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EXPLICIT CONTROL LAW FOR A HEAT EQUATION
BASED ON OUTPUT TRACKING

Cuihua He, Ke Wang, and Zhongcheng Zhou

Boundary control to track the output reference of the heat equation is considered. A control
input is implemented at one boundary while requiring the other boundary to track the output
reference. By introducing the error system and backstepping transformation, the control law
is designed. The undetermined coefficient method and two identities are used to obtain the
analytical solution of the kernel function by complex mathematical calculation. This establishes
an explicit control law and ensures that the error system can effectively achieve the desired
closed-loop stability. Simulation results validate the proposed theoretical results.

Keywords: backstepping, boundary control, output tracking

Classification: 93C20, 35K05, 93D15, 93D23

1. INTRODUCTION

The modeling and analysis of partial differential equations (PDEs) constitute essential
methodologies for addressing complex engineering challenges [8]. In engineering practice,
the selection of an appropriate output reference function is critical to achieving specific
engineering objectives [2]. To strike a balance between computational efficiency and ac-
curacy, this study adopts a quadratic polynomial as the approximate reference function,
leveraging its appropriate approximation capabilities [18]. This choice not only ensures
computational tractability but also establishes a foundational framework for subsequent
investigations in this research.

Krstic et al. [12] developed a boundary control law by using PDE Backstepping, which
offers a potent tool for designing the boundaries of PDE systems. The Backstepping
method can effectively control the boundary of PDE systems [5, 10, 24] and coupled
or cascaded ODE-PDE systems [16, 21, 23]. Moreover, its theoretical framework is
essentially applicable to the local stabilization of nonlinear parabolic PDE systems [1,
14, 20].

In this pioneering work, Krstic and Smyshlyaev [12] elaborated extensively on the the-
oretical foundations and practical implications of stabilizing PDE feasible trajectories by
boundary control, which remains a cornerstone of the field. PDE Backstepping is an ef-
fective method for rapid system stabilization. However, the primary challenge associated
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with this approach lies in solving the governing kernel equations required for deriving
explicit control laws. Notably, these explicit control laws have demonstrated numerous
advantages in practical applications, especially in enhancing real-time performance and
improving control efficiency, as evidenced by studies in [11] and [13]. Consequently, this
approach has had a favorable impact and imparted substantial benefits to engineering
practice. The core goal of this paper is to study the quantitative characteristics of the
backstepping transformation kernel equation in depth, so as to obtain the explicit con-
trol law. Yet, from a mathematical standpoint, the task of deriving these explicit control
laws remains formidable.

In the field of control theory, significant advancements have been achieved in ad-
dressing control problems for strict-feedback systems under full state constraints in re-
cent years. Notably, the adaptive optimal backstepping tracking control technique has
been further developed to achieve stable system tracking without relying on the barrier
Lyapunov function framework [15]. Additionally, an adaptive tracking control method
driven by a predefined time-triggered mechanism has been proposed and investigated
in [17], offering a novel perspective for the control of strict-feedback systems with full
state constraints. Furthermore, building on the foundational contributions of Coron et
al. [3, 4, 6, 7, 9, 22], these studies not only enrich the theoretical framework of system
control but also provide a robust theoretical foundation and valuable insights for ongoing
research. In this paper, we focus on a class of reaction-advection equations.

ut(x, t) = uxx(x, t) + λux(x, t), x ∈ (0, 1) (1)

ux(0, t) = 0 (2)

u(1, t) = U(t) (3)

with the expected reference output

ur(0, t) = at2 + bt+ c, (4)

where the temperature of the heat body is denoted by the signal u(x, t) ∈ R, λ is a
positive constant representing the convection coefficient, the control input is represented
by the U(t) and a, b, c are constants that are pre-determined. To ensure generality, the
initial value u(x, 0) can be assumed to belong to H1(0, 1), which is a Sobolev space with
square integrable weak derivatives of order one. It is very important for the convection
term ux(x, t) in system (1) when describing the heat diffusion.

The system described by equations (1) – (4) is an output regulation problem based
on a certain class of physical scenarios. The challenge of output regulation is to develop
a feedback control strategy to track the specified reference signal step by step and to
suppress the undesired disturbance in the uncertain system step by step while guaran-
teeing the stability of the closed-loop system. Therefore, it is of great value and practical
significance to study the PDE tracking control system by the backstepping method.

The control objective in this paper is to design a feedback control law such that

lim
t→∞

| u(0, t)− ur(0, t) |= 0. (5)

To solve this kind of tracking problem, first of all, we aim to utilize the temperature
at x = 0 as determined by (4) to calculate the reference input at x = 1. In order to
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determine the reference input ur(1, t), it is necessary to construct the full-state trajectory
ur(x, t) [12]. To achieve the progressive tracking of the reference signal or the progressive
suppression of the undesired disturbance in the uncertain system, we introduce the error
system ε(x, t) = u(x, t)−ur(x, t), which is expected to maintain the closed-loop stability
of the error system. Backstepping is employed to obtain the control input U(t), which
achieves stability of the closed-loop error system.

The paper is structured as follows. Section 2 presents the trajectory generation
of the full-state, introduces the error system, and obtains the kernel equation using
standard variation. In Section 3, the kernel function in the standard transformation is
solved, leading to the establishment of the explicit control law. The effectiveness of the
control law is demonstrated through simulation in Section 4, and the paper is concluded
in Section 5. Additionally, the appendix provides two crucial identities to prove the
expression of the kernel function.

