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Similarly, on taking OJ on OP of the length 01, so that 
rect. (01, OJ) = square on 01, 

we have OJ : OP :: rect. (01, OJ) : rect. (01, OP), 
so that, on using p for the tensor of OP, 

rect. (01, OP) =L> . square on 01, 
whence rect. (OM, OP) = mp . square on 01 = OM. OP . square on OJ, 
on using the ordinary notation. The proof is here conducted by pro­
portion only, and quite independently of commensurability, so that the 
objections to the "algebraical proof"—really, commensurable proof—of 
Euc. ii. no longer hold. 

Referred to cube on 01, it becomes a relation of rectangular solids, 
having one constant dimension 01. 

(iv.) The demonstration of all these relations flows at once from the 
laws of tensors. But there is no room for negatives or imaginaries in 
an algebra derived from the geometry of magnitude only. The laws of 
both are obtained at once from the geometry of direction, as follows. 

IV. THE LAWS OF CLINANTS, OR THE ALGEBRA OF SIMILAR TRIANGLES 
LYING ON THE SAME PLANE. 

20. Data from the Geometry of Direction.—(i.) The following proposi­
tions are borrowed from the geometry of direction, as opposed to that of 
ratio, or magnitude only. See ftg. 5. 

(ii.) AB, without further limitation, always represents the line AB, 
as respects both magnitude and direction, considered as the trace of the 
motion of a point along a straight line from A to B, A being its initial 
and B its final point. When length is considered without direction, 
write len AB, and read "length of AB" 

(iii.) The equation AB—GD implies that AB and CD• are the oppo­
site sides of the parallelogram ABDCA, the points lying in this order. 

(iv.) Directional Addition is defined by the equation 
AB + AC = AB + BB = AD, 

or the sum of two adjacent sides of a parallelogram measured from their 
point of intersection is the included diagonal. And since in this case 

AC+AB = AC+ CD = AD, 
directional addition (which is quite different in its results from quanti­
tative or rational addition) is commutative. I t is also easily shewn to 
be associative. 

(v.) Directional Subtraction is defined by the equation 
AB-AC = AB + CA = AB + BE = AE = CB, 

or the directional difference of two adjacent sides of a parallelogram is 
the transverse (non-included) diagonal, measured from the final extre­
mity of the subtrahend to that of the minuend; 

(vi.) IOT, JO J' (fig. 6 and 8) are diameters of & standard (or unit) circle, 
drawn at right angles. The position of centre 0 (taken as origin) and 
radius 01, (taken as the standard of length and of original direction,) and 
the direction of right angle 10J, (taken as standard of angular rotation,) 
are arbitrary, but once fixed remain throughout the problem, and deter-
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mine the plane JOJ on which all points are situate. The above lettering 
(founded on Sir W. R. Hamilton's) is assumed throughout. 

(vii.) M, N, P (fig. 6) being any points in the plane, (these words 
omitted in future,) and M', N', P' the points in which the straight (this 
word omitted in future) lines OM, ON, OP cut the standard circle, 
then the arc M'N' is measured from M' to N' through not more than a 
semicircle, so that its direction is not ambiguous except for a semicircle 
such as arc IT, which may be either arc IJI' or arc IJ'T. If the 
length of chord M'N' = length of chord M"N", and direction of arcs 
M'N', M"N" the same, then arc M'N' = arc M'N"; but ch M'N' is not 
= ch M"N", unless they are coincident, and so of all similar cases. 

(viii.) Always, arc M'N'-fare N'P" = arc M'P', 
arc M'F-N'r= arc MT' + arc P'N'= arc M'N', 

and the law of association also holds. All this is similar to, but different 
from (iv. v.) 

(ix.) The directional sum of any number of directed arcs is therefore 
a directed arc not exceeding a semicircle. If m be an integer, then (see 
fig. 7, where m = 3) m . arc IX = arc IV, determines IVunambiguously 
when IX is known; but there are m different directed arcs 1XX, IX2... IXm 

which satisfy the condition m . arc IX = arc IV when TV is known. 
And, assuming the power of finding an arc whose length bears any given 
ratio to that of a given arc, if m is an incommensurable tensor, the 
above equation admits of an infinite number of solutions. This is the 
source of the ambiguity of equations in all cases. 

(x.) The conclusions in vii., viii., ix., hold for any directed angle, or 
Z MON, fig. 6, subtended by the directed arc M'N', and having OM 

for its initial and ON for its final arm. Under these conditions no 
directed angle greater than the directional sum of two right angles in 
the same direction can occur (art. 3. iv.). Z 101 is called a null angle, 
Z IOI' a straight angle. If AB = OM and OD = ON, by Z (AB, CD) is 
meant Z MON = Z M'ON'. When the amount of rotation in angles is 
alone considered, independently of the direction, the angles are said to be 
rationally equal. Shew this thus, amt MON, and read " amount of 
angle MON." 

(xi.) By directionally similar triangles are meant similar triangles in 
which the rationally equal angles are also directionally equal, so that 
their differences two and two = Z IOI. By conjugately similar triangles 
are meant similar triangles in which the rationally equal angles are 
directionally opposite, so that their sums two and two = Z IOI. Any 
three separate points determine a triangle, whether they do or do not 
lie on the same straight line. The notation ABO A A'B'G' (read "ABO 
sim AB'G'") denotes the directional, and -APO V A'B'G' (read uABO 
con-sim A'B'G'") the conjugate similarity of the triangles ABO, A'B'0\ 
Sir W. R. Hamilton (Elements of Quaternions, p. 112, art. 118) uses the 
terms directly and inversely similar, and the notations A ABO oc A'B'G', 
and AABC <*' A'B'G', for the present ABO A A'B'G' and ABOv A'B'G' 
respectively. 

