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ALGEBRA IDENTIFIED WITH GEOMETRY.

I. Evcrip’s ConceprioN oF RATIO AND PROPORTION.

1. Nature of the Conception.—(i.) The Latin terms ratio = calculation,
and proportio = portioning forward, do not convey the force of the Greek
Adyoc and dvaloyia, and have by their arithmetical character served to
lead the mind astray. Of the second Greek term Cicero, to whom its
Latinisation is due, says (Timaeus, seu de Universo, cap. iv.): “Omnia
duo ad cohaerendum tertium aliquid requirunt, et quasi nodum vincu-
lumque désiderant. Sed vinculorum id est aptissimum atque pulcher-
rimum, quod €x sé, atque dé his, quae astringit, quam maximé Unum
efficit. Id optimeé assequitur quae Graecé dvaloyla, Latiné, (audendum
est enim, quoniam haec primum & nobis novantur) comparatio propor-
tiove dici potest.”” It 1s a pity that subsequent Latinists preferred
Cicero’s second proposal to his first. But Cicero was not thinking
mathematically. The Greek term Aoyoc has its radical sense in col-
lec-ting, or bringing together for the purpose of thought, and dvaloyia
was the comparison of such collections, by running them through from
bottom to top (dr»d). This general conception must necessarily have
influenced any Greek in applying the terms. Euclid meagrely defines
Adyo¢ thus, in fwo separate definitions, of which the second has not been
usually construed as a development of the first.

Y. Adyoc éori dvo peyeldv opoyeviy 1j kara mnlidrnra wpoc AN a
motd oxETLc.

3. Adyov éxew mpoe aAApha peyédn Aéyerar, & Svvarar moAkariaoia-
{opeva dANjAwy vmepeyewv.

(ii.) Now I first observe that Euclid does not define homogeneity, as
he uses the term ouoyevor without any explanation, as if well under-
stood, and hence that it is an error to suppose that in def. 4. he
intended to define it, although of course that definition is incompre-
hensible unless the magnitudes compared are homogeneous. In modern
language we may I think render the meaning of these definitions thus:

“3. The term logos is used to express a certain standing towards
one another in respect to size, of two homogeneous magnitudes.

““4., Two magnitudes will be said to have a logos towards each other,
when a multiple of either can be formed so as to exceed a multiple of
the other.” .

(iii.) The term multiple, of which much more in art. 3, is not, pro-
perly speaking, defined by Euclid. He first tells us that he intends to
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6 I. EUCLID’S CONCEPTION [Arr. 1. iii.—v.

limit the ordinary word wépoc by using it as an aliquot part, which he
defines by means of the unexplained term uérpoy, thus: a’. pépoc éori
péyeboc peyéBove, 70 ENagaov Tov pellovoe, brav lcarape-rpﬁ 70 peilov' that
is: “The less magnitude will be termed a meros of the greater, when
it measures the other without remainder (vard).”” And then he ob-
serves as an additional remark (shewn by d¢) meant to render this
notion more complete, and also distinguish a multitude from an aggre-
gate: 3. woA\amhaciov 6: 70 petlov Tov éhdsoovoc, brav karaperpnrac
vmo Tov €Narrovog, ‘“In this case (0¢) the greater magnitude will be a
multiple of the less, when it is measured by the less without remainder
(xara),” which is only saying: “of course, then, any magnitude is a
meros of any multiple of it.”

(iv.) Returning to the definitions in (ii.) The term axéoic mpoc is
exactly rendercd by our ‘“standing towards.”” The use of “mutual
relation” seems to be tautological, on account of the popular use of the
word ratio, which the Germans have even translated by the same word,
verhdltniss, that they use for relation, just as in French our distinction
of ratio and reason is lost in the single word raison. The use of woia
before axéoic is precisely similar to our use of the word certain, meaning
“ undefined, of some kind or other,” and hence requiring future limita-
tion, and in Plato’s Greek constantly it is joined to rig, as mococ rec. In def.
3. the only limitation regards size, which is expressed by wnAworne com-
pared, as distinct from péyeoc uncompared magnitude. There isno notion
of measuring out rxaraperpeiv, in wmy\worne, which is therefore not well
rendered by quantuplicity or mamnifoldness, for which in literary Greek
as in literary English there seems to have been no term. Now there
are many ways in which two magnitudes may be compared in respect
to size; 1) with regard to greater and less, the only method used in
the previous books of Huclid, and by that very circumstance here ex-
cluded, 2) with regard to one measuring out the other, which was a
particular case, already considered in def. 1. and 2.; 8) with regard to
both being measurable out by a third magnitude, which Euclid wisely
saw to be included in the next case; 4) with regard to successive
multiples of one continually exceeding successive multiples of the other,
and as a particular case one multiple of one being of the same size as the
same or another multiple of the other. The object of def. 4., appears
to me to have been the limitation of the mowd oxéoic mpoc dAAAa, or
certain standing towards one another, to this last case, which is alone
general and includes all the preceding. Observe that the article 7
points out oxéoic as the subject of the sentence. Buclid proceeds then
to examine this conception, namely, that logos is the interdistribution of
multiples. : )

