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KYBERNETIKA — VOLUME 61 (2025), NUMBER 6, PAGES 741-751

A NOTE ON THE COOPERATIVE TWO-TYPE
SIR PROCESSES ON GALTON-WATSON TREES

RuiBo MA, TAr HENG Liu, BAGHDADI OTHMANE AND DONG YAO

In the standard SIR model on a graph, infected vertices infect their neighbors at rate «
and recover at rate u. We consider a two-type SIR process where each individual in the graph
can be infected with two types of diseases, A and B. Moreover, the two diseases interact in
a cooperative way so that an individual that has been infected with one type of disease can
acquire the other at a higher rate. We prove that if the underlying graph is a Galton-Watson
tree and initially the root is infected with both A and B, while all others are susceptible, then
the two-type SIR model has the same critical value for the survival probability as the classic
single-type model.

Keywords: SIR model, Galton—Watson trees, cooperative interactions

Classification: 60J27, 92D30

1. INTRODUCTION

SIR models and their variants have been widely used to predict and control the disease
spreading process. In the standard single-type SIR process based on a graph, each node
can be in one of three states: S (representing ‘susceptible’), I (representing ‘infected’) and
R (representing ‘recovered’). Vertices in state I try to infect their neighbors at rate «,
independently across each edge, and recover (turn into state R) at rate p. Alternatively,
in terms of species evolution, one might imagine that each individual gives birth after a
random amount of time distributed as Exp(«) and dies after time distributed as Exp(u),
where all the exponential random variables are independent. A closely related model is
the SIS model, also called the contact process, where a vertex turns into state S instead
of R when it recovers.

Researchers have also been fascinated by the behavior of epidemic models that in-
corporate interactions (competition or cooperation) among multiple species. Two-type
SIS models with competitions for space on the d-dimensional integer lattice Z¢ were
investigated in [I1], 12 [13]. For the case of equal death rates, Neuhauser [12] proved
that the species with the smaller birth rate dies out locally, while Mountford, Pantoja,
and Valesin [II] proved that the winner takes over a ball whose radius grows linearly
over time. Neuhauser conjectured that for general death rates, the species with the
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higher birth/death ratio wins the competition, which has been verified by Stover [I3] for
certain cases but still remains largely open. For cooperative interactions, Durrett and
Yao [5] considered a symbiotic contact process on Z? where the presence of one species
can reduce the death rate of the other type at the same site. It was proved that strong
symbiosis can lower the critical value, but the general case (especially weak symbiosis)
remains unclear.

In another direction, Lanchier and Neuhauser [7], [§] studied stochastic models with
hosts and symbionts. In these models, each host can be infected with a symbiont, while a
few species of hosts compete against each other. Durrett and Lanchier [4] studied another
case where only one of two species of hosts can be infected with one type of symbionts.
In these papers, conditions for survival and coexistence have been studied, and the
main results describe the long-term behavior of the models under certain conditions. A
few years later, Lanchier and Zhang [9] studied the “stacked contact process”, and Ma
[10] studied the “two-level contact process”. In these two models, there are uninfected
hosts and infected hosts. The results focused on the phase transition and the limiting
distribution of the models.

Motivated by a series of works by Ghanbarnejad and coauthors [Il 2] [6l [14], we
consider a two-type cooperative SIR process on a network. Suppose that two diseases,
A and B, spread simultaneously on the network, each type acting as an SIR process.
Vertices in the graph can be infected by both types. Thus, there are nine possible states
for each vertex,

S, A, B, a, b, Ab, aB, AB and ab. (1)

Here, capital A and B indicate active infection, and lower case a and b indicate recovery
from A and B. We assume that the two diseases interact in a cooperative way. When a
vertex x is susceptible to both diseases, then it can be infected with A at rate a;;. On the
other hand, if  has been infected with B before (regardless of whether it has recovered
from B or not), then x acquires A at a higher rate 8; € [a1,00]. Note that an infinite
rate means that an infection transmits immediately. The constant C} := (1 /ay € [1, 0]
is called the cooperativity coefficient for A. Likewise, a vertex x can be infected by B at
a higher rate 8 > «o if it has been infected with A before. The cooperativity coefficient
of B is Cy = fB3/ap. Our definition of the two-type SIR process simulates the situation
in which the immune system weakens because of a prior infection.