21. Directionally similar Triangles expressed oy Olinants.—(i.) This 
boing premised, let A, B, fig. 8, be any points, and determine 0, so that 
10A A BOG, which results from a simple geometrical construction. 
In this case also IOB A AOG. 
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(ii.) T h e n OO is found by an operation on OB, de termined by t h e 
point A, which operat ion wil l be called a clinant, a t e r m in t roduced by 
myself in 1855, see Appendix I I I . I t will be m a r k e d by t h e small 
le t te r a, corresponding to the large le t ter A, by which the point is 
noted. T h e tensor of OA (ar t . 12. iii.) will henceforth be marked Ta, as 
explained in ar t . 26. ii. I t is sometimes convenient to use small Greek 
le t ters , a, /3, y, <>, e, for cl inants. I n such cases, when t h e corresponding 
capitals a re the same in t h e La t in and Greek alphabets , I find i t ne­
cessary to dis t inguish the la t te r by an apostrophe, which is not otherwise 
used, thus A' , B ' , T, A, E ' , see fig. 33 . The result is t h e n wr i t t en ( read 
a. OB as "a an te OH"), 00 = a . OB, from 10A A POO, 

and OC = b. OA, from J O B A A00. 

22. Commutative and Associative Multiplication of Clinants.—(i.) F r o m 
ar t . 21 . ii., OA = a . 01, & c , fig. 8 ; and expressing c by ab in t h e first 
case, and ba in the second, we obtain, as in a r t . 13, c = ab = ba, or 
clinants are commutative in multiplication. 

(ii.) I n th is case 
len 01: len OA:: len OP : len OO, so t h a t Tc = Ta . Tb, 

and Z TOO = Z IOB + Z _Z?OO = Z IOB + Z IOA = Z IOA-\- Z POP. 

(iii.) T h e n if A,B, G are any poin ts , t he proved association of tensors in 
mul t ipl ica t ion, ar t . 15. ii., and of direc ted angles in direc t ional addi t ion, 
immedia tely establishes t ha t a . be = ab . c, or t h a t clinants are associative 
in multiplication. 

23 . Division of Clinants.—(i.) W h e n we have given A, C to find 
B (fig. 8), or B, G to find A, on the condit ion t h a t c=ab, the geometr ical 
opera t ions are of the same k ind as before, and will be represented by 

-L c c 
b = —, a = — ; 

a b 

which are t he laws of division. 

(ii .) If t hen (fig, 9) we have m = —, and m = —, A, B, 0, D be ing 
a c 

different points and M de te rmined as above, we have — = —, and 
a c 

IOM A AOB, and IOM A GOD; whence .AOP A OOD, so t h a t 

— = — represents the re la t ion of directional similarity be tween these 

t r iangles . 
(iii.) Al l t h e relat ions found for t ensors in ar t . 16. can now be 

proved for cl inants , and in each case establish relat ions be tween t h e 
positions of points , or relat ions of directional s imilar i ty between t r i ­
angles , and hence of directed angles and directed arcs. 

24. Addition, Subtraction, and Distributive Character of Clinants.— 
(i .) The relat ions in ar t . 20, on p u t t i n g 

OA + OB = OG, OC- OB = OA, 

, c 7 ab c 7 

whence — • a = ba = c, — = — = b, 
a a a 
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and properly defining a + b, c — b, after the model of art. 17, give 
a + b = c, c — b = a, 

so that the associative laws of directional addition make clinants asso­
ciative in addition. Similarly the reduction of directional subtraction 
to directional addition (art. 20. v.) effects the same for clinants. 

(ii.) But the equation OA = 00- OB = BO + OO = BO, by art. 20. 
iv v., shews that BO = O^i = a. 01= (c — b) . 01, and thus gives us 
power to find the clinant of any finite directed line on a plane. 

(iii.) Now if (fig. 9) PQ=OA, PB=OB, IyQ'= 00, FB'= OD, and 

SL = 4 , go that BOA A DOG, then will also BFQ A FFQ. But 
b d 

under these circumstances a=q—p, b = r—p, c=q'—p', d = r'—p\ 

Hence the equation 2—-L = ^ ~~/̂  means BPQ A BF'Q', 
r—p r —p 

and consequently gives a perfect algebraical representation of this geo­
metrical relation, implying an equality of angle and proportionality of 
length, without any reference to commensurability or limits. 

(iv.) Let COD (fig. 10) be any triangle. Alter the lengths of the 
sides OO, OD by extending or contracting them to 00' and OD' VOL 
such a way that both 0', D' lie on OO, OD, on the G and D side of O 
respectively. Then if 

len OO : len OO' :: len OD : len OD' :: leu 01 : len ON, 
we have, by art. 21. ii., c = Tn . c and d' = Tn. d. 

(v.) Next suppose the whole triangle to be revolved about the point 
O, into the position COD", so that ZO'00"= lD'OD"= Z ION, in 
which case also Z (G'D', 0"D") = Z 0'00"= Z ION, because CD' can 
not have rotated differently from the arm OO' to-which it is attached. 
Consequently c"= nc, d"= nd, and G"D" = n . OD = n . (d—c) . 01, as 
is well shewn in fi^. 10, where G"E=GD, and ION A COO" AD OD" 
AEC'D". But C"D"-OD"-OC"=nd.OI-nc.OL Consequently 

n . (d — c) = nd — nc, 
or clinants are distributive. 