(v.) He begins by considering the possibilities that may occur. If
we take two magnitudes A4 and B, and two others Cand D, and com-
pare any of their multiples m 4, nB, and mC, nD with regard to greater,
equal and less, we find that for each of the three cases of mA being
greater than, or equal to, or less than 23, mC may be greater than, or
equal to, or less than nD. There are therefore 9 cases to consider.
Euclid already knew from the properties of parallel transversals cutting
two intersecting straight lines, that it was possible that when md

> =< nB, then m( might be >= < nD respectively, and therefore he
begins by saying, def. 5., that in that case the logos of A to B is the
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same as the logos of O to D, év rg avrg, not év 1o low Myw, adding def. 6.,
““let then (d¢) two pairs of magnitudes which have the same logos, as
thus determined (included in ée), be called analoga,” rd o¢ 7ov avrov
éxovra peyéfy Néyov, dvdloya xaleicOw. He does not think it necessary
to shew from the first, that if one and one only of the two, 4 or B, be
altered in any way however slight, the logos will be changed. He
proceeds to the cases in which the interdistribution of multiples is not
the same for each pair of magnitudes considered. These he reduces to
one. Suppose that when mAd > nB, mC is not > nD; “in that case
(rore) the first logos is said (Aéyerar) to be greater than the second,”
the metaphorical use of greater and less as applied to logos is justi-
fied by the ordinary use of the term greater and less applied to the
multiples considered, rdre 76 wpdrov mpoc 70 devrepor peilova Aoyoy exeww
Aéyerar, mwep 10 rpirov mpoe 70 réraprov. This being settled, he is able to
introduce the abstract term analogia for sameness of ratios. Theword used
is dpowdrne, usually rendered similarity. It is evident from the év rg
avrg Adyy in def. 5., that the Aristotelian ravrdrne should have been
used, but perhaps Huclid, if he was acquainted with the word (we
know that he was no school-logician) possibly thought it barbarous. It
remained for theologians to wrangle over duoioovoioc and duoovoroc.
Euclid at any rate did not invent éudrne (which was never Greek),
but contented himself with using duowrne. Perhaps logically considered
two thoughts, just because they are two, are not the same, although in-
distinguishable except in point of time of entertainment. But the use of
svmilarity has led to the use of equality as applied to logoi, which Euclid
did not contemplate, and this use of equality has led to bringing ana-
logia under the axiom of “things which are equal to the same thing are
equal to one another,” which is a mere verbal quibble. What Euclid says
is in English: “sameness of ldgoi then (d¢) is analogia,” dvaXoyia é¢
éorwy 1) Tav Néywy dpodryc, the use of the 7 pointing out the subject of
the sentence, and its absence the predicate, as before (iv.)

(vi.) This appears to me Euclid’s real conception, and it is a concep-
tion which places its author in the very first rank of thinkers, that is,
among these who have discovered the one simple key to an apparently
insoluble difficulty—in this case the passage from discontinuity to con-
tinuity. It remains to shew how this conception can be imparted to
learners, whose minds have been arithmetically cribbed, confined, and
hence distorted from earliest childhood. Of course the Greek words
logos, analogia, here used to prevent ambiguity, will henceforth be
discontinued.

2. Paedagogical Exposition of the Conception. First step.—(1.) In the
following pages a method is suggested for leading pupils up to the
conception of ratios of magnitudes, independently of commensurability,
and to the mode of comparing them. No child who has not been
taught arithmetic has any general conception on these points. Every
child who has been so taught has a more or less incorrect conception.
‘We have to furnish him with progressive experience to make him
familiar with the geometrical conception, and understand how far the
arithmetical conception is useful and where it makes default. It is
not till after the modes of comparing magnitudes are understood that
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the term proportion should be introduced, as proportion is only
one case of comparison. It will be understood that these are merely
hints, and not even a detailed syllabus.

(ii.) Arrange boys (or, for convenience, straws or sticks) in order of
height (or length). Shew how this can be done by marking their
heights in any order against the same standard, because the terminal
points of lengths which have the same origin arrange themselves in the
order of the lengths of the lines. No statement is to be made of actual
height or length in-reference to a standard.

(iii.) Arrange boys (ov, for convenience, stones) in order of weight.
Shew that this may be done by scales, but more conveniently by taking
the stones at hazard and weighing them by a balanced lever with arms
of unequal length, a fixed scale being attached to the shorter arm, and
a small weight (another stone) hitched by a string over the longer, a
mark being made on the longer arm where the balance is attained.
Shew that these marks naturally arrange themselves in order, the mark
for the heaviest being furthest from the fulerum. No statement is to be
made of actual weight in reference to a standard. - This is an extremely
important reduction of order of weights to order of lengths. Practically
it leads to a mechanical mode of finding two straight lines which bear
to each other the same ratio as any two weights, without any consi-
derations of commensurability. But this reduction requires some me-
chanical knowledge and is not to be attempted at first.

