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(2) If ®~ab is not = o, then, fig. 21, putting 2m = a+b and

2p = a—0b, on adding m? to each side we have

(w——m)z'— m2—ab+c = p*+ c* = 2’ or n”?,
where NV, N” are constructed as in art. 33. v., and 2 = m4+n =2, or
2 =m—n = m+n=az". The mean bisectorsof X’4, X’B and X"4,X"B
are X'IJ, X'II' and X"F, X"I", which are = OC, OD respectively.

(3) If p’+¢* =0, or OP, OC are of the same length and at right
angles to each other, fig. 22; then n = n’ =0, and the two positions
X', X” coalesce at M, so that there is only one position which satisfies
the conditions. The mean bisectors of MA, MDB are MG, MG.

(x.) To determine the points where a line perpendicular to 04 cuts
a circle with radius OB.

As in iii. (2) we have in the line S.2Ra =+, and as in (vi.) for the
circle T2 =T". Then, by art. 26. vi., 2Ra+XK.aRa = 2SzRa = 2i,
and «K» = 7"b, whence eliminating Kz, we have

2? = 2az— Ua . T,
and @ = axUs/(T?a—T%) ;
whence 2. Ra =1+ RTa./(T?a—T).

Unless then Tao =< Tb, S.2Ra will not =<, and this is therefore
the condition of possibility. There are no ‘“imaginary” intersections.
No “imagination” can make ¢ = i==F, where & is not = o, for this
would lead to the impossibility of Appendix IL. A circle and straight
line have therefore nmo “imaginary’’ intersections. This term applies
only to a derived case, considered in art. 49. v. The meaning of this
distinction is assigned in art. 36. v.

‘When Ta—Tb z=a, and there is only one point of intersection 4.
When Ta<Th, @ = axj.Ua. /(T?—Ta), which gives the two points
determined by drawing X'AX” perpendicular to OA4, and making
len AX' = len AX" = lenrrth of the perpendicular of a right-angled
triangle, of which the lenoths of base and hypothenuse are the lengths
of 04 and OB respectively.

V. StieMATIc GEOMETRY, OR THE CORRESPONDENCE OF POINTS IN A
Prane.

85. No previous complete representation of Algebra by Geometry.—
Some of the results hitherto adduced have been already obtained
(although less directly, and always by a more or less implied use of
limits) from various geometrical explanations” of ‘“imaginaries,”
advanced with some degree of hesitation, often on metaphysical grounds,
and (except by Sir W. R. Hamilton) always by means of “complex
numbers,” or clinants of the form Sa+jWa, where Sa, Wa were con-
sidered as the limits of convergent ‘possible’” (that is, scalar) series.
The class of problems embraced under the theory of Stigmatics have
also been attacked with immense acuteness and wide success, in parti-
cular instances, but the occurrence of imaginaries have constantly baffled
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the very lions of mathematical science, towards whom I feel but as the
mouse that gnaws their net asunder by my clinant teeth. My firm
belief is that there is not known to exist any intelligible, workable
general theory but my own, nay, even any tenable, hypothetical parti-
cular explanation of the geometry of those imaginaries which constantly
occur in the algebraical plane geometries of Descartes and Pliicker, or
the higher plane geometry of Chasles; and that, until such a general
theory has been furnished, there is no complete representation of geo-
metry by algebra, or of algebra by geometry. The solution of this pro-
blem, the furnishing of one general theory which will embrace all cases
of plane geometry from a single simple point of view, which shall never
meet with any difficulties by the way from ‘imaginary” lines, *“ima-
ginary ”’ angles, or ¢ imaginary ” figures; which shall make every step
in every problem a pure piece of geometry (conceding the division of
angles in any ratio and the interposition of any number of geometrical
means between two extremes); which shall, in fuct, identify Algebra with
Gleometry,—this has been the ideal of my mathematical life, and I
believe that it has at length been realised to the letter by means of my
clinants and stigmatic geometry.

Other labours have hitherto prevented me from sending it out in the
form I have always wished to give it, with numerous illustrative and
comparative diagrams ; and I amn now so far advanced in life that my
power ever to do so becomes very problematical. The following
brief notes, which contain my last unpublished notations and nomencla-
ture, will enable any one of those distinguished mathematicians to whom
they will be sent, it he finds time to scan them, to apply my theory far
better than I could do it myself. Those who care to learn the history
ot the birth and growth of my conception of Stigmatic Geometry will
find it in Appendix III. On the facts therein detailed, and on the
citations from the works of eminent mathematicians in Appendix IL.,
I distinctly claim originality for a conception, in forming which I have
not obtained a scrap of help from the best writings of the best writers
that I could consult., The mouse asserts her teeth.

36. General Conception of Stigmatic Geometry.—(i.) Let X and Y,
fig. 23, be two points on a plane, connected by the clinant equation
f (¢, y) = o, which, so far as it can be solved, or so far as the proper-
ties of clinant equations are known, will enable us to construct the
different positions of Y for every assumed position of X, (that is, with
certainty so far as biquadratic equations extend,) and to deduce various
relations between X and Y in all other cases. The continuous corre-
spondence of the points X and Y, given by any such law, while X moves
continuously over the plane, forms a stigmatic. The point X, which
moves independently, is called the @/dex, and geometrically represents
the independent variable z. The point Y, which is determined from X
by the given law f (, ), is called the stig’ma, and geometrically repre-
sents the dependent variable y. The pair of corresponding points,
index and stigma, is termed a stigmal, (stegm-a+al ; see an explanation
of the origin of this nomenclature in Appendix IIL,) and is written
(XY), or (ay), or (», %), according to convenience. The line OX is
called the ahscis'sa, the line XY the or'dinuate, and the line OY the ra'dius
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of the stigmal (@y), and #, y—=, y are their clinants respectively.
These three lines form the sides of the stigmal triangle OXY. To

each index there may correspond several stigmata, in the same or dif-
ferent stigmatics. Stigmals with a common index are called co-stigmals,
and their stigmata are called co-stigmato.

(ii.) The points X, Y are said to be co-ordirnated by the equation
f@y)=o0 If by sunple geometrlcal constructions X', Y’ can be
determined from X, Y, so that X', Y’ may be co-ordinated by a derived
equation f (2, 4) = o0, then X, Y are said to be trams-ordinated to
X', Y'; and the second stigmatic is said to be a #ramsordination of the
first. Such transordinations are frequently convenient for the purpose of
snnphfyma the discovery of the points X, ¥ by means of the points
X', Y. The general theory is given in art. 47. Thus we may form
subszdqu stigmatics having the same index X, but different stigmata
U, V, by putting, as in fig. 23, 24, y—a=v, Ju=v, y=z+v=a+ju,
whereby the stigmatic equations become

J (@ 2+v) =0, [(x a+ju)=o,

forming the connected ordinar and orthar stigmatics, which are related
to the original stigmatic, stigmal for stigmal, as particular cases
of transordinated stigma.tics. If from the orthar stigmatics we select
those particular stigmals for which both # and w are scalars (fig. 24),
the stigmata of the corresponding stigmals form the real points of
Cartesian plane geometry referred to reclangular co-ordinates, the
Cartesian axes of the abscissae and ordinates being OI OJ; and all
stigmata for which the one or the other or both of the points
X, Udo mnot lie on OI, or V does not lie on OJ, form the imaginary
points of Cartesian plane geometry so referred. If (no figure) we make
v = lw/, where his any unit radius, y = 2+hv/, and the new stmmatlc
is f(x, x+hu’) = o, from which those stigmals (y) for which x, « are
scalar, have as their stigmata the real points of Cartesian plane geometry
referred to the oblique co-ordinates of which OI, OH are the axes. For
comparing stigmatic and Cartesian geometry it is convenient to have
special names for these cases, which may be provided by the prefixes
Cartesian (abbreviated to car-,) and non-Cartesian, more briefly incar-
(vn = negative + Car-tesian). Thus carstig'mal, ccwstzg ma, carin'dex,
and so forth. Carstig'mata, are “real points;” not simply geometrlcal
points, but points referred by ordinates to other points in the axis of the
abscissae ; incarstigmate are *imaginary” points, that is, points which
the former algebra indicated should be similarly referred, but which no
one had been able to refer on the old theory, and hcnce merely *“ima-
gined” to be so referred, in order to preserve the old terminology.
Rectangular co-ordinates will be assumed unless otherwise expressed,
but the prefixes rec-, 0b-, will distinguish the two cases. A carstigmatic
is that part (if any) of a stigmatic for which the stigmals are carstigmals.
A Cartesian stigmatic contains a carstigmatic, that is, some carstigmals,
but also contains incarstigmals.

(iii.) As any plane geometric curve whose properties are known may
be treated as a carstigmatic, and expressed by f(«, #+ju) =0, with
the condition that @, w are scalar; and as this can be immediately thrown
into the general form f(«, y) =0, which will agree with the former
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as long as #, u are scalar, and which will also give all the relative posi-
tions of Y, when « is still scalar, but % not scalar, (that is, * imaginary,””)
or even when z is also not scalar,—it is evident that every result from
any Cartesian form can be immediately included in its proper general
clinant stigmatic, in which shape it 1s usually much easier to treat.
¢ Imaginary” points can only thus arise in Cartesian Geometry ; compare
art. 84. x. If we further proceed to make the constants clinants, that
is, refer them to any point on the plane, instead of those from which
the scalar case was deduced, any such particular carstigmatic will sug-
gest a still more general stigmatic, which is equally easy to treat, and
is the only form which fully shews the geometrical relations.