25. On tlie originality of these Conceptions of Tensors and Clinants.— 
The slow and painful degrees by which I have at length arrived, after 
twenty years of thought and detailed work, at the above extremely 
simple fundamental laws and notation for tensors and clinants, and at 
the results to be subsequently sketched, may be seen by reference to 
Appendix HI . Since the year 1855, when I first became acquainted 
with Sir W. R. Hamilton's Quaternions, I have as far as possible made 
use of his terminology and notation, which however I have been obliged 
to modify to suit my own objects. Although in some respects clinants 
may be regarded as complanar quaternions, and hence the theory of 
clinants may be brought under the theory of quaternions, the intro­
duction of three dimensions, and all its complications, wfith its generally 
non-commutative algebra, was opposed to the object I had in view ; and 
hence I have had to pursue a completely independent course, and in 
especial my term vector (art. 26. v.) has not precisely the same mean­
ing as Sir W. R. Hamilton's, but only a correlative signification. The 
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two may be distinguished as clinant and quaternion vectors when needed. 
Before seeing Sir W. B . Hamilton's Quaternions, I had used cumbent 
and sistent for what are here termed scalar and vector. Some terms and 
expressions, and most of the algebra, are entirely my own, though the 
reader must carefully attribute to Sir W. R. Hamilton whatever can 
be fairly traced to him, as I have had his magnificent labours con­
stantly in mind and at hand. But notwithstanding his views, I be­
lieve that I may claim originality for the conceptions I have formed of 
tensors and clinants, as derived from pure geometrical proportion and 
similar triangles, and for my demonstrations of their laws. In par­
ticular I cannot recollect having seen elsewhere an approach to my proof 
of the associative character of tensors. And 1 know how gladly I 
should have availed myself of any such help, and how readily I should 
have acknowledged it. For general work I am of course deeply in­
debted to Augustus De Morgan and Martin Ohm, and all the usual 
sources of information on the subject of imaginaries and complex num­
bers. See also art. 35. and Appendix I I . 

26. Subsidiary clinants.—(i.) 0, fig. 11, being any point, the biradial 
(art. 6. vi.) 100 determines the clinant c. Then the following sub­
sidiary clinants can be readily formed. 

(ii.) Tensors. With centre 0 and radius OG describe a circle cutting 
OT, on the I side of 0, in T', then t' is the tensor of c, and is written 
t'= Tc. T2c means (Tc)2, see (xii.), and = T (c2) or Tc2. 

(iii.) Versors. Let the unit circle cut OG, on the G side of O, in U', 
then u is called the versor of c, and written u'= Uc. Observe that 
t'u'= c, or c=Tc. Uc. 

(iv.) Scalars. Let a perpendicular from 0 cut OT, on either side of O, 
in S', then s' is called the scalar of c, and written s'= Sc. Scalars con­
stitute the real or possible, positive and negative, expressions of ordi­
nary algebra, and are always represented by points on IT produced 
either way. 

(v.) Vectors and J actors (my own term). From 0 let fall a perpen­
dicular on JOJ' cutting it in V, and make VOW A JOF, so that W 
falls on the T side of O, if V falls on the J' side of O. Then v is 
called the vector, and w' (which is always scalar) the jactor of c, and 
they are written v'=Vc, w'=Wc, in which case jw'= v or Vc=jWc, 
the letter TV being used for jactor in preference to J, to shew its rela­
tion to V. Observe that c = s'+ v'= Sc+Vc= Sc+j .Wc. As #c,TVc 
are both scalars, .the last is the usual form of imaginaries, which c re­
presents when 0 does not lie on 10T. By the reduced jactor is meant 
Wrc = Wc±2r7ri, where r is so chosen that TWrc is not greater than vi. 
In fig. 11, Tw being already < 7ri, TVrc = Wc. 

(vi.) Conjugates. Continue OS' to K' where S'K'= OS', then h' is 
called the conjugate of c, and is written h'= Kc. Observe that 100 
V IOK', and hence conjugates furnish the method of dealing with con-
jugately similar triangles. Observe that 

KKc = c, Kc = Sc- Vc, SKc = Sc, VKc = %. Vc, 
Kc = Tc + Uc = Tc.UKc, c.Kc = T\ Uc . UKc = i, 
c ~ Kc = U2c, 28c =c + Kc, 2Vc = c-Kc. 
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(vii.) Reciprocals. Find B! so that OOI A LOB', then / is called the 
reciprocal of c, and written r'= Be. Observe c . Be = i, TJBc = UKc. 

(viii.) Angles, Amplitudes, and Gissals (my own term). The L 100 
is called the angle of the clinant c, and written Z IOO = Lc. If we 
take length of OA'= to the rectified length of arc TO', and put A' on 
POP, to the J side of O, if Lc is in the same direction as Lj, and to 
the T side of O if Z c is in the same direction as Lj', then a is called 
the amplitude of e, and written a'= Ac. Observe that Ac is always 
scalar, and that TAc never exceeds wi. Also, since Z (ciC2 ... cm) 
= Z cx + Z c2+ ... + Lcm never exceeds Z i', and hence TA (cYc2 ... cm) 
cannot exceed 7ri, we have A (clc2...cm) = Acx + Ac2+ ... +A.cm±2T7ri, 
where r is an integer so chosen that the tensor of this sum never ex­
ceeds iri. Define cos Lc, sin Z c, tan Lc, Wsc, V8c by the equations 
{Pecos Lc = 8c, Tc.Bin L c = Wc, tan Lc = Wc-h Sc = Wsc=/Vsc, 
and cos Ac, &c. by the usual scalar series, giving cos Ac = cos Z c, 
&c. The cissal of c is a term for Oc in the form cos Lc +j sin Z c, 
or cos Ac+j sin. Ac, where it is expressed in terms of the Lc, or Ac, 
and it is so called because of Sir W. R. Hamilton's extremely con­
venient abbreviation cis Z c or cis Ac. If for Ac we substitute 
Anc = Ac + 2niri, the result is called the nth. amplitude ol c, and 
cis Anc = cis Ac, by the properties of the well known scalar series for 
cos Anc and sin Anc. 