(iv.) Arrange stones by volume. Shew that this may be done by
placing a large enough vessel full of water within a larger one which
drains into a glass cylinder outside of which a slip of paper is pasted
vertically.  On immersing any stone in any order carefully in the first
vessel, the overflow is conducted through the second into the cylinder,
and the height to which the water rises is to be marked on the paper.
Empty the cylinder and fill the first vessel again. Immerse a second
stone and proceed as before, and so on. The marks on the slip of paper
arrange themselves naturally in the ascending order of the size of the
stones. This will subsequently reduce ratios of any volumes to ratios
of lengths without regard to commensurability. .No reference to any
standard volume is to be made. '

(v.) Arrange any number (4 or 5 are enough) of rectilinear areas
(mixed, triangles and polygons) in order of magnitude. Shew that they
may be all reduced to rectangles of the same altitude, and then that
the bases may be arranged as in (il.)

(vi.) Arrange curvilinear, or amorphous, or mixed rectilinear and
other areas, plane or other, in order of magnitude. Cut them out in
“lead paper,” which is sufficiently homogencous, flexible and heavy, to
convey the required notion, and treat the slips as weights (iii.).

(vil.) Arrange curves or broken lines in order of length. Pass
threads round them, and straighten them by tension, and apply (ii.).

(viii.) The processes in (ii, v.) are strictly geometrical. The other
processes require ““idealising,” and suggest geometrical problems, which
the teacher should carefully explain have not been completely solved,
but that in gencral we can by refined geometrical methods approach
more nearly to the truth than by the rough physical methods here em-
ployed, when some of the magnitudes to be compared are very nearly
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the same; a difficulty which should be introduced in a second or third
trial in every case. But shew also that the idealisation of those rough
methods conclusively proves that we can always conceive a series of
straight lines arranged in the order of magnitude of any series of mag-
nitudes such as those already expcrimented on.

(ix.) Then draw attention to the fact that we first compared straight
lengths with one another, then weights with one another, then volumes,
then areas, and then general lengths, but that we did not compare
lengths with weights, &c., for we could not say of a length that it was
either greater or less than a weight, although we were able to arrange
lengths in the same order as weights. Hence lead to a conception of
Iinds, and to the order of arrangements of things of the same kind inde-
pendently of the particular kind. These are difficult abstractions, and
must be treated cautiously. Terrible mistakes are made by children
who have to grub them out unguided. But merely to tell them is
pouring water on a duck’s back—neither tale nor water is ever
taken in. .

(x.) This completes the first step in the way of preparation, and the
absence of all approach to arithmetic or commensurability is of the
utmost importance for what follows.

3. Second step.—(i.) The next step includes the formation of mul-
tiples, and the point to be borne in mind by the teacher is that the
child, through arithmetic, has been trained to consider ‘“bags of
stones,”—that is, scparate discontinuous magnitudes artificially ag-
gregated without losing their discontinuity,—and that he has to be led
to comprehend an addition which results in absolute continuity, without
a trace of the original individuality. This is best done by grouping
quantities of liquids. Take a small glass vessel, with an external band
marked on it, but not all round it (a short slip of paper is best); pour
colourcd water in till the top of the water is scen to coincide with the
top of the band. Have ready a series of larger glass vessels of the
same shape, cylinders of the same radius, which, to avoid arithmetical
conceptions, are marked by the letters 4, B, C, &e. Empty the small
vessel into 4. Fill it again and empty into B ; fill it again and empty
into B again. Till it threc morc times and empty each time into C,
and so on. Then place the vessels in the order of the height of the
water. This will be also in order of the volumes and also of the
weights of the water. Draw attention to the fact that the water in
each vessel shews no trace of having been poured in by instalments, so
that it is absolutely impossible to say in what manner it was poured in.
But as the operation was witnessed, 1t is krown that this continuity re-
sulted from the discontinuous operation of adding equal instalments.
These discontinuous instalments can be counted like anything else. 4
had 1, B had 2, 0 had 3, and so on. Hence the volumes of the water
are called the first, second, third &c. multiple of the volume of water in
-the original smaller vessel, and the order of arrangement of these mul-
tiples of volume is consequently the order of the arrangement of the
scale of whole numbers, and this order must be the same whatever be the
size of the original small vessel, although the multiple voluines themselves
are different. Moreover if any volumes are arranged in order of mag-
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nitude it is easy to see,—not whether they %ave been formed by in-
stalments, but—whether they can be formed by instalments, by simply
emptying 4 into a new vessel, marking the height of the water, and
throwing it away. Then pouring from B into this new vessel up to
the line, emptying, seeing if the remainder will fill the new vessel up
to the same line, and so on.

(ii.) The points which should be gained are: 1) that multiples of
magnitudes are siniple continuous magnitudes; 2) that these can be
arranged in order of magnitude ; 3) that this order is constant, and is
that of the numerical scale by which they are named; 4) that any
magnitudes being arranged in order, it can be ascertained whether
they are or are not multiples of the same magnitude, whenever sub-
traction is possible.

