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(2) If c2 — ab is not = o, then, fig. 21, putting 2m = a + b and 
2p = a—-b, on adding m2 to each side we have 

(x — m)2 = m2 — ab + c2 = p2 \ c2 = n2 or n'2, 
where N, N' are constructed as in art. 33. v., and x = m + n = x\ or 
x = m — n = m + n = x'. The mean bisectors of X'A, X'B and X"A, X"B 
are X'E, X'E' and X".F, X"F', which are = 00 , 0D respectively. 

(3) If p2 + c2 = o, or OP, 0(7 are of the same length and at right 
angles to each other, fig. 22 ; then n = n = o, and the two positions 
X', X" coalesce at M, so that there is only one position which satisfies 
the conditions. The mean bisectors of MA, MB are MG, MG'. 

(x.) To determine the points where a line perpendicular to OA cuts 
a circle with radius OB. 

As in iii. (2) we have in the line S . xBa = i, and as in (vi.) for the 
circle T2x = T2b. Then, by art. 26. vi., xBa + K. xBa = 2SxBa = 2i, 
and xKx = T2b, whence eliminating Kx, we have 

x2 = 2ax-U2a.T2b, 
and x = a+ Ua^{T2a — T2b) ; 
whence x . Ba = i±BTa .^/(T2a-T2b). 

Unless then Ta = <Tb, S . xBa will not = i, and this is therefore 
the condition of possibility. There are no " imaginary " intersections. 
No "imagination" can make i = izklc, where h is not = o, for this 
would lead to the impossibility of Appendix II . A circle and straight 
line have therefore no "imaginary" intersections. This term applies 
only to a derived case, considered in art. 49. v. The meaning of this 
distinction is assigned in art. 36. v. 

When Ta=Tb, x=a, and there is only one point of intersection A. 
When Ta<Tb, x = a±j.Ua. */(T2b — T2a), which gives the two points 
determined by drawing X'AX" perpendicular to OA, and making 
len AX' = len AX" = length of the perpendicular of a right-angled 
triangle, of which the lengths of base and hypothenuse are the lengths 
of OA and OB respectively. 

V. STIGMATIC GEOMETRY, OR THE CORRESPONDENCE OF POINTS IN A 
PLANE. 

35. No previous complete representation of Algebra by Geometry.—• 
Some of the results hitherto adduced have been already obtained 
(although less directly, and always by a more or less implied use of 
limits) from various geometrical "explanat ions" of "irnaginaries," 
advanced with some degree of hesitation, often on metaphysical grounds, 
and (except by Sir W. R. Hamilton) always by means of " complex 
numbers," or clinants of the form Sa+jWa, where 8a, Wa were con­
sidered as the limits of convergent " possible " (that is, scalar) series. 
The class of problems embraced under the theory of Stigmatics have 
also been attacked with immense acuteness and wide success, in parti­
cular instances, but the occurrence of irnaginaries have constantly baffled 
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the very lions of mathematical science, towards whom I feel but as the 
mouse that gnaws their net asunder by my clinant teeth. My firm 
belief is that there is not known to exist any intelligible, workable 
general theory but my own, nay, even any tenable, hypothetical parti­
cular explanation of the geometry of those imaginaries which constantly 
occur in the algebraical plane geometries of Descartes and Plucker, or 
the higher plane geometry of Chasles; and that, until such a general 
theory has been furnished, there is no complete representation of geo­
metry by algebra, or of algebra by geometry. The solution of this pro­
blem, the furnishing of one general theory which will embrace all cases 
of plane geometry from a single simple point of view, which shall never 
meet with any difficulties by the way from " imaginary" lines, " ima­
ginary " angles, or " imaginary " figures; which shall make every step 
in every problem a pure piece of geometry (conceding the division of 
angles in any ratio and the interposition of any number of geometrical 
means between two extremes); which shall, in fact, identify Algebra with 
Geometry,—this has been the ideal of my mathematical life, and I 
believe that it has at length been realised to the letter by means of my 
clinants and stigmatic geometry. 

Other labours have hitherto prevented me from sending it out in the 
form I have always wished to give it, with numerous illustrative and 
comparative diagrams ; and I am now so far advanced in life that my 
power ever to do so becomes very problematical. The following 
brief notes, which contain my last unpublished notations and nomencla­
ture, will enable any one of those distinguished mathematicians to whom 
they will be sent, if lie finds time to scan them, to apply my theory far 
better than I could do it myself. Those who care to learn the history 
of the birth and growth of my conception of Stigmatic Geometry will 
find it in Appendix III . On the facts therein detailed, and on the 
citations from the works of eminent mathematicians in Appendix II., 
I distinctly claim originality for a conception, in forming which I have 
not obtained a scrap of help from the best writings of the best writers 
that I could consult. The mouse asserts her teeth. 

36. General Conception of Stigmatic Geometry.—(i.) Let X and Y, 
fig. 23, be two points on a plane, connected by the clinant equation 
f (x, y) = o, which, so far as it can be solved, or so far as the proper­
ties of clinant equations are known, will enable us to construct the 
different positions of Y for every assumed position of X, (that is, with 
certainty so far as biquadratic equations extend,) and to deduce various 
relations between I and 7 in all other cases. The continuous corre­
spondence of the points X and Y, given by any such law, while X moves 
continuously over the plane, forms a stigmatic. The point X, which 
moves independently, is called the index, and geometrically represents 
the independent variable x. The point Y, which is determined from X 
by the given law / (x, y), is called the stig'ma, and geometrically repre­
sents the dependent variable y. The pair of corresponding points, 
index and stigma, is termed a stig'mal, (sligm-a 4- al; see an explanation 
of the origin of this nomenclature in Appendix III.,) and is written 
( 1 7 ) , or (&?/), or (x, y), according to convenience. The line OX is 
called the abscissa, the line XY the ordinate, and^the line OY.the radius 
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of the stigmal (xy), and x, y—x, y are their clinants respectively. 
These three lines form the sides of the stigmal triangle OXY. To 
each index there may correspond several stigmata, in the same or dif­
ferent stigmatics. Stigmals with a common index are called co-stigmals, 
and their stigmata are called co-stigmata. 

(ii.) The points X, Y are said to .be co-ordinated by the equation 
/ (x, y) = o. If by simple geometrical constructions X', Y' can be 
determined from X, Y, so that X', Y' may be co-ordinated by a derived 
equation / (x, y) = o, then X, Y are said to be trans-ordinated to 
X', Y'; and the second stigmatic is said to be a trans ordination of the 
first. Such transordinations are frequently convenient for the purpose of 
simplifying the discovery of the points X, Y by means of the points 
X', Y'. The general theory is given in art. 47. Thus we may form 
subsidiary stigmatics having the same index X, but different stigmata 
U, V, by putting, as in fig. 23, 24, y—x=v, ju=v, y=zx+v=x+ju, 
whereby the stigmatic equations become 

/ (x, x + v) = o, f (x, x+ju) = o, 

forming the connected ordinar and orthar stigmatics, which are related 
to the original stigmatic, stigmal for stigmal, as particular cases 
of transordinated stigmatics. If from the orthar stigmatics we select 
those particular stigmals for which both x and u are scalars (fig. 24), 
the stigmata of the corresponding stigmals form the real points of 
Cartesian plane geometry referred to rectangular co-ordinates, the 
Cartesian axes of the abscissae and ordinates being OL OJ; and all 
stigmata for which the one or the other or both of the points 
X, U do not lie on OL, or V does not lie on OJ, form the imaginary 
points of Cartesian plane geometry so referred. If (no figure) we make 
v = hu, where h is any unit radius, y = x + hu, and the new stigmatic 
is f(x, x + liu) = o, from which those stigmals (xy)iov which x, u are 
scalar, have as their stigmata the real points of Cartesian plane geometry 
referred to the oblique co-ordinates of which 01, OH are the axes. For 
comparing stigmatic and Cartesian geometry it is convenient to have 
special names for these cases, which may be provided by the prefixes 
Cartesian (abbreviated to car-,) and non-Cartesian, more briefly incar-
(in = negative -f-Oar-tesian). Thus car stigmal, carstigma, carin'dex, 
and so forth. Carstig'mata, are "real points;" not simply geometrical 
points, but points referred by ordinates to other points in the axis of the 
abscissae ; incarstigmata are " imaginary " points, that is, points which 
the former algebra indicated should be similarly referred, but which no 
one had been able to refer on the old theory, and hence merely " ima­
gined" to be so referred, in order to preserve the old terminology. 
Rectangular co-ordinates will be assumed unless otherwise expressed, 
but the prefixes rec-, ob-, will distinguish the two cases. A carstigmatic 
is that part (if any) of a stigmatic for which the stigmals are carstigmals. 
A Cartesian stigmatic contains a carstigmatic, that is, some carstigmals, 
but also contains incarstigmals. 

(iii.) As any plane geometric curve whose properties are known may 
be treated as a carstigmatic, and expressed by / (x, x +ju) = o, with 
the condition that x, u are scalar; and as this can be immediately thrown 
into the general form / (x, y) = o, which will agree with the former 
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as long as x, u are scalar, and which will also give all the relative posi­
tions of y, when x is still scalar, but u not scalar, (that is, " imaginary,") 
or even when x is also not scalar,—it is evident that everj result from 
a n j Cartesian form can be immediately included in its proper general 
clinant stigmatic, in which shape it is usualIj much easier to treat. 
" Imaginar j" points can only thus arise in Cartesian Geometrj ; compare 
art. 34. x. If we further proceed to make the constants clinants, that 
is, refer them to a n j point on the plane, instead of those from which 
the scalar case was deduced, a n j such particular carstigmatic will sug­
gest a still more general stigmatic, which is equally eas j to treat, and 
is the onlj form which fully shews the geometrical relations. 

(iv.) Stigmatics are said to intersect in their common stigmals or 
stinnals (sli-gmals of m-tersection-f-ai), of which the stigmata and 
indices are called stigmins (s^'am-ata-r-in-tersection) and indins 
(iud-ices + m-tersection) respectively. The laws of such intersection 
are now precisely those in Pliicker's Theorie der algebraischen Gurven 
(Bonn, 1839), the whole of which, transferred to stigmatic geometry, 
after the following theory of primals and quadrals is understood, may 
be interpreted as strictly geometrical. 

(v.) When the index moves on an j path, the stigma moves on another 
path, corresponding point by point ; these* are the indit (ind-icis it-er) 
and stigmod (or/y/j-aroc o£-oc). All indits which intersect in the index 
of a stinnal, have stigmods which intersect in its stigma. In carstigma-
tics the indit is a straight line, part or all of the Cartesianaxis of abscissae, 
and the stigmod is that curve which was alone considered when Des­
cartes founded his algebraical geometrj, b j referring a n j curve, point 
for point, to the axis of the abscissae b j ordinates parallel to the ordinate 
axis. This reference was the egg from which the present stigmatic geo­
met r j was hatched. I t was an addition to the ancient geometrj, invented 
as a mere expedient for reducing it to algebraical computation, without 
a n j perception of the principle involved. It is evident from the preface 
to Chasles's Geometric Superieure that he had not recognised this prin­
ciple as identical with that of his own nomographic geometrj. But the 
fact of the identitj of principle is shewn b j the present inclusion of both 
as particular cases under Stigmatic Geometrj, so that the method of 
working the two becomes indistinguishable. It will be seen, also, that 
the clinant stigmatic view is the onlj one which perfectlj explains the 
piTnciples of " signs" and "continuity." A carstigmod differs from a 
simple curve of the same form, b j its implying a carindit, to which it is 
referred. The distinction is important. Thus when a simple straight 
line does not cut a simple circle, the line and circle have onlj to be 
considered as carstigmods, and Cartesian stigmatics are generated, 
which do intersect, although onlj in two in-carstin'nals. Compare 
art. 34. x. with art. 49. v. 

(vi.) From the theorj of intersection, the analogous theories of con­
tact (of an j order) • and asjmptoticitj maj be immediatelj deduced. 
If f&y) = / i 0> V) • /2<>> y) + c = o, then fx{x,y)=o, andf2(#,y) = o 
give stigmatics which have no stigmal in common with f(x,y) = O, 
but, as X. recedes, have stigmata continually approaching to the co-stig­
mata in the original stigmatic, and are hence called its asymptals 
(asympt-otes + al). 
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(vii.) There is nothing in the form of the stigmatic equation 
/ (x, y) = o to distinguish the index from the stigma. Either may 
be assumed as either, but the two stigmatics thus formed necessarily 
differ, unless the equation is symmetrical with regard to x and y, as in 
(s — x) (s — y) = (s — e)2, see art. 44. Given the direct stigmatic, with 
X as index, and Y as stigma, the inverse stigmatic, with Yas index and 
X as stigma, is the geometrical representative of the inversion of func­
tions, which can be here only indicated. In this case one stigma may 
have many indices, giving con-indices and con-indicial stigmals. 

(viii.) From the general conception of functions the meaning of clinant 
differential and clinant integral calculus, &c, is given. These are the 
only points which I have not yet worked out in detail. But the indi­
cations in Sir. W. R. Hamilton's Elements of Quaternions, Book I I I . 
chap, ii., in Martin Ohm's Geist der Differential- ^lnd Integral-Rechmmg 
(Erlangen, 1846), in Casorati's Teorica delle Funzioni di Variabili Com-
plessi (Pavia, 1868), in Hankel's Vorlesungen uber die Gomplexen Zalilen 
und Hire F^mciionen (Part I., Leipzig, 1867, Part II . will be the especial 
part when published), will suffice, with the present indications, .to work 
out this part of the complete reconstruction of plane geometry. For 
the differential calculus, Taylor's theorem holds, and processes analogous 
to those for maxima and minima, and for tangents, immediately follow. 

37. Integral Stigmatics—(i.) Henceforth attention will be confined 
to the integral stigmatic equations of the form 

xm .(aif + a'yn-1+ ...)+xm-1(byn + Vif-l + ...) + ... = o, 
where m and n are integers and the other letters clinants. This is the 
fundamental form of equation assumed by Chasles in his Theory of 
Characteristics, (Gomptes Bendus, 27 June, 1864, vol. 58, p. 1175), 
the whole of which theory (after primals are understood) may be incor­
porated in stigmatics, and applied to any points on a plane. 

(ii.) Dividing by yn, the sum of the terms not containing powers of y 
in the denominator is axm + bxm~1 + ..., and if we put this = o, we 
shall obtain m values of x, which, when substituted for x in the ori­
ginal equation, have no corresponding values of y. These point out 
m solitary indices, having no corresponding stigmata. Similarly 
aytl + a/yn~1+... = o gives n solitary stigmata, which have no corre­
sponding indices. If we put x =y = z, we find an equation of m + n 
dimensions in z ; these give m + n double points Z, in which the index 
coincides with the stigmata. When any one point is at once a solitary 
index and a solitary stigma, it is termed simply a solitary point. The 
above are called the peculiar points in a stigmatic. 