(ix.) Logometers (De Morgan's term). The napierian logarithm of 
any tensor is a scalar, and the usual process is supposed to be known, 
and assumed to be executable geometrically by some arrangement like 
" Peaucellier's cell." It is easily shewn that series in which the sum of 
tensors of the terms form a converging series, converge to a definite 
clinant. I t is worth while constructing several terms of such a series 
as i + x + x2 + ..., where x = ~j, and seeing what is meant by its con­
tinually approaching to y, where {i—\j) y = i All the laws of con­
vergent series therefore hold for clinants. 

Represent the napierian logarithm of Tc by X Tc, and find the points 
Jj\,L2, LI SO that l!= XTc, l2 =jAc, and OL'= OA+ OL2, then X is 
called the logometer of c, and written l'= Lc. If we take l2n =jAnc, and 
OLn= OLx + OL2n, ln is called the nth logometer of c, and written l'n =Lnc. 
Hence Lc=L0c, or the original logometer of c. Also, SLnc = l = XTc. 

(x.) Metrands (my own term). Using the expression Mx for the 
• • x^ x^ 

well known series i + x + ——- + -—^—^ + ..., when x is any clinant, 
and having found LJ. 8c which will always be a tensor, set off a point 
M' so that Tm'= LJ. Sc and Am'= Wc, then m is called the metrand of 
c, and written m'= Mc. This gives Mc = LJSc. cis Wc, and hence 
MLnc = LJ8Lnc . cis WLnc. But SLnc = SLc = XTc, and hence LJSLnc 
= EXTc = Tc. And cis IVLnc = cis Anc = cis Ac, so that MLnc = 
Tc. cis Ac = c. If Ac = o, and hence c = Tc, then JCc = Xc, and 
JJLc = c = UXc = .MyC. 

(xi.) If (fig. 12), c = -—*-, then the construction of the figure corn-
m — n 

pared with fig. 11, shews that = t'= Tc, = u'=TJc, 
r m—n m—n 
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m—s" , 0 m—v" , JT m—w" , ----• m—h" 7, ,-r 
-c s=Sc, = v = Vc, = w = Wc, = k = Kc, 

m — n m — n m — n m — n 
V^ZL. — r' = Be, ZNMP = Z 100 = Ac, and hence all these can be 
m — n 
obtained without a previous reduction to the form c, but Ac, Lc, Mc 
require that reduction, or its equivalent. 

(xii.) Observe that when any one of these signs T, U, S, V, TV, K, B, 
&c, are employed they refer to all letters which follow until either a 
point ( . ) or a ( + , —) sign intervenes. Thus Tab = T(ab), UaBb 
= U(a.Bb), and not Ua . Bb. But the point may be used thus U.aBb, 
if thought more distinct. Also that Tna, Una, &c, mean (Ta)n, (Ua)n, 
&c, as in trigonometry cosn x commonly means (cos x)n. Since 
T(Ta) = Ta, U(Ua) = Ua, &c, this is the most convenient notation. 
Thus also Lna = (La)n, and LLa must be used for L (La), which is 
seldom required. 

27. Some Belations of Subsidiary Glinants.—The hints given in 
art. 26. shew the relations of these important subsidiary clinants, exclu­
ding logometers and metrands, for single clinants. The following gives 
some of their relations for combined clinants : 

S(a + b) = Sa+Sb, V(a+b) = Va+Vb, K(a+b) =Ka + Itb; 
Tab = Ta. Tb, T (a+b) = Ta+ Tb, or TaBb = Ta. BTb ; 
Uab = Ua. Ub, UaBb = Ua . BUb ; 
lKab = Ka.Kb, KaUb = Ka. BKb ; Bab = Ba. Bb ; 
Sab = Sa.Sb+Va.Vb, Vab = (Va. Sb + Sa. Vb). 

The two last equations are found by putting ab = (Sa+Va).(Sb + Vb), 
and when divided by T.ab give the trigonometric formulae for 
cos (Aa + Ab) and sin (Aa + Ab), see art. 26. viii., being their most 
general independent proofs. 
SaBb = (Sa .Sb-Va. Vb) . T2Bb, VaBb = (Va. 8b-Sa. Vb) . T2Bb. 

These two last equations are found by putting 
aBb = (Sa+ Va) . (Sb-Vb) . T"Bb, 

and when divided by T.aBb give the usual trigonometric formulae for 
cos (Aa—Ab) and sin (Aa—-Ab), being their most general indepen­
dent proofs. 

S(Sa.Sb) = Sa.Sb, V(Sa.Sb) = o ; 
S(Va.Vb) = Va.Vb, V(Va.Vb) = o ; 
8 (Sa. Vb) = o, V(Sa . Vb) = Sa.Vb; 

T2(a + b) = T2a + T2b+2T2b.SaBb = T2a+T2b + 2T2a. SbBa, 

which contain E u c ii. 12,13, and i. 47, of which they form independent 
proofs. On putting for SaBb, SbBa the above values, they also contain 
the whole trigonometric theory of the solution of triangles. 

28. General Exponential Expressions.—The clinant power I define 
unambiguously by the equation ah = M. bLa, 
throwing all variety of values on the solution of exponential equations 
(art. 29), so that "1/Ta has only its one tensor value. Then, m, n, p 
being integers, 
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ab. ac = ab¥C generally ; 
(ab)c = abc. M2nwcj, (ac)b = abc. M2pwbj, ae. bc = (ab)°. M2mircj, 

where m, n,jp depend on adjustment of amplitudes (art. 26. viii.); 
LmMa = a + 2mrj, where Wa + 2mr = Wra + 2m7r (see art. 26. v.) ; 
Lma + Lnb = Lpab, where Ama + Anb = Apab\ 
Lmab = bLa + 2mrj, where Wab + 2nir = Wra

b + 2m-K (see art. 26. v.) ; 
M(a + b) =Ma.Mb, 
M2nnj = 1, Ma = M(a + 2mrj), 
MjWa = cis Wa, Ma = ESa . cis Wa, Ea = Ma. 