(iv.) Stigmatics are said to infersect in their common stigmals or
stin'nals (sti-gmals of in- tersectlon+al) of which the stigmata and
indices are called stig'mins (stigm-ata—+in-tersection) and indins
(ind-ices+in-tersection) respectively. The laws of such intersection
are now precisely those in Pliicker’s Theorie der algebraischen Curven
(Bonn, 1839), the whole of which, transferred to stigmatic geometry,
after the following theory of primals and quadrals is undevstood, may
be interpreted as stricily geometrical.

(v.) When the index moves on any path, the stigma moves on another
path, corresponding point by point ; thesé are the w'dit (ind-icis it-er)
and stig'mod (oriyp-aroc 63-6¢). All indits which intersect in the index
of astinnal, have stigmods which intersectin its stigma. In carstigma-
tics the indib is a straight line, part orall of the Cartesianaxis of abscissae,
and the stigmod is that curve which was alone considered when Des-
cartes founded his algebraical geometry, by referring any curve, point
for point, to the axis of the abscissae by ordinates parallel to the ordinate
axis. This reference was the egg from which the present stigmatic geo-
metry was hatched. 1t wasan addition to the ancient geometry, invented
as a mere expedient for reducing it to algebraical computation, without
any perception of the principle mvolved. It is evident from the preface
to Chasles’s Géométrie Supérieure that he had not recognised this prin-
ciple as identical with that of his own homographic geometry. But the
fact of the identity of principle is shewn by the present inclusion of both
as particular cases under Stigmatic Geometry, so that the method of
working the two becomes indistinguishable. It will be seen, also, that
the clinant stigmatic view is the only one which perfectly explains the
principles of “signs” and “continuity.” A carstigmod differs from a
simple curve of the same form, by its vmplying a carindit, to which it is
referred. The distinction is important. Thus when a simple straight
line does not cut a simple circle, the line and circle have only to be
considered as carstigmods, and Cartesian stigmatics are generated,
which do intersect, although only in two in-carstinmals. Compare
art. 34. x. with art. 49. v.

(vi) From the theory of intersection, the analogous theories of con-
tact (of any order)-and asymptoticity may be immediately deduced.
If f(&y) =h(%y). (@, y)+c=o, then fi(z,y)=0, andfy(z,y)=0
give stigmatics which have no stigmal in common with f(x,9) = o,
but, as X recedes, have stigmata continually approaching to the co-stig-
mata in the or 1g1nal stigmatic, and are hence called its asymp’tals
(asympt-otes+al).
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(vii.) There is mnothing in the form of the stigmatic equation
S (#,y) =0 to distinguish the index from the stigma. Either may
be assumed as either, but the two stigmatics thus formed necessarily
differ, unless the equation is symmetrical with regard to « and y, as in
(s—z) (s—y) = (s—e)?, see art. 44. Given the direct stigmatic, with
X as index, and Y as stigma, the inverse stigmatic, with Yasindex and
X as stigma, is the geometrical representative of the inversion of func-
tions, which can be here only indicated. In this case one stigma may
have many indices, giving con-in'dices and con-tndicial stigmals.

(viii.) From the general conception of functions the meaning of clinant
differential and clinant integral calculus, &c., is given. These are the
only points which I have not yet worked out in detail. But the indi-
cations in Sir. W. R. Hamilton’s Ilements of Quaternions, Book III.
chap. ii., in Martin Ohm’s Geist der Differential- und Integral-Rechnung
(Erlangen, 1846), in Casorati’s Teorica delle Funzioni di Vartabili Com-
plessi (Pavia, 1868), in Hankel’s Vorlesungen diber die Complexen Zahlen
und thre Functionen (Part 1., Leipzig, 1867, Part II. will be the especial
part when published), will suffice, with the present indications,.to work
out this part of the complete reconstruction of plane geometry. For
the differential calculus, Taylor’s theorem holds, and processes analogous
to those for maxima and minima, and for tangents, immediately follow.

87. Integral Stigmatics —(i.) Henceforth attention will be confined

to the integral stigmatic equations of the form

™. (e +ay* 4. ) 2™ Oyt by L) F e =,
where m and » are integers and the other letters clinants. This is the
fundamental form of equation assumed by Chasles in his Theory of
Characteristics, (Comptes Rendus, 27 June, 1864, vol. 58, p. 1175),
the whole of which theory (after primals are understood) may be incor-
porated in stigmatics, and applied to any points on a plane.

(ii.) Dividing by #", the sum of the terms not containing powers of y
in the denominator is az™+0ba™ '+ ..., and if we put this = o, we
shall obtain m values of @, which, when substituted for # in the ori-
ginal equation, have no corresponding values of 4. These point oub
m solitary indices, having no corresponding stigmata. Similarly
ay*+ady" 1+ ... =0 gives n solitary stigmata, which have mo corre-
sponding indices. If we put @ =y =12, we find an equation of m+n
dimensions in z; these give m+n double points Z, in which the index
colncides with the stigmata. When any one point is af once a solitary
index and a solitary stigma, it is termed simply a solitary point. The
above are called the peculiar points in a stigmatic.

(iii.) Of this general form I shall give only the fundamental cases of
primal (arts. 8. to 42.), uniquadral (arts. 43. to 46.), and duoquadral
(arts. 48. to 51.) stigmatics, but none will be treated with even a distant
approach to detail. My second memoir on Plane Stigmatics, when the
nomenclature is properly changed in accordance with that here used,
and the notation altered by putting the present b—a and (b—a) (d—c)
for the ab and ab.cd there used, gives sufficient details to shew the
power of the method; but it is impossible to abstract, much less to
reproduce in the present improved form, the whole even of that memoir
(itself a mere sketch) within the time and space at my command.
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38. Primals, or Cartesian Stm@ght Lines genemlzseol (i.) Thesimple
stigmatic equation a@+by+¢ =0, can, when ¥ is not =0, be re-

duced to the form y+ (a—1).2=">b=ac,

which is the standard form of a primal stigmatic. There is no solitary
index or stigma. (' is the double point, B is the original point, that is,

the stigma when the origin is taken as index. 4 is called the dir ection
point, the triangle 04 A CXY (fig. 25) being the direction triangle.

As it is necessary to become familiar with the geometrical relations of
the primal, the reader should construct many figures with different
positions of 4, B, and hence C, beginning with cases where 4 and B lie
on 0J, and C on OI, for which OB is the ordinary Cartesian line, as
in fig. 84, and if X is chosen on O, XY is parallel to OJ. But po-
sitions of X, not on OZ should also be chosen, and the abscissa OX;
and ordinate XY, then give the imaginary Cartesian abscissa and
ordinate of the imaginary point Y;. Fig. 25 gives a general case, and
will indicate the method to be pursued.

(ii.) Any two stigmals (zy), (2'y"),or (2y), (cc), or (), (ob) or (cc), (0b),
will determine a primal, which may be written pri (zy, «'y"), &c. The
direction point 4 and any stigmal (@y) or (cc) will also determine a
primal, which may then be written pri (4, @y) or pri (4, cc) &e., the
capital letter dlstmgmshmg the point. A primal is said to be drawn
when a quadrilateral XYY X’X has been constructed by joining the
extremities of the ordinates XY, X'Y. In drawing stigmatics ge-
nerally it is convenient to guide the eye to the correspondences by

making the stigmod YY’ an unbroken line ————————, the indit
curve XX’ a broken line — — —, and the ordinates XY, XY’
dotted lines .................. This will make the constant directional

similarity, CXY A 104, very evident in the primal.

(iii.) The general form does not hold when b'=o, in (i) In this
case ¥=0,-or ¥=m, and there is no direction point. The following
eight peculiar cases occur so frequently that I have found it convenient
to give them special names ; they are here given in terms of both ¥ and
v =y—u, see art. 36. ii., for which the general equation becomes
v+ax=>b. Assume m+4m'=o.

direction | original | doubl
Name anxp EquArion. poinlt. Il‘)lgiﬁ‘ p;nt?
1. A2'als and Parax’als.
ordinal, z=o0 ......... Verereeeeaienan none 0 0
paror’ dmal B=I  ceviiiinianinn.n. none | none M
abscissal, y=%, v=0, ............ 0 0 all
parabscis’ sal, y=x+m, v=m... 0 M none
II. As'sals and Paras'sals.
unal, y=o0, v+r=0....c..cc...... I 0 0
pa,runal y=m, v+T=1mM......... I M M
du’al, Y20, V—ET=0 ..o I 0 0
pamad.u al, y=%2+m, v—o=m I M M’
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The name azal (az-is+al) is given from the relation of these
primals to the Cartesian axes, and the name assal (as-ymptote+al),
because these primals are the asymptals of a cyclal (art. 48. v.), the
so-called “imaginary asymptotes” of a circle. The prefix par-, or
para-, denotes the sameness of the direction points, or para-llelism of
the primals. If in the quadrilateral XYY'X’ of (ii.) the two indices
X, X’ coalesce in X, then pri (2,9, #,7) is a parordinal with constant
index ; but if the two stigmata Y, Y’ coalesce in Y, then pri (zy,, 2'y,)
is a parunal, with constant stigma. ~If the ordinate XY = ordinate
X'Y’, then pri (zy, 2'y’) is a parabscissal with constant ordinate. If
the line YY" joining two stigmata is always equal to double the line
XX’ joining the two corresponding indices, then the pri (ay, 2y’) is a
paradual. In fig. 33 pri(pe, ee) is a parunal, and pri (pe, ¢f) a para-
duoal ; and in fig. 26, pri (mm, m7) is a parunal, and pri (%, of) a para-
dual; in fig. 34, pri (oo, 0) is a unal, and pri (oo, 2y,) a dual, and
these two are there the asymptals of the cy'clal; see art. 48. v.

