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MATEMATIKA

Číselná charakteristika podobných trojúhelníků

Vlastimil Dlab, Bzí u Železného Brodu

Článek [2] poukázal na důležitost pojmu podobnost trojúhelníků při
studiu rovinné geometrie. Přitom znovu podtrhl roli komplexních čísel,
zdůrazněnou už v učebnici [1]. V tomto článku popíšeme bijekci svazující
podobné trojúhelníky a komplexní čísla.

Stejně jako v [2] je náš modus operandi komplexní Gaussova rovina1)

opatřená pravoúhlými souřadnicemi, takže její body D,V,W,H,Z, . . .
budeme identifikovat s komplexními čísly d, v, w, h, z, . . . Množinu kom-
plexních čísel budeme značit písmenem C. Trojúhelníky identifikujeme
s trojicemi komplexních čísel, které neleží na téže přímce.

Pro porozumění tomuto článku jsou potřeba základní znalosti kom-
plexních čísel: reálná část Re(z) a imaginární část Im(z) komplexního
čísla z, absolutní hodnota |z|, komplexně sdružené číslo z, argument
komplexního čísla, sčítání, odčítání, násobení a dělení komplexních čísel.
Je třeba rozumět tomu, že násobení komplexním číslem odpovídá rotaci
kolem počátku.

Omezíme se na orientované trojice bodů: Trojúhelníky ABC (tj. abc)
a UVW (tj. uvw) jsou podobné, jestliže délky jejich stran AB,BC a
CA (tj. absolutní hodnoty |a− b|, |b− c| a |c− a|) jsou, pro jisté kladné
(reálné) číslo t, t-násobky délek stran UV , VW a WU (tj. |u−v|, |v−w|
a |w − u|). Budeme v tomto případě mluvit o „přímé“ či „orientované“
podobnosti a značit ji symbolem ∼: abc ∼ uvw.

Jádrem důkazu hlavní věty v článku [2] bylo následující lemma, které
je v tomto článku naším výchozím tvrzením.

Lemma. Trojúhelníky Z1Z2Z3, tj. z1z2z3, a W1W2W3, tj. w1w2w3, jsou
přímo podobné právě tehdy, když

w3 − w1

w2 − w1
=

z3 − z1
z2 − z1

. (1)

Podáme dva důkazy tohoto tvrzení, abychom blíže osvětlili bezpro-
střední vztah mezi elementární rovinnou geometrií a strukturou kom-
plexních čísel.

1)V cizojazyčné literatuře častěji nazývána Argandova či Argandova–Gaussova ro-
vina.
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MATEMATIKA

Prvním důkazem oslovíme čtenáře, kteří se seznamují se strukturou
komplexních čísel. Důkaz využívá pojmy translace (posunutí) a rotace
(otočení) komplexní roviny a je prezentován ve formě tohoto objasňují-
cího tvrzení: Pro každou uspořádanou trojici z1z2z3 existuje právě jedna
trojice tvaru 01u splňující z1z2z3 ∼ 01u. Navíc, jestliže je z1z2z3 kladně
orientována2), potom Im(u) > 0.

Aplikací t(z) = z − z1 dostáváme z1z2z3 ∼ 0z′2z
′
3, kde z′2 = z2 − z1

a z′3 = z3 − z1. Poté aplikace r(z) = (z′2)
−1z vede ke 0z′2z

′
3 ∼ 01u

s u = (z′2)
−1z′3. Tedy z1z2z3 ∼ 01u. Navíc, je-li trojúhelník z1z2z3 kladně

orientován, je kladně orientován též 01u a tedy u leží v horní polorovině.
Z těchto výpočtů vyplývá, že

u =
z3 − z1
z2 − z1

(2)

a že tedy 01u je taková trojice jediná.
Druhý důkaz je stručná sbírka jednoduchých faktů, které čtenáři obe-

známení se strukturou komplexních čísel shledají zcela elementární a
evidentní. Absolutní hodnota poměru (1)