29. Solution of General Exponential Equations. 
(i.) Given xa = b = MaLx, 

then x = M(Lb . Ba) . M(2rirj . Ba). 
If a be a scalar integer, this gives the usual expressions. The equation 
b = MaLpx has the same solutions. 

(ii.) Given b = ax = MxLa ; then x = Lrb . BLa* 
But if b = MxLa . M2pirjx, then x = Lvb . BLpaT 

which is Martin Ohm's general solution. 

30. Logometric and Binomial Series.—If (art. 26. x.) we put 
Ey = i + x, then y = Ln(i+x) = x—-\x%+ ... 

in the usual way, n being determined so that the amplitudes should be 
the same on both sides, and Tx being < i. Also, taking 

(i + a)b = EbL(i + a), 
we find in the usual way 

(i + aУ^^mvj+г+Ъa + Ъ - ^ . a Ч 4 0 - ^ 
X . ĆJ X . .-J • < 

3 .a+..., 

where the value of m has to be adjusted for amplitude- Ta being sup­
posed to be small enough for convergence. 

The first series gives 

L(i+j) = 2mrrj+j-±f + jf--

= 2^ + 1(1-1+1-...).+ ( l - | + l-...)i, 

where both series are convergent, the first = Xy/2, and the second 

lies between 1 and 1—-—, so that m, which has to be adjusted so that 
o 

the whole amplitudes must be < ni, will = 0; hence 

L(i+j)=i.W2+j(l-±,+ ±-...). 

But A (i +j) = \ir. i, T (i +j) = ̂ 2. i, so that 

L(i+j) =iL(^/2. cis iir)=i.\x/2 + \irj, 

whence, on comparing, we have Leibnitz's well-known series 

. = 4 ( 1 - i + i - . . . ) . 
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Similarly, from L \ (i. */3 +j) we find 

. = 2 y 3 . ( l - I . | - + I.l-|.^-f...). 

Taking 2 ^ 3 = 3*4641016, and proceeding only as far as + pT • ̂  

= 0*0000008, this series gives ir = 3*1415911, or five places correct. 

31. General Goniometric Series.—(i.) When x is any clinant, let 
Gx = i(Exj + Exf), 
Zx = \f(Exj-Exf), 
Px = Zx . BGx, 
Qx = Gx . BZx, 

so that when x = Sy, these expressions become cos Sy, sin Sy, tan Sy, 
cot Sy, respectively, of which series they are the clinant generalisations, 

(ii.) Let G~x, Z~x, P~x, Qfx, (read, " Gr-invert of x " &c.,) be deter­
mined by the equations 

G~x = / L [x +j y ( i - a 2 ) ] , 
Z"x=j'L\_</(i-x2)+jxl 
P~x = \j'\L(i + xj)-L(i-xj)\ 
Qfx = \j[L(x+j)-L(x-j)-]. 

Then GG'x = ZZ'x = PP~x = QQ~x = x, but the order of the symbols 
is important. In the scalar case I use cos Sy, sin Sy, tan Sy, cot Sy for 
the inverts, in place of cos"1 Sy &c, which are inappropriate whether 
cos2 x mean (cos x)2 or cos (cos x), because the signs cos, cos"1 would 
not be commutative. 

c, then x = 2mr + G'c. 
or (2n + V)TT — Z~c. 

(iii.) Given Qx = c, then X = %гҡ+Gvc. 
Given Zx = : <V then either X = 2nҡ + Z~c, 
Given Px = = «, then X = nҡ + P~c. 
Given Qx = : c, then X = nҡ + Q"c, 

wThence all the scalar cases may be deduced, giving forms equivalent to 
those in Martin Ohm's Versuch eines vollkommen consequenten Systems 
der Mathematik, vol. 2, third edition, 1855, chap. viii. 

32. Completion vf the Laws of Clinants.—(i.) This completes the whole 
of the fundamental laws of clinants, which are shewn to be those of 
ordinary algebra, including imaginaries ; and as each clinant expression 
can be perfectly constructed on the principles already given, by the 
elementary process of forming directionally or conjugately similar 
triangles, every one of these so-called imaginary forms comes to be ex­
pressed by a real point on the plane IOJ. 

(ii.) The fact that fa? = xm + axm~l + ... +2^x+q, where all the coef­
ficients are clinant, but m is an integer, can be expressed as a product 
(x — a,) (x—a2) ... (x — am), is proved by a process precisely similar to 
that in Sir W. R. Hamilton's Elements vf Quaternions, Book II., 
Chap, ii., section 5, p. 265, which however admits of considerable 
simplification. 

(iii,)- The solutions of quadratic, cubic, and biquadratic equations are 
conductedin the usual way, but with material simplifications, and the roots 
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are constructive by an elementary process which is rendered occasionally 
troublesome by the practical difficulty of drawing equal angles with 
sufficient exactness when the arms are greatly extended. But the 
process is always strictly geometrical, granted the power of dividing 
angles in any ratio, and of interposing any number of geometrical 
means. I have myself constructed every case, assuming the coefficients 
to be given by any points on a plane, with sufficient exactness to verify 
all the relations between the roots and the coefficients by geometric 
construction. 

33. Geometrical Construction of Clinant Combinations.—It would be 
beyond the purpose of these rough notes to enter upon details, but the 
following simple and frequently recurring cases should be noted : 

(i.) ax = c, make 10X A AOC, so that X is the B of fig. 8. 