2. DESIGN OF CONTROL LAW

In this section, we first use the temperature at x = 0 to generate the full-state trajectory,
then the error system is introduced, the kernel equation is obtained through the standard
transformation and finally the control law is designed. The aforementioned procedure is
the standard processing method, albeit with slightly complex calculations. For the sake
of convenience, we have presented a concise process.

2.1. Trajectory generation

In order to determine the reference input ur(1, t), we first need to create the full-state
trajectory ur(x, t), which must meet the conditions specified in (1), (2), and (4). Let us
follow the idea of Taylor series expansion to search for the full-state trajectory equation.
Let

ur(x, t) =

∞∑
n=0

an(t)
xn

n!
, (6)

where the an(t) are time-varying coefficients that can be determined by equations (1),
(2) and (4). Based on (6) and (4), the following equality holds

ur(0, t) = a0(t) = at2 + bt+ c. (7)

Applying the boundary condition (2), it holds that

ur
x(0, t) = a1(t) = 0. (8)

Next substituting (6) into (1), one knows that

∞∑
n=0

ȧn(t)
xn

n!
=

∂2

∂x2

∞∑
n=0

an(t)
xn

n!
+ λ

∂

∂x

∞∑
n=0

an(t)
xn

n!
.

Hence, we get the recursive relation for an(t)

ȧn(t) = an+2(t) + λan+1(t). (9)
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In terms of (7) – (9), it holds that

a2(t) =2at+ b, a3(t) = −λ(2at+ b),

an(t) =2a(n− 3)(−λ)n−4 + (2at+ b)(−λ)n−2, (n ≥ 4).

Therefore, the reference full-state trajectory is

ur(x, t) =at2 + bt+ c+ (2at+ b)
x2

2!
− λ(2at+ b)

x3

3!

+

∞∑
n=4

(
2a(n− 3)(−λ)n−4 + (2at+ b)(−λ)n−2

)xn

n!
.

The reference input signal is

ur(1, t) =at2 + bt+ c+
2at+ b

2!
− λ(2at+ b)

3!

+

∞∑
n=4

2a(n− 3)(−λ)n−4 + (2at+ b)(−λ)n−2

n!
. (10)

2.2. Error System

Introducing error system

ε(x, t) = u(x, t)− ur(x, t),

then, the system (1) – (3) is converted into

εt(x, t) = εxx(x, t) + λεx(x, t), x ∈ (0, 1) (11)

εx(0, t) = 0 (12)

ε(1, t) = U(t)− ur(1, t) (13)

Let

ε(x, t) = υ(x, t)e−
λ
2 x, (14)

substitute (14) into (11) – (13), then the error system is as follows

υt(x, t) = υxx(x, t)−
λ2

4
υ(x, t) (15)

υx(0, t) =
λ

2
υ(0, t) (16)

υ(1, t) = ε(1, t)e
λ
2 . (17)

The corresponding control law is obtained by (13) and (17) as

U(t) = υ(1, t)e−
λ
2 + ur(1, t), (18)

where υ(1, t) is subsequently determined in Section 2.3.
If the system (15) – (17) can be stabilized by suitable control, it indicates that the

error system can be stabilized to zero, which means that signal u(x, t) can asymptotically
track the signal ur(x, t). Next, we will design the control law to achieve the purpose of
tracking the signal.
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2.3. Kernel equations

The control law can be obtained by choosing a stable target system as follows

wt(x, t) = wxx(x, t), x ∈ (0, 1) (19)

wx(0, t) = 0 (20)

w(1, t) = 0. (21)

Adopting the following standard backstepping transformation

w(x, t) = υ(x, t)−
∫ x

0

k(x, y)υ(y, t) dy (22)

to convert system (15) – (17) into target system (19) – (21) with undetermined kernel
k(x, y). Next, we will deduce the kernel equation of k(x, y). By differentiating w(x, t)
in (22) twice with respect to x and once with respect to t, and then using integration
by parts, we obtain

wt(x, t)− wxx(x, t) =
(
2k′(x, x)− λ2

4

)
υ(x, t) +

(λ
2
k(x, 0)− ky(x, 0)

)
υ(0, t)

+

∫ x

0

(kxx(x, y)− kyy(x, y) +
λ2

4
k(x, y))υ(y, t) dy, (23)

where k′(x, x) = dk(x,x)
dx .

According to the system (19) – (21), we can choose the kernel k(x, y) satisfy

kxx(x, y)− kyy(x, y) = −λ2

4
k(x, y) (24)

ky(x, 0) =
λ

2
k(x, 0) (25)

k′(x, x) =
λ2

8
. (26)

Further, according to wx(0, t) = 0 and the transformation (22), we have υx(0, t) =
k(0, 0)υ(0, t). In terms of the boundary condition (16), we know

k(0, 0) =
λ

2
. (27)

By using w(1, t) = 0, it holds that

υ(1, t) =

∫ 1

0

k(1, y)υ(y, t) dy. (28)

Then, the control law (18) is given as

U(t) = e−
λ
2

∫ 1

0

k(1, y)υ(y, t) dy + ur(1, t). (29)
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3. ANALYTICAL SOLUTIONS

Solving the equations by the standard iteration method, the system (24) – (26) and (27)
can be transformed into integral equations. Proving the existence of the kernel function
k(x, y) is straightforward, but finding its explicit mathematical solution is challenging.
This challenge constitutes one of the key innovations of this work. As for the kernel
equation, we can obtain the following lemma.