∣∣∣z3 − z1
z2 − z1

∣∣∣ = |z3 − z1|
|z2 − z1|

vyjadřuje poměr délek dvou stran trojúhelníku a argument podílu (2)
úhel α mezi těmito dvěma stranami. Tuto situaci jasně vyjadřuje obr. 1.
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Obr. 1: Trojúhelníky z1z2z3, w1w2w3 a 01u jsou podobné
2)Připomeňme, že trojice bodů z1, z2, z3 je kladně orientována, pokud se na kruž-

nici opsané těmto bodům dostaneme pohybem proti směru ručiček hodin ze z1 nejprve
do z2 a poté do z3.
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Důkaz je tedy založen na jednoduché myšlence vybrat ze souboru
všech přímo podobných trojúhelníků takový, jehož jedna strana má (zvo-
lenou) délku 1. Takové volby jsou obecně možné tři, jak ukazuje obr. 2.
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Obr. 2: Podobné trojúhelníky 01u, 01u−1
u

a 01 1
1−u

Obr. 2 dokazuje bezprostředně následující tvrzení.
Věta. Množina všech komplexních čísel z ∈ C splňujících Im(z) > 0 (tj.
čísel ležících v Gaussově rovině nad reálnou osou) připouští rozklad na
vzájemně disjunktní trojice čísel

Du =

{
u,

1

1− u
,
u− 1

u

}
. (3)

Tyto trojice jsou v jednoznačné korespondenci s třídami přímo podobných
trojúhelníků. Pouze jedna z těchto trojic degeneruje na jedno číslo

u =
1

2
+

√
3

2
i

a odpovídá množině orientovaných rovnostranných trojúhelníků.
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Zde si neodpustíme malou poznámku týkající se imaginární části čísel
v trojici (3). Jakmile jedno z těchto čísel má tuto část kladnou, mají ji
kladnou (jak jsme už zaznamenali) i zbylá dvě čísla. Čtenáři, kteří mají
v oblibě početní argument se mohou přesvědčit, že tvar čísla u = r+ s i,
r ∈ R, s ∈ R, s > 0, vede k zápisu

1

1− u
=

1− r

(1− r)2 + s2
+

s

(1− r)2 + s2
i,

u− 1

u
=

r(r − 1) + s2

r2 + s2
+

s

r2 + s2
i,

a tedy Im
(

1
1−u

)
> 0 a Im

(
u−1
u

)
> 0.

Každý čtenář se jistě nyní rád přesvědčí, že třídám rovnoramenných
trojúhelníků odpovídá trojice

D =

{
1

2
+

t

2
i,

2

t2 + 1
+

2t

t2 + 1
i,

t2 − 1

t2 + 1
+

2t

t2 + 1
i

}
, t > 0,

a třídám pravoúhlých trojúhelníků odpovídají trojice

D =

{
t i,

1

t2 + 1
+

t

t2 + 1
i, 1 +

1

t
i

}
, t > 0.

Pravoúhlé trojúhelníky jsou tedy charakterizovány faktem, že přiřazená
trojice čísel obsahuje číslo ryze imaginární. Speciálně,

D =

{
i, 1 + i,

1

2
+

1

2
i

}

popisuje pravoúhlý rovnoramenný trojúhelník.

Poznámka. Shora uvedenou větu můžeme snadno modifikovat na případ
všech (tj. neorientovaných) podobných trojúhelníků užitím komplexně
sdružených čísel: Množina všech komplexních čísel z ∈ C splňujících
Im(z) ̸= 0 (tj. čísel ležících v Gaussově rovině mimo reálnou osu) při-
pouští rozklad na vzájemně disjunktní šestice čísel

Du =

{
u, ū,

1

1− u
,

1

1− ū
,
u− 1

u
,
ū− 1

ū

}
.
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Tyto šestice jsou v jednoznačné korespondenci s třídami všech podobných
trojúhelníků. Pouze jedna z těchto šestic degeneruje na dvojici čísel

{
1

2
+

√
3

2
i,

1

2
−

√
3

2
i

}

a odpovídá množině všech rovnostranných trojúhelníků.

Poznámka. „Normování“ podobných trojúhelníků do polohy, kdy je
jedna ze stran identifikována s intervalem [0, 1] je pouze naší (vhodnou)
volbou. Volba intervalu [−1, 0] definuje stejným způsobem třídy

{
u, −1 + u

u
, − 1

1 + u

}
.

Poněkud jiný rozklad dostáváme volbou intervalu [− 1
2 ,

1
2 ]. Tato volba

vede k rozkladu komplexních čísel s kladnou imaginární částí na třídy
{
u,

3 + 2u

2− 4u
,
2u− 3

4u+ 2

}
.