(ii.) ^Z^L = *Z± m a k e MNX A BCA, as in fig. 13. 
# — n a-—c 

(iii.) x2 = ab gives — = —, so that XOA A BOX ; and hence, 
x o 

fig. 14, if COD bisects Z A OB, and len OC = len OD is a geometrical 
mean between len OA and len OH, the points 0, D construct the values 
of x. Either of the lines OO, OD is called the mean bisector of OA, 
OB, or of the biradial AOB. When O, A, B are not collinear, A, 0, 
B, D are concircular, for ab = x2 = i'. cd, whence . = i', and 

a—d b—c 
hence Z GAD + Z DBC = Z i'. 

(iv.) x2 = a2 — b2 = (a -F b) (a —- b) = hk, fig. 15, from A draw 
AII= OB, AK=BO, and construct OX', OX" as mean bisectors of 
OH, OK, by (iii.) 

(v.) y2 = a2 + b2 = a2-b'\ if V =jb, fig. 15. Draw OH'of the len OB, 
making LBOB'= Z.J, KA = AH' = OB', and find OT, OF" as mean 
bisectors of OH', OK', by (iii.) 

(vi.) ax2 + bx + c = o, then 2ax = bi'= */(b2 — 4<ac). Find A', B', by 
(iii., iv.), so that a'2 = 2a .2c, b'2 = b2—a'2, 
then 2ax = bi'±b', and the two positions of X are constructed by (i.) 
See an example with various cases in art. 34. viii., figs. 14, 21, 22. 

These simple constructions suffice for all the cases considered in the 
next Tract. 

34. Applications of Clinants.—(i.) In Sir W. R. Hamilton's Elements 
of Quaternions, Book I., chap, ii., and Book II., chap, ii., will be found 
a large quantity of geometry suitable for direct treatment by clinants, 
and this treatment will be found to introduce much simplification. To 
these I need merely refer. The following will suffice to shew the 
nature of direct clinant treatment of geometrical problems, and will 
give some results required in the next Tract. 

(ii.) If .A, B, 0 are collinear, V """• - = o. 
a — c 

(iii.) (1) If the straight lines AB, OD, EF converge to a common 
point X, then V-^=f = V™ = V ~ = o, 
r 7 a — b c — d e-f 
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i Tra—b Trc — a TTa—b Tre—a 
whence V . V = V , . V -, 

e—f c—d c — d e—j 
which by forming the auxiliar points B', 0', D\ E' may be made to take 
the form 

a—V c—a a—6! e—a a—V a—e 
. -*-_: . .— or = 

c—/ c—d c—d e—f a—d' a—c" 
or B'AD' A E'AC, as the condition of convergence. 

(2) If three straight lines known as perpendiculars to OA, OB, OG 
(fig. 16), converge to X, we have 

rл rл rүi 

S — =S^- = S— = i, 
a b c and since 

flf-5- = 8 O • SL) = flf-2- . S^- + V^- • V *-, by art. 27, 
c \ c a I c a c a 

we have i = 8 h V— • V—, 
c c a 

and similarly i = S— + Y— • V—, 
J b b a 

and hence eliminating V—, we find 

which, by forming the auxiliary points M, N, as in art. 26. xi., may be 
T J _. a—m I. n\ a—n I. m\ a—m a — n : 

reduced to [i —- = —-— [i ) or = , 
c \ ol u \ cI c—m o—n 

or AMO A ANB, as the condition of convergence. 
(iv.) Let (alcd) = ^ = ^ = % 

(a—d) . (c — b) 
the letters being carefully written in this order. Then (abed) will be 
called the anral (an-harmonic r-atio + al) of the four points A, B, G, D 
anywhere situate on a plane. (See Appendix I I I . for the principle of 
this terminology.) I t is also convenient to shew the omission of the 
terms involving any one of the points by the notations 
(..bed) = -, (a..cd) = -, (ab..d) = "~ . and (abc.) =-—--—. 

c—b a—d a—d c—o 
Then (abed) = (bade) = (cdab) = (deba), 

(abed) . (adeb) = i, (abed) . (aedb) . (adhc) = %, 
and, since (a—-b)(c— d) + (b—-c)(a — d) + (c—a)(b — d) = o, 
also (abed) + (acbd) = i, (abed) +B. (adbc) = i, 
and (aedb) = \_(abcd) — i] . B. (abed), 
so that all the 24 possible anrals can be expressed in terms of one. 

If a = a + m, b'=b + m, c'= c + m, d'-=.d + m, (abed) = (a'b'c'd'). 
If V. (abed) = o, then Z BAD + Z DOB = Z i or Z %, and the four-

points ABOD are either on a straight line or on a circle. Putting 
(abed) = (a'b'c'd'), the first case only is the foundation of all Ohasles's 
theories of homography and involution, and the first and second casesl 
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combined form the basis of Mobius's Kreisverwandtschaft, or circular-
relationship, all the results of which are much more simply written and 
obtained by means of clinants—as I have found by actual work. 

If (abed) = i, the anral becomes a harmal (Ziarwi-onic-ratio + aZ), and 
the points lie harmonically on a straight line, or on a circle. For ex­
ample, in fig. 29, (edfd') = (deaf) = i', and EDFD' is a straight line 
and A'EAF a circle. The troubles experienced by Chasles (Geom. 
Sup., chap. V.) arising from imaginary points in harmonic ratios, at 
once disappear, andv the investigations are not only simplified but ge­
neralised, and, as will be seen, are capable of still further generalisation 
(art. 44). 

(v.) If A, B be any two points on a plane, the annal (an-gle + al) 
and tannal (tan-gent + al) of the directed biradial AIB (written 
bir AIB), which gives not merely the /.AIB, but the length and 
direction of both arms LA, IB (compare art. 6. vi.), are written as 
follows, and express the following functions of a, b respectively : 

, T) b—i i T A T) a—b 
an AB = ., tal AB = _, 

a — ̂  i — ab 
the letter L being always understood between A and B, and the order of 
the letters being important. For the use of these forms, see art. 39. iv. 