(iii.) Of this general form I shall give only the fundamental cases of 
primal (arts. 38. to 42.), uniguadral (arts. 43. to 46.), and d^wguadral 
(arts. 48. to 51.) stigmatics, but none will be treated with even a distant 
approach to detail. My second memoir on Plane Stigmatics, when the 
nomenclature is properly changed in accordance with that here used, 
and the notation altered by putting the present b—-a and (b — a) (d—c) 
for the ab and ab . cd there used, gives sufficient details to shew the 
power of the method; but it is impossible to abstract, much less to 
reproduce in the present improved form, the whole even of that memoir 
(itself a mere sketch) within the time and space at my command. 
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38. Primals, or Cartesian Straight lines generalised.— (i.) The simple 
stigmatic equation ax + b'y + c = o, can, when b' is not = o, be re­
duced to the form y + (a — i) . x = b = ac, 

which is the standard form of a primal stigmatic. There is no solitary 
index or stigma. G is the double point, B is the original point, that is, 
the stigma when the origin is taken as index. A is called the direction 
]point, the triangle IOA A GXY (fig. 25) being the direction triangle. 
As it is necessary to become familiar with the geometrical relations of 
the primal, the reader should construct many figures with different 
positions of A, B, and hence G, beginning with cases where A and B lie 
on OJ, and G on 01, for which GB is the ordinary Cartesian line, as 
in fig. 34, and if X is chosen on 01, XY is parallel to OJ But po­
sitions of Xi not on 01 should also be chosen, and the abscissa 0XX 

and ordinate XYYi then give the imaginary Cartesian abscissa and 
ordinate of the imaginary point Yx. Fig. 25 gives a general case, and 
will indicate the method to be pursued. 

(ii.) Any two stigmals (xy), (x'y),ov (xy), (cc), or (xy), (ob), or (cc), (ob), 
will determine a primal, which may be written pri (xy, xy), &c. The 
direction point A and any stigmal (xy) or (cc) will also determine a 
primal, which may then be written pri (A, xy) or pri (A, cc) &c, the 
capital letter distinguishing the point. A primal is said to be drawn 
when a quadrilateral XYY'X'X has been constructed by joining the 
extremities of the ordinates XY, X'Y'. In drawing stigmatics ge­
nerally it is convenient to guide the eye to the correspondences by 
making the stigmod YY' an unbroken line , the indit 
curve XX' a broken line — —< —, and the ordinates XY, X'Y' 
dotted lines This will make the constant directional 
similarity, GXY A IOA, very evident in the primal. 

(iii.) The general form does not hold when b'= o, in (i.) In this 
case x=o,-or xz=m, and there is no direction point. The following 
eight peculiar cases occur so frequently that I have found it convenient 
to give them special names; they are here given in terms of both y and 
v=y—x, see art. 36. ii., for which the general equation becomes 
v + ax = b. Assume m+m'zzzzo. 

N A M B AND EQДJATION. 
direction 

point. 
original 

point. 
doubl 
point. 

I. Axals and Paraxals. 

or'dinal, x =• o , none 
none 

0 
0 

I 
I 
ľ 
ľ 

0 
none 

0 
M 

0 
м 
0 
м 

o 
paror'dinal, x = m 

none 
none 

0 
0 

I 
I 
ľ 
ľ 

0 
none 

0 
M 

0 
м 
0 
м 

м 
abscis'sal, y = x, v = o 

none 
none 

0 
0 

I 
I 
ľ 
ľ 

0 
none 

0 
M 

0 
м 
0 
м 

all 
parabscis'sal, y = x + m, v = m... 

I I . Assals and Parassdls. 

тĽnal, u = o, v + x = o 

none 
none 

0 
0 

I 
I 
ľ 
ľ 

0 
none 

0 
M 

0 
м 
0 
м 

none 

o 
parunal, гjzzzzm. v+x = m 

none 
none 

0 
0 

I 
I 
ľ 
ľ 

0 
none 

0 
M 

0 
м 
0 
м 

M 
J ť ' «/ ' ^ | <Л-

du al, y æ. 2x, v—x — o 

none 
none 

0 
0 

I 
I 
ľ 
ľ 

0 
none 

0 
M 

0 
м 
0 
м 

o 
paradual, y = 2x + m, v—x = 7n 

none 
none 

0 
0 

I 
I 
ľ 
ľ 

0 
none 

0 
M 

0 
м 
0 
м M' 
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The name axal (ax-is+ al) is given from the relation of these 
primals to the Cartesian axes, and the name assal (aB-ymptote + a l) , 
because these primals are the asymptals of a cyclal (art. 48. v.), the 
so-called " imaginary asymptotes " of a circle. The prefix par-, or 
para-, denotes the sameness of the direction points, or^am-llelism of 
the primals. If in the quadrilateral XYY'X' of (ii.) the two indices 
X, X' coalesce in Xi9 then pri (xxy, xYy') is a parordinal with constant 
index; but if the two stigmata Y, Y' coalesce in Y2, then pri (xy2, x'y2) 
is a parunal, with constant stigma. If the ordinate XY = ordinate 
X'Y', then pri (xy, x'y') is a parabscissal with constant ordinate. If 
the line YY' joining two stigmata is always equal to double the line 
XX' joining the two corresponding indices, then the pri (xy, x'y) is a 
paradual. In fig. 33 pri (pe, ee) is a parunal, and pri (pe, <pf) a para-
dual ; and in fig. 2G, pri (mm, mYi) is a parunal, and pri (it', ot) a para­
dual ; in fig. 34, pri (oo, cc'o) is a unal, and pri (oo, x'y0) a dual, and 
these two are there the asymptals of the cy clal; see art. 48. v. 

(iv.) Given two stigmals (pq), (p'q) to find, fig. 25, the direction 
point A, original point B, and double point 0. Make p — r=:q—q', 

then 2—^-, = i—a, or P'PB A 01 A giving A, and 2 ~ £ = - a = =
 rJZJL 

p-p c—p f f p—py 

or GPQ A 10A A PP'B giving 0 from A or from (pq), (p'q), direct, 
and GPQ A GOB giving B. 

(v.) If two stigmals (pq), (pq) are given, any other stigmal (xy) 
can be found without previously constructing A, B, or G, by putting the 

equation to the primal into the form -—^-t = ^—--„ or XPPf A YQQ\ 

which also shews that every stigmod of a primal is similar to its own 
indit (compare the stigmod GQQ'YG with indit GPP'XG, fig. 25), and 
is the condition that three stigmals (xy), (pq), (p'q) should be co-
primal, or lie on one primal. As this equation is satisfied by m = \ (p +p') 
and n = \(q + q), (mn) will be a stigmal on the pri(P^jPY)- This 
stigmal (mn) is called the middle stigmal between the stigmals (pq), 
(p'q), and is said to bisect the cliordal (pq,p'q'), bounded by the stig­
mals (pq), (p'q'), or to be its bisec'tional. 

(vi.) I t is evident that if we take any set of points in a plane, and, 
considering them as stigmata, refer two of them to any other two points 
as indices, we can by (v.) construct indices to all the other points so 
that they should lie on a primal. All points in a plane may therefore 
be considered as stigmata of a primal, of which two indices are deter­
mined arbitrarily, and maybe chosen so as to satisfy certain conditions. 
In particular, the points thus regarded as stigmata may be themselves 
indices and stigmata of any stigmatic. In this way is formed the 
homma-primal, from the stigmatic called a hommal, in fig. 33 ; see art. 
46. iv. Generally the new primal thus formed may be called a stigmato-
primal. The stigmals on these primals, which have former indices as 
their stigmata, may be distinguished as indi-stigmals (indi-cis + stigmal), 
and the others as stigmo-stigmals (stigm-&t-o-s + stigmal). These terms 
save long periphrases in cases of frequent occurrence. 

39. Intersections of Primals.—(i.) Let 
y + (a — i) x = b = ac, y + (a'—i) x = b' = ao 
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be two primals (for which a Cartesian case has been taken in fig. 26), it 
is easy to determine their stinnal (hk) from (a—-a') h = h — b', or from 
7 / 

— ^ = —, that is, CRC A A'OA. When merely two stigmals are 
h — c a 
given in each, it is generally most convenient to find A and C as in 
art. 38. iv., and apply this form. 

(ii.) If two pairs of co-stigmals are given, forming the primals (xp, xp), 

(xq, xq), and (hk) be their stinnal, then *-—±-j = *-—-, which shews 
<1-<1. !~^, 

that the stigmin Kis the double point of the pri (pq, p q ), from which 
property it may be immediately constructed as before, and then the 
indin H can be found from either primal. 

(iii.) A parordinal x = m has a constant index M, and hence (mn) its 
stinnal with pri (cc, xp) is the stigmal of that primal for the index M, 
and is immediately found. A parabscissal y = x-j-l has a constant or­
dinate = OL, so that the index B of its stinnal (rs) with pri (A, oh) is 
found from ar = b — I = T, whence 10B A AOL', or, from l=a(c—r), 
whence, on putting l=c — l", wejhave L"CBAAOI; and then the stigma 
8 is constructed from B as an index in the primal. A parunal y=m has 
a constant stigma, which will therefore be that of the stinnal (mYm), the 
index of which MY in the primal is immediately constructed from 
OM!M A 10A. Aparadual y = 2x+t, of which T is the original 
and T' the double point, where l + l' = o, intersects pri (A, oo) in 
(uv) where (a-\-i) u = b — t, or, (putting d = a-\-i, e = b — t,) where 
du = e, that is, IOTJ A DOE, and then T'V = 2T'U Observe that 
CUV A 10A. The geometrical operation of finding the stinnal of two 
primals, especially in the four last named cases, must become extremely 
familiar to those who wish to construct figures in illustration of gene­
ral stigmatics. The process is entirely disguised in ordinary Carte­
sian geometry. 

(iv.) If in (ii.) the direction points A, A' have been determined, we have 

E—1L ---- ___—_? which is the an'nal of AIA', art. 34. v., and may be 
q — q a — % 
spoken of as the annal between the two primals, but continue to be writ­
ten an ALA.', where A, A' are their direction points. Similarly tal AA' 
may be spoken of as the tannal of the annal between the two primals. 
TT J. i A A> a—a B (a—i) — B(d—i) ^^ ,-. 
Here w = tal A.A. = — , = -—^——*— .1 . , y—. When the pri-

^—aa ^-\-B(a — ^)-\-B(a—^) 
mals are given by two stigmals each, as pri (xp, xp) and pri (xq, coq), 
then, since (p—•$>') +(a— i)(x—x') = o, and (q—q)-\-(a'—i)(x--x) = o; 
the second expression allows tanA .A ' to be expressed immediately in 
terms of the respective abscissae and ordmates and is often useful; see 
art. 48. x. I t is seldom necessary actually to construct iv = tan ALA\ 
In the Cartesian case of fig. 26, / WIO = Z AIA', and TV lies on OJ; 
the same construction holds for all primals representing Cartesian 
straight lines. But generally put a—d=al, ad .== a2, i~a2 = a3, and 
w = ax. Ba3. The points Ax, A2, As are omitted in the figure. By 
these expressions all cases where the sines and cosines and tangents of 
imaginary angles between real and imaginary lines, or two imaginary 
lines, otcur, they may be treated with the greatest ease. 
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(v.) Also, - £ = J = -^=1 = 7^—|, or PKQ A AIA' A BKB\ which 
a—-k a—i b—k 

is a very useful property. 
(vi.) Para-primals, or parallel primals, have a = af, or anA .A ' = i, 

tal A.A' = o. Orthal primals (art. 34. v.) have aa = i, an AA' = %. a 
= %. Ba, tal -AA' = none, or A01 A 10A'. These generalise the 
conditions of parallelism and perpendicularity. Any parabscissal with 
direction point 0 is also said to be orthal to a parordinal which has no 
direction point, for the reason in (ix.) The direction point is the 
stigmin of the ordinal with a paraprimal through (ii). 

(vii.) The condition that three primals, having the direction points 
A, A', A" and original points B, B', B", should be co-stinnalt or have a 

common stinnal, is -—— = , or BB'B" A AAA1'. 
b—b a—a 

(viii.) If in (vii.) we consider A as an index and B a stigma, and 
A', A" and B', B" as fixed points in the last equation, a primal results 
such that any other y + (a — i)x = b having any such pair of points 
A, B as direction point and original point, will have the same stinnal. 
Hence this is the equation to a pencil of rayals (ray + al) or system of 
primals with a common stinnal, or to their common stinnal itself. 
The primal of their direction points is then called a ray-primal, with 
ray-indices and ray-stigmata. The direction points of any system of 
lines are the stigmins of pencils of rayals drawn through (ii) parallel 
to the primals in the system, to cut the ordinal; compare (vi.). For 
many purposes this is an important view of them to take. 

(ix.) If from the common stinnal (hh) a pair of rayals be drawn 
having the direction points X', Y', and we substitute x, y for x, y in 
the fundamental function / (x, y) = o, we determine relations, termed 
direction- or ray-stigmatics, between pairs of rayals by means of those 
between pairs of direction points which act as index and stigma. 
Stigmals, of which index and stigma are direction points, may be called 
raz/-stigmals, with ra!/-indices and raw-stigmata, and the corresponding 
rayals may be termed indi-rayals and stigmo-rayals, and the pair com­
posed of an indi-rayal and stigmo-rayal referred to each other may be 
termed simply a rayar. If we apply this transformation to the funda­
mental equation of art. 37. i., we shall have the results of Chasles's second 
lemma of Characteristics (Comptes Bendus, 27 June, 1864, vol. 58, 
p. 1175), so that the whole of that theory becomes perfectly general­
ised in stigmatic geometry, and its imaginaries become geometrically 
intelligible. Observe that when the ray-index X' is solitary, that is, 
has no ray-stigma Y'., the stigmo-rayal, having no direction point, is a 
parordinal through (hh), and hence still exists, so that a rayar pair 
is always complete. Similarly for the case of a solitary ray-stigma Y', 
in which case the indi-rayal, having no direction point, is also a par-
ordinal through (hh). The double rayals are coincident, corresponding 
to coincident ray-index and ray-stigma. 

(x.) Thus, if we take aa' = i as a direction-stigmatic, the corre­
sponding rayals will be all orthal as long as either A or A' does not fall 
on 0, in which case the other does not exist, (vi.). If a=a'=i, or =-i', 
(in which case the primals are parassals art. 38. hi.), and we continue 
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to use the term orthal to express the relation of the rayals, we shall 
find that any parassal is orthal to itself (explaining the anomaly that 
either imaginary asymptote to a circle is perpendicular to itself). 
If a=0, or one rayal is parabscissal, A becomes solitary, and the cor­
responding rayal is parordinal; that is, retaining the term orthal, 
parabscissals and parordinals are mutually orthal (vi.), as in the usual 
Cartesian case of rectangular coordinates. 

40. Pistols, or PlucJcers Coordinates generalised.— (i.) Let (xy) be 
any stigmal and (xp) its co-stigmal on the primal p'+(e&— i) x = b, 
(fig. 27 gives a Cartesian case,) then 

y—p'= y-\-(a—i) x — b, 
and y —p' is called the ordinar distal (distance + al), or simply the 
distal of the stigmal (xy) from pri (A, ob). It is evident that y~pf= o 
may be used as the equation to that primal. 

(ii.) Draw pri (T, xy) cutting ipri(A,xp') in ($ipi) ; then, as 
(xiPi) is the stinnal of these two primals, we have (by art. 39. iv.) 

Pi—y = tzi 
P\—p a — i* 

Whence y—px = - ^ . (y—p) = -f^ . [y + (a~i) x—b] ; 
t — a z —• a 

and y—p{ is called the general or T-distal of Yfrom the primal (A, ob), 
because T is the direction point of the primal which determines it. 
The usual or ordinar distal y —p is determined by the intersection of 
the parordinal through (xy) with pri (A, ob). 