(iii.) Next make the learner construct multiples of straight lines in
the form of straight lines with no mark of division ; multiples of recti-
linear areas not being parallelograms, in the form of parallelograms of
the same height with no mark of division ; multiples of circular arcs
in the form of circular arcs, also with no mark of division, but with a
rough internal or external spiral which by the number of its coils
shews the amount of revolution when exceeding a semi-revolution ; and
finally multiples of angles in the form of angles in the same way.

(iv.) De Morgan said that Euc. vi. 33 fairly gave up Buclid’s con-
ception of angle, Euc. 1., def. 8 to 12. But really this was given up in
Euec. i. 13 and i. 32, especially in its corollaries. I think it advisable
to retain the term angle for sums of angles not exceeding two right
angles, and to use the term 7o'fate for larger amounts. An extension of
the term angle to any sums of less than four right angles does not
meet the case of Euc. 1. 32, cor. And it will be seen that for direc-
tional angles the limitation here proposed is important (art. 20.x.).
Also it is clear that only in the case of such limitation can we dispense
with the use of the subsidiary spirals. Angles themselves will then
become rotates of less than a certain amount. The sums of angles
(i.e. rotates) are always rotates, and may (exceptionally) be angles.
Great trouble is at present experienced by learners from the sum of
several angles exceeding even four right angles, and hence not being
an angle at all, even when its meaning is extended as above.

(v.) The next point is to shew that, knowing Huec. i. to iv., we can-
not take multiples of curvilinear magnitudes ; for example, we cannot
draw a circle which shall be double the area of a given circle. Shew,
however, that we can easily describe one much more or much less than
double, and hence that it is only our want of geometry that prevents
us from hitting the exact radius required. State that for this particular
case we-shall find a solution (art. 11. iii.) ; but that in general we are
at present able only to form such multiples hypothetically in concep-
tion, and approximatively in practice. Thus we cannot with geometrical
accuracy compare the length of a circular arc with its chord. The
teacher should, however, shew why we know the arc to be greater, as
this is a very important result.

4. Third step.—Take two series of multiples of two original magni-
tudes of the same kind, and, as they are all magnitudes, arrange them
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in order of magnitude. Our preparation (art. 2. ii.—ix.) enables us to
reduce this case to that of comparing multiples of length. Make the
learner mark off lengths, as 04y, OA4;, &c., and OB,, OB;, &c., which
are multiples of O4 and OB, by marking their terminations 4, &e.,
DB,, &c. with short ticks on opposite sides of the same straight line.
The point to be established is that, if one of the original lines be ever
so slightly altered, some multiple of the altered line can be found
which will exceed or fall short of the same multiple of the unaltered
line by more than the other original line, and that consequently the
order of the multiples of the fwo original lines, if enough of them are
taken, will differ from the order of the multiples of one of the original
lines, and of a line differing from the other. Hence, when two magnitudes
are known, the order of their multiples is fixed and known. And it
must be also seen that, conversely, if by any means the order of
multiples is known, and also one of the original lines, the other is of
fixed length, although we are not yet in a condition to find it.

5. Fourth step.—(i.) Shew that it is possible to alter the lengths of
both the original lines of art. 4. in such a way that the order of the
multiples of the two altered lines will be the same as that of the two
original lines. l

(11.) The first case is that of commensurability. If m.04 = =n. OB,
(notation to be thoroughly explained as representing multiples, not
aggregates,) then the multiples divide into groups of m multiples of
04 and # multiples of OB, and the order in which the multiples
interlie will be the same in each group. This should be exemplified
by a figure. The consequence is that when we know the order for the
first group we know the order for ever—without any veiled application
of the principle of limits. This conclusion is extremely important.

(iii.) The second case is that of parallels. Let 0AB, OCD be straight
lines (the unconnected letters in the margin will

show how any figures are to be constructed) B,
drawn from a common origin O; and AC, BD B 4,
parallel lines. Take 04, =r.04, OB, =s.0B, 0 4

and draw the lines 4,0,, B,D, parallel to AC, o

BD; then OC,=7.0C, and OD,=s.0D. D q
And as parallels do not intersect, the order of the D,

multiples of 04, OB, determined by the terminal

points A4,, B,, will be the same as the order of the multiples of OC, OD,
determined by the terminal points C,, D,, Here the geometrical pro-
perty of parallels enables us to know with certainty that the order of
multiples of OC, OD is the same as that of those of 04, OB, indepen-
dently of the number of multiples compared, without any veiled appli-
cation of limits, and also endependently of commenswrability. This
conclusion therefore holds for all those cases which have been shewn
to be reducible to straight lines. It should be verified by examples of
triangles and rectilinear areas generally. The converse must also be
proved. Four arrangements are possible: 1) the lines are parallel,
and the order the same; this we have seen to be the case, and it ex-
cludes 2), the lines are parallel, and the order is not the same ; 3) but
the lines may not be parallel, and yet, for all we know, the order may.
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be the same; but this is excluded by 4), when the lines are not
parallel, the order not the same; because we know that when the
order is not the same, the lines joining the extremities of the multiples
must cross, which is impossible for parallels. There remain therefore
only the first and fourth cases, and this proves the correctness of the
conversion.