Lemma 3.1. For the kernel equation (24) – (26) and (27), there exists a unique classical
solution, which can be expressed explicitly.

P r o o f . Let µ = x + y, ν = x − y and define k(x, y) := G(µ, ν), then, the equation
(24) – (26) and (27) is converted into

Gµν(µ, ν) = −λ2

16
G(µ, ν) (30)

G(µ, µ) =
2

λ
(Gµ(µ, µ)−Gν(µ, µ)) (31)

Gµ(µ, 0) =
λ2

16
(32)

G(0, 0) =
λ

2
. (33)

By integrating (30) from 0 to ν with respect to ν, and then integrating from ν to µ with
respect to µ, and utilizing (32), it holds that

G(µ, ν) =
λ2

16
(µ− ν) +G(ν, ν)− λ2

16

∫ µ

ν

∫ ν

0

G(s, τ) dτds. (34)

The well-posedness of (34) can be proved by the same idea in [12]. Here, we use a differ-
ent process to prove it for obtaining the explicit solution of (34) via the undetermined
coefficient method.

We assume G(ν, ν) =
∑∞

k=0 ck
νk

k! with ck determined later, then,

G(µ, ν) =
λ2

16
(µ− ν) +

∞∑
k=0

ck
νk

k!
− λ2

16

∫ µ

ν

∫ ν

0

G(s, τ) dτds. (35)

We calculate the explicit solution of (35) by successive approximation method. First,
we define the sequence functions as following

G0(µ, ν) =0,

Gm(µ, ν) =
λ2

16
(µ− ν) +

∞∑
k=0

ck
νk

k!
− λ2

16

∫ µ

ν

∫ ν

0

Gm−1(s, τ) dτds, (36)

If the functions {Gm+1(µ, ν)} converge uniformly, then we get

G(µ, ν) := lim
m→∞

Gm(µ, ν),
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which is exactly the solution of the equation (35).
In order to derive the limit of the above sequence functions, we have the following

recursive formula

∆G0(µ, ν) =G1(µ, ν)−G0(µ, ν),

∆Gm(µ, ν) =Gm+1(µ, ν)−Gm(µ, ν) = −λ2

16

∫ µ

ν

∫ ν

0

∆Gm−1(s, τ) dτds,

then

Gm(µ, ν) =

m−1∑
j=0

∆Gj(µ, ν). (37)

Next, we compute the sequence ∆Gm(µ, ν), and find out the general expression.
Firstly

∆G0(µ, ν) =G1(µ, ν)−G0(µ, ν) =

∞∑
k=0

ck
νk

k!
+

λ2

16
(µ− ν).

Secondly

∆G1(µ, ν) =− λ2

16

∫ µ

ν

∫ ν

0

∆G0(s, τ) dτds

=− λ2

16

∞∑
k=0

∫ µ

ν

∫ ν

0

ck
τk

k!
dτds− (−λ2

16
)2

∫ µ

ν

∫ ν

0

(s− τ) dτds

=− λ2

16

∞∑
k=0

ck
νk+1(µ− ν)

(k + 1)!
− (−λ2

16
)2
(µ− ν)µν

2!
,

∆G2(µ, ν) =− λ2

16

∫ µ

ν

∫ ν

0

∆G1(s, τ) dτds

=(−λ2

16
)2

∞∑
k=0

ck

∫ µ

ν

∫ ν

0

τk+1(s− τ)

(k + 1)!
dτds− (−λ2

16
)3

∫ µ

ν

∫ ν

0

(s− τ)sτ

2!
dτds

=(−λ2

16
)2

∞∑
k=0

ck

(νk+2(µ− ν)2

2!(k + 2)!
+

νk+3(µ− ν)

1!(k + 3)!

)
− (−λ2

16
)3
(µ− ν)µ2ν2

2!3!
,

and

∆G3(µ, ν) =− λ2

16

∫ µ

ν

∫ ν

0

∆G2(s, τ) dτds

=(−λ2

16
)3

∞∑
k=0

ck

∫ µ

ν

∫ ν

0

(τk+2(s− τ)2

2!(k + 2)!
+

τk+3(s− τ)

1!(k + 3)!

)
dτds

− (−λ2

16
)4

∫ µ

ν

∫ ν

0

(s− τ)s2τ2

2!3!
dτds
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=(−λ2

16
)3

∞∑
k=0

ck

(νk+3(µ− ν)3

3!(k + 3)!
+

2νk+4(µ− ν)2

2!(k + 4)!
+

2νk+5(µ− ν)

1!(k + 5)!

)
− (−λ2

16
)4
(µ− ν)µ3ν3

3!4!
.

By utilizing above equations for ∆G0(µ, ν), ∆G1(µ, ν), ∆G2(µ, ν), ∆G3(µ, ν), we can
derive an expression of the general item ∆Gm(µ, ν), which is

∆Gm(µ, ν) = (−λ2

16
)m

∞∑
k=0

ck

m−1∑
i=0

bm,iν
k+m+i(µ− ν)m−i

(k +m+ i)!(m− i)!
− (−λ2

16
)m+1 (µ− ν)µmνm

m!(m+ 1)!
,

(38)

where

bm,i =
(m− i)(m− 1 + i)!

i!m!
, (m = 1, 2, · · ·, i = 0, 1, · · ·,m− 1).