(iv.) Given two stigmals (pg), (p'¢) to find, fig. 25, the direction
point 4, original point B, and double point C. Make p—r = g—g”,

then £=C = i—a, or PPR A OIA giving 4, and ggﬂ= a=""F

~1 » p—p°

or O'PpQ Z I0A A PPR giving C from 4 or from (pg), (P'¢), direct,
and OPQ A COB giving B.

(v.) If two stigmals (pq), (p'¢) ave given, any other stigmal (ay)

can be found without previously constructing 4, B, or C, by putting the

equation to the primal into the form “:‘———_ﬁ—’, = .3/!—_—3;, or XPP A YQQ,
which also shews that every stigmod of a primal is similar to its own
tndit (compare the stigmod OQE YO with indit CPP' X0, fig. 25), and
is the condition that three stigmals (zy), (pq), (p'¢) should be co-
primal, or lie on one primal. Asthis equation 1s satisfied by m = 1 (p +p")
and n =1 (¢+¢), (mn) will be a stigmal on the pri(pg, p'¢’). This
stigmal (mn) is called the middle stigmal between the stigmals (pg),
(9'¢), and is said to bisect the chordal (pg, p'q’), bounded by the stig-
mals (pg), (p'¢), or to be its bisectional.

(vi.) It is evident that if we take any set of points in a plane, and,
considering them as stigmata, refer two of them to any other two points
as indices, we can by (v.) construct indices to all the other points so
that they should lie on a primal. All points in a plane may therefore
be considered as stigmata of a primal, of which two indices are deter-
mined arbitrarily, and may be chosen so as to satisfy certain conditions.
In particular, the points thus regarded as stigmata may be themselves
indices and stigmata of any stigmatic. In this way is formed the
homma-~primal, from the stigmatic called a hommal, in fig. 33; see art.
46. iv. Generally the new primal thus formed may be called a stigmato-
primal. The stigmals on these primals, which have former indices as
their stigmata, may be distinguished as indi-stigmals (indi-cis + stigmal),
and the others as stigmo-stigmals (stigm-at-o-s+stigmal). These terms
save long periphrases in cases of frequent occurrence.

89. Intersections of Primals.—(1.) Let _
y+@—Dae=b=uac, y+(@—)az=0b=ac
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be two primals (for which a Cartesian case has been taken in ﬁg 26), 1t
is easy to determme their stinnal (4%) from (a—a’) b =b—10', or from
}7;—0, = —, that is, OH(" A A'0OA. When merely two stigmals are
—c a
given in each, it is generally most convenient to find 4 and C as in
art. 38. iv., and apply this form.
(i) If two pairs of co-stigmals are given formmg the primals (zp, 2'p"),

(zq, '¢), and (hk) be their stinnal, then u = p——j’ which shews

q .
that the stigmin K is the double point of t%e gri (pg, p'¢’), from which
property it may be immediately constructed as before, and then the
indin H can be found from either primal.

(iii.) A parordinal #=m has a constant index M, and hence (mn) its
stinnal with pri (cc, @p) is the stigmal of that primal for the index M,
and is immediately found. A parabscissal y = 2+ has a constant or-
dinate = OL, so that the index I of its stinnal (rs) with pri(4, ob) is
found from ar =b— 1 =1, whence JOR A AOL, or, from I=a (c—7),
whence, on putting I=c—1", we}have L"CEA AOI ; and then the stigma
S is constructed from I? as an index in the primal. A parunal y=m has
a constant stigma, which will therefore be that of the stinnal (m,m), the
index of which M; in the primal is immediately constructed from
OCM\M A 1I04. Aparadual y=2x+1t, of which T is the original
and 71" the double point, where ¢+t = o, intersects pri (4, ob) in
(wv) where (a+i)u = 0b—t, or, (putting d=a+17, e==b—1t,) where
du=ce, that is, I0U A DOE, and then TV = 2T"U. Observe that
CUV A 10A. The geometrical operation of finding the stinnal of two
primals, especially in the four last named cases, must become extremely
familiar to those who wish to construct figures in illustration of gene-
ral stigmatics. The process is entirely disguised in ordinary Carte-
sian geometry.

(iv.) Ifin (ii.) the directionpoints 4, 4" have been determined, we have

ﬂ—P ———1',, which is the aw'nal of AIA’, art. 34. v., and may be

7

- a'—i
polgen of as the annal between the two primals, but continue to be writ-
ten an 44", where 4, A" are their direction points. Similarly tal 44’
may be spoken of as the tannal of (the annal lzetwegn the two primals.
—ad _ R(a—t)—R(a'—1

Here w=tal 44" = —ad T AR (=D R (@~ When the pri-
mals are given by two stigmals each, as pri (zp, 2'p") and pri (zq, ¢,
then, since (p—p’)+ (a—1)(z—2)=o0, and (¢—¢') + (¢’ —2)(z— &) =o0;
the second expression allows tan A4’ to be expressed immediately in
terms of the respective abscissae and ordinates and is often useful; see
art. 48. x. It is seldom necessary actually to construct w = tan 44",
In the Cartesian case of fig. 26, £ WIO = £ AIA4’, and W lies on OJ;
the same construction holds for all pr1mals representmg Cartesmn
straight lines. But generally put a—a'=a,, aa'= a,, 1—a,=a;, and
w=a,.Ra;. The points 4,, 4,, A; are omitted in the figure. By
these expressions all cases where the sines and cosines and tangents of
imaginary angles between real and imaginary lines, or two imaginary
lines, ovcur, they may be treated with the greatest ease.
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(v.) Also, 2=k _a=t _ b=k . pro A AIA A BEB, which

g—k  d—i~ V—k
is a very useful property.

(vi.) Para-primals, or parallel primals, have ¢ =a, or an 44’'=1,
tal AA"=o. Orthal primals (art. 34. v.) have aa’'=1, andd' = 7. a
= 7. Ra/, tal 44’ = none, or AOI A IOA'. These generalise the
conditions of parallelism and perpendicularity. Any parabscissal with
direction point O is also said to be orthal to a parordinal which has no
direction point, for the reason in (ix.) The direction point is the
stigmin of the ordinal with a paraprimal through (77).

(vii.) The condition that three primals, having the direction points
A4, A, A" and original points B, BB, B”, should be co-stinnal, or have a

or BB'B’' A AA’A".

b—0b' _a—a
b—b"" a—a”

(viii.) Ifin (vii.) we consider 4 as an index and B a stigma, and
A’y A” and B', B” as fixed points in the last equation, a primal results
such that any other <+ (a—%)2 =b having any such pair of points
A, B as direction point and original point, will have the same stinnal.
Hence this is the equation to a pencil of rayals (ray+al) or system of
primals with a common stinnal, or to their common stinnal itself.
The primal of their direction points is then called a ray-primal, with
ray-indices and ray-stigmate. The direction points of any system of
lines are the stigmins of pencils of rayals drawn through (i) parallel
to the primals in the system, to cut the ordinal; compare (vi.). For
many purposes this is an important view of them to take.

(ix.) If from the common stinnal (hk) a pair of rayals be drawn
having the direction points X', Y’, and we substitute , 3’ for @, ¥ in
the fundamental function f (2, ¥) = 0, we determine relations, termed
direction- or ray-stigmatics, between pairs of rayals by means of those
between pairs of direction points which act as index and stigma.
Stigmals, of which index and stigma are direction points, may be called
ray-stigmals, with ray-indices and ray-stigmata, and the corresponding
rayals may be termed indi-rayals and stigmo-rayals, and the pair com-
posed of an indi-rayal and stigmo-rayal referred to each other may be
termed simply a rayar. If we apply this transformation to the funda-
mental equation of art. 37.1., we shall have the results of Chasles’s second
lemma of Characteristics (Comptes Rendus, 27 June, 1864, vol. 58,
p. 1175), so that the whole of that theory becomes perfectly general-
ised in stigmatic geometry, and its imaginaries become geometrically
intelligible. Observe that when the ray-index X' is solitary, that is,
has no ray-stigma Y7, the stigmo-rayal, having no direction point, is a
parordinal through (hk), and hence still exists, so that a rayar pair
1s always complete. Similarly for the case of a solitary ray-stigma Y,
in which case the indi-rayal, having no direction point, is also a par-
ordinal through (2%k). The double rayals are coincident, corresponding
to coincident ray-index and ray-stigma.

(x.) Thus, if we take aa’=1¢ as a direction-stigmatic, the corre-
sponding rayals will be all orthal as long as either 4 or A" does not fall
on O, in which case the other does not exist, (vi.). If a=da =i, or =7,
(in which case the primals are parassals art. 38. iii.), and we continue

-common stinnal, is
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to use the term orthal to express the relation of the rayals, we shall
find that any parassal is orthal to itself (explaining the anomaly that
either imaginary asymptote to a circle is perpendicular to itself).
If =0, or one rayal is parabscissal, 4 becomes solitary, and the cor-
responding rayal is parordinal ; that is, retaining the term orthal,
parabscissals and parordinals are mutually orthal (vi.), as in the usual
Cartesian case of rectangular coordinates.