If Sa = Sb = Sc= Sd = o, and hence Va = a, Vb = b, Vc = c, 
Vd = d, then 

Vs .2LUAB = ^ , a n ^ = tan AB =j tan AIB, 
S. an AB 

, / 7 j \ sin -ATB. sin OLD 
and (abed) = -————-——-. 

sin A.TD . sin GIB 
The general expressions will be found to include the whole geometrical 
theory of imaginary angles (as distinguished from the algebraical 
theory of art. 31). The following properties shew some analogies and 
solve some previously incomprehensible relations. They should be all 
constructed geometrically. 

Generally tal AB + tan BA = o. 
, - A n tal AE — tal BE tal AB = -— , 

% — tal AE. tal BE 
tal AB + tal BG + tal OA. + tal AB . tal BO . tan CA = o. 

And if a + d = b + bf = c + c = o, and tal AB = c, 
then tal A.O = a, tal OA = d. 

tal AO = b, tal BA = c, tal BO'= a, 
tal OA = V, tal OB' = a, tal AB' = tal BAf. 

If tal AX = tal XB, then IXX and LX2 are the medials of bir AIB, 
where xx, x2 are the roots of x2 — 2 . (i + ab) .B(a + b) ,x + i = o. 
In this case (x{ax2b) = i', or Xi, X2 are harmonically situate with 
respect to A,B\ see (iii.). And since xxx2 = i = i2, X-, X2 are also 
harmonically situate with respect to L and T; see art, 44. iii. Xu X2 

are the points of intersection of the two figures XXAX2B and XiLK2L, 
of which one may be a straight line and the other a circle, or both 
circles. 
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Although tal II and tal TV are indeterminate, yet when A is 
neither I nor T, tal AA = o, tal AI = i, tal I A = i, tal -AK = if 

tal -AT. tal AI'= i'. 
If b = L&7, or ab = i, B tal AB = o, and tal AB does not 

exist. In this case, if Sa = 8b = o, or .A, L? lie on OJ, Z .zlLH is 
a right angle. Hence, in the general case, I say that the biradial AIB 
is orthal (6pQ-6c + al), a conception of considerable importance in 
stigmatic geometry. Bir XYIX2, formed by the medials of the bir AIBf 

is orthal, because xxx2 = i. 
If an AY = an YB, then (y—i)2 = (a—i)(b—i) ; and yx, y2 

being the roots of this equation, IY}, FF2 are the mean bisectors of 
the bir AIB (art. 33. iii.). If both A and B lie on OY, one of the 
means coincides in direction with one of the medials, but the lengths 
are different. (See art. 44. iii.) 

(vi.) If A, B, 0 be points in a circle of which 0 is the centre, T2a = T2b 

= T2c, or a . Ka = b . Kb = c . Kc, whence —-̂ -- =K , = 
c a c 

TJrC—b , ., y-r b a — c K (b—c) -n-a TT2a—c 
K—-—, and then K— = — . —^ '-, or Z7- = Z72- , 

b ' a K(a—c) b — c b b—c' 
that is Z AOB = 2 . Z AOB. This is a general and independent proof 
of Euc. iii. 20. 21. 22, in their proper statement for directed angles. 
See also art, 48. x. 

If D be a fourth point on the circle, it follows that U2 = Z72
 T "~ _» 

b—c b—d 
or U (acbd) = i or if, or V (acbd) = o; compare (iv.) 

(vii.) To find the points X, Y, Z on the unit circle so that AlOX 
= 2 . Z OXI, (the solution of which is evident,) Z OYI = 2 . Z JOY, 
(which is Euc. iv. 10, with directed angles,) and Z IOZ = 3 . Z OZI, 
(which is immediately constructible in Euclidean geometry from 
Euc. iv. 10). 

The properties of the unit circle give Tx=i, Kx=Bx, Ux=x, and 
similarly for y, z. The statement of the three problems in clinants is 

77z = U2X-^\ 17^—' = Uhj, and U3^^ = Uz, 
x y z 

or Uzx = U2(x-i), U(y-i) = USj, and U\z-i) = U*z. 

Since U2 (x—i) = — -— = — . = i. x, and similarly for y and 
v y K(x-i) Ilx — i ' J * 

z, the first equation gives x? = i.x, or x2 =i', whence xx=j', x2 =f, 
the two triangles being 10 J and TO J', as is evident. The other two 
equations, on being squared (which introduces adventitious roots) and 
reduced, give y5= i' and z5= i, and as one root of each is i, all the roots 
can be readily found. On calling them yu y2, y3, y4, ys, as the points 
Yi, Y2, Y3, Y4, Y5 lie in order on the circumference of the unit circle in 
the direction JJL', we find that yY, yz, y5 and z2 = y2, zz = y3, z± = T/4 give 
the required solutions. 

(viii.) A, B, (fig. 17. 18. 19. 20.) being any points, find X and Y, so 
that IOX A ABX, and 10 Y V ABY. This is selected as giving rise 
to general simple equations, 

r = x, and ^~ = Ky. 
a—b ' a-b * 
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(1) In no case can #—b = o, or .A. coincide with B. 
(2) If b = o, or B coincide with O, then x=ax, or a=i, that is, 

A also coincides with I, and cc is indeterminate ; of course IOX A IOX 
whereverXmaybe. But y=aKy, or TJ2y = a, whence Ta=i, or OA 
is a radius on the unit circle, and any point Y on the line bisecting the 
the Z.IOA, fig. 17, makes IOY V ABY, that is V-4OY. 