The proof of (38) follows a similar mathematical induction as in [11]. For the sake
of brevity, the core results are given in this paper, and the technical details are detailed
in [11].

According to (37) and (38), we have

Gm(µ, ν) = ∆G0(µ, ν) +

m−1∑
j=1

∆Gj(µ, ν)

=
λ2

16
(µ− ν) +

∞∑
k=0

ck
νk

k!
+

m−1∑
j=1

(−λ2

16
)j

∞∑
k=0

ck

j−1∑
i=0

bj,iν
k+j+i(µ− ν)j−i

(k + j + i)!(j − i)!

−
m−1∑
j=1

(−λ2

16
)j+1 (µ− ν)µjνj

j!(j + 1)!

=

∞∑
k=0

ck
νk

k!
−

m−1∑
j=0

(−λ2

16
)j+1 (µ− ν)µjνj

j!(j + 1)!
+

∞∑
k=0

ck

m−1∑
j=1

(−λ2

16
)j

j−1∑
i=0

bj,iν
k+j+i(µ− ν)j−i

(k + j + i)!(j − i)!
,

where bj,i is given as before. Taking m → ∞, we get the limited function G(µ, ν) as

G(µ, ν) = lim
m→∞

Gm(µ, ν) = ∆G0(µ, ν) +

∞∑
j=1

∆Gj(µ, ν)

=

∞∑
k=0

ck
νk

k!
−

∞∑
j=0

(−λ2

16
)j+1 (µ− ν)µjνj

j!(j + 1)!

+

∞∑
k=0

ck

∞∑
j=1

(−λ2

16
)j

j−1∑
i=0

bj,iν
k+j+i(µ− ν)j−i

(k + j + i)!(j − i)!
. (39)
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Then replacing the variables µ, ν with x, y, we know

k(x, y) =

∞∑
k=0

ck
(x− y)k

k!
− 2y

∞∑
j=0

(−λ2

16
)j+1 (x

2 − y2)j

j!(j + 1)!

+

∞∑
k=0

ck

∞∑
j=1

(−λ2

16
)j

j−1∑
i=0

bj,i
(x− y)k+j+i(2y)j−i

(k + j + i)!(j − i)!
. (40)

Finally, we need to determine the undefined constant ck. Taking the derivative of
(40) with respect to y, and then taking y = 0, we have

ky(x, 0) =−
∞∑
k=1

ck
xk−1

(k − 1)!
− 2

∞∑
j=0

(−λ2

16
)j+1 x2j

j!(j + 1)!

+ 2

∞∑
k=0

ck

∞∑
j=1

(−λ2

16
)j

(2j − 2)!

(j − 1)!j!

xk+2j−1

(k + 2j − 1)!
. (41)

In terms of the equation (25), we know

λ

2

∞∑
k=0

ck
xk

k!
=−

∞∑
k=1

ck
xk−1

(k − 1)!
− 2

∞∑
j=0

(−λ2

16
)j+1 x2j

j!(j + 1)!

+ 2

∞∑
k=0

ck

∞∑
j=1

(−λ2

16
)j

(2j − 2)!

(j − 1)!j!

xk+2j−1

(k + 2j − 1)!

=−
∞∑
k=1

ck
xk−1

(k − 1)!
− 2

∞∑
j=0

(−λ2

16
)j+1 x2j

j!(j + 1)!

+ 2

∞∑
j=1

(−λ2

16
)j

(2j − 2)!

(j − 1)!j!

∞∑
k=0

ck
xk+2j−1

(k + 2j − 1)!
. (42)

Taking the derivative of 2n order with respect to x on both sides for (42), and then
taking x = 0, we obtain

λ

2
c2n = −c2n+1 − 2(−λ2

16
)n+1 (2n)!

n!(n+ 1)!
+ 2

n∑
j=1

(−λ2

16
)j

(2j − 2)!

(j − 1)!j!
c2n+1−2j . (43)

Taking the derivative of 2n+ 1 order with respect to x on both sides for (42), and then
take x = 0, we have

λ

2
c2n+1 = −c2n+2 + 2

n+1∑
j=1

(−λ2

16
)j

(2j − 2)!

(j − 1)!j!
c2n+2−2j . (44)

Rearranging the terms in (43) and (44), we get
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
c2n+1 = 2

n∑
j=1

(−λ2

16
)j

(2j − 2)!

(j − 1)!j!
c2n+1−2j − 2(−λ2

16
)n+1 (2n)!

n!(n+ 1)!
− λ

2
c2n,

c2n+2 = 2

n+1∑
j=1

(−λ2

16
)j

(2j − 2)!

(j − 1)!j!
c2n+2−2j −

λ

2
c2n+1.

(45)

The main objective is to solve ck, which becomes a general expression in (45). By
using (27) and (40), we can determine c0 by k(0, 0) = c0 = λ

2 . Taking x = 0 in (42), we

knowλ
2 c0 = −c1 +

λ2

8 . Thus, c1 = λ2

8 − λ2

22 = −λ2

23 . Now calculating multiple recurrence
terms in terms of (45), we find out the general expression of ck by summarizing.