(iii.) I t is evident that either y—p=o or y—pl = o may be 
taken as equations to the primal, and that the relations of the clinants 
y— p or 2/ —JPI determine relations between P'Y or PXY which are 
real distances measured directionally towards the arbitrary stigma Y 
from its co-stigma Pf on the primal, or from the stigma PY of the 
stinnal of a known pri (T, xy) with the original pri (A, ob)] and these 
relations of distances, directionally measured, determine and generalise 
a multitude of relations, hitherto most imperfectly noted even by 
Plucker, who first drew attention to their value. The equations thus 
deduced are called distal equations. 

(iv.) Taking another primal (A!, obf) intersecting the former, and 
determining the distals y — q or y — q\ as before, we may determine 
x and y from the corresponding values, 

y-~px= ~\.(y—p) = ~.ly-h(a-i)x-b] = p, 

y-2. = C=-j • G/-2') = T=A- [y + (a-i)x-b'] = s. 
o'— a I — a 

Finding from these equations the values of x, y in terms of p, q, and 
substituting them for x and y in / (x, y) = o, obtain first the distal 
equation 0 (y —-px, y — qY) = o to the original stigmatic, and next 
<p (p, q) = o as the equation to a subsidiary (or bi-primal) stig­
matic, in which the relations of the original points X, Y, are deter­
mined by means of the subsidiary points P, Q, where OP, OQ 
represent the directional distances Px Y, Qx Y of the correspond-



ART. 40. i v . — 4 1 . iv . ] CORRESPONDENCE OF POINTS. 49 

i n g s t igmata P x , Qi in two fixed pr imals (A, oh), (A', oV) from a 
movable s t igma Y. The indices X 1 ? X2 to t h e s t igmata P l 5 Qx a re 
found from the two known primals , and the index X to the s t igma Y 
is known, because (my) is the st innal of the pr imals (w\P\, T), (x^qX9 T'). 
This niay be called the bi-primal s t igmat ic , and is t he basis of P lucker ' s 
Punct- Coordinates 

(v.) The equat ion to a ray-pr imal (ar t . 39. viii ) allows of establish­
ing precisely similar t ransformat ions answer ing to P lucke r ' s Coordi-
naten gerader Linien, g iving hi-stigmal s t igmat ics , in which the index 
and s t igma rela te to subsidiary points derived from the distals of t w o 
fixed s t igmals from a movable pr imal , ins tead of t he distals of a 
movable s t igmal from two fixed pr imals . 

4 1 . Trilat'erals, or Triai^dar Belations generalised.—(Fig- 28 repre­
sents a Cartesian case.)—(i . ) Le t the three s t igmals (u'u), (vv), (w'w) be 
connected two and two by the pr imals (vv, w'w), (u'u, w'tv), (u'u, v'v), 
hav ing t he direc t ion poin ts T, T', T" respec t ively. These three pr imals 
form a trilateral of which the three s t igmals in the above order are t h e 
apicals (apical s t igmals) opposite to the laterals (lateral or side pr imals) 
in the above order. This is wr i t t en t r i (uu, vv, ww'). 

(ii.) Le t (uV) be a s t igmal on the la teral opposite (u'u), then (art .39.iv.) 
u—v t"—i -. u—w t'—i T u — v (t—t')(t"—i) 

-=: _ a n c [ = _ ? whence = 7,-ry-, ^ -
u—z t — t u — z t — t u—w (t—t)(t — ^) 

•i -„ n — v v — w w~u 
and general ly ,~7T/ — = ~-~. = —T. —r- , 

(t-f)(f~i) (tf—t")(t--i) (t"~~t)(t'-~i)' 
the symmet ry of which is evident . These equations give all the re la t ions 
of all " triangles real or imaginary ." 

(iii.) The following par t icu lar cases for which t he above assume in­
admissible forms, wi th o in the denomina tor , are easily inves t iga ted 
independen t ly . 

The three s t igmals lie on one pr imal (uu), (v\v{), (vv), so t h a t 
t = i = t"-, t he relat ion art . 38. v. mus t be used. 

The tri(u'v2, ^u-> w'w) has the parordinal la teral (u'v2, u'u) which 
has no direction p o i n t ; bu t t hen (uu2), (u'u) are co-stigmals and (w'w) 
t h e s t innal of pr imals (u'v2, IV'VJ), (u'u, w'w), hav ing the direct ion points 
Ti, T' respectively, so tha t , by ar t . 39. iv., = .. If further, 
as in fig. 28, pr i (u'v2, ^v'w) is parabscissal , 

, j u — ^v • ,, -. Vn—u ,, 
tl = o, and = ^ — 1 , a n d — = t. 

v2—w v2—w 
(iv.) W h e n t he two last condit ions are satisfied, we "have an ortlial 

trilateral. W e may call its parabscissal lateral the basal, and i ts par -
ordinal la teral t h e perpendic'ulal, and t he th i rd la teral t h e hypothenu'sal. 

As we have shewn t h a t t a l T'O = £ '= — , we m i g h t inven t a 
v2—a 

si'not (sin-e + al), cosinal (cosin-e + al) and cotan?ial (cotan-genh + al) 
of T'O, w r i t t en sal T'O, cosal T'O, cotal T'O, defined t hus , sal T 'O = 
! V Z ? = 7 J L B | c o s a i rO = ^ = ^ = - A . , cotal T'O = ^ ^ - = 4 , 
w—u t — % w — u t — i v2—u t 
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from which, in the Cartesian case, by taking tensors, the usual for­
mulae of trigonometry, as derived from the triangle only, in this case 
the triangle IOT', readily follow. For if t'=pj, where p is scalar, 

T. sal T'IO=T. -W-. = - T - A — r N , and T. cosal TIO = T.~~-.= 
PJ—^ v(p 2 + i) t — i 

———-——. The former expressions, however, give what corresponds 
v(p +V 
to the sines, cosines, tangents, and cotangents of imaginary angles. 
Thus the direction triangle IOT' gives rise to a direction trilateral 
tr i (oo, ii, otr) which is clearly orthal. The imaginary trigonometrical 
functions in Cartesian and Pluckerian and hence also in Chaslesian 
geometry arose from applying the terminology of the simple triangle to 
this trilateral, and the difficulties which hence arose are to be attri­
buted to the omission to notice the directions of the sides of the tri­
angle, that is, the direction points of the laterals of this trilateral. 

(v.) The condition that the primals given by the distal equations 
y—p'= y — q = y—r = o, (art. 40.iii.) and having the direction points t, 
t', f respectively, should be the laterals of this trilateral, and hence 
have no common stinnal, is 

(y-p) • (f- 0 + (y-4) • (t -1") + (yrr). (t'-t) = e, 
where e ZZZ^JZJL . (t—f) . (v—w) = I ~ j I ~—-- . (v—w) 

p—w v J J i-t v J 

(t'-t)(f-f) , . (f-t)(t-f) , . 
= : 1 L_L_ 1 % (w — rv^ = \ _Z_1_ 1 t ( ^ — y ) . 

^ — t %—t 
(vi.) A multitude of propositions on the properties of the trilateral, 

deducible from these fundamental properties, are necessarily omitted. 
42. Pencil of Four Rayals, or the Anharmonic Properties of Rays gene­

ralised.—(i.) Let there he five rayals, having the common stinnal (he) 
and the direction points T, Tx, T2, Ts, T± respectively, (a Cartesian case 
is shewn in fig. 31). Let a transversal primal be drawn parallel to the 
first primal, and intersecting the four last in the stinnals (x{yx), (x2y2), 
(%//3) and (#4u4) respectively. 

(ii.) Then from tri (he, xYy^, x2y2) and tri (he, x2y2, x3y3) we find 
VvzVl = kzh . t z | = (tlt2t3t), art. 34. iv. 
2/3—2/2 h — t h — t2 

That is, the anral of the direction points is expressed by the simple 
quotient of the differences of the clinants of the stigmins. 

(iii.) Similarly Sl=S* = lj=*± . *=1 = (WJ), 

and dividing the first of these results by the second, 
(y\yiy*yd = CM2M4), 

that is, whatever be the direction point of the transversal, the anral of 
the four stigmins, when they exist, is constant and equal to the anral of 
the direction points. And if there be only three stinnals, from the 
coincidence of T with JF4, we see by (ii ) that the anral, reducing to 
(yiy2y$ • •)» remains = (tit2t3t^). This constant anral of the direction 
points is called the anral of their four rayals. 

(iv.) This is a perfect generalisation of the fundamental property 
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whence Chasles deduces the whole of his theory of anharmonic ratios, 
homography and involution (Geom. Sup., art. 13. ; see also below, art. 
45. vii.). But this generalisation has the advantage of including every 
case of " imaginary" rays, angles, and points of intersection. The de­
ductions in this general case may be made in a manner precisely 
similar to his, using the same arguments, mutatis mutandis. But the 
stigmatic calculus much facilitates the operation, as I have found by 
actually working out every proposition in the clinant form. 

(v.) The whole of homography &c. has also been worked out with 
distals, on the method of Plucker, taking (JiJc, xp), (JiJc, xq) to be two 
fixed rayals, and (JiJc, xy), (JiJc, xy) two variable rayals determined by 
the equations (y—p) — e . (y-q) = o, g . (y'-p)-e . (y'—q) = o, 
where g is constant and e variable, which give 

V—P . !Lzl = g, or (ypy'q) = g, 
y—q. y—p 

which now becomes perfectly simple, because unperplexed by the 
"imaginaries" which are so plentifully strewn among Plticker's de­
monstrations. 

43. U'niqua'drals, or the Relations of Involution and HomograpJiy 
generalised.—(i.) The general equation to quadrals is 

ax2 + 2/3xy + yy2 + 2dx + 2ey + <p = o, 
of which it is first convenient to consider the forms not involving x2 

and y2, because they never give more than one value of y for each value 
of x* and conversely, whence the name uniqua'drals. These are 

(ii.) 2fixy + 2tx + 2Zy + <p = o, _ 
in which x andy are symmetrically involved, giving an in'val (mv-olu-
tion + al), and 

(hi.) 2(3xy + 2lx + 2ey + <t> = o, 
in which x and y are unsymmetrically involved, giving a hommal (Jiom~ 
ography + at). 

44. In'vals, or GJiasle'sian Involution of Points generalised.—(i). From 
the general equation, art. 43. ii., determine the solitary index and soli­
tary stigma, as in art. 37. ii. By dividing out first by y and then by x, 
and putting = o the sum of the terms not containing y and x respec­
tively in the denominator, we obtain 2/3# + 21 = o, 2/3u + 2£ = o, so 
that there is merely one solitary point S, where 2$s + 2l = o. If e and 
/ b e the roots of the equation 2/3;s2 + 4 ^ + $ = o, then s = \(e+f), 
and F, F are the double points of the inval. These results give 

(s_#)(s_-?f) = (5 — e)2 = (s—f)2, 
to which is adapted fig. 29, where AA', BB\ GO', DD', GG', HH\ &c, 
are various ordinates. 

(ii.) To construct the stigmals, draw the cJiaracteristic circle, with 
centre S and radius SF or SF. A being any index, to find the stigma A', 
draw ASF A FSA', by making / FSA' = Z ASF, and (B, B' bein^ 
the intersections of SA, SA' with the char, cir.) BA' parallel to AB. 
The lengths of the corresponding SX, SY are thus always found, and 
it is then easy to separate SX, SYbj any angles from SF. 

(iii.) From (i.) we find, on putting (aa), (bV), &c, for (%y), 
s — a s—b' a—V a—b' .« --, A, AliT , - , , . , . , ,. , 

r = , = T , = , 11 BA = AJS7 so that if two stigmals 
s — b s — a 0—-a a—n ° 
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(ad), (bb') are known, the solitary point 8 is found by making 
A SB A H'AN, and then the double points F, F are found from SA, SA , 
as in art. 33. iii. Two stigmals being then sufficient to determine an 
inval, we may write it as inv (ad, bb'), which for the solitary point may 
be inv (ad, S). The true nature of the equations ab = i = i2 and 
(y — i)2 = (a — i) (b — i), art. 34. v., p. 37, is now evident. 

(iv.) From equations similar to those in (iii.) it is easy to shew that 
all the properties o£.Chasles's Involution hold strictly, of which the 
following need only be cited. 

First, 
« s~ a s—y 
irom = ---, 

s—x s~a 
n T s—a s~y 

we find 

s — a __ _s-Ъ' 
8~Ъ 

s —a __ 

s — a 

_s~Ъ' 

s- ~c 

-X 

s- -y 
s-

~c 

-X s- -c 

s- -c _ s " -y 

S — C 5 -

s—b B-
f 

~c 
S—C 5 -~Ъ' 

f " 1 I f f ' f " 7 f 1 f ' 

x y—a a — b b—a c — x y — c c—b c—b 
whence, eliminating s—-a, s—c, s—y, s—-b', we find (obex) = (a'b'c'y), 
or any four indices have the same anral as their stigmata; and this 
would of course remain true if the former were drawn on a separate 
plane or different portion of the same plane from the latfcer. Bu t this 
result is not characteristic of invals. 

Second, (abxy) = a'b'yx), or in any stigmal the index and stigma 
may be reversed. This result is characteristic, for on multiplying out we 
obtain the characteristic equation of invals, for which the planes cannot 
be separated. 

Third, (abs..) = (db'..s), as in (iii.) See art. 34. iv. 
Fourth, (efxy) — (efyx), whence (eyfx) = %, or any index and 

stigma form a harmal with the double points, and hence these four 
points will lie either on the same straight line or the same circle, 
as shewn in the figure. Hence also the construction: draw any 
circle of which FF is a chord, take any points A, A' upon it, so that 
Z FSA = Z A'SF, then (ad) is a stigmal in the inval. In this case 

A. and A' lie harmonically with respect to F, art. 34. iv. In the figure 
G is the centre of the circle containing A'FAF, which however is not 
drawn; but see fig. 14. If inv (ee,ff) and inv (ee',ff), have the 
common stigmal (xy), then (yexf) = (ye'xf), and hence (yy, xx) 
are the double points of inv (ef, e'f), whence (xy) may be constructed. 
This fails when the invals have a common solitary point, and in that 
case only they can have no stinnal. 

(v.) The equations of angles resulting from the above anrals also shew 
how the stigmod varies for different straight lines or circles assumed as 
indi ts; thus the indit circle ABG has the sigmod circle A'B'C, but the 
indit circle SHDL, passing through S, has the stigmod straight line 
II'D'JJ, S having no stigma. Mobius, in the papers cited in Appendix 
II . , seems to have first treated the involution of points in a plane, but 
it will be found that his treatment is much more complicated, and that 
the present theory brings out all his results and many others with the 
greatest simplicity. 

(vi.) I t may be observed that, in the old theories of involution of 
points on a straight line, when X, Y lay as at D, D' on the same line 
as E, F, these last double points were called real, but when X, Y lay on 
a perpendicular to EF through S, as at G, G', these double points, 
though remaining unchanged, were called " imaginary." By forming 
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two inva-primals (art. 38. vi.), so taken that the carstigmod gives the 
line FSF in the first case, and the perpendicular to FSF in the second, 
it will be seen that F, F are carstigmata in the first, and incarstigmata 
in the second case. This is the meaning of the above confusing dis­
tinction, which could not be previously avoided. Again, until a Car­
tesian inva-primal had been formed, since the ordinates XY lny on the 
same straight line, and not perpendicular to it, as in Cartesian geometry, 
the two cases were kept entirely separate. In uniqnadrals XY was 
termed a segment, and in Cartesian geometry an ordinate. Until the 
stigmatic conception had been formed, it was impossible to perceive the 
real identity of the segments and the ordinates, as simply the straight 
lines connecting the indices with the stigmata, that is, shewing the 
pairs of corresponding points. The immense facilitation produced in 
the application of the nomographic theories by the fusion of the Carte­
sian and Chaslesian geometries, will be strongly felt by every* one who 
works out the cases in detail. 