Chen et al. [2] analyzed a deterministic version of this model with mean-field methods,
involving a homogeneously mixed population of infinitely many agents. In total, there
are nine ordinary differential equations for the evolution of all states. Let [z](¢) be the
fraction of agents in state z at time ¢. Under the assumption of equal infection rates
for both diseases, and letting the recovery rate be 1, [2] reduced the system of nine
equations to three:

s'(t)
q'(t) = (as(t) — Caq(t))z(t), (2)

In these equations, s(t) = [S](t) is the fraction of susceptible agents,

(t) = [A](t) + [AB](t) + [Ab](t) = [B](t) + [AB](t) + [aB](t)
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is the fraction of agents that are actively infected by disease A (or B) at time ¢, and

q(t) = [A)(t) + [a](t) = [B](Z) + [b](t)

accounts for the agents which have an infection history of only one disease. The initial
condition is set to [A4](0) = [B](0) = ¢/2, [S](0) = 1 — € and the fractions of all other
states are 0. Hence, s(0) =1 — ¢ and ¢(0) = z(0) = ¢/2.
Denote the final epidemic size of the system of equations by
R(e,C,e) =1— lim s(t).

t—o0
Zarei et al. [I4] found R(a, C,€) = 1 — s(0) exp(—2aTp), where Tp is given by

_ s(0)

inf {t > 0:t+ s(0) exp(—2at) + q(0) exp(—Cpt) el

(exp(—Cat) — exp(—2at)) = 1}
if C' # 2. Note that this expression already implies the criticality at C' = 2. Let

Ra(a,C) = lim R(e, Cy¢)
e—0

when the limit exists (otherwise, one may replace the limit with upper limit). Based on
numerical experiments and some non-rigorous arguments, [2], [14] claimed the following:

(i) If C <2, then R(«, C,€) is continuous in o. Moreover, R, (a,C) = 0 for o < 1,
and behaves like o — 1 (C' < 2) or vVao—1 (C = 2) for « close to 1.

(ii) If C > 2, then R(«, C,¢) is discontinuous in « at some ag = ap(C, €), and

lim R(agp—,C,e) =0 and lim R(ap+,C,€) > 0. (3)
e—0 e—=0

(iii) For C > 2, the critical infection rate ag(C,e) =1 — 1/(C —2)e + O(e) as € — 0.
(iv) The quantity R.(a,C) =0 for o < 1/2, and

1
lim i ~o— = 1/2.
lim lim R(a,Cle) ~ « 5 asa— /

It is generally expected that mean-field ODEs may give good approximations for the
stochastic particle systems on the complete graph. In real-world networks, nontrivial
spatial structures are often present. Grassberger et al. [6] conducted simulations for the
two-type SIR model on Erdés-Rényi graphs and the integer lattice Z?. They argued that
Erdés-Rényi graphs have a discontinuous phase transition for the fraction of eventually
infected vertices when the cooperativity is sufficiently strong, as predicted by the mean-
field ODEs. For the case of Z¢ with d > 2, simulations in [6] showed that the two-type
model shares similar critical and near-critical features with the single-type SIR process
if and only if d < 3. [6] also considered the near-critical behavior of the two-type SIR
model on trees. In particular, [6] suggested that the critical value (for infinitely many
vertices to be infected with both diseases) remains the same as the single-type model
for C' = co. See also Remark below.
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original infection rate | increased infection rate | recovery rate
disease A oy b1 € g, 0] 41
disease B Qs B2 € [ag, 0] [42

Tab. 1. Parameters for the two-type SIR process.

In this paper, we consider the two-type SIR process on Galton-Watson trees with
cooperative interactions defined before. The rates are not necessarily the same for A
and B, and there are six parameters in total, shown in Table

Let GW (p) be the Galton—Watson tree with the offspring distribution p. Let m €
(1,00) be the finite mean of p. (We let m > 1 so that GW (p) itself is supercritical.)
Consider the single-type SIR process on GW (p). We say that it survives if for all ¢ > 0,
there is at least one infected vertex at time ¢. The following result is classic.

Theorem 1.1. Let the infection rate be a and the recovery rate be u for a single-type
SIR process on GW (p). At time 0, only the root is infected. The probability of survival
is greater than 0 if and only if o/ > 1/(m — 1), where m is the mean of p. Thus, if p
is fixed, then the critical value for « is p/(m — 1).

Given Theorem it is natural to probe whether the critical value gets smaller in
the cooperative SIR process. We say that the two-type SIR process survives if for all
t > 0, there is at least one infected vertex (with A or B) at time t. According to the
following Theorem the answer is no.

Theorem 1.2. Consider the two-type SIR process on GW (p) with parameters o, 5;,
i, 2 =1,2. At time 0, the root is infected with both disease A and disease B. All other
vertices are susceptible to both A and B. Let m be the mean of p. If

max{al } <! (1)

1 i m—1

then the probability of survival is 0.

Remark 1.3. In the special case of equal infection/recovery rates for both diseases (de-
noted by «, 8 = Ca and p) with C = oo, the conclusion of Theorem is consistent
with the prediction made in [6] regarding infinite tree graphs, where the authors claimed
that (for C' = c0),

P(infinitely many vertices are infected with both diseases) > 0

if and only if ao/pp > 1/(m — 1). See also the discussions above Table
Combining Theorems and the two-type SIR process survives with a positive

probability if and only if
{ a1 Qo } 1
maxq —,— > —.
H1 M2 m—1
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Since the Galton—-Watson tree and its variants arise as local limits of some random graph
models such as the configuration model and the Erd6s—Rényi graph, our result may be
useful for studying the two-type SIR processes on these random graphs. We leave further
investigations as future work.