Obviously,

c2 =2
−λ2

16

0!

0!1!
c0 −

λ

2
c1 = 0,

c3 =2
−λ2

16

0!

0!1!
c1 − 2(

−λ2

16
)2

2!

1!2!
− λ

2
c2 =

2!

1!2!

(−λ2)2

27
,

c4 =2
−λ2

16

0!

0!1!
c2 + 2(

−λ2

16
)2

2!

1!2!
c0 −

λ

2
c3 = 0,

and

c5 = 2
−λ2

16

0!

0!1!
c3 + 2(

−λ2

16
)2

2!

1!2!
c1 − 2(

−λ2

16
)3

4!

2!3!
− λ

2
c4 =

4!

2!3!

(−λ2)3

211
.

Through the above calculation c2, c3, c4, c5, we can guess the general expression of cn
satisfying 

c2n = 0,

c2n+1 =
(2n)!

n!(n+ 1)!

(−λ2)n+1

24n+3
.

(46)

The inductive proof for cn is very complicated, it also involves a lot of mathematical
techniques and calculations, therefore, we present the proof in the Appendix part. Up
to now, we proved the well-posedness in the classical sense of the kernel equation. □

Once the value of ck has been determined, the value of k(1, y) is then established as
follows.

k(1, y) =

∞∑
k=0

ck
(1− y)k

k!
+

λy

2

J1(

√
λ2(1−y2)

2 )√
1− y2

+

∞∑
k=0

ck

∞∑
j=1

(−λ2

16
)j

j−1∑
i=0

bj,i
(1− y)k+j+i(2y)j−i

(k + j + i)!(j − i)!
,

where J1(x) belongs to a class of Bessel functions, the control U(t) in equation (29) can
be given explicitly. Next, we state the main theorem of this paper.
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Theorem 3.2. For the control system (1), (2) and (3), taking the feedback control law
(29), it can track out the reference output ur(0, t), that is to say, the state satisfies

lim
t→∞

| u(0, t)− ur(0, t) |= 0. (47)

P r o o f . Consider the following Lyapunov function

V (t) =
1

2

∫ 1

0

w2(x, t) dx+
1

2

∫ 1

0

w2
x(x, t) dx. (48)

By employing the solution to the system of equations (19) – (21), computing the
derivatives of the Lyapunov function, while utilizing equation wt(1, t) = 0, and Poincaré
inequality, we arrive at the conclusion that

V̇ (t) =

∫ 1

0

w(x, t)wt(x, t)dx+

∫ 1

0

wx(x, t)wxt(x, t) dx = −∥wx∥2 − ∥wxx∥2

≤ −1

2
∥wx∥2 −

1

2
∥wx∥2 ≤ −1

8
∥w(t)∥2 − 1

2
∥wx∥2 ≤ −1

4
V (t). (49)

Thus

V (t) ≤ V (0)e−
1
4 t =

1

2
∥w0∥H1e−

1
4 t.

From the transformation (22), it holds that

w(x, t) = Πυ(x, t) := υ(x, t)−
∫ x

0

k(x, y)υ(y, t) dy. (50)

Then

∥w0∥H1 = ∥Πυ0∥H1 ≤ ∥Π∥∥υ0∥H1 , (51)

where ∥Π∥ presents the norm of operator Π from H1(0, 1) → H1(0, 1). Using (50) and
(51), it yields

∥υ(t)∥H1 = ∥Π−1w(t)∥H1 ≤ ∥Π−1∥∥w(t)∥H1 ≤ ∥Π−1∥∥w0∥H1e−
1
4 t

≤ ∥Π−1∥∥Π∥∥υ0∥H1e−
1
4 t ≤ ζ∥υ0∥H1e−

1
4 t,

where ζ := ∥Π−1∥∥Π∥.
Hence, we have showed the uniform convergence for v(x, t), that is to say,

υ(x, t) → 0 uniformly as t → ∞.

Based on H1 stability of target system, trace theorem and Lemma 3.1, we obtain

lim
t→∞

| u(0, t)− ur(0, t) |= 0.

□

Up to now, we have obtained the explicit control law (29), which can track the given
object asymptotically by a boundary feedback control, which means that the boundary
point implements progressive tracking out the reference signal ur(0, t).
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4. SIMULATIONS

Next, we simulate a particular system for (1) – (4)

ut(x, t) = uxx(x, t) + 5ux(x, t), x ∈ (0, 1),

ux(0, t) = 0, t > 0,

u(1, t) = U(t), t > 0

with the reference output ur(0, t) = −t2 + 2t + 1. Based on the above analysis, we can
get the control law as

U(t) = e−
5
2

∫ 1

0

k(1, y)υ(y, t) dy + ur(1, t). (52)

Fig. 1. The error signal ε(x, t) of the closed loop system.

Fig. 2. The signal control U(t) of the closed loop system and

reference input ur(1, t).
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Fig. 3. The signal u(0, t) of the closed loop system and the reference

output ur(0, t).

The simulation results are shown in figures as follows. Figure 1 shows the error signal
of the closed-loop system tends to zero under the input of control law (52), it indicates
that signal u(x, t) can asymptotically track the signal ur(x, t). Figure 2 shows the control
law (52) tracks the reference input ur(1, t) asymptotically. Figure 3 clearly shows that
the boundary temperature u(0, t) tracks the reference output ur(0, t) asymptotically.
The simulation results verify the validity of the theory results.