45. Ilom'mals, or Chaslesian Holography of Points generalised.— 
(i.) To determine the solitary index S and solitary stigma Z' in the 
hommal, fig. 30, we find from art. 43. iii., first 2/3s + 2e = o, and then 
2/3/+ 2h = o, and for the double points F, F we have 

2/3e2+(23 + 2e)e + </> = o. 
These values easily reduce the general form of equation to 

(s-x)(z-y) = (s-e)(z'-e). 
(ii.) From this, by a process like that in art. 44. iv., we find 

(obex) = (a'h'c'y), which relation remains when the plane containing 
the indices is separated from that containing the stigmata. This 
enables us to determine the solitary index and stigma when three 
stigmals (ad), (bb'), (cc) are known, because (abes) = (a'b'c..), and 
(abc . . ) = (db'cz'), that is to say, 

a— b c — s d—V , a — b a' — b' c'—z 
and — c — b a—s c'—b' c—b c—b' a' — z' 

To construct the solitary points from these equations, 

first construct Wfrom % ^ = ?^-=-| > or A'B'O' A WBO; 
c—b c — b 

and then S from ---=^ = -^-=-? , or GSA A WBA ; 
a—s a—b 

and Z' from 5-=^ = V = ^ , or GSA A A'Z'G'. 
a — s c — z 

(iii.) When S and Z' have been found from three stigmals, all other 
stigmals can be found from a subsidiary inval, thus: Suppose that the 
part of the plane containing the stigmata is slid over that containing 
the indices, by sliding Z'S over Z'S till Z' falls on S, and A' on Au 

B' on Bl5 &c. Then z' — s = d — aY = b'—bl=^ = y — yu and 
hence s—al = z—d, s—yl = z' — y; and hence 

(s — x)(z'—y) = (s — x)(s—yx) = (s — a)(s — al) = (s—m)2, 
when 31 is properly determined. Hence the subsidiary inval 
(s—x)(s—yl) = (s—m)2 determines Yi from X, and then Y1Y=SZ/ 

gives Y from Yv Hence also a hommal is merely an inval with its 
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stigmod (or its indit) translated in the same plane without rotation, 
that is, a transordinated inval. 

(iv.) There are now two easy constructions to find the double points 
E and F. First select 0 so as to bisect SZ', whence s-\-z =• o, and 
find 0' the stigma of 0 considered as an index, whence 

(s — e)(z'—e) = (s — o)(z—d), or e2 = i'.so'= z'd, 
as shewn in the figure. Again, 

(s — m)2 =- (s—e)(s—el) = (s — e)(z— e) = (e—s)(e + s) = e2—s2, 
or e2 = s2 + ( s - m ) 2 , 
which is constructed as in art. 33. v. ; by drawing TJSV perpendicular 
to SM, and making Z7S'= SV, both of the length of SM, so that 

s—u = j (s — m), s—-v=zu~s, 
which gives e2 = s2— (s—u)2 = uv. 
This shews that (uv), (z'o') lie on inv (ce,ff). 

(v.) I t is convenient to call O (or common middle point of EF and 
SZ') the centre, EF the double axis, SZ' the solitary axis, and ilJN 
(where m-\-n = 2,9) the subsidiary axis of the nominal. For the hommal 
determined by three stigmals we may write horn (aa, bb', cc), which 
for the solitary index and stigma may be written horn (aa, S.., ..Z'). 

(vi.) The relative forms of the indit and stigmod are the same as for 
the inval (art. 44. v.), but the angular properties of the double points 
are peculiar to the hommal. See fig. 30. 

First (eabc) = (eab'c), 
hence if A, B, G are collinear with each other and hence with S, in which 
case also A'B'G' are collinear with each other and hence with Z'; then 
tan AEG = tan A'EG', and tan AEA' = tan GEG\ Hence if two straight 
lines intersect at E, and are indefinitely produced each way, and then 
being clamped, are made to revolve, and to cut two given straight lines 
FQS and P'Q'Z', they will intersect, the first in the indices and the other 
in the stigmata of a hommal, of which the solitary index S is in FQ, and 
solitary stigma Z' in F'Q', and E is one of the double points. In fig. 30, the 
lines FQS, F'G[Z' are so chosen as to make (pp), (qgf) parts of the same 
hommal as before. In any such case Z', S are easily found, by making 
one arm of the biradial parallel to FQ and F'Q' respectively, in which 
case the second arm cuts F'Q' and FQ in Z' and S respectively. F is 
then the fourth point of the parallelogram SEZ'F. Also tan FFF' = 
tan QFQ', but they are not generally = tan PEP'. The same will be 
true if FQ, P'Q' coalesce in SZ', and then E, F are the " imaginary " 
double points of the " real homography " on the line SZ'. This is a 
new demonstration of Chasles, Geom. Sup. art. 171, which it completes, 
shewing the nature of the points. But this property will be greatly 
generalised in art. 46. hi. By taking E as the centre of a circle, there 
will now fce no difficulty in explaining and completing the result in 
Geom. Sup. art. 664. 

(vii.) Observe that in applying the general property art. 42. iv. as 
Chasles has done to the construction of a nomographic theory, we 
have from any stigmal (he), see fig. 31, a movable rayal cutting two 
primals which have the stinnal (hf). In this case the stigmins of the 
movable rayal on the first of the primals issuing from (hf), taken as 
indices have their stigmata formed by the stigmins of the same rayals 
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with the second primal, and the stigmals thus formed make a hommal, 
of which the stigmata F, Fof the two stinnals (he), (If) are the double 
points. When the primals represent Cartesian straight lines (as in 
fig. 31), confining ourselves to the stigmods, we may say, if .rays from 
F cut two rays issuing from F, the points of intersection form a 
hommal, of which F and F are the double points, and of which the 
solitary index and stigma are found by drawing rays from F parallel 
first to one and then to the other of the rays issuing from F. This 
view will be found to shed a new light upon many of Chasles's in­
vestigations (especially Geom. Sap. chap, vi., &c), but wTas of course 
impossible so long as the points in an homography were considered to 
lie necessarily on the same straight line. 

(viii.) Secondly, (efab) = (efa'b') ; thirdly, (efsa) = (ef.. a'); fourtVy? 
(esfa) = (e..fa'); fifthly, (eabs) = (eab'„.); sixthly, (esa..) = (e..az)\ 
from all of which angular properties may be readily deduced. 

46. Ray-hommals and Ray-invals, or the Chaslesian nomographic 
Relations of Rays, generalised. — (i.) If the indices of a hommal are 
made direction points of the rayals emanating from a fixed stinnal (hh), 
and the stigmata of the same hommal are taken as the direction points 
of the rayals from another stinnal (mn), thus generating a directiun-hommal, 
(art. 39. ix.), the rayals in these two pencils form a doable' ray-
hommal. If the two stinnals (hh), (mn) are coincident, the result is a 
single ra.y-hommal. These rayals cut any primal in stigmals forming 
a homma-primal. The stigmo-(or indi-)rayals corresponding to those 
direction stigmata (or indices), which have solitary indices (or stigmata) 
respectively, will be parordinal. 

(ii.) If (axa2), (frib2), (ciC2), (xxy2) be the stigmals on the direction 
hommal, and Sl5 Z2 the solitary points, then 

(si—x1) (z2-y2) = (sy — a{) (z2 — a2), and (a^Ci^i) = (aAc# 2) , 
whence all properties may be deduced, (compare art. 39, ix. x.,) and 
the angular properties of.the double points of hommals duly generalised. 

(hi.) The following is the only case that can be noticed in this Tract. 
If from any stinnal there issue two rayals having their variable direc­
tion points K1? Y2 so related that tal Xi9 Y2 is constant, so that, for 

example, ~—'— = Rm, or xxy2 + m (x1—y2) — i = o, these pair of primals 
i—xvy2 

will be the analognes of the various positions assumed by the revolving 
lines in art. 45. vi. Now in this cass the direction points of the double 
rayals determined by putting xx = y2 = e{ = / , give e* = i = / i 2 , so 
that they are I, I', and the rayals are parassals (art, 38. iii.)5 that is, 
parallel to the asymptals of a cyclal, or, as used to be said, " they pass 
through the circular points at infinity" (!) ; and this will also be true 
wThen some pairs of rayals are Cartesian; and will also be true although 
these parassals among other rayals will of course be incarprimals. 

(iv.) Conversely, form a homma-primal from the indices and stigmata 
of a hommal (ee,ff, S.., ..Z'), by assigning 2, Z" as the indices of 
S, Z', where (o"s), (£Y) are carstigmals in fig. 33. Let E', $ be the 
indices of F, F, in which case (ee), (<pf) are necessarily incarstigmals 
in the figure. Then it is always possible to give new indices P, Q to 

J3 2 ; 
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F and F, so that rayals from (pe), (qf) to (ee), (tyf) wall be parassal, 
and in that case the tannal between any indi-rayal and stigmo-rayal 
will be constant. This condition gives 

— - = t-i=o, e-^f^i-i'=2i, £=£ = i-i=o, £=^=i-i'=2i, 
p-€ p-<l> q-f q-e 
and hence FF = 2P<I>, FF = 2QE', and as $, E' are known, P and Q 
are determined. Let, T be the direction point, and C the double 
point of the pri (as, £'z), and let 2w = e+f, 2j/ = e + <p, and 
e—n = n—f= Jc (n—c). Then 

n —c = (*'-—c)(i—-£), f— lc = 0 . (« - l), e — tc = <? . (i—t), 
whence e—p = w —0 = (lc — t)(v — c), c—p = (ht — i)(v — c), 

f—q = n—e = (k + l)(c—V), c — a = (kl + 'Q(c--V). 
In the Cartesian case l, k are vectors. Hence C, W, P, Q are collinear, 
and F7P, FQ perpendicular to ON', that is, (pe), (qf) are carstigmals. 

The extremely perplexing investigation of this wThole question in 
Chasles, Geom. Sup. arts. 171, 172, 181 (especially see table of errata 
for p. 126 in this art.), 651, and Sect. Con. art. 293, will serve to shew 
the great simplification introduced by stigmatic geometry. But in the 
present Tract a mere indication must suffice. The whole subject has 
been carefully examined in detail. 

(v.) Fay-invals result from similar considerations. Thus, i2 = xxy2 

is a ray-inval, of which all the rays are orthal (art. 39. vi.), the double 
rayals being parassals, and the rayals corresponding to the solitary 
index and solitary stigma, or for xx = o, y2 = none, y2= o, xx= none, 
being paraxals (art. 39. x.). As two invals have always a common 
stinnal (art. 44. iv.), any direction-inval, l2= xxy2, will intersect i2=x}y2, 
and hence the corresponding ray-inval will always contain two orthal 
rayals. 

(vi.) A sheaf of parallel primals may be used in place of a pencil of 
rayals, provided their different original points be substituted for their 
common direction point. 

47. Transordination, or tlie Cartesian Transformation of Coordinates 
and of Curves, generalised.—(i.) The general nature and object of this 
operation is explained in -art. 36. ii. The change is not perfect unless 
every single indi-stigmal (that is, every single stigmal in the first stig­
matic) corresponds to one and only one stigmo-stigmal (that is, to one 
and only one stigmal in the second stigmatic). 

(ii ) This cannot be effected except by assuming relations of the first 
order, such as x = b+(&—a), or x = \x +/uy -\-v, which, changing 
the index without changing the stigma, produce indicia! transordination, 
and are the foundation of the ordinary Cartesian change of coordina­
tion. The values of the constants are assumed so as to facilitate sub­
sequent calculation. Similar changes have already been made. Thus 
the hommal (s—-x)(z - y) = (s — m)2, on putting z — y = 8—y', be­
comes transordinated into the inval (s—-x)(s— y) = (s—m)2. Again, 
from this last equation, on taking s — x = s — # ' + (u' — cc), we find 
(s — x)2 — (y—ocf = (s — m)2, where 2# '= x-\-y' and is hence readily 
found. This however is a cyclal (art. 48. v.). 
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(iii.) More generally, assume such a relation as 
ax + Py + y = a'x' + &'y' + y\ \x + JJLX + v = \'x' + jxy + v\ 

which on elimination give results of the form 
ir.(y-x) =y + (t1-i)x-b^, K. (y-y) = y+(t2—i) x-b2, ^ 

and, on putting y—x'=p, y—y'= q, these lead at once to the distal 
transformation and biprimal coordination. 

(iv.) Still more generally, putting for brevity A = ax + a'y + a", 
B = 0x + (5'y + ft", C = yoc + y'y + y", and D = O for the result of elimi­
nating x, y from the equations A = o, B=o, C=o, (that is, for the con­
dition that the three corresponding primals have a common stinnal,) 
we may assume Cx'= A, Cy'= B. On determining the values of x, y 
in terms of x, y, they will be found to have a common denominator which 
will be a factor of the numerator when D = o, that is, when these 
primals have a common stinnal. Rejecting this case, tlie three pri­
mals form a trilateral such as (u'u, v'v, tv'iv) with the conditions (art. 
41, v.). Then, taking P', Q\ B' to be co-stigmata for index .Xin these 
straight lines, and putting A = y—p'= p, B = y—q=q, C = y—r'=r, 
we obtain a homogeneous distal equation between p, q, r, or vp, Kq, pr, 
which is the foundation of tri-primal coordination. 

(v.) The primal (oo, xy), or y+(t — i)x = o cuts the stigmatic 
f (x,y) = o in (xy). Eliminating x, we obtain (p (y, t) = ot which is 
the foundation of polar coordination. 

(vi.) Taking a less perfect form of transordination, that is, one in 
which the condition (i.) is not perfectly satisfied, we may connect X 
with X, and Y with Y' by hommals, as 

xx +\x + jiix' + v = o, yy + \'y + fx'y' + v = O. 
In this case we shall occasionally have complete stigmals in one 

answering to defective stigmals (that is, solitary indices, or solitary 
stigmata) in the. other. I t was probably the desire to avoid these 
relations of continuities to discontinuities, that the extraordinary 
assumptions mentioned in art. 6. i,, and Appendix L, were introduced, 
by which the real nature of the solitary points was illogically distorted. 
Thus it was not seen, or, if seen, repudiated, that it was possible to have 
analogies which held for all but a definite number of cases. The at­
tempt to conceal this important logical fact by a mere juggle of lan­
guage, shews the danger of studying logic from simple arithmetic and 
geometry, of which numerous instances could be cited besides those in 
Appendix I. The attempted passage from discontinuous arithmetic to 
continuous geometry (excepting only by Euclid's really " royal road"), 
like the attempted passage from discontinuous Cartesianism to some 
imagined continuity, has led to so much •" stretching " of language, 
that the logical feeling of mathematicians, though dealing with "exact 
science," is in great danger of being entirely perverted. Thus Dean 
Peacock put forth his "permanence of equivalent forms," a logical 
fallacy long since exploded, but defended by him with great warmth 
and pertinacity. And " perspective projections," admirable as a piece 
of geometry, have landed us in the contradictions detailed in art. 6. i. 
and Appendix I. I have even heard these results defended by an 
excellent mathematician as " illogical, but convenient," as if want of 
logic, i. e. incorrect reasoning, were not the height of mathematical 
inconvenience. 
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(vii .) These hommal relat ions may be obtained from equat ions l ike 

a x-\-by-\-c __ a x -f- n \l + y ax-Yb'y + e _ a'x+fiy' + y 
/ / , Iff i / / ff f I .iff f i ' " ff I 7 / / i / / / / / i / " » / / / , / / > 

a $ F u 2/ + c t» x -f-p // -f- y a x-\-b y-\-c u x TP y -\-y 
whence, on e l imination, x, y, x, y are obtained in similar forms, b u t 
then, on mul t ip lying up, we find (xx), (xy), (yx), (yy') given as s t ig-
mals on different hommals . In th is case, by equa t ing to o the deno­
minators in the values \)f x, ?/, x, y t h u s found, we ob tain equat ions to 
pr imals in which (xy) and (x'y) are s t igma ls , such that no t one of the 
st igmals in e i ther primal for the one s t igmatic will have a corresponding 
stiginal in the other . Hence , relat ively to each other, these s t igmat ics 
will have soli tary indi-primals and so l i tary s t igmo-primals . In this 
w7ay homma-s t ig ina t ics are formed, which include the Cartesian case of 
nomographic figures. And by proper changes of the cons tan ts these 
homma-s t igma t ics are b rough t in to another rela t ion which may be 
called hom'olo-stignia t ics, and include the Cartesian case of homologic 
figures. I n consequence of the old " imaginary " points, none of these 
relat ions are completely exhibi ted excep t in s t igma t ic geome t ry . 