V tomto případě je {√
3

2
i

}

třídou, která degenerovala na jedno číslo (a odpovídá množině oriento-
vaných rovnostranných trojúhelníků).

Nezbývá než uvést shora uvedenou větu ve zcela obecném tvaru, kdy
zvoleným intervalem je interval [a, b], kde a ̸= b, a ∈ C, b ∈ C.

Obecná věta. Množina všech komplexních čísel z ∈ C ležících v poloro-
vině Gaussovy roviny definované přímkou určenou čísly a a b připouští
rozklad na vzájemně disjunktní trojice čísel

D̂u =

{
u, a+

(b− a)2

b− u
, b+

(b− a)2

a− u

}
.

Tyto trojice jsou v jednoznačné korespondenci s třídami přímo podobných
trojúhelníků. Pouze jedna z těchto trojic degeneruje na jedno číslo

u =
a(1−

√
3 i) + b(1 +

√
3 i)

2

a odpovídá množině orientovaných rovnostranných trojúhelníků.
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Pokud bychom chtěli popsat šestice komplexních čísel odpovídající
množině všech (tj. neorientovaných) podobných trojúhelníků, využili
bychom následující lemma, jehož důkaz ponecháme čtenáři.

Lemma. Zrcadlový obraz komplexního čísla u podle přímky určené kom-
plexními čísly a a b je číslo

a+
(ū− ā)(b− a)

b− ā
.

Poznámka. V této závěrečné poznámce poukážeme na souvislost výše
popsaného rozkladu komplexních čísel se skládáním příslušných kom-
plexních funkcí. Zvolme dvě různá komplexní čísla a a b a označme
pomocí Ca,b množinu všech komplexních čísel, která neleží na přímce
definované čísly a a b. Kromě identické funkce f1, f1(z) = z, definujme
na Ca,b funkce f2 a f3:

f2(z) = a+
(b− a)2

b− z
a f3(z) = b+

(b− a)2

a− z
.

Na množině G = {f1, f2, f3} definujeme „násobení“ × pomocí sklá-
dání funkcí (fs × ft)(z) = fs(ft(z)). Násobení je tedy dáno tabulkou

× f1 f2 f3

f1 f1 f2 f3

f2 f2 f3 f1

f3 f3 f1 f2

V terminologii abstraktní algebry je (G,×) cyklickou grupou řádu 3.

Závěr článku patří dvěma úlohami čtenáři.

1. Ukažte, že volba a = −1 a b = 1 definuje bijekci mezi rozkladem
poloroviny komplexních čísel na tříprvkové třídy

{
u,

3 + u

1− u
,
−3 + u

1 + u

}

a množinami orientovaných podobných trojúhelníků s výjimkou jed-
nočlenné třídy popisující množinu všech orientovaných rovnostranných
trojúhelníků. Určete toto komplexní číslo.
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2. Dokažte, že rozklad poloroviny komplexních čísel na trojice čísel
{
u,

1

u− i
,
1 + u i

u

}

definuje bijekci s množinami všech orientovaných rovnostranných trojú-
helníků s výjimkou degenerované jednoprvkové třídy

{−
√
3 + i

2

}
.
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Anděl na útěku

Jan Jekl, Univerzita obrany, Brno

Abstrakt. V tomto článku se zabýváme hrou dvou hráčů na nekonečné ša-
chovnici. Jeden z hráčů (ďábel) odebírá pole a snaží se soupeře polapit, zatímco
druhý hráč (anděl) se pohybuje dle předepsaných pravidel a snaží se do neko-
nečna unikat. Je známo, že anděl dokáže unikat, je-li jeho předem stanovená
rychlost dostatečná, a je naopak chycen, když je jeho rychlost příliš malá.

Úvod
Hry a hlavolamy inspirovaly matematiky od nepaměti. Již před na-

ším letopočtem se Archimedes ptal, kolika způsoby lze složit 14 jistých
dílků, aby vytvořily čtverec, viz Ostomachion [9]. V roce 1982 tak sepsali
Berlekamp, Conway, a Guy dvousvazkovou knihu popisující různé ma-
tematické hry Winning Ways for your Mathematical Plays. V roce 2004
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