums

E∗
i ((x

∗
−i, x

′∗
i ), ui) ≥ E∗

i ((x
∗
−i, yi), ui),

for every yi ∈ Qi, which means that x′∗
i ∈ BRi(x

∗
−i) for every player i, implying x′∗ ∈

BR(x∗). □

Now we prove that the best response correspondence is convex.
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Proposition 4.4. The best response correspondence BR is convex.

P r o o f . Let xi, yi ∈ BRi(x−i). Then the expected utility of the convex combination
αxi + (1− α)yi for α ∈ [0, 1] when the other players use the profile x−i can be written
as

Ei((αxi + (1− α)yi, x−i), A) =

 ∑
s1∈Si

· · ·
∑

sT∈Si

A(sT , . . . , s1)

× (αxi(s
T | sT−1, . . . , s1) + (1− α)yi(s

T | sT−1, . . . , s1))pi(i) · · ·

×(αxi(s
1) + (1− α)yi(s

1))pi(i)


+

 ∑
n1∈I\{i}

∑
s1∈Sn1

∑
s2∈Si

· · ·
∑

sT∈Si

A(sT , . . . , s1) · · ·

× (αxi(s
T | sT−1, . . . , s1) + (1− α)yi(s

T | sT−1, . . . , s1))pi(i) · · ·
× (αxi(s

2 | s1) + (1− α)yi(s
2 | s1))pi(i)xn1(s1)pi(n

1) + · · ·

+
∑
s1∈Si

· · ·
∑

sT−1∈Si

∑
nT∈I\I

∑
sT∈SnT

A(sT , . . . , s1)xnT (sT | sT−1, . . . , s1)pi(n
T ) · · ·

×(αxi(s
T−1 | sT−2, . . . , s1) + (1− α)yi(s

T−1 | sT−2, . . . , s1))pi(i)

+ · · ·

+

 ∑
n1∈I\{i}

∑
s1∈Sn1

∑
s1∈Sn1

· · ·
∑

nT∈I\{i}

∑
sT∈SnT

A(sT , . . . , s1)

× xnT (sT | sT−1, . . . , s1)pi(n
T ) · · ·xn1(s1)pi(n

1)


=

 ∑
s1∈Si

· · ·
∑

sT∈Si

A(sT , . . . , s1)

× (αxi(s
T | sT−1, . . . , s1) + (1− α)yi(s

T | sT−1, . . . , s1))pi(i) · · ·

× (αxi(s
1) + (1− α)yi(s

1))pi(i)


+

 ∑
n1∈I\{i}

∑
s1∈Sn1

∑
s2∈Si

· · ·
∑

sT∈Si

A(sT , . . . , s1) · · ·

× (αxi(s
T | sT−1, . . . , s1) + (1− α)yi(s

T | sT−1, . . . , s1))pi(i) · · ·
× (αxi(s

2 | s1) + (1− α)yi(s
2 | s1))pi(i)(αxn1(s1) + (1− α)xn1(s1))pi(n

1) + · · ·
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+
∑
s1∈Si

· · ·
∑

sT−1∈Si

∑
nT∈I\I

∑
sT∈SnT

A(sT , . . . , s1)

× (αxnT (sT | sT−1, . . . , s1) + (1− α)xnT (sT | sT−1, . . . , s1))pi(n
T ) · · ·

× (αxi(s
T−1 | sT−2, . . . , s1) + (1− α)yi(s

T−1 | sT−2, . . . , s1))pi(i)

+ · · ·

+

 ∑
n1∈I\{i}

∑
s1∈Sn1

∑
s1∈Sn1

· · ·
∑

nT∈I\{i}

∑
sT∈SnT

A(sT , . . . , s1)

× (αxnT (sT | sT−1, . . . , s1) + (1− α)xnT (sT | sT−1, . . . , s1))pi(n
T ) · · ·

× (αxn1(s1) + (1− α)xn1(s1))pi(n
1))