(3) Excluding these cases, make OG=BA, or c = a — b \ first let 
c = i, or BA=OI;' then the first equation gives x — b=x, or b = o, 
(which reduces this to case 2) . The second equation gives y — b = Ky, 
or y — Kj = b; and operating with iT on each side, Ky — y = Kb, so that, 
on adding, o = b + Kb, or Sb = o, that is, B must lie on OJ, and 2V?/ = b, 
or Y lies anywhere on the line through D (where OD = \0B) parallel 
to 01, &g. 18. 

(4) Take c = a — b as before, we have x — b = ex, or OXB A IOO, 
fig. 19, or (i—c) x = b ; or, making d = i—c, we have dx=b, that is, 
FOX A D OD, from either of which X is immediately constructed. 

(5) The second equation gives 
b + c.Kb 

y — b = c . Ky, whence Ky—Kb = Kc . y, and y = • j£-

Now if b + c. Kb = o, both b and Kb may = o, in which case 
y = o, and we have the evident similarity A.OO A IOO. But generally 
Kb + Kc. b = o gives cKc=i, which leads to a mere identity o . y = o, 
from which nothing can be determined. 

Reserving this case, and first putting b'=Kb, c=Kc, fig. 20, and 
then cb'=d, cc'= e, b + d=g, i—e = h, we shaJJ have hy=g, or 
IOY A HOG, and then IOY V ABY. 

(6.) For the reserved case, put y = jj + rj', b=/3+/3', c=y + y, where 
y, fi, y are scalars, and rf, 0\ y are vectors. Since then Ky = rj — rf 
&c, the two equations b + c. Kb = o, and y = b + c . Ky, give, on equa­
ting the scalar and vector portions of eacJi, 

fl + yfl-y'fl'= o, p+y'fl-yp= 0, 
fl + yv — yV = v, fi'+y'v — yv'~ yf-

Eliminating r\ and r{ alternately from the two last equations, we obtain 
their value in the general case 5, from 

13 ( 7 + i)_/3y + [(y_i)_r'2] „ = 0) 

/ V - / 3 ' ( y - l ) + [ ( y ' 2 - ( y 2 - l ) ] ' / = o; 
but applying .the two first equations, the parts independent of r;, r[ each 
= o , and hence w = o, »/=o, and ?/=o, which necessitates b = o, so 
that the reserved case only gives, as before, TOY A A00. 

(ix.) Let A, B, G be any three points, and D a fourth, so that 
OD = OO. To find a point X so that the mean .bisectors of XA, XB 
shall be equal to OO and OD. This is selected as giving the general 
quadratic equation 

(x — a)(x—b) = c2= d2, 
or a;2— (a + b)x = c2 — ab. 

(1) If 00, OD are the mean bisectors of OA, OB, fig. 14, c2 — ab = o, 
and x=o, or a + b, that is, X is at either of the two extremities of the 
diagonal OB, of the parallelogram of which OA, OB are adjacent sides ; 
thus EF is clearly = OD. 
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(2) If c2 — ab is not = o, then, fig. 21, putting 2m = a + b and 
2p = a—-b, on adding m2 to each side we have 

(x — m)2 = m2 — ab + c2 = p2 \ c2 = n2 or n'2, 
where N, N' are constructed as in art. 33. v., and x = m + n = x\ or 
x = m — n = m + n = x'. The mean bisectors of X'A, X'B and X"A, X"B 
are X'E, X'E' and X".F, X"F', which are = 00 , 0D respectively. 

(3) If p2 + c2 = o, or OP, 0(7 are of the same length and at right 
angles to each other, fig. 22 ; then n = n = o, and the two positions 
X', X" coalesce at M, so that there is only one position which satisfies 
the conditions. The mean bisectors of MA, MB are MG, MG'. 

(x.) To determine the points where a line perpendicular to OA cuts 
a circle with radius OB. 

As in iii. (2) we have in the line S . xBa = i, and as in (vi.) for the 
circle T2x = T2b. Then, by art. 26. vi., xBa + K. xBa = 2SxBa = 2i, 
and xKx = T2b, whence eliminating Kx, we have 

x2 = 2ax-U2a.T2b, 
and x = a+ Ua^{T2a — T2b) ; 
whence x . Ba = i±BTa .^/(T2a-T2b). 

Unless then Ta = <Tb, S . xBa will not = i, and this is therefore 
the condition of possibility. There are no " imaginary " intersections. 
No "imagination" can make i = izklc, where h is not = o, for this 
would lead to the impossibility of Appendix II . A circle and straight 
line have therefore no "imaginary" intersections. This term applies 
only to a derived case, considered in art. 49. v. The meaning of this 
distinction is assigned in art. 36. v. 

When Ta=Tb, x=a, and there is only one point of intersection A. 
When Ta<Tb, x = a±j.Ua. */(T2b — T2a), which gives the two points 
determined by drawing X'AX" perpendicular to OA, and making 
len AX' = len AX" = length of the perpendicular of a right-angled 
triangle, of which the lengths of base and hypothenuse are the lengths 
of OA and OB respectively. 

V. STIGMATIC GEOMETRY, OR THE CORRESPONDENCE OF POINTS IN A 
PLANE. 

35. No previous complete representation of Algebra by Geometry.—• 
Some of the results hitherto adduced have been already obtained 
(although less directly, and always by a more or less implied use of 
limits) from various geometrical "explanat ions" of "irnaginaries," 
advanced with some degree of hesitation, often on metaphysical grounds, 
and (except by Sir W. R. Hamilton) always by means of " complex 
numbers," or clinants of the form Sa+jWa, where 8a, Wa were con­
sidered as the limits of convergent " possible " (that is, scalar) series. 
The class of problems embraced under the theory of Stigmatics have 
also been attacked with immense acuteness and wide success, in parti­
cular instances, but the occurrence of irnaginaries have constantly baffled 
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