48 . Du'o quadrats or Co'nals, or Conic Sections, generalised.—(i.) Duo-
quadrals are derived from such forms of the general quadra! equa t ion 
(ar t . 43 . i.) as always give two s t igmata Y, Y' for each index JT. W h e n 
they have any Cartesian por t ion, these s t igmatics give as the cars t igmods 
(pa ths described by the s t igmata of the Car tesian por t ion) , the well 
known conic sections, and are hence also called co'nals (con-\cs-\-al), a 
name which may then be applied generally to all duoquadra ls . 

(ii.) The ext reme varie ty and the leng th of coual invest iga t ions 
preclude me from giv ing them in this T rac t any even approxima t ively 
systema t ic form. I have myself carefully applied the presen t con­
cep t ion of s t igma t ic geome try, and the clinan t calculus, to the t rea tment 
of conals, by general is ing the usual Cartes ian methods , and also those in 
Pl i icker 's System and Entwickclnngen, as w7ell as those in Chasles 's 
Sections Coniqnes, in grea t detail, and have always found satisfactory 
resul ts , easier calculation, and complete geome tr ical realisation. The 
previous explanat ions of pr imals and uniquadra l s r ender any other 
resu l t impossible, and I shall therefore content myself wi th giving a 
few notes as to some methods , and a few resul ts , toge ther wi th the 
nomencla ture which I have found it convenient to adopt, and invi t ing 
mathemat ic ians to tes t t he s t igma t ic theory by minu te r applica t ions. 
Several of these are contained in my second memoir on P l a n e 
St igma t ics , bu t wi th m y old no ta t ion and nomencla ture . If I m a y 
j u d g e of the effect on o thers by t h a t on myself, the cont inual explana­
t ion of formerly insuperable difficulties, the strictly geometrical mean ing 
of calculations which seemed hopelessly analytical , and the absence of 
any difficulties iu the ass ignment of positive and negat ive , w7ill r e n d e r 
such a process a source of in tense del ight to the geometer . 

(iii.) W h e n in the general quadra l equat ion (ar t . 4 3 . i.), (I2 —ay = o, 
b u t ae — j3S is not = o, the s t igmat ic is a non-central, and by indicial 
t rausordinat ion ( re ta in ing t h e s t igmata , b u t a l t e r ing the or igin a n d 
indices) may be reduced to t he form (y—x)2-\-4<sx = o, which is here 
called a paral'lal (pa7*ab-ola + al). W h e n s is scalar and x is also 
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scalar, sx being tensor, y — x is vector; or when S and X are both on 
the / s i d e of 0 on 01, then XY, X'Y' are parallel to OJ; or there is a 
Cartesian portion, and the carstigmod is a parabola. Y, Y' are con­
structed by art. 33. iii. Flere 0 is the vertex, (oo) the vertical; S the 
focus, (ss) the focal. When 0, 8 are known, we may write par (0 , S), 
or par (xy, 8.) This case will not be further considered till art. 52., 
after the treatment of centrals. 

(iv.) When neither f32 — ay, nor (yd—-fie)2 — (/32 — ay) (e2 — y£) are = o, 
the conal is central, and by indicial transordination can be reduced to 
the form g2x" + e2(ij— x)2 = e2g2, which embraces many cases according 
to the positions of F and G, as follows :—Generally let e+f = g + h = 
s + z = o, and s2 = e2 + g2, found as in art. 33. v. This may be called 
the central (ee, oo, og), or (E, 0, G). There are no solitary points. F, 
F, in fig. 32, are the double or major points; G, II the original or minor 
points, and 8, Z the foci of the central. 

(v.) Gy'clal (Kvi:\-og + al), F on OF, G on OJ, Te = Tg, e2 + g2=o, 
equation x2—(y—x2) = e2. This may be called eye (0, F). The 
equation gives (y—x)2 = x2 — e2 = (x — e) (x + e) = (x—e) (#—/)", which 
gives the contraction of Y, Y' from X immediately, and shews that 
y , Y' lie harmonically with respect to F, F. When X is on / between 
F and I<\ then XY, XY' are parallel to OJ, and the carstigmod or 
locus of Y, Y' is a circle of which O is the centre and FF the diameter 
(tig. 34). When the indit is MN, or X lies on the line MN, as at 
j r b M, -3T2. on MN, the stigmod consists of two branches proceeding 
from Yj and Y2 so that the circle is but an extremely small part of the 
cyclal. If OF had been taken on OJat OG, so that g =je, we should 
have x2—(y—x)2 + g2 = o, whence (y—x)2 = x2 + g2 ; hence when X is 
on OT, Y i s always on OT; when X is on OJ, and Tx<Tg, XY being 
parallel to 01, Y will describe the same characteristic circle as before, 
but every stigmal (xy) is non-cartesian. This is Chasles's '• imagi­
nary" circle, more particularly referred to in art. 4D. v. (2). Also 
since e2=y(2x — y), the primals, that is, the assals y = o and 2x — y = o 
are the asymp'tals (asympt-otes + al) of the cyclal; see art. 38. iii. These 
have no carstigmod. The nature of their asymptoticity is easily seen, 
for as X retreats in any direction, the angle FF diminishes, FX, FX 
become more nearly of the same length, Y approximates to 0, and 
Y' to a point Y0, where XY0 = OX, while 0, Y0 are the stigmata of 
X in the assals. The asymptals of all concentric cyclals are parassal, 
and hence paraprimal. 

Since in the cycal 2x = y + y', we can eliminate x from the equation 
e2 = x2—(y—x)2 = 2xy—y2 = (y+y)y—y2 = yy'< Hence the pairs of 
co-stigmata form an inval of which 0 is the solitary point; F, F are the 
double points. The stigmods of Y and Y' for a given indit are 
therefore related as the indit and stigmod of an inval. There are 
really always two branches, which are disguised ia the Cartesian case, 
because they are then two semicircles united at their extremities by 
the double points F and F. This gives an easy way of finding .Xfrom 
Y, and shews that though each index has two stigmata, each stigma 
has but one index, which is also apparent from the original equation 
being only of one dimension in y. We have already found that 
(x — y)2 = (x-e)(x— / ) , which also shewTs that if we form an inval of 
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which JTis the solitary point, and (ef) a variable stigmal, each stigmal 
determines a new circle having the common stigmals (xy), (xy) with 
each of tlie others. Compare art. 49. v. (1). 

(vi.) E'gmper'bal (eOm-lateral or eazu-angular + hy-pe?*b-ola + al), 
F and G are coincident and both lie on 01, (no figure), e2 + r/2 = 2e2 = s2, 
equation x2+ (y — x)2 = e2, whence (y — x)2 = e2—x2 = i'. (x — e) (oo—f), 
so that Y, Y' in the- equiperbal are found by turning YXY' in the 
cyclal through a right angle. This is the foundation of Poncelet's sup­
plemental circle. When X i s on I, beyond K^and F, then XY, XY' wrill 
be parallel to OJ, and the carstigmod, or the locus of Y, Y', is an equi­
lateral hyperbola, where the two branches are visibly separated. Also, 
since e2= [oc+j(y —x)]. [x—j(y — x)], the a.symptals are x+j(y—x)—o, 
and x—j(y — x) = o, which have a Cartesian part, and their carstigmods 
will be the loci of P and Q, the extremities of PXQ, the YXY' of the 
asymptals to the cyclal, turned through a right angle about X. See 
the more general case of the hyperbal, in (viii.) 

(vii.) Ellipsal (ellips-e + al), F on 01, G on OJ, Tg<Te. In this 
case (no figure) let lg = g, so that g2 + lc = o, h2. Be2 is a tensor, and 
K lies upon 01. The equation becomes e2(y—x)2— h2x2 + e2h2 = o, 
whence e2{y—x)2 = h2. (&2 —e2) = lc2. (x — e) (x—f) ; hence XY, XY' are 
immediately found, by forming XTJ, the mean bisector of XF, XF, 
as in the cyclal, and altering its length so that len XU : len XY :: 
len OF : len OG. When X is on 01 between F and F, then XY, XY' 
are parallel to OJ, and the carstigmod or the locus of Y, Y' is an ellipse, 
of which EF is the major axis, and Gil the minor axis, and 8, Z the 
foci. Also, since e2lc2 = [hx — e(y—x)~] . [lcx + e(y—x)~], the primals 
kx — e (y — x) = o, lex + e(y-~x) = o, will be the asymptals of the ellipsal, 
and will have no carstigmod. The ellipsal includes the cyclal as a 
particular case. If in fig. 32, OF', OG' (not OF, 00) are taken as the 
semi-major and semi-minor axes; S, Z will be foci, and (mn) a carstigmal 
in the characteristic ellipse. 

(viii.) Hyperbal (h?/perb-ola + al), E and O both on 01, so that 
e2. I\rg is a tensor; no particular relation is needed between len OE 
and len OG, s1 = e2 + g2. The equation remains g2x2 + e2 (y — x)2 = e g2, 
whence e2 (y—x2) = g2. (e2—x2) = % . g2(x — e) (x — f ) , and hence 
YXY' is found by turning the corresponding line of the ellipsal, for 
which <y2 = k2, through a right angle. Hence Poncelet's supplemental 
ellipses and hyperbolas. When X is on I, beyond FF, then XY, XY' 
are parallel to OJ, and the carstigmod or locus of Y, Y' is an hyperbola, 
of which EF is the major, and OH the minor, or "imaginary," axis. 
I t has been usual to represent the minor axis by a line perpendicular 
to EF, and call it imaginary. In fact (og), (oh), which are the stinnals 
of the ordinal with the hyperbal, are incarstigmals, and both points 
G, II lie on the line EF. If, in figure 32, OE" is taken as the semi-
real axis, and 8 the focus of the flat hyperbola there (very indifferently 
indicated rather than) drawn, 00" will be the minor semi-axis, (og") 
being the stinnal of the ordinal with the hyperbal, determined by 
making g"2 = s2—e"2. The primal (oo, og") through (oo) will be the 
ordinal, and have 002 for its carstigmod, and 0G2 is parallel to the 
carstigmod of the tangental at E". If len 0G2 = len OG", 0G2 is the, 
line usually drawn as the " imaginary" semi-minor axis. Similarly, 
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OK being any semi-diameter, OKTis usually drawn as the " imaginary'' 
conjugate semi-diameter, being parallel to the tangent at E, whereas 
it is only the carstigmod of the symmetral (art. 50.) to the diametral, of 
which OF is the carstigmod, and the proper stinnal ($\g) of that primal 
with the curve is found by turning OK through a right angle to OG, 
and drawing GGY perpendicular to OG'. We shall find in art. 50. iii. (3) 
that s2 = e"2 + g"2 = e"2-g\ = e2 + g2 = e2-k2. 

Since e2g2 = [gx—je (y + x)~\ . \_gx—je (y — x)~\, the asymptals of the 
hyperbal are gx+je (?/ — x) = o, and gx—je (y—x) = o, and have a 
carstigmod, which will be found by turning the YXY' of the asymptals 
of the ellipsal through a right angle. Thus, in fig. 32, OL is an 
asymptote to the flat hyperbola on the right, where F"L = OG2. 

(ix.) Hy'perel (l/7OOer-bola + el-lipse, the final-ai omitted for euphony), 
E and G lie anywhere on the plane. This is the general case, to which 
all properties of centrals belong. The equations have the same forms 
as in (viii.) Given X (fig. 32), join XE, XF, make XFY = FX, draw 
KlJthe mean bisector of XE, KK\, and revolve XU through L UXY= 
L EOG, altering its length so that len XU : l e n X Y :: len OE : len OG. 

When X lies on EF between E and F, as at Xx, this construction gives 
Y as at YY, Y\ on an ellipse of which OE, OG are conjugate semi-
diameters. But if X lie beyond E, F, as at X2, the same construction 
gives Y as at Y2, Y', on a con focal hyperbola passing through E (tho 
same as that described in viii.). From this circumstance is derived the 
name liyperel, which thus becomes synonymous with the general cen­
tral quadral. If the ordinate X2Y2 be revolved through a right angle 
to X2YS, its termination will lie on one of Poncelet's supplementary 
hyperbolas, which is however quite useless in this case, as the stigmod 
is sufficiently clear in itself. 

The equations to the asymptals are the same as before; but if we put 
them into the proper distal form (art. 40.), using (xp), (%q) for the 
costigmals in the asymptals, with (xy) in the central, they become 

y—p' = y—x+j. Be. gx, y — q=y — x-j. Be . gx, 

whence (y—p') (.7 ~~ 20 = g2> or the mean bisectors of P'Y, Q'Y = 
OG and GO, as in fig. 32, where pri (oo, xp') and pri (oo, xq) are the 
asymptals. Now 2 (// — x) = y—-y, hence 

v- 4= (y-aO-- (y--0 = **• (y-iO. o r QY= YF, 
a well known property in the hyperbola, but seldom directionally 
stated. (In the ordinary hyperbola, the parallelogram PYQ'Y' becomes 
a straight line.) Also if y — pl = 7r(g—p'), y — qi^^.^j — q'), 
we have (y—p>i) (y — q{) =w2.g2. Hence the above property holds 
for the stigmins of any transversal drawn through (xy) and cutting 
both the central and the asymptals. Also if y—pi=p, y — q\ = q, 
pq = 7T2. g\ or (pq) is the stigmal of an inval depending on the di­
rection of the transversal. And so on for the generalisation of all 
other properties deduced in Plucker's System, p. 91. 

(x.) The unreduced duoquadral equations to the cyclal takes one of 
the forms 2xy-y2 + 2h'x + 2e'y + £' = o, 
or x2-(y-x)2 + 2p'x + 2(j'. (y-x) + Z>'= o. 
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I f T, T' be t he direct ion points of two intersect ing rayals (fib, xy), 
(id, xy), proceeding from fixed s t igmals (fib), (id), t hen 

(b-y) + (t-i)(fi-x) =o, and (d -y) + (t'- i)(i-oc) = o. 