(iv.) The third case is that of angles or rotates and their subtending
arcs, which presents no difficulty.

6. Parallels, a Parenthesis.—(1.) Here I interpose some parenthetical
remarks suggested by the assumption that parallel lines never meet,
in order to shew that the theory of parallels is not one of veiled
limits, for, if it were, then indeed Tuclid’s conception would be one
also, except in the case of commensurables. Now in modern geometry
any system of parallels is said to have one and only one point in com-
mon, which is conveniently placed out of sight, at infinity. Townsend
(Modern Geometry, 1863, p. 11, see also the citations in Appendix L)
says that the truth of this conclusion has been *“long placed beyond
all question by the simplest considerations of projection and perspec-
tive.”” I believe that it has been much longer rendered impossible by
the elementary consideration that two straight lines cannot inclose a
space. The conclusion (ibid. p. 12) that *“the two opposite directions
of every [straight] line, not itself at infinity, are to be regarded, not
as reaching infinity at two different and opposite points, but as running

- anto each other and meeting at a single point at infinity,” amounts to
saying that diametrically opposite directions are the same. Again
(7bid.), “every [straight] line not at infinity may be regarded as a
circle of infinite radius whose centre is the point at infinity in the
direction orthogonal to the line,” t.e., the single point common to a
system of parallel straight lines is the common centre of the concentric
circles with which they coincide circumferentially, and which have no
common circumferential point. The assumption that such circles have
two imaginary points at infinity where they are touched by the two
imaginary non-touchers (asymptotes) common to all concentric circles,
is in the mere field of imaginaries, and will be disposed of hereafter
(art 48. v.) The touching of curves by real non-touchers has more to
be said in favour of it than the intersections of parallels, because
asymptotes do constantly approach the curve, but no two points in two
parallel lines are ever nearer each other than their common normal
which itself never diminishes in length, so that the assumption that
parallel lines intersect requires that an unchangeable length should
discontinuously shrink into nothingness “at infinity ” (which has no
“at’’). To my mind these are mere contradictions in terms which
must lead, and I believe bave led, to serious error. They are however
nothing more than terminology, invented to make discontinuity con-
tinuous, and thus hide the real state of the case. Hence I hold that
unless we assert that two straight lines will under certain circumstances
inclose a space,—and thus give up the proof of the fundamental pro-
position, Euc. i. 4, in which case plane geometry will itself drift off to
infinity,—we must consider that there are no veiled limits in the proof
from parallels in art. 5. iii. :
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(ii.) This leads me to consider the question of parallels as a subject
to be taught to children. No one would dream of teaching them the
bewilderments just mentioned ; but some men whose opinions I respect,
are inclined to make parallels a ‘ reserved question,” whereas it seems
to me that no geometrical teaching, and especially none on proportion,
is possible without making it elementarily exoteric. I must crave
indulgence for briefly stating my own views on this subject, which,
however crotchety in appearance, are the result of years of reflection
tested by other years of application.

(iii.) Bring the edges of two surfaces (pieces of paper may be used
for illustration, but any surfaces will do) to touch in two points ;
observe whether there is any ¢ntermediate point, at which they are also -
in contact ; turn the surfaces about the first two points like a door on
its hinges, and observe if they still touch in that third point, through-
out the movement. If they do, for all such third points observable, the
edges intermediate to the points are straight lines. This is our only
test of straightness. Some writers gain the second line by cutting off
a bit of the first, which disgnises without altering the punmple

@iv.) gtrmght edges can slide one on the othep that is, can move so
as always to have two points of the one coincident with two of the
other, and hence coincide intermediately.

(v) But straight edges can also move one on the other so as to have
one fixed point of one coincident with one fixed point of the other, and
at least one fixed point of the one 7ot coincident with any point of the
other. In this case they can have only the one first mentioned point
in each coincident. They then rotate. Here explain the generation of
planes, plane rotation, circularity, angularity.

(vi.) When straight edges have thus rotated they can be clamped,
by a transversal having fixed points, one in common with each straight
edge. They then form a biradial (Sir W. R. Hamilton’s word, see also
art 34.v.), of which the original straight lines are the arms, the
transversal not being further regarded. In this case the motion of
one arm entails the motion of the other, and neither can rotate unless
the other rotates also.

(vii.) Now let one arm of a biradial slide on a given straight edge,
the trace of the other arm having been marked in its original position.
Then in every new position of this second arm there will exist a new
straight line having at least one point nof in common with the original
trace, while, as it has not rotated, it can have no other point in common
with the original trace, quite independently of length. None of these
positions of the second arm therefore ever meet the original trace.
The existence of parallels is therefore demonstrated without any veiled
reference to limits. The experiment is best shewn to a single pupil
by lines on tracing paper moved over lines on other paper, and to a
class by lines drawn with gum and whiting on glass, and moved over
the chalk lines on’the black-board. It Ieads ) the best practical
method of drawing parallels by sliding one * set square” along another.
A straight line thus moved is said to be translated. The advantage
of early familiarity with the notions of rotation and translation is
obvious.