In the remainder of this paper, we prove Theorems and in Section [ and
Section [3] respectively, by coupling the Galton-Watson tree with the epidemic process.
Section [d] summarizes the main findings of this paper and states many open problems
as well as some simulation results.

2. SINGLE-TYPE SIR ON GALTON-WATSON TREES

Though Theorem is more or less well-known, here we give a proof for the sake of
completeness and also to illustrate the basic idea that will also be used in the proof of
Theorem We couple the Galton-Watson tree with an epidemic process by revealing
the number of children of a vertex after it becomes infected. At time 0 only the root o
is infected and the only available information about the tree is the degree of 0. Since
o infects each of its children at rate o and recovers at rate u, the probability that any
given child is infected before o recovers is equal to «/(« + p) by standard properties of
the exponential distribution. For any vertex x, we let N, be the number of children of
x that are eventually infected by x. Since the degree D, of o is distributed according to
p, we see that the mean of N, is

E( a DO>:ma. (5)
a+ p a+ [
Denote the distribution of N, by ¢. Since the number of children of any given vertex
has the same distribution p, we see that the number of infected children of any infected
vertex must have the distribution ¢, and must be independent of its ancestors.

Let Y,, be the number of infected vertices in the nth generation of GW (p). Then Y,
forms a branching process with the initial value Yy = 1 and branching distribution g,

whose mean is equal to ma/(« + p). Standard results on the branching process imply
that

P(Yn>O,Vn)>O©Lm>1@a> a , (6)
a4+ m—1

which proves Theorem

3. TWO-TYPE SIR ON GALTON-WATSON TREES
We present the proof of Theorem [1.2]in this section. Lemma [3.1] below is the key step.

Lemma 3.1. Assume all conditions in Theorem For all vertices x in GW (p), let
T4(z) and 75(x) be the time that = gets infected with A and B, respectively. (Note that
if the vertex x is never infected by a disease, we let the corresponding time be co0.) Let
y be a child of . The conditional probability given o(74(x),75(x)) that y is infected
with both A and B is almost surely less than or equal to 1/m.
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Proof. If max{ra(x),7p(x)} = oo, then the vertex z or its child y cannot receive both
infections. Hence, we only consider the case where max{74(x),75(x)} < co. Without
loss of generality, we assume that 74(z) < 75(z). Define four events:

Oy = {x does not infect y with disease A or recover from A before time 75(x)},
Oy = {z infects y with disease A before time 75(x)},
Q3 = {both diseases are transmitted to y after time 75(z)},

Q4 = {z infects y with disease B after time 75(x)}.

There are two possible ways that y gets both infections:
(i) Case 1: ©y and Q3 both occur;
(ii) Case 2: 5 and Q4 both occur.

Let P(®) denote the conditional probability on o(74(x), 75(x)), i.e., for any event Q,

P (Q) = P(Qo(ta(x), 75(x))). Let P, = P@)(Q; N Q3), and Py = P (Qy N Q). Let

P, be the conditional probability considered in this lemma. Then, Py = P; + P a.s.
For Case 1,

P =P@(Q)P(Q3]Q1) a.s. (7)

Since the minimum of the infection time and recovery time of A has distribution Exp(a; +
1), we know that almost surely

PO () = exp (= (1 + 1) (mp(2) — 7a())) - (8)

Given 4, at time 75(x), « has infections A and B, while y is susceptible to both
diseases. Four events may happen next: y gets infection A, y gets infection B, = recovers
from A and x recovers from B. For 23 to occur, the first of these four events to occur
must be one of the first two. Given the rates of the four events, ay, as, 1 and po,

a1 + a9 o1 + a9 1

P(Q3]2) < < = _. 9
(€] 1)_a1+u1+a2+u2_a1+(m—1)a1+a2+(m—l)a2 m (9)

By (@), (8) and (9], we get

P < %exp (=(p1 + a1)(tp(x) — Ta(2))) a.s. (10)

For Case 2, we see that
P2 = P(w) (Qg N Q4) S P(x) (QQ) a. S., (11)

which is further bounded by

(63}
a1 +

P () = (1 —exp (=(p1 + a1)(7B(x) — 7a(2))))

< (1= exp (1 + )7 (@) ~ ma(e)) A
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Combining (10)), (11) and (12]), we see that
1
P0=P1+P2§ — a.S.
m

This concludes the proof of Lemma O

Proof. (Proof of Theorem Let &), be the set of vertices in the nth generation of
GW (p) that eventually receive both infections, and let X,, = |X,,|, for all n > 0. Note
that the root is the single vertex in the zeroth generation. Let F,, be the o-algebra
generated by the number of children of all « up to the (n — 1)th generation and all
Ta(x), 7g(x), for x up to the nth generation. By Lemma

E(Xpt1|Fn) < X, a.s., for n > 0.