= αEi((xi, x−i), A) + (1− α)Ei((yi, x−i), A),

where A can be either of ai, bi, ci or di, and since both xi and yi are best responses
for i given the other players choose x−i, then E∗

i ((xi, x−i), ui) ≥ E∗
i ((yi, x−i), ui) and

E∗
i ((yi, x−i), ui) ≥ E∗

i ((xi, x−i), ui). Therefore

E∗
i ((αxi + (1− α)yi), ui) = αE∗

i ((xi, x−i), ui) + (1− α)E∗
i ((yi, x−i), ui)

= E∗
i ((xi, x−i), ui),

so αxi + (1 − α)yi ∈ BRi(x−i). This follows for all players, so BR is a convex corre-
spondence. □

The previous results show that BR satisfies Kakutani’s fixed point theorem, so at
least one fixed point exists for BR. And precisely, those fixed points are the equilibria
of the game, since we want to maximize the expected utility for each player i given what
the other players are choosing, but since a player’s strategy is already a best response,
they cannot improve any further. Therefore we have the following result.

Theorem 4.5. Every sequential game with finite strategy sets, finite horizon and turn
selection process with fuzzy trapezoidal utility functions has at least one equilibrium
under the average ranking criterion.

5. GAMES WITH FUZZY UTILITIES FUNCTIONS USING α-CUTS

Now we will consider the fuzzy expected value as our expectation operator. In this case
we apply this operator to our utility function, and the associated probability measure
is derived from both the selection process as well as from the profile of mixed strategies
each player uses. In this regard, to indicate it, we will apply the fuzzy expected value
to ui(x).

Similarly as before, we will say x∗ ∈ Q is a fuzzy equilibrium if for every player
i ∈ I and every plan of mixed conditioned strategies xi ∈ Qi we have

E∗(ui(x
∗)) ≥∗ E∗(ui(x

∗
−i, xi)),
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whenever ui(x
∗) and ui(x

∗
−i, xi) are comparable with this order.

We define as well for each player i the best response correspondence BR∗
i to the

partial profile x−i ∈ Q−i as

BR∗
i (x−i) = {xi ∈ Qi | E∗(ui(x−i, xi)) ≥∗ E∗(ui(x−i, yi)) for all yi ∈ Qi},

and the best response correspondence BR∗ : Q → Q as

BR∗(x) = (BR∗
1(x−1), BR∗

2(x−2), . . . , BR∗
N (x−N )).

Proposition 5.1. Let (Ω,A, P ) be a probability space. LetX be a nonnegative discrete
random variable associated to (Ω,A, P ) such that E(X) exists. Then X̃ = X(a, b, c, d)
is a fuzzy random variable associated to (Ω,A, P ) and

E∗(X̃) = E(X)(a, b, c, d).

P r o o f . Let X be a nonnegative discrete random variable with finite or denumerable
range denoted by {x1, x2, . . .}. Then {X = xj} = {ω ∈ Ω | X(ω) = xj}, for j = 1, 2, . . ..
Let Γ = (a, b, c, d) with α-cuts Γα = [s(α), t(α)] where s(α) = αa + (1 − α)b, t(α) =
αc+ (1− α)d. Fix α ∈ [0, 1]. Define for ω ∈ Ω the multifunction

X̃α(ω) = (X̃(ω))α = (X(ω)Γ)α = X(ω)[s(α), t(α)].

We can see that

Gr(X̃α) = {(ω, x) ∈ Ω× R | x ∈ X̃α(ω)}
= {(ω, x) ∈ Ω× R | x ∈ X(ω)[s(α), t(α)]}

=

∞⋃
j=1

({X = xj} × xj [s(α), t(α)]).

Therefore, Gr(X̃α) ∈ A ⊗ B(R). Since this holds for all α ∈ [0, 1], then X̃ is a fuzzy
random variable. Now, given ω ∈ Ω, we have that

(X̃(ω))0 = X̃0(ω) = X(ω)[a, d].

Define h : Ω → R for ω ∈ Ω as

h(ω) = X(ω)d.