Hence the condition tal TT' = /x, giving fi = ~——-— ,••, 
JL + 1\J (t — % ) + l\j \t> — %) 

is easily reduced to. an equation in x and y, which on multiplying out 
will be found to be one of these two general forms of the cyclal. This 
generalises a portion of art. 3 i . v., and admits of the complete appli­
cation of ray-hommals in the same way as Chasles uses the nomographic 
properties of rays in a circle. This shews also that three stigmals, 
forming a trilateral (aa, fib, yc) determine a cyclal. To construct it 
from them, it is necessary to find the axis, that is, the stigmals of the 
centre, and the major points. On drawing orthals through the middle 
stigmals of two of the laterals, their stinnal is the stigmal of which the 
centre is the stigma. Transordinate so as to make the central stigmal 
(<>o), then (x'y) being one of the transordinated stigmals, draw X'Y' 
so that 2x' = y + y\ and find F, F as double points of the inval 
(oo, yy). On making this construction first in a Cartesian case, care­
fully marking the indices, its nature will be quite clear. A cyclal thus 
given may be noted as eye (aa, fib, yc). 

(xi.) For conals generally, if from (/urn), (vn) rayals be drawn inter­
secting in fixed stinnals (aa), (fib), (yc), and a variable stinnal (ocy), 
and the direction points of the rayals from (f.nn) be Au Bu Gl9 Xi and 
from (vn) be A2, B2, C2, Y2 respectively, then we may find aY—i, a2—i, 
bv — i, b2—i, &c, in the same way as in (x.), whence we can form 
a{ — b! = (a1 — i) — (bl—i), and so on. Then if the movable rayals form 
a ray-hommal with the fixed rayals, wTe have ( a ^ c ^ ) = (a2b2c2y2). 
Substituting the values of av — bu &c, thus found, we obtain as the locus 
of (ocy) a general quadral, of which it is easy to investigate the parti­
cular cases. Also if there be four fixed stigmals (aa), (fib), (yc), (id), 
whence rayals are drawn to a movable stinnal (ocy), and Au BL, L71? Dx 

be their variable direction points ; the condition (a^^dy) = A, reduced 
as before, gives a general quadral. In the latter case, (abed) is also 
constant; hence X = jm (abed), where /u is a constant, or the anral of the 
rayals, now called chordals (chord + al) of the quadral, divided by the anral 
of the stigmata of the fixed stigmals is constant. These contain stigmatic 
generalisations of Chasles's fundamental propositions, Sections Goniques, 
arts. 8. and 4. respectively. They can also be deduced in other ways. The 
deduction in Chasles is made from perspective projections of a circle ; but 
this is inapplicable stigmatically when the centre of projection is not in 
the same plane as the curve. Hence it is not possible to pass in that way 
from the properties of general stigmals of a circle (non-Cartesian as well 
as Cartesian, "imaginary" as well as " rea l " points) by such projections. 
For the same reason it will be necessary to establish a stigmatic theory 
of contact before the corresponding generalisation of the fundamental 
proposition* of tangents can be undertaken. That proposition is proved 
in art. 51. iv. After these chief propositions have been proved, the 
whole of the demonstrations in Chasles's Sections Goniques can be 
adapted stigmatically by mere alteration of terminology. 
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49. Intersections of Duo quadrats by Primals.—(i.) The intersections of 
a hyperel e2(y—x)2 + g2x2 = e2g2 by a primal y—x + tx= b 
give at once (g2 + e2t?)x2 — 2btelx = (g2—b2) • e2 (1), 
whence (g2 + e2t2)x = bte2±eg ^/(g* + e

2t2-b2) (2), 
which is constructed by putting 

et = m, g2 + m2 = n2, n2—b2 = r2, bm = nm , gr = nr', 
whence nx1=z em' + er, nx2 = em' — er. 
In particular cases this construction may be greatly simplified. 

(ii.) There is no intersection, if g2 + e2t2 = o and b = o; for the 
equation (1) in (i.) then reduces to o = e2g2, an impossibility. In this 
case, the primal is an asymptal, as already found. 

(iii.) If g2 + e2t2= o, but b not = o, the equation (1) in (i.) reduces 
to (g2 — o2) + 2btx = o, giving only one value of x, or aparasymptal cuts 
the hyperel in one stigmal only. 

(iv.) If b does not = o, but g2 + e2t2 = b2, then there is also only one 
value of x, produced however not by the reduction of the equation (1) 
in (i.) to a simple form, but to a complete square. This makes the primal 
a tangental at (xy), and on determining t from this condition, and from 
the equations to the primal and the hyperel, we find te2(y—x) = g2x, so 
that (#ijli) being any other stigmal on the tangental, its equation is 

e (y—x) • G/i — ̂ )+g2x . xY = e2g2. 
Hence tangentals to a central can be drawn through any stigmal, except 
the centre stigmal (oo). The whole theory of the tangental and polar 
can now be deduced ; see arts. 50. and 51. 

(v.) For the particular case of the cyclal proceed thus, ^g. 34, where 
the lettering must first be understood in a general, not a Cartesian, sense. 

Primal y — x + tx = b = ct\ cyclal x2 — (y—%)2 = e2; 

whence «, = hi± </(» + ?-**), , = hj*_»+f-**\ 
t'—i ' ^ t + % 

Put (xly^), (^2^2) f° r the two values of the stinnals. 
The orthal from (00) on the primal is t (y — x) + x = 0, and if its 

stinnal with the primal be (mn), and with the cyclal be (M), (%'d')9 
i b bt 72 t — i o 

we have n = ,, m = - — . , dr = .. e , 
t + i t2-% t + i 

whence 2n = yx + y2, 2m = xi + x2, yx y2 = d2, 
so that (nm) is the middle stigmal of chordal (#1^1, #2^2)) and Yu Y% 

lie harmonically with respect to D, D'. 
A1 m-x _ +J(b2 + e2-e2t2) n-y _ = y(b 2 + e2-e2l2) 

AlSO — — , — - , 
m bt n b and (n-y)2 = V+f~~** = n2+ e2. ̂  = n2-d2 = (n-d) (n-d'). 

(c + iy % + t 
(1) First particular case. The primal and cyclal are Cartesian, 

e=S 'e , b = Vb, t = Vt, or Ve = Sb = St = o; e2=rPe, b2=i'.T% 
t2 = 1. TH, b2-I-e2-e2l2 = %. Tlb + T2e + T2e . TH = (i + TH) \T2e-T2n\, 
since Tb = (i+ T2t) . T2n. If then Te > Tn, or the line OB cuts the 
circle (this case is not drawn in the figure), 
U (b2 + e9— e112) = i, and hence V ——- = 0, and S -—^ = o, 
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or XMO is a straight line, and ONY a right angle. This corresponds 
to the case of art. 34. x. But if Te < Tu, as in fig. 34, 

pr(&a + e-_6-*-) = { a n d hence 8 ^ ^ = o, V7-^- = o, 
m n 

or OMX is a right angle, (and hence X{MX2 a straight line perpen­
dicular to OM,) and ONY or YYNY20 is a straight line. In this case 
T* (n—y) = T2n—T2e. Hence set off NZ' or NS of the same length 
as 0E, and with centre Z' and radius of the same length as ON de­
scribe a circle which will cut ON in Y1? Y3. I t is easily seen that this 
construction is the same as that for finding the double points in the 
hommal resulting from the intersections with CB of rays from K, L, 
the extremities of the diameter parallel to G, B passing through any 
points in the circle. Thus the tangents KZ', L8 determine the solitary 
stigma and index, and the rays KB, LD two other points, (drawn but 
not lettered in the figure,) whence Yl, Y% are found. Chasles's defi­
nition of the imaginary points of intersection corresponds to their 
being the double points thus obtained. Then X1? X.% are found by-
making CX]Y1 A GX2Y2 A COB. I t is well to verify by construc­
tion that (x1yl), (x^y^) are really stigmals belonging to the cyclal. 
If XlYl and -X3Y2 are produced to the same length backwards, they 
will fall on other parts of the stigmod corresponding to the indit X^X^. 
This is seen to be a two-branched curve in the figure. The stigmods 
described by two different stigmata for any indit are necessarily so ; 
but the two branches of the carstigmod in this case, as mentioned in 
art. 48. v., coalesce and form the circle, whereby, as so frequently 
happens in Cartesian geometry, the real relations are completely 
disguised. 

Observe that since (n — y)2 = (n—d) (n — d'), if we were to sup­
pose e, and hence d, d\ to vary, (dd') will become the stigma on an 
inval of which N is the solitary point and Y^, Y2 the double points. 
This would give a series of cyclals having the common chordal (x-^y^ x%y2) 
on the primal, of which CB is the carstigmod, and hence being the only 
part hitherto recognisable, was used to represent that chordal and called 
the radical axis. Since (art. 50. ii.) the symmetrals of a cyclal are 
orthal, no generality is lost by considering this chordal to be the ordi­
nal, and taking the origin 0 at N, and the equation to the cyclal as 
(c—x)2—(y — x)2 = (c — h)2 = (c —k)2, so that C is its centre, and UK 
its axis. Let (oe), (of) be the stinnals of the ordinal with this cyclal, 
then the inval becomes e 2 = f 2 = hk, and all the general cyclals which 
the ordinal intersects in (oe), (of) will be found from their axis HK, 
which forms an ordinate in this inval. This at once generalises and 
simplifies the investigation of the properties of this common chordal. 

(2) Next suppose the primal to be Cartesian, but the cyclal to be 
x2—(y—x)2 = g2, where g =je, and is hence a vector. This may be 
distinguished as the vec-cyclal, and corresponds to Chasles's " imagi­
nary circle/' (see below, p. 78, col. 1, at bottom,) which here becomes a 
geometrical reality ; see art. 48. v. In this case, 

b2+g2-g2t2 = i'. T2b-T2g-T2g.T2t, 
and hence 8 *J (b2 + g2 — g212) = o in all cases. Hence we have as 

before S t^=^ = o9 Vn-=$- = o ; but T2 (n-y) = Pn + Tg. 
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Hence make leu NY' = len Y"N = len OZ', and the stigmins Y', Y' 
are determined. Then find X', X" from OX'Y' A CX"Y" A COB. 
The figure shews that X"Y" is a mean bisector of X"G, X"H, and 
hence that (%"y") is a stigmal in the vec-cyclal as well as in the car-
primal. This will suffice to initiate the very interesting relations of 
this case. 

(vi.) CamoVs Transversals for conals may be considered thus:—(1) 
Let two primals through any stigmal (xy) cut the conal whose equa­
tion is (p (x, y) = o, in (xiyi), (^2y2) and (xy), (x"y") respectively. 
Then if A. be the coefficient of y2 in c/> (x, y) and K, K, be coefficients de­
pending on the direction points of the primals (put the equation in the 
distal form, and apply art. 40. iv.), each of the following expressions 
represents (p (x, y), and we have consequently 

K'(y-yi)-(y-y2) = *i - ( y - y ) • ( y - y " ) ( i ) . 
If the second primal is tangental, the second side becomes 

^•{y-y'Y ; . (2 ) . 
If the second primal is a parasymptal, it cuts the conal in one stigmal 
only, and the second side becomes *v3. (y-^y) (3). 
If the second primal be an asymptal, it does not cut the conal at all, 
and ( y - y i ) - ( y — y 2 ) = H (4). 

(2) If two primals be drawn intersecting each other in (xy) and the 
conal in (xxy^), (#2y2) and (xy), (oc"y") respectively. And two others 
parallel to the former respectively and intersecting each other in (t,rj) 
and the conal in (£ini), (£2*?2)> and (£'»'), (£'V) respectively, then 

*(y-y)(y2-y) = *'(y'-y)(y"-y), 

and ic Oh —17) O/2— v) = K (v — V) W'— v), 
so that, on eliminating K, K, 

(yi-y)(y*-y) _ (tf—y)(tf-y)m 

(vi - v) (v2—v) (v — v) 0/"— v)k 

(3) Let the laterals (fob, yc), (yc, aa), (aa, fib), of the tri (aa, /3b, yc) 

intersect the conal in (XZ), (XT), in (pm), (fj'm), and in (vn), (v'n), re­
spectively, and let KY, K2, K3 be the coefficients due to their direction 
points respectively, then 

Ki' (°—l) • ( c ~"0 = K2 • (c—m) . (c — m'), 
K2 . (a—m) . (a—m') = K3 . (a — n) . (a—n'), 
K3.(b-n) ,(b-n') =Kl.(b-l) . ( 6 - 0 ; 

whence eliminating KU K2, K3 we have 

(c—l) (c — l') (a—m) (a—m') (b — n)(b — n') _ . 
(c-m)(c-m)' (a-n)(a-n) (b-l)(b^V)"~' h . 

and this expression holds for non-Cartesian as well as for Cartesian 
intersections. Thus, in fig. 34, the laterals (oo, cc), (cc, ob), (ob, oo) of 
the Cartesian trilateral (oo, cc, ob) intersect the Cartesian cyclal in 
(ee), (ff), in (xxy{), (x2y2), and in (og, oh), respectively, and hence 

gh < ( e-c)(/-c) t (yx-b)(y2-b) = . 
ef (yi-c)(ya-c) (g-b)(h-b) 



66 V. STIGMATIC GEOMETRY, OR THE [ART. 49. vi .—50. iii. 

The position of the triangle then shews that U — —— = i, 
F * . ( y i - c ) ( y a T c ) 

and hence Z CYXB = Z BY2C, which on account of the perpendicularity 
of YiY2

 o n -SO is easily verified, and shews a real geometrical rela­
tion of the " imaginary points" Y1? Y2. 

In a similar way all the other transversal relations may be gene­
ralised. 

50. Symmetrals^or Conjugate Diameters generalised.—(i.) A primal, 
drawn through the stigmal of which the centre of a central is the stigma, 
cutting the central in two known stinnals, is called a diametral, and those 
stinnals its terminals. The major and minor axals (ee,ff), (og, oh) of 
a centra], which in this form are the abscissal and ordinal, are such dia-
metrals, of which the stigmals just named are the terminals. The 
central expressed as g2x2 + e2 (y—x)2= e2g2 has then this property, 
that for any value of x the two values of y—-x are equal and opposite. 
The equations to these principal diametrals are x = o and y—oc = o. 

(ii.) Now, transordinate indicially (art. 47. ii.), putting 
x = ax'+ b(y-x') (1), 

whence y — x — (i — a) x + (i—b) . (y — x) (2). 

Then, putting alternately x'= o, y — x'= o, for the equations to new dia­
metrals, they give, in the old coordination, x=by, x = ay respectively. 
If 1\, T2 be the two direction points of these primals, then b(i—-tY) = i 
and a(;i — t2)=i. Pu t t ing these values for a and b, and then the 
resulting values for x and y—x in the equation to the central, and 
reducing, we find 

^ (gi+eHl)xn-+2(lf+eHlt2).x(y-x) + \=!> (? + <?% ) (y-xj 

= *f (3)-
This therefore w7ill have the same form as before, if g2 + eHf2 = o. 
Hence the pairs of diametrals satisfying this condition form a ray-
inval, and the two rayals in each rayar pair (art. 39. ix.) may be called 
symmetrals (con-jugate, con- represented by sym-, and dvti-metral). The 
double rayals are determined by g2 + eH2 = o, but these are not dia­
metrals, for, putting t = tY = t2, this condition reduces equation (3) 
to o = e2g2, which is clearly impossible. But these double rays are 
the asymptals (see art. 48. viii.), and, calling their direction points 
AUA2, we have tyt2= a2= a2

2, which gives an easy construction, when 
the asymptals and one symmetral is known, to find the other sym-
metral. In the cyclal, since e2 + g2 = o, we have tf2= i, or the sym­
metrals of any pair in the cyclal are orthal. 