40. Dis'tals, or Plicker’s Coordinates generalised.—(i.) Let (zy) be
any stigmal and (wp") its co-stigmal on the primal p'+ (a—¢)x =0,
(fig. 27 gives a Cartesian case,) “then

y—p =y+(a—i) =D,
and y—p" is called the ordinar distal (dist-ance+al), or simply the
distal of the stigmal (zy) from pri (4, ob). Itisevidentthat y—p'=o
may be used as the equation to that primal.

(ii.) Draw pri(T,ay) cutting pri(4,2p) in (2,p); then, as
(@1p1) is the stinnal of these two pmmals, we have (by art. 89. iv.)

=y _ t—i
pn—p T a—v’
whence y—p;, = =4, (y— p)—t;—@ [y+(a—i)a—b];

and y—p; is called the general or T-distal of ¥ from the primal (4, ob),
because T is the direction point of the primal which determines it.
The usual or ordinar distal y—p’ is determined by the intersection of
the parordinal through (wy) with pri (A, ob).

(iii.) It is evident that either y—p'=o0 or y—p,=o0 may be
taken as equations to the primal, and that the relations of the clinants

y—p’ or y—p, determine relations between P'Y or P,Y which are

real distances measured directionally towards the arbltr'ary stigma Y
from its co-stigma P’ on the primal, or from the stigma P, of the
stinnal of a known pri (T, #y) with the original pri(4, ob), and these
relations of distances, directionally me‘msut‘ed determine and generalise
a multitude of relations, hitherto most imperfectly noted even by
Pliicker, who first drew attention to their value. The equations thus
deduced are called distal equations.

(iv.) Taking another prlmal (4, o0') intersecting the former, and
determining the distals y—¢ or y—gq, as before, we may determine
2 and y from the corresponding values,

Yy—p = t——— (J'—P)—L [y+(@—)e—1b] = p,

y—q = t, (y q)-— [y+(a—2)w Vl=g¢

Fmdmg from these equations the va]ues of @, y in terms of p, ¢, and
substituting them for @ and y in  f(2,y) = o, obtain first the distal
equation ¢ (y—pi, y—¢1) = 0 to the original stigmatic, and next
¢ (p,g) = o as the equation to a subsidiary (or bi-primal) stig-
matic, in which the relations of the original points X, Y, are deter-
mined by means of the subsidiary points P, @, Where OP, 0Q
represent the directional distances P,Y, Q,Y of the correspond-
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ing stigmata P,, @, in two fixed primals (4, ob), (4’, 0b) from a
movable stigma Y. The indices X,, X, to the stigmata P;, @, are
found from the two known primals, and the index X to the stigma Y
is known, because (wy) is the stinnal of the primals (@1, T), (zoqn, T').

This may be called the bi-primal stigmatic, and is the basis of Pliicker’s
Punct-Coordinaten.

(v.) The equation to a ray-primal (art. 89. viii) allows of establish-
ing precisely similar transformations answering to Pliicker’s Coordi-
naten gerader Linien, giving bi-stigmal stigmatics, in which the index
and stigma relate to subsidiary points derived from the distals of two
fixed stigmals from a movable primal, instead of the distals of a
movable stigmal from two fixed primals.

41. Trilat'erals, or Triangular Relations generalised. —(Flg 28 repre-
sents a Carlesian case.)-—(i.) Let the three stigmals (u'%), (v v), (ww) be
connected two and two by the pmmals (v'v, ww), (wu, ww), (w'u, v'v),
Laving the direction points 1), 1", T” respectively. These three primals
form a trilateral of which the three stigmals in the above order are the
apicals (apical stigmals) opposite to the laterals (latm al or side primals)
in the above order. This is written tri (uw, v/, ww’).

(ii.) Let (w'z) be a stigmal on the lateral oppomte (wu), then (art.89.iv.)

w—ov _ U'—1 u—w _ {—1 h w—v _ (i—=1)({"—1)

—_— = an = -, whence = 2

w—z ' —1 w—z t'—t u—w  (t—t")({'—7)
U—u _ v—w _ w—1

G—)('—0) ~ ({=)(t=1) (=)=’

the symmetry of which is evident. These equations give all the relations

of all “triangles real or imaginary.”

(iii.) The following particular cases for which the above assume in-
admissible forms, with o in the denominator, are easily investigated
independently.

The three stigmals lie on one primal (w'u), (vlvl) (v'v), so that
t=1¢=1" the relation art. 38. v. must be used.

The tri (W, wu, ww) has the parordinal lateral (u'vy,, w'u) which
has no direction point; butthen (u'u,), (#'u) are co-stigmals and (w'w)
the stinnal of primals (wv,, w'w), («'u, w'w), having the “direction points

Ty, T" respectively, so that, by art. 39. iv., vow _t—v If further,

vVo—wW  f—1
ag in fig. 28, pri (u'v,, ww) is parabscissal, -
w—w

and generally

=i—f, and 2="=¢.
Vy—w Vy— W
(iv.) When the two last conditions are satisfied, we have an orthal
trilateral. 'We may call its parabscissal lateral the ba'sal, and its par-

ordinal lateral the perpendiculal, and the third lateral the hypothenu'sal.

t,=o0, and

As we have shewn that tal 7’0 = ="2"" we might invent a

2
sinal (sin-e+al), cosinal (cosin-e+al) and cotan'nal (cota71-gent+al)
of T°0, written sal T°O, cosal 10, cotal T"0, defined thus, sal 1770 =

Vo—U __ t Vy— W 2 Vy—W __ T
LTV o L eosal TO=2""=_" | cotal '0=2"" =2,
w—u t—1 w— U t—1 Vo= W t
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from which, in the Cartesian case, by taking tensors, the usual for-
mulae of trlgonometly, as derived from the triangle only, in this case
the triangle I0T", readlly follow For if t—_pj, where p is scalar,

7.5l TI0=T. 2L = and T.cosal IO = T. "
n—i ~/(p i) =
————— The former er, give what corresponds

\/(p2+i) e former expressions, however, giv P

to the sines, cosines, tangents, and cotangents of imaginary angles.
Thus the direction triangle I0T" gives rise to a direction trilaieral
tri (oo, 1, ot) which is clearly orthal. The imaginary trigonometrical
functions in Cartesian and Plickerian and hence also in Chaslesian
geometry arose from applying the terminology of the simple triangle to
this trilateral, and the difficulties which hence arose are to be attri-
buted to the omission to notice the directions of the sides of the tri-
angle, that is, the direction points of the laterals of this trilateral.

(v) The condltlon that the primals given by the distal equations
J—-]) =y—¢ = y—r'=o, (art. 40.1ii.) and having the direction points ¢,
¢, ¢ respectively, should be the laterals of this trilateral, and hence
have 7o common stinnal, is

G=p) =0+ G—9) . (=) +y—r). (1) =,
where e= -]2,;9— (=) (v—w) = u(ii) .(v—w)

i—t
(t—t)(t —t) (w—u) = (t—t)(t—t)  (u—n).
i— i—
(vi.) A multitude of proposmons on the propertles of the trilateral,
deducible from these fundamental properties, are necessarily omitted.

42. Pencil of Four Rayals, or the Anharmonic Properties of Rays gene-
ralised.—(i.) Let there be five rayals, having the common stinnal (he)
and the direction points T, T, T}, T, T} respectively, (a Cartesian case
is shewn in fig. 31). Let a transversal primal be drawn parallel to the
first primal, and intersecting the four last in the stinnals (2,,), (®:y2),
(@573) and (24/,) respectively.

(ii.) Then from tri (ke, #11,, yy.) and tri (he, asys, 5y;) we find

N— _ b—b t—t _ ’
b=t b=t = (tit,tst), art. 34. iv.
That is, the anral of the direction points is expressed by the simple
quotient of the differences of the clinants of the stigmins.
.. N t,—f4 ta—
(iii.) Similarly e et " b=t = (Litstst),
and dividing the first of these results by the second,
(ny2ysys) = (hitatsty),
that is, whatever be the direction point of the transversal, the anral of
the four stigmins, when they exist, is constant and equal to the anral of
the direction points. And if there be only fhree stinnals, from the
coincidence of T' with Ty, we see by (ii) that the anral, redncing to
(y1ysys - ), remains = (tibtsly). This constant anral of the direction
points is called the anral of their four rayals.
(iv.) This is a perfect generalisation of the fundamental property
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whence Chasles deduces the whole of his theory of anharmonic ratios,
homography and involution (Géom. Sup., art. 13. ; see also below, art.
45. vii.). DBut this generalisation has the advantage of including every
case of “imaginary’’ rays, angles, and points of intersection. The de-
ductions in this general case may be made in a manner precisely
similar to his, using the same arguments, mutatis mutandis. But the
stigmatic calculus much facilitates the operation, as I have found by
actually working out every proposition in the clinant form.

(v.) The whole of homography &c. has also been worked out with
distals, on the method of Pliicker, taking (hk, xp), (hk, 2g) to be two
fixed rayals, and (W%, zy), (hk, xJ) two vanable rayals determined by

the equations (y—p)—e.(y—g)=o, g¢g.( —p)—e.y—9 =o,
where g is constant and e variable, which give

y—p ,’_V’_—_Q =g, or (ypy'q) =y,

which now becomes perfectly simple, because unperplexed by the
‘“imaginaries”’ which are so plentifully strewn among Pliicker’s de-
monstrations.