Then it’s easy to see that
|x| ≤ h(ω),

for all (ω, x) ∈ Ω× R with x ∈ X̃0(ω) = X(ω)[a, d]. Also, we have that E(h) = dE(X)
which is finite. Therefore, X̃ is an integrably bounded fuzzy random variable with
respect of (Ω,A, P ).

Now, we have that there is a unique fuzzy expected value E∗(X̃) such that for each
α ∈ [0, 1]

(E∗(X̃))α = E(X)[s(α), t(α)],
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which for each α is exactly
(E(X)(a, b, c, d))α,

the α-cut of the trapezoidal number E(X)(a, b, c, d), so

E∗(X̃) = E(X)(a, b, c, d).

□

Proposition 5.2. The best response correspondence BR∗ is non-empty with closed
graph.

P r o o f . Similarly to Proposition 4.3, since the expected utility function is a continuous
function defined on a compact set, it achieves its maximum at some point in Qi for every
x−i ∈ Q−i, which implies BR∗

i is non-empty for let (xh)
∞
h=1 be a sequence of profiles of

conditioned strategies and (x′
h)

∞
h=1 the best responses, so x′

h ∈ BR∗(xh) for every h. Let
x∗ = limh→∞ xh and x′∗ = limh→∞ x′

h. For player i, we have that x′
h,i ∈ BR∗(xh,−i),

which means that
E∗(ui(xh,−i, x

′
h,i)) ≥ E∗(ui(xh,−i, yi)),

for every yi ∈ Qi. Taking limits on both sides, given that we know that Ei(x) is a
continuous operator (see [3]) then E∗ is also continuous, given the expression obtained
in 5.1, we have that

lim
h→∞

E∗(ui(xh,−i, x
′
h,i)) ≥ lim

h→∞
E∗(ui(xh,−i, yi)),

lim
h→∞

Ei((xh,−i, x
′
h,i))(A,B,C,D) ≥ lim

h→∞
Ei((xh,−i, yi))(A,B,C,D),

where utilities for these games can be given in terms of the trapezoidal number (A,B,C,D).
We can interchange limits and sums, so

Ei((x
∗
h,−i, x

′∗
h,i))(A,B,C,D) ≥ Ei((x

∗
h,−i, yi))(A,B,C,D),

for every yi ∈ Qi, that is, x′∗
i ∈ BR∗

i (x
∗
−i) for every player i, which implies that x′∗ ∈

BR∗(x∗). □

Proposition 5.3. The best response correspondence BR∗ is convex.

P r o o f . Let xi, yi ∈ BR∗
i (x−i). Then the fuzzy expected utility of the convex combi-

nation βxi + (1 − β)yi for β ∈ [0, 1] when the other players use the profile x−i ∈ Q−i

is

E∗(ui(βxi + (1− β)yi, x−i)) = Ei(βxi + (1− β)yi, x−i)(a, b, c, d),

and by convexity of the expected utility operator (see [3]) we have the last expression is
equal to

(βEi(xi, x−i)+(1−β)Ei(yi, x−i))(a, b, c, d) = βE∗(ui(xi, x−i))+(1−β)E∗(ui(yi, x−i)).
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Now, since xi is a best response to x−i, then in particular

E∗(ui(xi, x−i)) ≥ E∗(ui(yi, x−i)),

and
E∗(ui(yi, x−i)) ≥ E∗(ui(xi, x−i)),

so we have that

E∗(ui(βxi + (1− β)yi, x−i)) = βE∗(ui(xi, x−i)) + (1− β)E∗(ui(yi, x−i))

= E∗(ui(xi, x−i)),

which means (βxi + (1 − β)yi, x−i) ∈ BR∗
i (x−i). As this is true for all players i, then

BR∗ is a convex correspondence. □

Finally, using Kakutani’s theorem once again, as the fixed points of BR∗ are precisely
those that correspond to a fuzzy equilibrium, we can state the main result of this section.