(iii.) Let (uc, u'c), (vd, vd') be two symmetrals expressed by their 
terminals, having the direction points Tx, T2. Let a primal from (uc) 
orthal to (yd, vd') cut the latter in (mm) having the direction point 1\ 
so that t2p1 = i. 

Then g2u2 + e2(c-u)2 = e2g\ g2v2 + e2(d-v)2 = e2g2, 
i J. J "tf ii (c — u)(d — v) ulY = u—c, vt2 = v—d, i ^ = l1l2= ^ -• 

UO 
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Substituting from the third and fourth in the first and second, and 
reducing by the fifth of these equations, 

g2t\e2 = (c-u)2. (g2 + t\e2), e2t\e2=v2. (t\e2 + g2), 

u . (c — u) + v . (d — v) = o (1), 

u2 + v2 = e2, (c-*t)2+(d-v)2=g2 (2), 

c* + d2 = e2 + g2 = s2 (3), 

v . (c—u) — u(d — v) = i e .g (4), 

C — m V\—i U — U i x. A^ •• 
= L-1—- • - — - , by art. 41. n., 

c tY — i pi —12 

Bt2—i tY — t2 d v (c — u)—u (d—v) 
~~ tx—i ' llt2-t2 ~~ ~c~~ ' (d—v)2-v2 ' 

whence (c — m) . (2v-d) = ± eg (5). 
These are generalisations of mostly well known properties, but (3) 

was I believe never noticed till my second memoir on Plane Stigmatics 
(14 June, 1866), though it gives a very neat and useful construction by 
art. 33. v. for finding the focus from any pair of symmetrals of which 
the terminals are known, or the terminal of a second symmetral from 
the foci and one symmetral. Compare especially Chasles, Sect. Con., 
art. 205, and observe that that article applies only to the ellipse and to 
the case of " r e a l " or Cartesian symmetrals, whereas the present equa­
tion applies generally. The reduction of these to the usual tensor 
relations in the Cartesian case of either ellipse or hyperbola presents 
no difficulty. 

(iv.) Putting for tY, t2 the values in (iii.), we have for the transor-
dination in (ii.), 

x . v — X U , . V , ,. 

^ = ̂ ; + ̂ = 7 ' a + 7-(^-^' 
î / . t2 , /x c — u , . d — v , /x 

y-x = —l-. . x + —--. . (y-x) = . x + —— (y-x), 
Cj — % r 2 — % c a> 

and then substituting in the equation to the central and reducing by 
(iii.), we find dV2 + c2 (y—x)2 = c2d2, 
so that the central referred to symmetrals has always the same form. 

51. Tangentals, Polals, Polarals, Focals, Confocal Centrals, and Curva-
cyclals, or the Relations of Tangents, Poles, Polars, Foci, Confocal Conies, 
and Circle of Curvature, generalised.—(i.) Notation as in art. 50. If T0 

be the direction point of the tangential to a central at (uc), and TY, T2 

those of the diametral (oo, uc) and its symmetral, it appears by the 
equation to the tangental in art. 49. iv. that 

n u ./ a 
t0 = -4- • = i -f—, by art. 50. iii., = t2, by art. 50. ii. 

e- c — u eztY 

The tangental is consequently parallel to the symmetral. 
(ii.) If the double point of the tangental at (uc) be TV, it appears by 

the equation in art. 49. iv. that uw = e2, or Z7, W are harmonically 
situate with respect to E, F. As the stigma C does not appear, the 
co-stigmal (uc') will have a tangental with the same double point. On 
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account of art. 49. iv. the same is true for the co-stigmals of any index, 
when the central is referred to symmetrals. Hence, to draw two tan-
gentals to a central through a given stigmal (w'w), first draw a diametral 
(oo,uc) through that stigmal, then its symmetral (oo,vd), and then deter­
mine the terminals (uc),(vd) of both. Find K'so that x. w = c2, and taking 
K'as the index of a stigmal referred to the symmetrals as axals, find its 
stigmata YY, Y2, and then find the indices XY, X2 of these stigmata referred 
to the old axals. The two tangents referred to the symmetrals are 
(ww, x'yi) and (ww,-x'y2), and referred to the old axals are (w'w, xxy^), 
(w'w, x2y2). 

(iii ) The primal (##1, ^2) ov contact-cliordal is the polaral (polar + al) 
of the stigmal ^v'w) in reference to the central, and this stigma is the 
polal (pol-Q + al) of that chordal. The properties of these stigmals and 
primals depend upon the inval equation x'w = c2 by which they were 
determined in (ii.). 

(iv.) " If through four fixed stigmals in a central there be drawn any 
four tangentals, intersecting any fifth tangental, and also four 
chordals meeting in any fifth stigmal of the central, the anral of 
the four stigmins of the four first with the fifth tangental will be 
equal to the anral of the direction points of the four chordals." This 
is the stigmatic expression of Chasles's fundamental property (Sections 
Coniques, art. 2.) referred to in art. 48. xii. The following is the de­
monstration I gave in 1866, in my second memoir on Plane Stigmatics, 
art. 110, reduced to the present terminology. 

The anral of the four chordals remains unaltered, whatever be the 
fifth stigmal to which they are drawn (art. 48. xi.); hence it is sufficient 
to prove the proposition for any particular position of the fifth stigmal. 
Assume it to be the contact stigmal of the fifth tangental with the cen­
tral, and through the stinnals of the four tangentals with the fifth, 
draw four rayals to the stigmal of which the centre of the central is 
the stigma. These will be symmetrals to the diametrals which are 
parallel to the four chordals (as they are all contact chordals), and 
their direction points will have the same anral as the direction points 
of these diametrals (on account of the inval, art. 50. ii.), and hence as 
the anral of the direction points of the four chordals. But the direction 
points of the four rayals have also the same anral as the four stigmins 
of the four tangentals with the fifth, through which the rayals were 
drawn (art. 42. iii.). Hence the proposition is established in all its 
generality for all central quadrals, Cartesian or non-Cartesian, and 
consequently all deductions made from it, by adapting the reasoning in 
Chasles's Sections Coniques to the stigmatic generalisations, must also 
be necessarily correct. For non-central quadrals, see art. 52. xii. 

(v.) If B be the original point of the tangental, and T its direction 
point, then, by art. 49. iv., a2 + e2/,2 = b2. Hence, if tangentals be 
parallel to the asymptals of a cyclal, that is, be parassal, so that t2 = i, 
we have b2 = g3 + e2 = s 2 = #2. Hence all such tangentals contain the 
stigmals (os) or (oz). In this case then the equation to the tangental at 
(xy) reduces to y = s or z, and 2x—y = s or z. 

Now the double points in both cases are (ss) or (zz). Consequently 
there are four primals (ss, os), (zz, os), (zz, oz), (zz, os), having either 
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S or Z as the double point, and also either S or Z as the original point, 
which possess t he p roper ty of be ing at once parassal and tangenta l to 
t he cen tral . These two points, 8, Z, are known as the foci, and the four 
s t igmals (ss), (os), (zz), (oz), may be t e rmed the focals. By confusing 
foci with focals (i.e., s t igma ta wi th s t igmals, as usual in Car tesian geo­
m e t r y ) , P lucker (System, p. 10(3, 1. 6) recognises four Brennpuncte or 

foci in a cen t ra l ; two real, lying on the major axis ,— these are the focals 
(,9s) and (zz) ; and two imaginary, lying on the minor axis ,— these are 
t h e focals (os), (oz). This resul ts from his definition of focus, which 
is really only that of focal. Salmon (Gonics, 3 rd ed. p . 233, 4 th ed. 
p . 242) also says that the two imaginary points , meaning the two s t ig­
mals (os), (oz), " m a y be considered as imaginary foci of the curve ." H e 
also speaks of a quadri la teral , corresponding to that s t igma t ic quadr i ­
la teral of which the four are the four tangenta ls j u s t named. Chasles 
(Sections Coniques, ar t . 294) speaks of this quadri lateral , bu t recognises 
as foci two only of its apicals (ss), (zz), as will be found only t r ans la t ing 
his language s t igma t ical ly. H i s words are : " Les foyers d 'une conique 
don t les deux sommets reels d a quadr i la tere imaginaire circonscri t a la 
courbe, e t dont les points du concours des cotes opposes sont l e s 'deux 
points imagin aires si tues a Pinfini sur u n cercle." Points, which are 
e i ther indices or s t igmata , should be kep t dist inct from stigmals, which 
consist of s t igma ta referred to indices. I f we use foci for the points, 
t h e r e are bu t two in a central , de termined by s2 = z2 = e2 + g2 = c2-\-d2, 
b u t there are four focals, which, referred to the principal axals, are 
(ss) , (zz), (os), (oz), the first two on the abscissal and the second two 
on the ordinal. I n fig. 32, S' is so t aken t h a t ss' = e2, hence the ordinal 
t h r o u g h (sV) is the contact-chordal for t angenta l s from (ss). Conse­
quent ly (s 's), which is a s t igmal in the pa runa l t h rough (ss) , mus t be 
t he s t igmal of con tac t . I t is readily seen by ac tual cons truct ion that 
(s 's) is a s t igmal in the central . I f for any indi t through S' we find the 
corresponding s t igmod for the cen tral , and also for t he parunal , the 
la t ter wou ld remain the po in t S. and hence the fact of contac t would 
no t appear to the eye. B u t on t u rn ing all. t he ordinates t h r o u g h a 
r i gh t angle, we obtain supplementary figures in which the contact is 
visible. Fo r i l lustrat ion th is is shewn in fig. 32 for the car-ellipsal 
e'2(y—x)2 + (/2x2=e'2g'2, in the t angen ta l from (zz), of which the con-
tac t -chordal is the parordinal (z'z, zzY), where zz' = e'2. The ordinates 
turned t h r o u g h a r i gh t angle generate one of Poncele t ' s supplementary 
hyperbolas , and the t angen t to th i s from z represents the s t igmod of 
t he actual tangenta l , and is seen also to be a t angen ta l from (zz). I t 
m u s t be remembered t h a t th is a r r angemen t in the figure does not 
r ep resen t the actual s ta te of th ings , bu t merely serves to make i t clearer 
to the eye by separa t ing points which would have otherwise coalesced, 
or have lain on t he same s t ra igh t line. 

(vi.) " If pai rs of rayals be d r awn from any focal of a central to the 
corresponding stinna ls of a movable tangenta l and two fixed tangenta ls , 
t he t anna l of the direction points of the rayals will be cons tan t . " 
This is a generalisation of Chasles (Sections Ooniques, art. 293), and 
applies to all four focals ; t he demonstra t ion follows from art . 43 . iii. 

(vii.) " The sum of the tannals of the direction points between the 
rayals d rawn from any st igmal in a central to the two focals (ss), (zz), 

F 
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or of those drawn to the two focals (os), (oz), and the normal (or orthal 
to the tangental at the point) is null." This is a generalisation of the 
property whence the foci received their name. The existence of this 
property for both pairs of stigmals (ss), (zz) and (os), (oz), justifies 
therefore the application of the term focal to all four. 

Let N! be the direction point of the normal (that is, the orthal to 
the tangental) at (xy), and $ b ZY; S2, Z2, the direction points of the 
rayals from (xy) to (ss), (zz), (os), (oz) respectively. Then, art. 49. iv., 

(y—x).e2 , ., y—-x y—x x~y 
nx = -+ — , while sx = - , zY = * = — S 

x. Cj" s—x z—x s + x 
x—(y—s)__s — (y—x) x—(y—z) s + (y—x) 

X X X I .X ' 

Hence tal S..LV. = i - = ^ = ' • ̂ ~x) = P=^- = tal NXZU 
i—Siiii g ^ — zlnl 

and tal S2NX = f-~w» = i ^ = p=h. = tal NXZ,. 
i—SiUi e1 i—niz2 

(viii.) Theequations s2 = e2 + g2 = e'2-r-g'2 = e"2 + g"2, fig. 32, point to 
a series of conals with a common centre 0 and common foci S, Z. 
These are called confocal centrals. If we put e2=x2, g2=(y — x)2, these 
equations reduce to s2 = x2+ (y — x)2, which gives an equiperbal (art. 48. 
vi.) whence, given S, Z, the whole system can be found. If we assume 
any pair of values ofe, g, to give a standard hyperel, then by art. 50. 
iii. (3), another pair, as c, d, will give terminals of symmetrals, which 
must be referred to indices by being taken as clinants of stigmata in the 
hyperel determined by the other. 

To find the stinnals of two confocal hyperels (ee, oo, og) and (eY, oo, og), 
g2x2 + e2(y-x)2 = e2g2, g'2x2 + e'2(y-x)2 = e'2g'\ 

where s2 = e2 + g2 = e'2 + g'2, fig. 32. 
These equations give s2x2 = eV2, s2(y—x)2 = g2g'2. 
If then T, T' be the direction points of the tangentals to these hyperels 

X> Q X O 

at (xy), we have t = . ^ , t' = . ^ 
J/ y — x e2 y—x e1 

so that U = i, or the tangentals are orthal. This stinnal is very nearly 
the (x2y2) of fig. 32. If in the same figure we take the Cartesian 
ellipsal ((J'e, oo, og'), and the confocal Cartesian hyperbal (e"e", oo, og"), 
their stigmin is JH, and the perpendicularity of the carstigmods of the 
two Cartesian tangentals at E is evident. 

(ix.) The theory of transversals in art. 49. vi. is sufficient to determine 
the curva-cyclal (curva-txxre + cyclal) to any conal whatever. 

Let (a<i), (a'a'), (fi'b') be three stigmals in a central. (The reader 
should draw a Cartesian case; there was no room for the figures.) Draw 
the chordal (aa, a!a), and through (fi'V) draw an orthal to this chordal, 
cutting it in (XT), and also cutting the central again in (fib), and the 
cyclal drawn through the three first stigmals, in (Sd). Take 2JU = I3 + /3', 
2m = b + b', and through (^m) draw a primal parallel to the chordal 
(aa, a a'), and cutting the central in (yc), (y'c). Let (w'w) be the stigmal 
of which the centre of the cyclal is the stigma, and draw the symmetrals 
(w'w, p'p), (w'u), qfq), parallel to the chordals (aa, a'a) and (fib, jj'b'), so 
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that (to—p)2+ ((*> — q)2 = o, because, being orthal, they are symmetrals 
in a cyclal, art. 50. iii. Then by transversals, 

in the cvclal ( ^ - - ^ ( ^ Z ) - ^ " ^ - i' (1) 
in the cyclal ( a _ j ) ( „ ' _* ) ~ (a>-p)2 W ' 
• «. 4-1 (o-l)(b'-l) (b-m)(b'-m) i'(b-m)2

 l0. 
in the central ^ - - ^ - - — ^ = ) ^ ^ = --—--7--— ...(2), 

(a — I) (a— I) (c — m)(c—m) (c — m)(c—m) 
and by division - — - = _ - — \ -J . . . ( 3 ) . 