5. CONCLUSION

This paper considered the output tracking control problems for a heat equation with
boundary control via constructing an explicit feedback control law. The control law is
obtained by the normal backstepping method. The explicit control is given by using
the undetermined coefficient method and two identity equality expressions. Finally,
simulation results validate the proposed theoretical results. For practical purposes, this
approach can be extended to include other types of systems, including linearly coupled
or cascaded ODE-PDE systems, where the constraint of tracing the reference signal
poses an equally interesting challenge. If a nonlinear term is added to the system, the
problem will become more complex, and the design of the explicit control law will become
a difficult task.

APPENDIX

In this part, we will prove two identity equalities hold for showing ck satisfying (46),
which is the key part for obtaining the explicit feedback control law.

Lemma 5.1. The following identity equality expression holds,

n−1∑
q=1

1

q + 1
Cn−q−1

2n−2q−2C
q−1
2q−2 =

1

12
Cn

2n, (A.1)

where ckn = n!
k!(n−k)! .
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P r o o f . Now we employ mathematical induction to prove that (A.1) holds for every
positive integer n. In fact, verifying that (A.1) holds when n = 2 is straightforward.
Assuming that (A.1) is valid for m− 1, which means

Im−1 =
1

12
Cm

2m, (A.2)

where Im−1 is defined by

Im−1 =

m−1∑
q=1

1

q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2.

Next, we show that (A.1) holds for m. First, isolate the term in Im that involves m,
and then express it as a sum of two distinct terms, as detailed below

Im =

m−1∑
q=1

1

q + 1
Cm−q

2m−2qC
q−1
2q−2 +

1

m+ 1
Cm−1

2m−2. (A.3)

We observe an interesting equality relation as follows

Cm−q
2m−2q = (− 2

m− q
+ 4)Cm−q−1

2m−2q−2. (A.4)

Next, we plan to substitute this equation (A.4) into the equation (A.3), further calcula-
tion can be obtained.

Im =− 2

m−1∑
q=1

1

(q + 1)(m− q)
Cm−q−1

2m−2q−2C
q−1
2q−2

+

m−1∑
q=1

4

q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2 +

1

m+ 1
Cm−1

2m−2. (A.5)

At this juncture, we utilize equation (A.2) to deduce that the following equality holds

m−1∑
q=1

4

q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2 =

1

3
Cm

2m,

while noting that 1
(q+1)(m−q) =

1
m+1 (

1
q+1 + 1

m−q ), then (A.5) can be written as

Im =
1

3
Cm

2m − 2

m+ 1

m−1∑
q=1

1

q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2

− 2

m+ 1

m−1∑
q=1

1

m− q
Cm−q−1

2m−2q−2C
q−1
2q−2 +

1

m+ 1
Cm−1

2m−2. (A.6)
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Set l = m− q, then,

m−1∑
q=1

1

m− q
Cm−q−1

2m−2q−2C
q−1
2q−2 =

m−1∑
l=1

1

l
Cl−1

2l−2C
m−l−1
2m−2l−2. (A.7)

According to the results

m−1∑
l=1

1

l
Cl−1

2l−2C
m−l−1
2m−2l−2 =

1

2
Cm−1

2m−2 (A.8)

in [19]. Utilizing equations (A.7) and (A.8), we have

2

m+ 1

m−1∑
q=1

1

m− q
Cm−q−1

2m−2q−2C
q−1
2q−2 =

1

m+ 1
Cm−1

2m−2. (A.9)

Substituting Equation (A.9) into (A.6) yields

Im =
1

3
Cm

2m − 2

m+ 1

m−1∑
q=1

1

q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2 =

1

3
Cm

2m − 2

m+ 1
Im−1. (A.10)

Further calculations using equation (A.2) yield

2

m+ 1
Im−1 =

1

6(m+ 1)
Cm

2m (A.11)

Finally, use (A.11) to obtain

Im =
1

3
Cm

2m − 1

6(m+ 1)
Cm

2m =
1

12

4m+ 2

m+ 1
Cm

2m

=
1

12

(2m+ 2)(2m+ 1)

(m+ 1)(m+ 1)

(2m)!

m!m!
=

1

12
Cm+1

2m+2, (A.12)

which finish the proof. □

Lemma 5.2. The following identity expression holds

m∑
q=0

(2m− 2q)!

(m− q)!(m− q + 1)!

(2q)!

q!(q + 1)!
=

(2m+ 2)!

(m+ 1)!(m+ 2)!
(A.13)

P r o o f . The following two equations,

(2m− 2q)!

(m− q)!(m+ 1− q)!
=

(2m− 2q)!(m+ 1− q)

(m− q)!(m+ 1− q)!
− (2m− 2q)!(m− q)

(m− q)!(m+ 1− q)!

= Cm−q
2m−2q − Cm−q−1

2m−2q (A.14)
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and

(2q)!

q!(q + 1)!
=

(2q)!(q + 1)

q!(q + 1)!
− (2q)!q

q!(q + 1)!
= Cq

2q − Cq−1
2q (A.15)

clearly hold. Then using (A.14) and (A.15), we get

m∑
q=0

(2m− 2q)!

(m− q)!(m+ 1− q)!
· (2q)!

q!(q + 1)!