(viii.) The usnal propositions as to equality of external and internal
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angles, &c., in the case of parallels are now to be proved, but not their
converse (Euc. i. 29).

(ix.) The addition of angles which have not a common vertex is now
to be shewn, by first sliding and then rotating, the sum of any number
of rotations being independent of interposed slides or translations. In
this way Euc. i. 32 may be immediately proved without using Eue. i. 29,
for which purpose this proposition is ma,m]y required : ABC (fig. 1) bemo'
a triangle, the rotation of a line 4’1’ originally lying over 4D, by
turning it about 4 as a pivot until it falls on AB, is the same as if this
line were first slid till A" fell on C, and then rotated to fall on OB ;
were then slid along OB till A pass from C to B, and A'D’ falls -on
BF'; were then rotated about B to BE, (the angle FBL being shewn
to be equal to OBA by merely continuing the line 4’D’ backwards to
0’ over C, and seeing that on rotation this A'C’ comes to fall on BF,)
and were then slid till 4’ falls on 4, so that A'D’ has rotated from AD
to AB by the help of two rotations sepamted by intermediate slides. The
exterior angle DAB is therefore equal to the two interior and opposite
angles ACB, CBA, whenever two intersecting straight lines AB, OB
are crossed by a transversal DAC.

(x.) To prove Euc. i. 29, we have however still to prove Ax. 12,
which may be made to depend on this principle : if a straight line BE
(fig. 2) pass through a given point B and be translated in any manner
till it again pass through B, it will wholly coincide with its former
trace. For if it did not, it would have rotated, which is against the
hypothesis.

(xi.) Let AC, BD (fig. 2) be parallel lines, and angle ABE be less
than angle ABD; to prove that AC, BE will meet. Take A'B'E’ as a
biradial over ABE ; slide B'A’ to fall on AH, so that B'E’ falls on AF,
and continue AF indefinitely both ways. AF necessarily cuts AC.
Clamp B'E’, now falling over AF, with 4'@, falling over AG'; slide
A'@ along GAC. Then there is no point in the plane ABE over which
B'E', which is attached to 4'G’, when sufficiently produced, will not
pass. Hence it will pass over B. And then B'E’, having been only
translated, coincides with BE again. And as B'E’, during the last
translation, has never ceased to cut AC, BF also cuts AC. This seems
to me a complete proof of this axiom on the data assumed, and the
assumption of these data also appears to me more directly connected
with the subject, and to make the point of this Axiom 12 more evident
than any other.

7. Paedagogical Bxposition resumed.—Fifth step. (i.) The paedagogi-
cal introduction to proportion is now resumed. Having shewn that
the order of multiples is constant when the originals are constant, and
may be constant when the originals are both altered in certain ways,
it becomes convenient to have a name for this order. Let the magni-
tudes be 4 and B, then the order in which the multiples of 4 are dis-
tributed among the multiples of B, (so that, given any multiple of 4,
we know the two mnearest multiples of B between which it lies,) is
called the ratio of 4 to B, and is written A : B. Similarly B : 4, or
the ratio of B to 4, means the order in which the multiples of B are
distributed among those of 4, (so that, given any multiple of B, we
know the two nearest multiples of 4 between which it lies).



ART. 7. 11.—8. iii.] OF RATIO AND PROPOETION. 15

(ii.) If then the multiples of € are distributed among those of D in
the same order as those of A among those of B, the ratio of C to D is
the same as that of 4 to B. Thisis written 4 : B :: C: D, which I
prefer reading “ 4 to B same as C to D,” omitting the word ratio, and
using same as instead of equal fo for the reasons in art. 1. v.; and I also
prefer, at least paedagogically, not to use the old formula * as 4 is to
B so0is € to D,” because of the marvellous ambiguity of the as and so,
and because of the old false associations produced by the Rule of
Three as usually taught. Of course in this case also B : 4 :: D: C.

(iii.) The idealised elementary processes (art. 2. ii.—viii.) now lead
us to infer that, given any two magnitudes of the same kind, we might
always find (if our processes were accurate enough) two straight lines
which would have the same ratio—i. e., whose multiples would have
the same order of magnitude. Hence a ratio is always (conceptionally)
expressible as that of two straight lines.

(iv.) And this leads us to consider the case where 4: B not :: C: D,
that is, where the multiples of 4 ave not distributed in the same order
among those of B, as those of C are among those of D. Two cases
will arise :

1) Either some multiple of A4 is greafer than some multiple of B,
while the multiple of ' corresponding to that of 4 is not greater than
that of D corresponding to that of B. In this case, for brevity, the
term greater is transferred from corresponding multiples to the orders
of distribution of the multiples of 4 among those of B, and of ¢ among
those of D; and we say laconicelly, A:B > (O :D, reading > as
“ greater than” (compare art. 1. v.). Stress should be laid on this
abbreviation, because in the ratios there is mno real greater or less.
Numerous examples must be formed.