J d-l (c-m) (c -m) v J 

This holds for all circles. Now take the circle which is the limit as 
A, A', B' approach L. The tangental at (\l) will be the limit of the 
chordal (aa, a a'), and since the normal to it in the cyclal will be a 
diametral, (w'10) will lie on (Al, Sd), and d — l = 2(io — I). Also 
b — I = 2 (b — m) = % . 2 (I — m). Hence the last equation becomes 

l_u = (e-m)(e'-tn) 4 ) 

l — m 
a new expression, giving an easy construction for the axis of the. curva-
cyclal at (\l) in the general case by making UMG A G'ML and 
LQ, = UM. 

For the general form of the usual expression for centrals, from (00) 
draw an orthal to the tangental cutting it in (pr), and, parallel to the 
tangental, a diametral to the conal cutting the latter in (vn), then 
<o-l = n2.Rr. Make VON A NOB, and DO = OV. 

52. Parab'bals.—(i.) There is no figure. If the reader will draw an 
ordinary Cartesian parabola with vertex 0, focus S, parameter OD = 
408, directing point D, when DO=OS, axis OF, ordinate XY, he will 
probably experience no difficulty. 

(ii.) Putting 4s=e, the general equation to the parabbal (art. 48. iii.) 
is (y—xy + ex=o. To construct Y, join XO, draw OF = FO, and 
make X Y equal to the mean bisector of OF, OX. If X is on O_, the 
stigmod is the usual parabola. As long as X is on any straight line 
through 0, as OXl5 the ordinates remain parallel to each other and len XY 
= len XxYi, where X{YY is the Cartesian ordinate at Xx and len OXY = 
len OX. Hence the locus of Y is again an ordinary parabola, with 
"diameter" OX, and tangent at O parallel to XY. If the index X 
move on OF, away from S, then XY, XY' lie on OF, and one of the 
stigmata will encroach on OS, but never farther than S. If these or­
dinates be turned through a right angle, the result is an ordinary pa­
rabola with focus D and axis OD. If X fall on S, (y — s)2 + 4s2 = o, 
and len YY' = len OF. If X fall on D, (y-d)2' = 4s2, and if 
2d = s + sr, then (ds), (ds') are the two stigmins of the directrix 
d — x = o with the parabbal. In all cases 

(d—x)2 = (s + x)2 = (s—x)2 + 4sx= (s — x)2—(y—%y, 
which is the generalisation of the property whence the directrix was 
named, giving in the Cartesian case, len SY= len D_7. 

(hi.) To determine the stinnals of the primal y — x + tx = b with the 
parabbal (y — x)2 + 4sx = 0, we find 

fx2~2tbx + b2 = 4dx , (1), 
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whence t2x = bt + 2d±2x/(btd + d2) (2). 
In the general case this is best constructed as in (viii.). 

(iv.) If t = o, or the primal is parabscissal, (i.) becomes b2 = 4<dx, 
and hence there is only one stinnal. Such primals are termed par­
axials (par-& + axis + al) in preference to diametrals, a term applicable 
to central quadrals only. There is no asymptal. 

(v.) If bt=s, there will be only one stinnal by the reduction of (1) 
to a complete square. I n this case t(y — x) = 2s gives T, the direc­
tion point of the tangental at (xy), of which, if (x^jj) be any stigmal 
upon it, the equation is (y\—ocY) (y—x)+2s (x + xx) = o. 

If N, P be the double and original points of tangental at (xy), 
n + x = o, p = \(y — x) = s . Bt, t = s.Bp, 
n = p . Bt = s . Brt = p2. Bs, p2 = sn = i . sx. 

If T' be the direction point of pri (ss, op), then r=p . Bs=Bt, or 
rt=i, so that this primal is orthal to the tangental. Also, since 
s (s—y) = s \_s — x— (y —•ac)'] = s (s+p2 ,Bs—2p) = (s—p)2, SP is the. 
mean bisector of SY, SO. These generalise known properties. 

The valne of JY being independent of Y, two tangentals can be drawn 
from (nn)t and the ordinal (xy, xy') will be the contact chordal. 

(vi.) Transordinate indicially; assuming x=u + a (x—v) + b (y—x'). 
The equations to the new axals found by putting y=x', and x'= v alter­
nately, are x=u + a(y — v), x = u + b (y — v), which intersect in (uv). 
Substituting in (?/—-x)2 + 4isx = o, and assuming (v—-u)2+ 4su = o, 
a=i, (v — u — 2s) b = v—^l, in which case (uv) is a stigmal on the 
parabbal, and the new axals are a paraxial and a tangental at (uv), 
we find (// — x')2 + 4< (s — v) . (x' — v) = o, an equation of precisely the 
same form, as before. To find Y from X', draw VZ= 4$V, and take 
XY equal to mean bisector of VX', VZ. 

(vii.) Let (x"y") be a stigmal referred to the axals in (vi.), and let 
2v = x" + x', then 

(y"—x"f = i'. 4 (s—v) . (x'— v) = i. 4 (s — v) (v—x) = i'. (y—oc)2, 

and hence these ordinates are of equal length and at right angles, so 
that (x"y") can be constructed from (x'y). 

(viii.) To determine intersections of pri (aa, ob) with the parabbal, 
see ( i i i ) . Draw tangental (nn, op) parallel to (aa, ob), touching 
parabbal at (uv). I t is determined by bp = as, bn = ap, u + n = o, 
v—^o = 2p; see (v.). Through (uv) draw a paraxial, cutting pri (aa, 
ob) in (wx") and find (x"y{) and (x"y2) as (x'y") was found in (vii.). In 
the Cartesian case Y{Y2 is perpendicular to AB. Then (x"yY), (x"y2) 
are the stinnals referred to the paraxial and tangental as axes, and 
YY Y2 are the required stigmins. To these the indices Ki, X2 referred 
to the old axes may now be found from the primal. But since 
^v—^l = x"—v, (v—u—2s)(xi-—w) = (v—u)(yl—x"), we find on sub­
stituting in (y\— x") + 4 (s — v)(x"~--v), that (XY—W)2 + 4M;(U—W) = O, 
so that (u'^i), (wx2) are stigmals on a parabbal of which (uu) is the 
vertical, and (oo) the focal. In the Cartesian case the same equations 
shew that if Yx W\ be drawn perpendicular to the carordinate WX", 
then wl— x"= xl — ̂ v = w-—x2, which give Kx and X2 immediately. 
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(ix.) For tangentals from (hk). Through (hk) draw a paraxial cut­
ting parabbal in (uv), take 2v = x" + lc, and find (x'y^), (x"y2), as in 
(viii.), then (kk,x"iji),(kk9 x"y2) are the tangentals referred to the par­
axial and tangental at its extremity, and (hk, Xij/i), (hk, x2?/2) the same 
referred to old axes, and (xiyl9 x2y2), that is (aa, ob) in the chordal of 
contact, or polaral of the polar (hk). The paraxial through the stinnal 
of the tangentals cuts the chordal of contact at its middle stigmal. 

(x.) For focal. If in iv. (2) we put bt = s, for tangental, and make 
t = i or i', we obtain as the equations to the parassal tangentals (see 
art. 51. v.) y = s, and 2x—y = s, or the primals (ss, os), and (ss9 od). 
There is therefore only one focal (ss) where these two tangentals inter­
sect. The stigmals of contact are respectively (ds), (ds') where 
s + s' = 2d, and hence (compare ii.) the contact chordal is the directrix. 

(xi.) If Ni be the direction point of the normal or orthal on tan­
gental at (xy), and Si of the pri (ss, xy) from the focal, then 2snx = y—x9 

(s—x) Si = y—w, whence tal $iNi = nx = tanNiO, which is the gene­
ralisation of the property that gave its name to the focus ; see art. 51. vii. 

(xii.) To demonstrate (art. 51. iv.)for parabbals, proceed thus! From 
any stigmal on a parabbal draw chordals to four other stigmals on it, 
and draw tangentals at all the five stigmals, and through the stin-
nals of the last four tangentals with the fifth draw paraxials (having 
therefore the same anral as the stigmins of these tangentals), these will 
pass through the middle stigmals in the four chordals of contact, and 
hence have the same anral as the original points of four paraxials drawn 
from the first four stigmals of contact (art. 46. vi.). But this last 
anral is equal to the anral of the four chordals, which is again equal to 
the anral of four chordals drawn from the same four stigmals to any 
other stigmal. 

(xiii.) The anral of the stigmins of four tangentals with a fifth is 
equal to the anral of the direction points of these fonr tangentals ; see 
Chasles Sec. Gon. art. 58, where, as the tangentals have no common 
stinnal, he has been obliged to invent a new name, not here required. 

Let the four stigmals of contact be (aa), (fib), (yc), (cd), and the 
four stinnals (a a), (fi'b'), (yc), (%'d'), and the four direction points of 
the tangentals at the four first stigmals be Ax, Bh 0l9 Dx; and the ori­
ginal points of the paraxials be A", B", G", D". Then, by (v.), 

2a"—a-a = 2s.Ra1, 2b" = b-fi = 2s . Bbu &c, 

hence (a'b'c'd') = (a"b"c"d") = ( ^ i - g i ) ( ^ i - ^ i ) = ( 0 l & l c A ) . 
(lial-'Bd1)(Bc1—Bb1) 

53. ^Riltindicials, or the meaning in Plane Geometry of Algebraical 
Equations iviih several Independent Variables.—(i.) In stating the gene­
ral conception in art. 36. i., only one index, X, was mentioned, for clear­
ness. But it is evident that in the equation f(«i, x2, ... xn, y) = o, 
the points Xx, X2, ... Xn may be assumed as indices respectively, and 
the resulting values of y determined, giving stigmata of which each 
one corresponds to many indices. Such stigmatics are distinguished 
as mulUindicials. Hence there is no need to proceed beyond plane 
geometry for the perfect treatment of the relations of all such equa­
tions as are now referred to real geometry of three dimensions or ima-
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ginary geometries of n dimensions. As long as commutative algebra 
only is used, the stigmatic conception, with the algebra of clinants, 
allows of every result being clearly and distinctly considered as the al­
gebraical expression of a geometrical relation of points on a plane. 

(ii.) But multindicials as well as sol-indicials (having one index) may 
be treated in the manner which originally suggested itself to me (Ap­
pendix III.) by assuming 0&i, 0E2, 0&s... 0 # n , OH', as unit radii, and 
determining a point R, by the condition r = xx^ + x2£2 + ••• +®ntn + yrl' 
This is what is in fact done in Cartesian geometry, in the form 
r = xi+yr), only scalar values of x andu being then admissible, whereas 
clinant values give the complete generalisation. We have thus derived 
stigmatics, of which the most general form would be 

r = -^C/i(»i, xi •• »», y) •&, /.(-*-, #2 •. «», y) .&, ] . 
Some of these I investigated in my original papers of 1855 and 1860, 
(see Appendix III.,) and the results are sometimes very curious. 

54. Solid Stigmatics.—(i.) The Cartesian solid geometry results from 
a species of the derived stigmatics just mentioned, 01, OJ, OK being 
three unit radii (here supposed to be rectangular) of a unit sphere, and 
R the point that we wish to investigate ; on assuming OR = x . 01+ 
y. 0J+ z . OK, any equation f(x, y, z) = 0, will, for any given values 
for x, y, determine values of z. If the given values of x, y, and the 
determined values of z, be all scalar, the point _5 can be drawn. But 
if they be not scalar the conception is insufficient to determine R, until 
it is supplemented in various ways, and hence the custom of supposing 
R to become an " imaginary point," the fact being that no provision 
had been made for this case. 

(ii.) Among such provisions as might be suggested, the following 
would always give a position for R, which would agree with that now 
assigned so far as the Cartesian case is concerned. Suppose OIJ to be the 
clinant plane, but suppose it also to be movable, and that it can be 
placed so as to make OF, OJ coincide with 01, OK, or with OK, 01 
respectively. This amounts to saying, allow OJ, OK on the plane 
JOK, and OK, 01 on the plane KOI to function as 01, OJ on the plane 
01. In this case, x. 01 gives a line OXx on the plane 10J; y . OJ gives 
a line OTi on the plane JOK; and z . OK gives a line OZx on the plane 
KOI, with perfect certainty and distinctness; and then, as before, 
OR = O-Zi + 0 Yi + OZi, by the usual operations of directional addition 
of directed lines in space, R being the summit opposite to 0 of the 
parallelopipedon of which OXY, OYx, OZY are adjacent sides. This is 
only one out of numerous possibilities. I t is clearly not a general con­
ception. It is merely one of those geometric contrivances ad hoc, useful 
enough as illustrations, but not suitable for universal adoption, like 
Poncelet's supplementary ellipses and hyperbolas, all very well in their 
way, but needing no farther notice in a Tract on principles. 

(iii.) Clinant or purely commutative algebra is not adapted for the 
purposes of solid geometry, which involves non-commutative operations, 
when the plane on which the similar triangles are to be constructed, is 
constantly movable. The required instrument is furnished by quater-
nionsj but the resultant stigmatic geometry differs from the former, 
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owing to the variability of plane. In clinants, two points, 0 and J, 
could be considered fixed, and one only, X, being variable, could pass 
into any point of the plane, and hence determine any triangle on that 
plane. Now it might also pass into any point in space, but in doing so 
it would determine triangles only on such planes as intersect in 01. 
To complete the geometry of space, the standard line must be itself 
movable, but its origin may be fixed, and the length of its initial limit 
may be unchanged. Let then OM be a unit radius in the same unit 
circle as before, so that OM = m. 01, and Tm = i, where m is a eli-
nant. OM may be called the (unit) base, M the base point. Let .J? be 
any point in space, which may be called the vertex. Then MOX will be 
any triangle on, or parallel to, any plane in space ; and if OA be any 
line parallel to the plane of MOX, it is possible to construct AOB AMOX, 
and thus determine B. The operation thus performed is called a qua­
ternion, and may be represented by xm, the subscript letter referring to 
the clinant ra, so that OB = xm . OA. This is the operation, differently 
conceived, of which Sir W. R. Hamilton has investigated the laws, and 
we see that clinants are quaternions with a constant base point and con­
stant plane of rotation, or for which xm always = x{ = xm on the 
plane IOJ. Now assume the laws of quaternions as established 
by Sir W. R. Hamilton, and let yn be some other quaternion, and let 
0 (xm, Vn) = °' Then, so far as this equation can be solved, (which is 
not very far, for Sir W. R. Hamilton only solved the equation of the 
first degree completely,) the assumption of any two points M, X, form­
ing a quin (au-aternion in-dex) will determine two other points N, Y, 
forming a quas (oua-ternion s-tigma). The relation then is not one 
between two points, index and stigma, forming a stigmal, but between 
two pairs of points, quin and quas, forming a qual (ou-aternion stigm­
al), and hence partakes of the character of the relation between an indi-
stigmal and a stigmo-stigmal in the case of a transordinated stigmatic, 
(art. 47. i.) This bare statement of the conception must here suffice. Solid 
stigmatics, and the correspondence of points lying in different planes, 
lie beyond the scope of this Tract, although the geometry here developed 
allows of such correspondence being expressed in various particular 
cases, by the aid of conventions similar to those in (ii.) and those indi­
cated in the first case of art. 44. iv. 

CONCLUSION. 

55. Such is my Stigmatic Geometry. The sketch is rough, and bare 
of detail, but the outline is, I trust, sufficiently firm and true for Ma­
thematicians to recognise the main features of my Theory, and to 
justify my own confidence that Clinants and Stigmatics are a New 
Power in Mathematical Analysis, a New Instrument for Geometrical 
Investigation, and a New Form of Life for Algebra. 
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