=

m∑
q=0

Cm−q
2m−2qC

q
2q −

m−1∑
q=0

Cm−q−1
2m−2q Cq

2q −
m∑
q=1

Cm−q
2m−2qC

q−1
2q +

m−1∑
q=1

Cm−q−1
2m−2q Cq−1

2q . (A.16)

Next, we will proceed to calculate (A.16). Since the equation contains four terms, our
solution strategy is to split it into four independent parts and solve them one by one,
and finally add the results of these four parts to get the final answer. We find that the
following four equations reveal a beautiful connection between combinatorial numbers

Cm−q
2m−2q = 4Cm−q−1

2m−2q−2 −
2

m− q
Cm−q−1

2m−2q−2

Cm−q−1
2m−2q = 4Cm−q−1

2m−2q−2 −
6

m− q + 1
Cm−q−1

2m−2q−2

Cq
2q = 4Cq−1

2q−2 −
2

q
Cq−1

2q−2

Cq−1
2q = 4Cq−1

2q−2 −
6

q + 1
Cq−1

2q−2

Based on the four equations above, the first term of (A.16)

m∑
q=0

Cm−q
2m−2qC

q
2q = 2Cm

2m +

m−1∑
q=1

Cm−q
2m−2qC

q
2q

=2Cm
2m +

m−1∑
q=1

(
4Cm−q−1

2m−2q−2 −
2

m− q
Cm−q−1

2m−2q−2

)(
4Cq−1

2q−2 −
2

q
Cq−1

2q−2

)
=2Cm

2m + 16

m−1∑
q=1

Cm−q−1
2m−2q−2C

q−1
2q−2 − 8

m−1∑
q=1

1

m− q
Cm−q−1

2m−2q−2C
q−1
2q−2

− 8

m−1∑
q=1

1

q
Cm−q−1

2m−2q−2C
q−1
2q−2 + 4

m−1∑
q=1

1

(m− q)q
Cm−q−1

2m−2q−2C
q−1
2q−2. (A.17)

the second term of (A.16)

m−1∑
q=0

Cm−q−1
2m−2q Cq

2q = Cm−1
2m +

m−1∑
q=1

Cm−q−1
2m−2q Cq

2q
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=Cm−1
2m +

m−1∑
q=1

(
4Cm−q−1

2m−2q−2 −
6

m− q + 1
Cm−q−1

2m−2q−2

)(
4Cq−1

2q−2 −
2

q
Cq−1

2q−2

)
=Cm−1

2m + 16

m−1∑
q=1

Cm−q−1
2m−2q−2C

q−1
2q−2 − 24

m−1∑
q=1

1

m− q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2

− 8

m−1∑
q=1

1

q
Cm−q−1

2m−2q−2C
q−1
2q−2 + 12

m−1∑
q=1

1

(m− q + 1)q
Cm−q−1

2m−2q−2C
q−1
2q−2 (A.18)

the third term of (A.16)

m∑
q=1

Cm−q
2m−2qC

q−1
2q = Cm−1

2m +

m−1∑
q=1

Cm−q
2m−2qC

q−1
2q

=Cm−1
2m +

m−1∑
q=1

(
4Cm−q−1

2m−2q−2 −
2

m− q
Cm−q−1

2m−2q−2

)(
4Cq−1

2q−2 −
6

q + 1
Cq−1

2q−2

)
=Cm−1

2m + 16

m−1∑
q=1

Cm−q−1
2m−2q−2C

q−1
2q−2 − 8

m−1∑
q=1

1

m− q
Cm−q−1

2m−2q−2C
q−1
2q−2

− 24

m−1∑
q=1

1

q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2 + 12

m−1∑
q=1

1

(m− q)(q + 1)
Cm−q−1

2m−2q−2C
q−1
2q−2, (A.19)

the fourth term of (A.16)

m−1∑
q=1

Cm−q−1
2m−2q Cq−1

2q

=

m−1∑
q=1

(
4Cm−q−1

2m−2q−2 −
6

m− q + 1
Cm−q−1

2m−2q−2

)(
4Cq−1

2q−2 −
6

q + 1
Cq−1

2q−2

)
=16

m−1∑
q=1

Cm−q−1
2m−2q−2C

q−1
2q−2 − 24

m−1∑
q=1

1

m− q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2

− 24

m−1∑
q=1

1

q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2 + 36

m−1∑
q=1

1

(m− q + 1)(q + 1)
Cm−q−1

2m−2q−2C
q−1
2q−2. (A.20)

Substituting Eqs. (A.17) – (A.20) into the (A.16) and simplifying it, we have

m∑
q=0

(2m− 2q)!

(m− q)!(m+ 1− q)!
· (2q)!

q!(q + 1)!