Theorem 5.4. Every sequential game with finite strategy sets, finite horizon and turn
selection process with fuzzy utility functions of the form U(a, b, c, d) for some trape-
zoidal number (a, b, c, d) has at least one fuzzy equilibrium under the fuzzy expectation
criterion.

6. AN APPLICATION

We present the following example, in which we consider a situation where the probabil-
ities of the turn selection process and the available strategy sets for the players change,
conditioned on the choices made in previous turns.

6.1. Using the average ranking criterion

Two teams must choose between two new recruits. As usual, they’ve tried to measure the
benefit that the new teammates would have, but there is a certain degree of uncertainty,
due to non-measurable characteristics. As such, the first team considers the first athlete
to give a utility of (0, 1, 4, 5), whereas the second athlete gives a utility of (1, 2, 4, 6).
However, the second team considers the first athlete to give a utility of (1, 3, 4, 5) and
the second athlete to give a utility of (0, 3, 5, 6). The utility obtained by each team after
making their picks is the sum of the utilities of the athletes they have chosen. Moreover,
in each of the two periods, the teams have a probability of being chosen. The probability
of team 1 being selected in the first period is 1/3 and of team 2 being selected is 2/3.
If the first athlete is chosen in the first selection, then the team that picked him has its
probability reduced by a half for being selected in the second period (the probability
they lose gets added to the other team), whereas if the second athlete is chosen in the
first selection, the probability of the team is reduced by a third. In the second period,
the team chosen gets the athlete that’s left over.

To find the equilibrium, we observe that both players are modelling the turn selection
process with the same probability distribution, which is

p(1) = 1/3, p(2) = 2/3,
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and

p(1 | A1) = 1/6, p(2 | A1) = 5/6,

p(1 | B1) = 1/9, p(2 | B1) = 8/9,

p(1 | A2) = 2/3, p(2 | A2) = 1/3,

p(1 | B2) = 7/9, p(2 | B2) = 2/9,

where Aj indicates that in the first turn, player j chose the first athlete, and Bj indicates
that in the first turn, team j chose the second athlete.

Now, since we have that the utility function is the fuzzy sum of the utilities obtained
from the athletes, then we can compute the expected utility, and substitute the cor-
responding utility function in each term. Observe also that, since the second pick is
automatic, xj(K | ·) = 1 for K ∈ {Aj , Bj}, whereas any other mixed strategy is equal
to zero.

For team 1, the expected utility for each coordinate of its utility is:

E1(x, a1) =
9

27
− 5

18
x(A1) +

4

9
x(A2),

E1(x, b1) =
11

9
− 7

27
x(A1) +

38

27
x(A2),

E1(x, c1) =
32

9
+

2

27
x(A1) +

104

27
x(A2),

E1(x, d1) =
43

9
− 5

27
x(A1) +

142

27
x(A2),

whereas for team 2

E2(x, a2) =
4

9
+

14

27
x(A2)−

8

27
x(A1),

E2(x, b2) =
30

9
+

2

9
x(A2)−

1

18
x(A1),

E2(x, c2) =
46

9
− 4

27
x(A2) +

11

54
x(A1),

E2(x, d2) =
56

9
− 2

27
x(A2) +

5

27
x(A1).

Finally, we compute the average ranking for both players’ expected utility:

R(E∗
1 (x, u1)) =

89

36
− 35

216
x(A1) +

74

27
x(A2),

R(E∗
2 (x, u2)) =

34

9
+

7

54
x(A2) +

1

108
x(A1),

and observe that team 1 can maximize their average ranking if x(A1) = 0, while team
2 can maximize their average ranking if x(A2) = 1, meaning that team 1, if selected to
make the first choice, will pick the second athlete, whereas team 2, if selected to make
the first choice, will pick the first athlete.
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6.2. Comparing the average ranking criterion to the fuzzy expected utility
criterion

Now, we take the same structure of two teams vying to recruit two athletes, but this
time, the utilities obtained by each team are as follows: The first team considers the first
athlete to give them a utility of (0, 2, 4, 10), whereas the second athlete would give them
an utility of (0, 3, 6, 15). The second team considers the first athlete gives them a utility
of (1, 3, 4, 6) whereas the second athlete gives them a utility of (0.5, 1.5, 2, 3). As before,
team 1 has probability of being selected 1/3, and therefore, team 2 has probability 2/3
of being selected. And if the first athlete is chosen, then that team has its probability
reduced by half, whereas the second athlete reduces the probabilities by a third.