43. U'nigua’drals, or the Relations of Involution and Homography

generalised.—(i.) The general equation to quadrals is
az® +20xy + vy* 4+ 20w+ 2¢y +9 = o,

of which it is first convenient to consider the forms not involving 2*
and ¢°, because they never give more than one value of y for each value
of #, and conversely, whence the name w'niqua’drals. These are

(ii.) 20Bxy +28x+28y+¢ = o,
in which # and y are symmetrically involved, giving an {nval ({nv-olu-
tion—+al), and

(iil.) 20y + 282+ 2ey + ¢ = o,
-in which # and y are unsymmetrically involved, giving a hom'mal (hom-
ography +al).

44. In'vals, or Chasle'sian Involution of Points generalised.—(i). From
the general equation, art. 43. ii., determine the solitary index and soli-
tary stigma, as in art. 37. ii. By dividing out first by y and then by =,
and putting = o the sum of the terms not containing y and « respec-
tively in the denominator, we obtain 2p3z+20 = o, 283y+20 =0, so0
that there is merely one solitary point S, where 20s+26 =o. If e and
S be the roots of the equation 232*+4dz+¢ = o, then s=3}(e+f),
and I, F are the double points of the inval. These results give

(s—) (s—y) = (3—€)* = (s—1)},
to which is adapted fig. 29, where A4, BB, CO' DD G@, HH', &e.,
are various ordinates.

(ii.) To construct the stigmals, draw the characteristic circle, with
centre S and radius SIJ or SI. A4 being any index, to find the stlgma A,
draw ASE A ESA', by making £ ESA"= £ ASE, and (B, B being
the intersections of SA, SA4” with the char. cir.) BA parallel to AB'
The lengths of the corresponding SX, SY are thus always found, and
it is then easy to separate SX, SY by any angles from SZ.

(iii.) From (i.) we find, on putting (ad’), (b0'), &c., for (),
s—a_s=b _a=b _a—-t

= , = , = , if BA"= AN, so that if two stigmals
s—b s—da  b—d a—n
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(aa’), (BY") are known, the solitary point § is found by ma.kmg
ASB A B'AN, and then the double points 77, F'are found from S4, S4
as in art. 33. iii. Two stxgmals belng then sufficient to determine an
inval, we may write it as inv (e, b0"), which for the solitary pomt may
be inv (aa’, S). The true nature of the equations ab == 7 and
(y—1)* = (a—7) (b—7), art. 34. v., p. 37, is now evident.

(iv.) From equations similar to those in (iil.) it is easy to shew that
all the properties of Chasles’s Involution hold strictly, of which the
following need only be cited.

First, , ,
from *=%¢=%—¢y s—a_s=b s—c_s—y s—c_s-U

s—x s—a  s—b s—d’ s—ax s—c s—b s—¢
wofind $=C—5—Y $—6_8— b’, s—c_s—y §=¢ s—-b

a—a y—d’ a—b V—a c—x y—d  oc—b P
whence, eliminating s—a, s—c, s—y, s—¥, we find (¢bcr) = (ab 1),
or any four indices have the same anral as their stigmata; and this
would of course remain true if the former were drawn on a separate
plane or different portion of the same plane from the latter. But this
result is not characteristic of invals.

Second, (abry) = dbyr), or in any stigmal the index and stigma
may be reversed. This result is characteristic, for on multiplying out we
obtain the characteristic equation of invals, for which the planes cannot
be separated.

Third, (abs.) = (&'¥..s), asin (iil.) See art. 34. iv.

Fourth, (efwy) = (efyx), whence (eyfw) =7+, or any index and
stigma form a harmal with the double points, and hence these four
points will lie either on the same straight line or the same circle,
as shewn in the figure. Hence also the construction: draw any
eircle of which #/I"is a chord, take any points 4, A" upon it, so that
£HSA = £ A'SH, then (ad’) is a stigmal in the inval. In this case
4 and 4’ lie harmonically with respect to J7, art. 34. iv. In the figure
(is the centre of the circle containing A'BAF, w]uch however is not
drawn ; but see fig. 14. If inv (ee, ff) and inv (¢'¢, ff), have the
common stigmal (ay), then (yexf) = (yc'zf’), and hence (yy, xx)
are the double points of inv (¢f, ¢f"), whence (2y) may be constructed.
This fails when the invals have a common solitary point, and in that
case only they can have no stinnal.

(v.) The equations of angles resulting from the above anrals also shew
how the stigmod varies for different straight lines or circles assumed as
indits ; thus the indit circle ABC has the sigmod circle A'B'C’, but the
indit circle SHDL, passing through §, has the stigmod straight line
H'D'L/, § having no stigma. Mobius, in the papers cited in Appendix
II., seems to have first treated the involution of points in a plane, but
it will be found that his treatment is much more complicated, and that
the present theory brings out all his results and many others with the
greatest simplicity.

(vi.) 1t may be observed that, in the old theories of involution of
points on a straight line, when X. Y lay as at D, I on the same line
as I, I, these last double points were called real, but when X, Y lay on
a perpendicular to HF through §, as at @, &, these double points,
though remaining unchanged, were called *imaginary.” By forming
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two inva-primals (art. 38. vi.), so taken that the carstigmod gives the
line FSF in the first case, and the perpendicular to /SF in the second,
it will be seen that I, I" are carstigmata in the first, and incarstigmata
in the second case. This is the meaning of the above confusing dis-
tinction, which could not be previously avoided. Again; until a Car-
tesian inva-primal had been formed, since the ordinates XY lay on the
same straight line, and not perpendicular to it, as in Cartesian geometry,
the two cases were kept entirely separate. In uniquadrals XY was
termed a segment, and in Cartesian geometry an ordinate. Until the
stigmatic conception had been formed, it was impossible to perceive the
real identity of the segments and the ordinates, as simply the straight
lines connecting the indices with the stigmata, that is, shewing the
pairs of corresponding points. The immense facilitation produced in
the application of the homograplic theories by the fusion of the Carte-
sian and Chaslesian geometries, will be strongly felt by every one who
works out the cases in detail.

45. Hom'mals, or Chaslesian Homography of Points generalised.—
(i.) To determine the solitary index S and solitary stigma Z’ in the
hommal, fig. 30, we find from art. 43. iii., first 23s+2¢ =0, and then
267+ 25 =0, and for the double points E, F' we have

206+ (20 +2¢) e+¢ = o.
These values easily reduce the general form of equation to
(=) (F —3) = (s—€) (¥ —e).

(ii.) From this, by a process like that in art. 44. iv., we find
(abez) = (a'V'¢’y), which relation remains when the plane containing
the indices is separated from that containing the stigmata. This
enables us to determine the solitary index and stigma when three
stigmals (aa’), (b0"), (¢¢) are known, because (abes) = (a’0'¢’..), and
(abe..) = (@b¢?), that is to say,

a—b ¢c—s _a—=0 nd a=b _da—=b =4
c—b a—s =10’ c—b =V d=4"
To construct the solitary points from these equations,
fivst construct W from L —0 ==t o apC A WBCO;

c—b c¢—b’
and then § from e Z’:Z or CSA A WBA;
and Z’ from =8 972 or (0SA AAZC.

a—s —z

(iii.) When 8 and Z’ have been found from three stigmals, all other
stigmals can be found from a subsidiary inval, thus: Suppose that the
part of the plane containing the stigmata is slid over that containing
the indices, by sliding Z’S over Z'S till Z’ falls on §, and 4" on 4,,
B onB, &. Then Z—s=dad—-a,=b—b=...... =y—1vy, and

hence s—a;,=4+—a/, ...... s—iy, =2 —y; and hence
(—2) (7 —y) = (s—2) (s—p) = (s—a)(s—a)) = (s—m)?
when M is properly dctermined. Hence the subsidiary inval
(s—a) (s—y) = (s—m)® determines Y; from X, and then Y, Y =382’
gives Y from Y;. Hence also a hommal is merely an inval with its

5 ,
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stigmod (or its indit) translated in the same plane without rotation,
that is, a transordinated inval.

(iv.) There are now two easy constructions to find the double points
E and I. First select O so as to biseet SZ’, whence s+2 =0, and
find O the stigma of O considercd as an index, whence

(s—e)(#—e) = (s—o)(#—0), or &=1.s0=720,
as shewn in the figure. Again,

(s—m)* = (s—e)(s—e) = (s—e) (¥ —e) = (e—s) (e+3s) = &—+,
or & = g8+ (s—m)?,
which is constructed as in art. 33. v.; by drawing USV perpendicular
to SM, and making US= SV, both of the length of SM, so that

s—u = j(s—m), s—v = u—s,
which gives ¢ = s — (s—u)® = uw.
This shews that (w), (2'0') lie on inv (ce, ff).

(v.) 1t is convenient to call O (or common middle point of EF and
SZ’) the centre, I the double awxis, SZ’ the solitary azis, and MN
(where m+n = 2s) the subsidiary axis of the hommal. For the hommal
determined by three stigmals we may write hom (aa’, bV, ¢¢’), which
for the solitary index and stigma may be written hom (ad/, S.., ..Z").

(vi.) The relative forms of the indit and stigmod are the same as for
the inval (art. 44. v.), but the angular properties of the double points
are peculiar to the hommal. See fig. 30.