=2Cm
2m − 2Cm−1

2m + 4

m−1∑
q=1

1

(m− q)q
Cm−q−1

2m−2q−2C
q−1
2q−2
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− 12

m−1∑
q=1

1

(m− q + 1)q
Cm−q−1

2m−2q−2C
q−1
2q−2

− 12

m−1∑
q=1

1

(m− q)(q + 1)
Cm−q−1

2m−2q−2C
q−1
2q−2

+ 36

m−1∑
q=1

1

(m− q + 1)(q + 1)
Cm−q−1

2m−2q−2C
q−1
2q−2

=2Cm
2m − 2Cm−1

2m +
4

m

m−1∑
q=1

(
1

m− q
+

1

q
)Cm−q−1

2m−2q−2C
q−1
2q−2

− 12

m+ 1

m−1∑
q=1

(
1

m− q + 1
+

1

q
)Cm−q−1

2m−2q−2C
q−1
2q−2

− 12

m+ 1

m−1∑
q=1

(
1

m− q
+

1

q + 1
)Cm−q−1

2m−2q−2C
q−1
2q−2

+
36

m+ 2

m−1∑
q=1

(
1

m− q + 1
+

1

q + 1
)Cm−q−1

2m−2q−2C
q−1
2q−2, (A.21)

To simplify the equation (A.21), we note that the following two expressions hold under
setting l = m− q,

m−1∑
q=1

1

m− q
Cm−q−1

2m−2q−2C
q−1
2q−2 =

m−1∑
l=1

1

l
Cl−1

2l−2C
m−l−1
2m−2l−2, (A.22)

and

m−1∑
q=1

1

m− q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2 =

m−1∑
l=1

1

l + 1
Cl−1

2l−2C
m−l−1
2m−2l−2. (A.23)

Therefore, substituting (A.22) and (A.23) into (A.21), and simplifying it, we obtain

m∑
q=0

(2m− 2q)!

(m− q)!(m+ 1− q)!
· (2q)!

q!(q + 1)!

=2Cm
2m − 2Cm−1

2m + (
8

m
− 24

m+ 1
)

m−1∑
q=1

1

q
Cm−q−1

2m−2q−2C
q−1
2q−2

+ (
72

m+ 2
− 24

m+ 1
)

m−1∑
q=1

1

q + 1
Cm−q−1

2m−2q−2C
q−1
2q−2. (A.24)

Substituting the (A.1) and (A.8) into (A.24), we get

m∑
q=0

(2m− 2q)!

(m− q)!(m+ 1− q)!
· (2q)!

q!(q + 1)!
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=2Cm
2m − 2Cm−1

2m + (
8

m
− 24

m+ 1
) · 1

2
Cm−1

2m−2 + (
72

m+ 2
− 24

m+ 1
) · 1

12
Cm

2m. (A.25)

After a simple calculation, we can confirm that the following expression is true

2Cm
2m − 2Cm−1

2m + (
8

m
− 24

m+ 1
) · 1

2
Cm−1

2m−2 = 0 (A.26)

then, (A.25) can be simplified as

m∑
q=0

(2m− 2q)!

(m− q)!(m+ 1− q)!
· (2q)!

q!(q + 1)!

=
1

12
(

72

m+ 2
− 24

m+ 1
)Cm

2m =
(2m+ 2)!

(m+ 1)!(m+ 2)!
, (A.27)

which shows (A.13) holds. □

Next, we prove the formula (46) holds by mathematical induction in terms of Lemma
5.1 and Lemma 5.2.

P r o o f .
First, let’s prove the even terms results. In fact, verifying that (46) holds when n = 2

is straightforward. Assuming that (46) is valid for 2m, we show that even term of (46)
holds for 2m+ 2.

Using the recursive formula (45),

c2m+2 =2

m+1∑
q=1

(−λ2

16
)q

(2q − 2)!

(q − 1)!q!
c2m+2−2q −

λ

2
c2m+1

=2(−λ2

16
)m+1 (2m)!

m!(m+ 1)!
c0 −

λ

2
· (2m)!

m!(m+ 1)!
· (−λ2)m+1

24m+3

=2
(−λ2)m+1

24n+4
· λ
2
· (2m)!

m!(m+ 1)!
− λ

2
· (−λ2)m+1

24m+3
· (2m)!

m!(m+ 1)!
= 0.

Therefore, the even term solution of equation (46) is valid.
Second, let’s prove the odd terms results. It is easy to verify that odd terms of (46)

holds for n = 3. Suppose that (46) holds for 2m+ 1.

c2m+1 =
(2m)!

m!(m+ 1)!

(−λ2)m+1

24m+3
, m = 1, 2, · · · (A.28)

We show that the odd terms of (46) holds for 2m+3. Using the recursive formula (45),
we obtain

c2m+3 =2

m+1∑
q=1

(−λ2

16
)q

(2q − 2)!

(q − 1)!q!
c2m+3−2q − 2(

−λ2

16
)m+2 (2m+ 2)!

(m+ 1)!(m+ 2)!
− λ

2
c2m+2.

(A.29)
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From the assumption (A.28), we know that the following equation holds

c2m+3−2q =
(2m+ 2− 2q)!

(m+ 1− q)!(m+ 2− q)!

(−λ2)m+2−q

24(m+1−q)+3
. (A.30)

Substituting the equation (A.30) into (A.29), the calculation yields

c2m+3 =
(−λ2)m+2

24m+7

(
2

m∑
q=0

(2m− 2q)!

(m− q)!(m− q + 1)!

(2q)!

q!(q + 1)!
− (2m+ 2)!

(m+ 1)!(m+ 2)!

)
(A.31)

By Lemma 5.2, we obtain

c2m+3 =
(2m+ 2)!

(m+ 1)!(m+ 2)!

(−λ2)m+2

24m+7
,

which show the results of the odd term in (46) also hold.
Therefore, (46) hold for any n. □
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