We have the same probabilities as before

p(1) = 1/3, p(2) = 2/3,

p(1 | A1) = 1/6, p(2 | A1) = 5/6,

p(1 | B1) = 1/9, p(2 | B1) = 8/9,

p(1 | A2) = 2/3, p(2 | A2) = 1/3,

p(1 | B2) = 7/9, p(2 | B2) = 2/9.

Under the average ranking criterion, we compute the expected utility for each coor-
dinate for team 1

E1(x, a1) = 0,

E1(x, b1) =
19

9
− 13

54
x(A1) +

64

27
x(A2),

E1(x, c1) =
38

9
− 13

27
x(A1) +

128

27
x(A2),

E1(x, d1) =
95

9
− 65

54
x(A1) +

320

27
x(A2),

and for team 2

E2(x, a2) =
7

9
+

8

27
x(A2)−

17

108
x(A1),

E2(x, b2) =
21

9
+

8

9
x(A2)−

17

36
x(A1),

E2(x, c2) =
28

9
+

32

27
x(A2)−

17

27
x(A1),

E2(x, d2) =
42

9
+

16

9
x(A2)−

85

9
x(A1).

From here, we can compute the average ranking

R(E∗
1 (x, u1)) =

38

9
− 13

27
x(A1) +

128

27
x(A2),

R(E∗
2 (x, u2)) =

49

18
+

28

27
x(A2)−

289

108
x(A1).
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which to maximize implies that team 1 should play x(A1) = 0, whereas team 2 should
play x(A2) = 1, meaning that team 1 if chosen in the first pick will choose the second
athlete, whereas if team 2 is chosen in the first pick will choose the first athlete.

Now we use the fuzzy expected utility criterion. For this, we note that for team 1

E∗(u1(x)) = E(X)(a1, b1, c1, d1),

with X the random variable that takes values on Ω = {0, 2, 3, 5} and (a1, b1, c1, d1) =
(0, 1, 2, 5) . Therefore, we have that

E(X) = 0p(X = 0) + 2p(X = 2) + 3p(X = 3) + 5p(X = 5),

where we have the probabilities

p(X = 0) = p(2 | A2)p(2)x(A2) + p(2 | B2)p(2)x(B2),

p(X = 2) = p(1 | B2)p(2)x(B2) + p(2 | A1)p(1)x(A1),

p(X = 3) = p(1 | A2)p(2)x(A2) + p(2 | B1)p(1)x(B1),

p(X = 5) = p(1 | A1)p(1)x(A1) + p(1 | B1)p(1)x(B1),

so the expected utility of X is

E(X) = 2[p(1 | B2)p(2)x(B2) + p(2 | A1)p(1)x(A1)]

+ 3[p(1 | A2)p(2)x(A2) + p(2 | B1)p(1)x(B1)]

+ 5[p(1 | A1)p(1)x(A1) + p(1 | B1)p(1)x(B1)]

= 2

[
7

9
· 2
3
(1− x(A2)) +

5

6
· 1
3
x(A1)

]
+ 3

[
2

3
· 2
3
x(A2) +

8

9
· 1
3
(1− x(A1))

]
+ 5

[
1

6
· 1
3
x(A1) +

1

9
· 1
3
(1− x(A1))

]
=

19

9
− 13

54
x(A1) +

8

27
x(A2),

and the fuzzy expected utility is

E∗(u1(x)) =

[
19

9
− 13

54
x(A1) +

8

27
x(A2)

]
(0, 1, 2, 5).