First (eabe) = (ea'V'¢),
hence if 4, B, C are collinear with each other and hence with S, in which
case also A'I'C” are collinear with each other and hence with Z’; then
tan ALC = tan A’H(', and tan AFA" = tan OIC". Hence if two straight
lines intersect at 14, and are indefinitely produced each way, and then
being clamped, are made to revolve, and to cut two given straight lines
PyS and P'Q'Z’, they will intersect, the first in the indices and the other
in the stigmata of a hommal, of which the solitary index S is in P, and
solitary stigma Z"in (), and f7 is one of the double points. Infig. 30, the
lines PQS, P'Q)Z are so chosen as to make (pp”), (¢¢") parts of the same
hommal as befere. In any such case Z, S are easily found, by making
one arm of the biradial parallel to P and P'() respectively, in which
case the second arm cats P'Q) and P’¢) in Z" and S respectively. F is
then the fourth point of the parallelogram SHZ'F. Also tan PFP =
tan QFQ, but they are not generally = tan PEP. The same will be
true if PQ, P'Q) coalesce in SZ’, and then F, I are the ‘imaginary ”
double points of the “real homography ” on the line SZ'. This is a
new demonstration of Chasles, Géom. Sup. art. 171, which it completes,
shewing the nature of the points. But this property will be greatly
generalised in art. 46. iii. By taking £ as the centre of a circle, there
will now ke no difficulty in explaining and completing the result in
Géom. Sup. art. 664.

(vii.) Observe that in applying the general property art. 42. iv. as
Chasles has done to the construction of a homographic theory, we
have from any stigmal (%e), see fig. 31, a movable rayal cutting two
primals which have the stinnal (%f). In this case the stigmins of the
movable rayal on the first of the primals issuing from (kf), taken as
indices have their stigmata formed by the stigmins of the same rayals
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with the second primal, and the stigmals thus formed make a hommal,
of which the stigmata I, I of the two stinnals (he), (%kf) are the double
points. When the primals represent Cartesian straight lines (as in
fig. 31), confining ourselves to the stigmods, we may say, if rays from
B cut two rays issuing from F, the points of intersection form a
hommal, of which I7 and I are the double points, and of which the
solitary index and stigma are found by drawing rays from I parallel
first to one and then to the other of the rays issuing from I'. This
view will be found to shed a new light upon many of Chasles’s in-
vestigations (especially Géom. Sup. chap. vi., &c.), but was of course
impossible so long as the points in an homography were considered to
lie necessarily on the same xtlalglnt line.

(viil.) Secondly, (efub) = (efa’d’); thu‘dly, (efsa) = (ef..a’); fourth’ ¥
(esfa) = (e..fa’); filthly, (eabs) = (ew't’..); sixthly, (esa..) = (e..a’?);
from all of which angular properties may be readily deduced.

46. Ray-hommals and Ray-invals, or the Chaslesian Iomographic
Relations of Rays, generalised.—(i.) If the indices of a hommal are
made direction points of the rayals emanating from a fixed stinnal (2%),
and the stigmata of the same hommal are taken as the direction points
oftherayalsfromanotherstinnal (1nn), thus generating a divectivn-hommal,
(art. 89. ix.), the rayals in these two pencils form a double ray-
homimmal. If the two stinnals (Lk), (mmn) are coincident, the result is a
single ray-hommal. These rayals cut any primal in stigmals forming
a homma-primal. The stigmo-(or indi-)rayals corresponding to those
direction stigmata (or indices), which have solitary indices (or stigmata)
respectively, will be parordinal.

(i) If (@), (b10y), (cics), (117y,) be the stigmals on the direction
hommal, and ¥y, Z, the solitary points, then

(=) (=) = (11— ) (2—ay), and (ahye@) = (@ubacays),
whence all properties may be deduced, (compare art. 39, ix. x.,) and
the angular properties of the double points of hommals duly generalised.

(iii.) The following is the only case that can be noticed in this Tract.
If from any stinnal there issue two rayals having their variable direc-
tion points X, Y, so related that tal X, Y, is constant, so that, for
example, ; Z—Z- = Rm, or 2y, +m (z,—y,) — ¢ = o, these pair of primals

—T1s

will be the analogues of the various positions assumed by the revolving
lines in art. 45. vi. Now in this case the direction pomt% of the double
rayals determined by putting @, =y, =e¢, = fl, give e’ =1=f),
that they are I, I’, and the rayals are parassals (art, 88. iii.), that i 1s,
parallel to the asymptals of a cyclal, or, as used to be said, “they pass
through the cirenlar points at infinity” (!) ; and this will also be true
when some pairs of rayals are Cartesian ; and will also be true although
these parassals among other rayals will of course be incarprimals.

(1v.) Conversely, form a homma-primal from the indices and stigmaia
of a hommal (e, ff, S.., .Z"), by assigning 2, Z' as the indices of
8, Z', where (os), (&'7) are carstigmals in hg 33. Let E’, ® be the
indices of H, I, in which case (ee), (¢f) are ‘necessarily mcmstlo‘mals
in the ﬁcule Then it is always possible to glve new mdlces P, Q to

&2
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17 and F, so that rayals from (pe), (qf) to (ee), (¢f) will be parassal,
and in that case the tannal between any indi-rayal and stigmo-rayal

will be constant. This condition gives
e—e

8 im0, TS iymo =l =y =0 oo

—e =9 q—f q—e
and hence ET' = 2Pd, I'll = 2QF’, and as ®, E’ are known, P and Q
are determined. Let T be the direction pomt and O the double
point of the pri (ss, %), and let 2n=e+f, 2= e+¢, and
e—n = n—f=k(n—c). Then

n—c = (r—c)(i—t), f—tle=¢.(G-1), e—tc=c¢c.(i—1),
whence e—p =n—¢ = (k—1t)(v—¢), c—p = (kt—1)(v—o),
f—g=n—e = (k+t)(c—»), c—q = (lt+7)(c—»).

In the Cartesian case t, k are vectors. Hence C, N, P, Q are collinear,
and EP, I'Q) perpendicular to ON’, that is, (pe), (¢f) are carstigmals.

The extremely perplexing 1nvest1gat10n of this whole question in
Chasles, Géom. Sup. arts. 171, 172, 181 (especially see table of errata
for p. 126 in this art.), 651, and Sect. Con. art. 293, will serve to shew
the great simplification introduced by stigmatic geometry. But in the
present Tract a mere indication must suffice. The whole subject has
been carefully examined in detail.

(v.) Ray-inwals vesult from similar considerations. Thus, = 2y,
is a ray-inval, of which all the rays are orthal (art. 39. vi.), the double
rayals being parassals, and the rayals corresponding to the solitary
index and solitary stigma, or for @, = o, y, = none, 7,= 0, @, = pone,
being paraxals (art. 39. x.). Astwo invals have always a common
stinnal (art.44.iv.), any direction-inval, #* = @,7,, will intersect =75,
and hence the corresponding ray-inval will always contain two orthal
rayals.

(vi.) A sheaf of parallel primals may be used in place of a pencil of
rayals, provided their different original points be substituted for their
common direction point.

47. Transordination, or the Cartesian Transformation of Coordinates
and of Curves, generalised.—(i.) The general nature and object of this
operation is explained inart. 36. ii. The change is not perfect unless
every single indi-stigmal (that is, every single stmmal in the first stig-
matic) corresponds to one and only one stigmo-stigmal (that is, to one
and only one stigmal in the second stigmatic).

(i1 ) This cannot be effected except by assuming relations of the first
order, such as @ = b+ (¢/—a), or @ = A/ +uy+», which, changing
the index without changing the stigma, produce tndicial transordination,
and are the foundation of the ordinary Cartesian change of coordina-
tion. The values of the constants are assumed so as to facilitate sub-
sequent calculation.  Similar changes have alrcady been made. Thus
the Lommal (s—a) (¥ - y) = (s—m)? on putting 77—y = s—y/, be-
comes transordinated into the inval (s—a)(s—y’) = (s—m)’. Again,
from this last equation, on taking s—a=s—a'+ (y'—2a’), we find
(s=a")—(y'—a') = (s—m)? where 20’=a2+7y and is hence readily
fouud. This however is a cyclal (art. 48. v.).
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(iii.) More generally, assume such a relation as
av+By+y = & +BY +v, Aotprtv=Na'4py +V,
which on elimination give results of the form
m. (y—a’) = y+lh—i)e—b; «. (y—9) =y+ (f,—7) 2—0,,
and, on putting v—a'=p, y—y'= ¢, these lead at once to the distal
transformation and biprimal coordination.

(iv.) Still more generally, putting for brevity A = az+a’y+a”,
B = Bx+0By+p3", C = yz+vyy+7v”", and D=o for the result of elimi-
nating , y from the equations 4=0, B=o0, C'=o, (that is, for the con-
dition that the three corresponding primals have a common stinnal,)
we may assume C2'= A, Cy’= B. On determining the values of z, v
in terms of @/, 3/, they will be found to have a common denominator which
will be a factor of the numerator when D=0, that is, when these
primals have a common stinnal. Rejecting this case, the three pri-
mals form a trilateral such as (%'u, v'v, w'w) with the conditions (art.
41, v.). Then, taking P, ), I to be co-stigmata for index X in these
straight lines, and putting A=y—p'=p, B=y—q¢=¢q, C=y—r'=n,
we obtain a homogencous distal equation between p, g, r, or wp, «q, pr,
which is the foundation of tri-primal coordination.