2) Or else there will be some multiple of 4 which is less than a mul-
tiple of B, while the multiple of C corresponding to that of 4 is not less
than that of .D corresponding to that of C. Here, in the same way, we
write 4 : B < O :D, reading < as “less than,” with the same warn-
ing as before. Numerous examples required.

8. Sixth step.—(i.) Up to this point there has not been a word of
proportion. The word is used in common speech so ungeometrically,
and has been so much perverted arithmetically, that I prefer reserv-
ing it for the Sixth step.

(ii.) Stand before a mirror. Hold a book parallel to its surface. Ad-
vance and withdraw it, keeping the head steady. Observe the great
apparent change of size in the image of the book, shewn by the amount
of the surface of the mirror covered by it (easily marked off), whereas
the shape remains unaltered. When this occurs, we say that all the
dimensions in any one image are proportionate to those in the other,
or that they all alter proportionably or in proportion. Observe that the
example is chosen so as to exclude commensurability, which would
necessarily intrude in drawings made to different scales in the usual
way. The shadow of a book cast on the wall from a single point of
light (a candle) will serve as well; and better for a class. Examine
what is meant by this.

(iii.) The simplest figure to deal with is a triangle. Draw one con-
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necting three points on the book, or cast the shadow of a set square
on the wall. Observe that the sameness of shape depends on the
sameness of angles between corresponding sides, and that the differ-
ence of size depends on the alteration of lengths. What is the law by
which the lengths alter? This should enable us, when we know the
length of one line in the original figure and that of the corresponding
line in the altered figure, from the length of any line in the original
figure to construct the length of the corresponding line in the other
figure.

g'l‘ake two corresponding triangles. The sameness of angles allows
of their superimposition so that any pair of corresponding vertices
being brought together, the adjacent sides will lie on one another, and
the opposite sides be parellel. We have the case of art. 5. iii. Hence
if ABC, A’B’C’ be corresponding triangles of which AB, A’B" are the
parallel sides, we have, by art. 7. 1i., C4 : (B :: A" : 0. That is,
proportion. (or the law of alteration of length in figures of the same
shape and diflerent size) comsists in sameness of rateo betwcen corres-
ponding lengths.

(iv.) Having thus arrived at an cssentially gcometrical view of pro-
portion, exclusive of arithmetic and commensurability, it only remains
to explain that fignres which in popular language are said to be in
proportion, are in geometry called similar; that their properties of
size evidently depend on the sameness of the ratios of corresponding
lengths; that the examination of the properties thus discoverable
forms the principal part of geometry, and that it hence becomes im-
portant to discover all cases where this relation ecxists originally, and
also what new relations of the same kind can be inferred from knowing
one or more such relations. This then is the object of Eue. v. and vi,,
which would be made mutually illustrative if fused. Inthe elementary
explanations, the main propositions, Eue. vi. 1. 2. 33, have already
been proved. It would be of advantage to interpose Euec. vi. 3—17
between Buc. v. 16 and 17. The mode of treating the necessary pro-
positions presents no difficulty whatever when this stage is rcached,
and I pass it over, to abridge this already too lengthy exposition,
without which I felt that it was impossible to make my own views
intelligible.

9. Paedagogical Appendiz to Proportion.—(1.) After the general pro-
positions on proportion in Kue. v., interspersed with some of their
easiest and fundamental applications in Eue vi., have been thoroughly
taught and understood in their real geometrical, as opposed to their
arithmetical, which is also the usual algebraical sense, the question
arises : how can we proceed, when it is not geometrically possible to
find, as suggested in art. 2. ii.—viii., two straight lines which bear to
each other the came ratio as any two given homogeneous quantities,
but it is at the same time important to deal with that ratio ?

(ii.) This leads to the consideration of approximete ratios. Of two
ratios X : Y and X : Z where X, Y, Z are straight lines, that is nearer
to the ratio 4 : B, (where 4 and I are any homogeneous magnitudes,) for
which the order of the multiples is the same for the greater number of
multiples of the greater term. When the number of multiples is very
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great in both cases, and the ratio X : Y< A4 : B, but X : Z> A4 : B, there
can be but a small difference between Y and Z, and the required line 7V,
for which X : Vi: 4 : B, will be <Y and >Z. If then we can find
successive values of Y and Z, nearer and nearer to each other, we shall
obtain ratios which more and more nearly approximate to X : V.

(iii.) When we require to find ¥ for practical use, we may previously
determine the amount of error, I/, deemed sensible, and we lay down the
principle that jfor such practical ends, if we can find Y and Z such
that Y—Z, shall be < 1, we shall have practically solved the problem,
because the error will be insensible.