For team 2 we have that

E∗(u2(x)) = E(Y )(a2, b2, c2, d2),

with Y the random variable that takes values on Ω = {0, 1, 2, 3} and (a2, b2, c2, d2) =
(0.5, 1.5, 2, 3). Therefore we have that

E(Y ) = 0p(Y = 0) + 1p(Y = 1) + 2p(Y = 2) + 5p(Y = 5),



Sequential games with turn selection process and fuzzy utility functions 663

where we have the probabilities

p(Y = 0) = p(1 | A1)p(1)x(A1) + p(1 | B1)p(1)x(B1),

p(Y = 1) = p(2 | A1)p(1)x(A1) + p(1 | B2)p(2)x(B2),

p(Y = 2) = p(2 | B1)p(1)x(B1) + p(1 | A2)p(2)x(A2),

p(Y = 3) = p(2 | A2)p(2)x(A2) + p(2 | B2)p(2)x(B2),

so the expected utility of Y is

E(Y ) = 1 [p(2 | A1)p(1)x(A1) + p(1 | B2)p(2)x(B2)]

+ 2 [p(2 | B1)p(1)x(B1) + p(1 | A2)p(2)x(A2)]

+ 3 [p(2 | A2)p(2)x(A2) + p(2 | B2)p(2)x(B2)]

= 1

[
5

6
· 1
3
x(A1) +

7

9
· 2
3
(1− x(A2))

]
+ 2

[
8

9
· 1
3
(1− x(A1)) +

2

3
· 2
3
x(A2)

]
+ 3

[
1

3
· 2
3
x(A2) +

2

9
· 2
3
(1− x(A2))

]
=

14

9
+

16

27
x(A2)−

17

54
x(A1),

and the fuzzy expected utility is

E∗(u2(x)) =

[
14

9
+

16

27
x(A2)−

17

54
x(A1)

]
(0.5, 1.5, 2, 3).

We can see that in this case as well, to maximize the corresponding fuzzy expected
utilities, x(A1) = 0 whereas x(A2) = 1, which means that team 1 should choose the
second athlete if selected in the first turn, and team 2 should choose the first athlete if
selected in the first turn.

Note that the obtained expressions to determine this for each criterion have different
coefficients, even up to multiples, so this means that both approaches, though they gave
the same strategy for each player, are not necessarily interchangeable.

7. CONCLUSIONS

In this paper a generalization of a model with turn selection process has been described
in which utility functions are fuzzy, allowing for models where players may not know
exactly when they are choosing before the game, and also where players may not know
exactly their or their opponents utility functions, but have an idea of what they may
be, so the uncertainty doesn’t have to be modelled by a random variable. Moreover, the
model introduced is a sequential model, which is a natural way in which situations in
real life happen. For this model, we were able to prove the existence of an equilibrium,
though not a clear way of finding such equilibria.

As we can see in the first example, it is possible to model situations where the utilities
are not well known, though in that case, are very similar, since both teams have similar
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appreciations of the athletes, but they may lack the knowledge of certain aspects, which
leads to the fuzzy utilities. In the case of the example, the probabilities with which
each team is chosen in the first turn did not change the fact that the second athlete is
perceived by both teams as better, in spite of them losing a good chunk of chance to
be chosen in the second period. This also leads to the possibility of using these models
to create situations where we can modify the behaviors of the players, by changing the
probabilities with which they can be chosen in the different turns.

From the second example we can see that if the games are of a specific structure, it is
possible to study them as well under the fuzzy expected utility criterion and though we
got the same strategy of choosing in the first turn athlete 2 for team 1 and athlete 1 for
team 2, the expressions obtained are completely different and therefore it is not possible
to interchange the approaches. Whether there is a relation between both approaches is
an interesting question that could be studied in the future.

Further work includes considering changes on other aspect, including types for players,
as well as other types of fuzzy utility functions to consider even cases where players may
be prone or adverse to risk as in [3]. Other lines of work could include studying the
model as an optimization problem to establish a way to find approximate solutions.
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