(v.) The primal (oo, #y), or y+(t—i)2 =o cuts the stigmatic
f(x,y) =0 mn (xy). Eliminating @, we obtain ¢ (y,¢) = 0 whu,h is
the foundation of polar coordination.

(vi.) Taking a less perfect form of transordination, that is, one in
which the condition (i.) is not perfectly satisfied, we may connect X
with X', and Y with Y’ by hommals, as

ad’ + e +pd’+v =0, yy +Ny+py+v'=o.

In this case we shall occasionally have complete stigmals in one
answering to defective stigmals (that is, solitary indices, or solitary
stigmata) in the. other. It was probably the desire to avoid these
relations of continuities to discontinuities, that the extraordinary
assumptions mentioned in art. 6.1., and Appendix L, were introduced,
by which the real nature of the solitary points was illogically distorted.
Thus it was not seen, or, if seen, repudiated, that it was possible to have
analogies which held for all but a definite number of cases. The at-
tempt to conceal this important logical fact by a mere juggle of lan-
guage, shews the danger of studying logic from simple arithmetic and
geometry, of which numerous instances could be cited besides those in
Appendix I. The attempted passage from discontinuous arithmetic to
continuous geometry (excepting only by Kuclid’s really ¢ royal road”),
like the attempted passage from discontinuous Cartesianism to some
imagined continuity, has led to so much- *stretching” of language,
that the 100‘103.1 feeling of mathematicians, though dealing with *exact
science,” is in great danger of being entirely pewerted Thus Dean
Peacock put forth his *permanence of equivalent forms,” a logical
fallacy long since exploded, but defended by him with great warmth
and pertinacity. And ¢ perspective projections,” admirable as a piece
of geometry, have landed us in the contradictions detailed in art. 6. i.
and Appendix I. T have even heard these results defended by an
excellent mathematician as “illogical, but convenient,” as if want of
logie, 1.e. incorrect reasoning, were not the height of mathematical
inconvenience.

.
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(vii.) These hommal relations may be obtained from equations like
ar+by+ec _ aX 48y +y ax-{—lxy—{-t, _ ux-}—[’J +v

ae+ U g4+’ A+ a2+ Vy+e” 1—/3'1/'{-7

whence, on climination, «, y, 2’, 3’ are obtained in similar forms, but
then, on multiplying up, we find ('), (xy), (y2), (yy') given as stig-
mals on different Lnn)nlals In t]us caze, by equating to o the d(,uo-
minators in the values’of @, 1. 2/, 9 thus found, we obtain equations to
primals in which () and (.I'J) are stigmals, such that not one of the
stigmals in either primal for the one stigmatic will have a corresponding
stigmal in the other. Hence, relatively to each other, these stigmatics
will have solitary indi-primals and solitary stigmo-primals. In this
way homma-stigmatics are formed, which include the Cartesian case of
homographic figures. And by proper changes of the constants these
homma-stigmatics are brought into another relation which may be
called hom’olo-stigmatics, and include the Cartesian case of homologic
figurcs. In consequence of the old “ imaginary ” points, none of these
relutions are completely exhibited except in stigmatic geometry.

48. Duw'oqua’drals or C'o'nals, or Conic Seclions, generalised.—(i.) Duo-
quadrals are derived fromn such forms of the general quadral equnation
(art. 43. 1.) as always give fwo stigmata Y, Y’ for each index X. When
they Liave any Cartesian portion, these stigmatics give as the carstigmods
(vaths described by the stigmata of the Cartesian portion), the well
known couic scetions, and are hence also called conals (con-iecs+al), a
name which may then be applied generally to all duoguadrals.

(ii.) The extreme an'iety and the length of conal investigations
preclude me from giving them in this Tract any even approximatively
gystematic form. I have myself carefully applied the present con-
ception of stigmatic geometry, and the clinant calculus, to the treatment
of conals, by generalising the usual Cartesian methods, and also those in
Plicker’s System and Entwickeluugen, as well as those in Chasles’s
Sections Coniques, in great detail, and have always found satisfactory
results, easier calculation, and complete geometrical realisation. The
previous explanations of primals and uniquadrals render any other
result impossible, and I shall therefore content myself with giving a
few notes as to some methods, and a few results, together with the
nomenclature which I have found it convenient to adopt, and inviting
mathematicians to test the stigmatic theory by minuter applications.
Several of these are contained in my second memoir on Plane
Stigmatics, but with my old notation and nomenclature. If I may
judge of the effect on others by that on myself, the continual explana-
tion of formerly insuperable difficulties, the strictly geometrical meaning
of calculations which seemed hopelessly analytical, and the absence of
any difficulties in the assignment of positive and negative, will render
such a process a source of intense delight to the geometer.

(iii.) When in the general quadral equation (art. 43. i.), 3*—ay = o,
but ae— 30 is not = o, the stigmatic is a non-central, and by indicial
transordination (vetaining the stigmata, but altering the origin and
indices) may be reduced to the form (y—w)*+4s2z = o, which is here
called a parab’bal (parab-ola+al). When s is scalar and z is also
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scalar, sz being tensor, y —z is vector; or when S and X are both on
the I side of O on Of, then XY, XY’ are parallel to OJ ; or there is a
Cartesian portion, and the carstigmod is a parabola. Y, Y’ are con-
structed by art. 83. iii. Here O is the vertex, (vo) the vertical; S the
Jocus, (ss) the focal. When O, 8 are known, we may write par (0, S),
or par (wy, 8.) This case will not be further considered till art. 52.,
after the trcatment of centrals.

(iv.) When neither 32—ay, nor (y0—f3¢)*— (*—ay) (ee—y{) are = o,
the conal is central, and by indicial transordination can be reduced to
the form ¢%*+ ¢*(y—=)? = ¢*? which embraces many cases according
to the positions of IJ and @, as follows :—Gencrally let e+f = g+L =
s+z=o0, and s = ¢ +¢?% found as in art. 33. v. This may be called
the central (ee, ou, 0g), or (X, O, G). There are no solitary points. I,
I, in fig. 82, are the double or major points ; G, I the original or minor
points, and 8, Z the foci of the central.

(v.) Cy'clal (xvix-oc+al), ! on OI, G on OJ, Te= Ty, é+g¢*=o,
equation a2*—(y—a’)=¢. This may be called cyc (O, I/). The
equation gives (y—2)* = 2*—e* = (v—e) (z+e) = (#—e) (x—f); which
gives the contraction of Y, Y from X immediately, and shews that
Y, Y’ lie harmonically with respect to Z, I When X is on I between
I and I, then XY, XY are parallel to OJ, and the carstigmod or
locus of Y, Y is a cirele of which O is the centre and KT the diameter
(tig. 34). When the indit is MN, or X lies on the line MV, as at
X, M, X,, on MN, the stigmod consists of two branches proceeding
from Y, and Y, so that the circle is but an extremely small part of the
cyclal. If OF had been taken on OJ at OG, so that ¢ = je, we should
have a*— (y—a)*+¢* = o, whence (y—=)®= 2’+¢*; hence when X is
on 0OI, Y is always on OI; when Xis on OJ, and Te< Ty, XY being
parallel to OZ, Y will deseribe the same characteristic circle as before,
but every stigmal (zy) is non-cartesian. This is Chasles’s “ imagi-
nary” circle, more particularly referred to in art. 49. v. (2). Also
since =y (22—y), the primals, that is, the assals y=0 and 2z—y=0
are the asymp’tals (asympt-otes +al) of the cyclal; see art. 88.iii. These
have no carstigmod. 'The nature of their asymptoticity is easily seen,
for as X retreats in any direction, the angle I diminishes, IJ.X, F.\
become more nearly of the sume length, Y approximates to O, and
Y’ to a point ¥,, where XY, = 0X, while O, Y, are the stigmata of
X in the assals. The asymptals of all concentric cyclals are parassal,
and hence paraprimal.

Since in the cycal 2z = y+’, we can eliminate z from the equation
e=a"—y—a)?=2xy—1"=w+y)y—y*=yy. Hence the pairs of
co-stigmata form an inval of which O 1s the solitary point; E, I are the
double points. The stigmods of ¥ and Y’ for a given indit are
therefore related as the indit and stigmod of an inval. There are
really always two branches, which are disguised ia the Cartesian case,
because they are then two semicircles united at their extremities by
the double points # and F. This gives an easy way of finding X from
Y, and shews that though each index has two stigmata, each stigma
has but one index, which is also apparent from the original equation
being only of one dimension in y. We have already found that
(#~y)* = (v —e) (®—f), which also shews that if we form an inval of
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which X is the solitary point, and (¢f) a variable stigmal, each stigmal
determines a new circle having the common stigmals (2y), (#y") with
each of the others. Compare art. 49. v. (1).

(vi.) E'quiper'bal (equi-lateral or equi-angular + hy-perb-ola + al),
I7 and (G are coincident and both lie on OI, (no figure), €*+g*=2¢* =7,
equation 2®+ (y—z)® = ¢*, whence (y—=2)* =e’—a* =1.(z—e) (2—f),
so that Y, Y’ in the equiperbal ave found by turning YXY’ in the
cyclal through a right angle. This is the foundation of Poncelet’s sup-
plemental circle.  When X is on I, beyond £ and F, then XY, XY will

¢ parallel to 0J, and the carstigmod, or the locus of Y, Y, is an equi-
lateral hyperbola, where the two branches are visibly separated. Also,
since ¢’= [z +j(y—=a)].[z—j(y—=)], the asymptalsare z+j(y—a)=o,
and @—j(y—=) =0, which have a Cartesian part, and their carstigmods
will be the loci of P and (), the extremities of PX(, the YXY  of the
asymptals to the cyclal, turned through a right angle about X. See
the more general case of the hyperbal, in (viii.)