(iv.) Now, conceptionally, we may suppose that by actual formation
of multiples we obtain mA = nB+D, where D is homogeneous with
and <D, in which case, if mX =Y, and mX = (n+1) Z, (whence,
when X is given Y and Z can be found hy parallels,) we shall have
X:Y<d:Band X:Z>A: B, while Y—2Z = 77(”:1—1) X, and hence
may be made less than any line I, by simply increasing n. And this
conceptionally solves the practical problem. .

(v ) Of course the idea of discovering m and n by actually forming
multiples, when m and n are very large indeed, is practically illusory.
Hence the usual process pursued for finding m -+ is to throw it into a
continued fraction, and I particularly urge teachers to approximate to
the values of /2, /3, &c. from two given lines in each case, (diagonal
and side of the corresponding rectangles,) first by actually forming mul-
tiples, and secondly by actually forming continued fractions; and
especially to shew that the diagonal and side of a square are imcom-
mensurable, both geomelrically and arithmetically, to force on the
learner the sensation, impossible to acquire without such actual trials,
of the meaning, first, of approximation (with its practical uncertainty),
and secondly, of incommensurability. An attempt to approximate to
the ratio of the circumference to diameter of a circle by using strings
of the length of both, is also very instructive. A gallipot, or tub head,
or, better, a circular table, will give one or two places of decimals.
Taking the best approximate commensurable ratio to be expressed by

|4

855 foct : 113 feot, and observing that 500 =8 + —L— it will be

‘ 113 7+
found extremely interesting to watch the hesitation about the 7, and
see how it will wander from 5 to 8 or 9, according to circumstances, in
different trials. To reach the Archimedean 7 isa triumph or a “ fluke.”
Nothing is better adapted to make pupils feel the practical difficulty in
the way of “ squaring the circle,” by such a simple process as “rolling
a circle on a straight line and marking off the length.” In a London
draper’s shop I learned that 11 metres are 12 yards, and I think the
man who told me would have been puzzled had he been told that a
yard is eleven-twelfths of a metre. In all comparisons of length we
really use multiples. If we say that 1 yard is 0°9144 metres, we
scarcely convey a notion to most people who would quite understand
10000 yards being 9144 metres. Similarly, for general intelligibility,
I would back against any fractional statement such approximations as
8 kilometres are & miles, 2 hectares are 6 acres, 5 kilogrammes are
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11 pounds avoirdupois, 200 grammes are 7 ounces av., 4 litres are 7 pints,
which the draper’s information led me to caloulate. I may state, by
the way, that we come within one wnit of the troth up to 1000 times
the French units of measure (for metres up to 11000) by adding 1 part
in 400 to the yarde and ponnds, subtracting 6 parts in 1000 from the
miles, and adding the same to pints, .and subtracting 12 parts in 1000
from the acres. The calculation is much easier than for decimals, and
the resnlts fornish admirable materials for exercising pupils in approxi-
mating to ratios of magnitudes arithmetically.

(vil.) Obhserve that if mA = «B+D, and we do not know the limit
of the value of D, we can tell by the mere division m'n--m =n’ 4 proper
fracbion, that ' A lies betweon #'B and (n + 2) B, but that we cannot
tell whether it lies between #'B and (»'+1) B, or between (v'+1)B
and (# —|—2) B, however great m may be. If, then, we want to find, not
V, but w'V within the limit ¥, we must find m'md = "B+ 1D, whers
D’'< B, This is important in sett]mg the limits of error, or  the num-
ber of decimal places required.”

(vitl.) Butthe processes of finding multiples, or throwing into a gon-
tinued fraction, are alike illusory when certainty is reqmired, as the
Buggested trials shew. Then arises the great problem of higher geo-
metry : to find a series of terms (teken as geometrical magnitudes)
continually diminishing, and connected by a lew such that when afow
are known any required number can be found, and sach alse that their
{geometrical} sum continnally appreaches to the required limit, and
may be made to differ from that limit by less than any assigned
amount. The practical problem is then- perfectly solved, but that
practical problem gives birth to & theoretical problem.  Suppose
¥V to be the fixed limit toward which the series & converges, then
V—8 will be a magnitnde (a straight line, see ii.) of continoally
diminishing size, which can be made less than any assignable magni-
tude, while at every moment ¥V —(F—8)=§. Can we then neglect
V—38, and deal with § as if it were ¥, not merely for a practical ap-
proximation, but for theoretical exactness P

IT. “Carsor’s Prvcipre® yom Lisora.

10. * Oarnot's Principle.”’—(1.) The only satisfactory answer which 1
have heen able to find to the question just propounded, (and I have
paid minute attention to the subject at various times for nearly 40
years,) is contained in Réflewions sur la Métaphysique du Caleul Infinité-
stmal par CaArnor (3rd ed., Paris, 1839, pp. 254), which the name of the
writer is enough to recommend to the careful study of all teachers. I
wish here o state the prineiple in conneetion with the author’s name,
in that simple geometrical form which is enitable for learners, without
any anticipation of the infinitesimal calculua.
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