Thus {X,,n > 0} is a non-negative integer-valued supermartingale. Hence X,, must
converge almost surely to some limit X. Moreover, there exists a constant ¢ > 0 such
that for all k,n > 1,

P(X, 1 =0/X, =k) > ", (13)

by considering the event where all vertices in X}, recover before infecting any child. Let
Q be the event
{ lim X, = o} = {X,, = 0 for some n}.

n— oo

By Levy’s 0-1 Law [3, Theorem 4.6.9] and equation (13)),
P(1g | Fn) = 1 =15 a.s.
Thus, P(Q) = 1 and X = 0 a.s. Now define
N =inf{n: X, =0}.

All vertices z in the Nth generation of GW (p) are either infected by one type of disease,
or never infected. Since the subtree of GW (p) re-rooted at z has the same distribution
as GW (p), we can apply Theorem to deduce that the number of infected vertices in
that subtree is almost surely finite. Thus, we conclude that the two-type SIR process
survives with probability 0. O

4. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the behavior of the two-type cooperative SIR process on a
Galton—Watson tree without any symmetry assumption on the infection and recovery
rates. We proved that the critical value remains the same as in the single-type SIR
model, regardless of the magnitude of cooperativity coefficients.

We now list a few open questions for future research.

e Rigorous analysis for the ODE system . It would be interesting to in-
spect the claims made by physicists [2] regarding properties of final epidemic
size R(a, C,¢€), particularly the discontinuous transition . One can also study
whether the mean-field equations approximate the true dynamics on the complete
graph.
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Survival of the weaker species in the asymmetric case. If one species is
(sub)critical while the other is supercritical, can the weaker species survive with
positive probability when the cooperation is strong? See simulations (Figures
and [2) and discussions below.

Effects of the graph structure on the two-type SIR process. As mentioned
in the introduction, the simulations in [6] found that the structure of the underlying
graph (particularly the existence of loops in the graph) has a major impact on the
two-type SIR process thereon. We do expect a qualitatively different situation
for the survival probability if the Galton—Watson tree is replaced with the integer
lattice.

Different cooperativity mechanism. One can also consider the cooperativity
mechanism as in [5], where the recovery rates decrease from p; to fi; if a node has
two infections. By comparison with two independent single-type SIR processes, it
can be shown that the critical value for survival matches the single-type model if
11; is sufficiently close to u;. However, the case where [1; is small remains unknown.

Cooperative SIS models. If we consider the SIS dynamics on a Galton—Watson
tree, by an oriented percolation argument, the critical value becomes smaller if
the cooperation is sufficiently strong. As indicated by [B], the general case may be
rather challenging.

Average number of nodes infected by B

0 3 6 9 12 15 18
Generation
Fig. 1. The average number of B infections in each generation. Five
parameters are fixed: a1 =5, ag = 0.75, f1 =8, and p1 = p2 = 1.
The value of B2 varies from 1.0 to 1.8.
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o o o
> o ©

Proportion of simulations with at least one B

°
N

9 12
Generation

18

Fig. 2. The proportion of simulations with some B infections in each

generation. Five parameters are fixed: a1 =5, a2 = 0.75, 81 = 8, and

p1 = p2 = 1. The value of B2 varies from 1.0 to 1.8.

We use a computer simulation to investigate the second open problem mentioned
in the list. Suppose that the Galton—Watson tree is a binary tree, and consider the
parameters shown in Table Now, the original rate of A is supercritical, while the
original rate of B is subcritical. We simulate the two-type SIR process for a few choices
of B2 to predict whether a sufficiently large value of B2 can trigger supercritical behavior

of the disease B.

In our simulation, five out of six parameters are fixed, while By ranges from 1 to
1.8. For each value of 35, the simulation is run 200 times, up to the 18th generation of
the binary tree. The results are presented by calculating the average number of nodes
infected with B in each generation and by computing the proportion of simulations in
which the disease B survives up to each generation.

original infection rate

increased infection rate

recovery rate

disease A 5

8

1

disease B 0.75

1,1.2,14,16, 1.8

1

Tab. 2. Parameters used in the simulation.

The results are shown in Figures[[]and 2] They suggest that a phase transition in (3,
exists. For By < 1.2, it is likely that the disease B stays subcritical, while for g5 > 1.6,
the disease B appears to become supercritical, infecting more and more nodes in later
generations. A rigorous analysis of this phenomenon is left as future work.
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