(vil.) Blliy'sal (ellips-e+al), B on OI, G on OJ, Ty<Te. In this
case (no figure) let kj=g, so that ¢*+7%* =0, &*.IRe*isa tensor, and
K lies upon OI The equation becomes €*(y—n)’—ka’+e’k* = o,
whence e*(y—a)? =% (2 —¢*) = I*.(z—e¢) (w—f) ; hence XY, XY are
immediately found, by forming XU, the mean bisector of XF, XF
as in the eyclal, and altering its length so that len XU : len XY ::
len OF :len OG. When X is on OI between I7 and F, then XY, XY’
are parallcl to OJ, and the carstigmod or the locus of Y, Y”is an ellipse,
of which EF is the major axis, and GH the minor axis, and S, Z the
Juci.  Also, since &%= [ke—e(y—=)].[ke+e(y—=)], the primals
kv —e(y—a)=o0, kx+e(y—ax)=o0, will be the asymptals of the ellipsal,
and will have no carstigmod. The ellipsal includes the cyclal as a
particular case. Ifin fig. 32, O, OG (not OL, OG) are taken as the
semi-major and semi-minor axes; S, Z will be foci, and (mn) a carstigmal
in the characteristic ellipse.

(viii.) Hyper'bal (hyperb-ola+al), E and @ both on OI, so that
¢’ . I’y is a tensor; no particular relation is needed between len OF
and len OG, s* = ¢®+¢% The equation remains ¢*2’+*(y—a)’ = e ¢,
whence & (y—a%) = ¢*. (—a*) =i. (@ —e) (x —f), and hence
YXY' is found by turning the corresponding line of the ellipsal, for
which ¢*=7#? through a right angle. Hence Poncelet’s supplemental
ellipses and hyperbolas. When X is on Z, beyond LT, then XY, XY’
are parallel to OJ, and the carstigmod or locus of Y, Y’ is an hyperbola,
of which I is the major, and GH the minor, or “imaginary,” axis.
It has been usual to represent the minor axis by a line perpendicular
to EF, and call it imaginary. In fact (og), (ok), which are the stinnals
of the ordinal with the hyperbal, are incarstigmals, and both points
G, H lie on the line EF. 1f, in figure 82, OE” is taken as the semi-
real axis, and § the focus of the flat hyperbola there (very indifferently
indicated rather than) drawn, OG” will be the minor semi-axis, (og”)
being the stinnal of the ordinal with the hyperbal, determined by
making ¢” = s*—¢”. The primal (oo, 09”) through (00) will be the
ordinal, and bave O@, for its carstigmod, and OG@,is parallel to the
carstigmod of the tangental at B”, If len OG,=len 0G”, O0®,is the
line usually drawn as the *imaginary” semi-minor axis. Similarly,
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OFE being any semi-diameter, OK is usnally drawn as the “imaginary”
conjugate semi-diameter, being parallel to the tangent at K, whereas
it is only the carstigmod of the symmetral (art. 50.) to the diametral, of
which OF is the cmrqhomod and the proper stinnal (g,9) of that pnm'tl
with the curve is found by turning O through a right angle to OG,
and drawing GG, perpendicular to OG'. We shall find in art. 50. iii. (3)
that f="+g"="—ygl = +g* = -1

Since ¢’¢* = [gz—je (y+2)].[ge—je (y—a)], the asymptals of the
hyperbal are ga+je (y—a) =0, and g¢gz—je(y—a) =o, and have a
carstigmod, which will be found by turning the Y XY’ of the asymptals
of the ellipsal through a right angle. Thus, in fig. 82, OL is an
asymptote to the flat hyperbola on the right, where I’ L = OGZ

(ix.) Hy'perel (hypc;-bola,+cl-]1pse, the final-al omitted for euphony),
FE and G lie anywherve on the plane. This is the general case, to which
all properties of centrals belong. The equations have the same forms
as in (viii.) Given X (fig. 02), join X, XF, make XF\=FX, draw
XU the mean bisector of X, X ¥, and 1evolve XU through £ UXY=
£ EOGQ, altering its length so that len XU : len XY :: len ‘OE : 1én OG-
When X lies on EF between X and I7, as at X, this constructlon gives
Y asat Y, Y, on an ellipse of which OF, OG are conjugate semi-
diameters. But if X lie beyond Z, I, as at X,, the same construction
gives Y as at Y,, Y; on a confocal hyperbola passing through Z (the
same as that described in viii.). From this circumstance is derived the
name hyperel, which thus becomes synonymous with the general cen-
tral quadral. If the ordinate X,Y, be revolved through a right angle
to AX,Y;, its termination will lie on one of Poncelet’s supplementary
hyperbolas, which is however quite useless in this case, as the stigmod
is sufficiently clear in itself.

The equations to the asymptals are the same as before; but if we put
them into the proper distal form (art. 40.), using (@p”), (z¢") for the
costigmals in the asymptals, with (zy) in the central, they become

y—p =y—a+j. . Re.gx, y—¢ =y—n—j.Re.gz,
whence (y—p") (y—¢’) =¢° or the mean bisectors of P'Y, QY =
0@ and GO, as in fig. 32, where pri (00, 2p”) and pri (oo, 2¢) are the
asymptals. Now 2 (y—a)=y—y’, hence

¥—4=@—)—2@—e) =7.(y—p), or QY'=YP,

a well known property in the hyperbola, but seldom directionally
stated. (In the ordinary hyperbola, the parallelogram P'YQ'Y becomes
a straight line.) Also if Y- pl=7l'(_/ —p), y—q=m.(y—q),
we have (y—p) (y—¢) = 7. ¢°. Hence the above property holds
for the stigmins of any transversal drawn through (2y) and cutting
both the central and the asymptals. Also if y—pi=p, y—q. = ¢,
pq==%g% or (pg) is the stigmal of an inval depending on the di-
rection of the transversal. And so on for the generalisation of all
other properties deduced in Plicker’s System, p. 91.

(x.) The unreduced duoquadral equations to the cyclal takes one of
the forms 2ay—y*+ 28z +2e'y + ¢ = o,
or = (y—a)+ 22 +2¢. (y—2)+{ =o.
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If T, T" be the direction points of two intersecting rayals (3b, zy),
(ed, .cJ), proceeding from fixed stigmals (/50), (8d), then

b-y)+(@=)(B—-2) =0, and (d—-y)+({'—0)(0—2x) =o.
R(t—i)—DR(t —1)
T+ (=) + L —1)

is easily reduced to.an equation in 2 and y, which on multiplying out
will be found to be one of these two general forms of the cyclal. This
generalises a portion of art. 3% v., and admits of the complete appli-
cation of ray-hommals in the same way as Chasles uses the homographic
propertics of rays in a circle. This shews also that three stigmals,
forming a trilateral (aa, 8b, yc¢) determine a cyclal. To construct it
from them, it is necessary to find the azis, that is, the stigmals of the
ceutre, and the major points. On drawing orthals through the middle
stigmals of two of the laterals, their stinnal is the stigmal of which the
centre is the stigma. Transordinate so as to make the central stigmal
(00), then (2’y) being one of the transordinated stigmals, draw X'Y’
so that 22'=y+y, and find B, F as double points of the inval
(00, yy'). On making this construction first in a Cartesian case, care-
fully marking the indices, its nature will be quite clear. A cyclal thus
given may be noted as cyc (aa, 6b, yc).

Hence the condition tal T'T" = p, giving p =

(xi.) For conals gencrally, if from (um), (va) rayals be drawn inter-
secting in fixed stinnals (aa), (130), (yc), and a variable stinnal (zy),
and the direction points of the rayals from (pum) be 4,, B,, 0}, X, and
from (vn) be A4, Bz, C,, Y, respectively, then we may find a,—7, a,—7,
b,—i, b,—i, &c., in the same way as in (x.), whence we can form

—bl = (ay—1)—(b,—7), and so on. Then if the movable rayals form
a ray-hommal with the fixed rayals, we have (a\b,c,)) = (ahscos).
Substituting the values of a,—b,, &c., thus found, we obtain as the locus
of (xy) a general quadral, of which it is easy to investigate the parti-
cular cases. Also if there be four fixed stigmals (aa), (130), (yc), (éd),
whence rayals are drawn to a movable stinnal (2y), and 4,, By, C,, D,
be their variable direction points ; the condition («,b,¢,d;) = A\, reduced
as before, gives a general quadral. In the latter case, (abed) is also
constant ; hence A = p (abed), where u is a constant, or the anral of the
rayals,now called chorduls (chord+ al) of the quadral,divided by the anral
of the stigmata of the fixed stigmals is constant. These contain stigmatic
generalisations of Chasles’s fundamental propositions, Scctions Coniques,
arts. 8. and 4. respectively. They can also be deduced in other ways. The
deduction in Chasles is made from perspective projections of a circle ; but
this is inapplicable stigmatically when the centre of projection is not in
the same plane as the curve. Hence it is not possible to pass in that way
from the properties of general stigmals of a circle (non-Cartesian as well
as Cartesian, “imaginary” as wellas “real” points) by such projections.
For the same reason it will be necessary to establish a stigmatic theory
of contact before the corresponding generalisation of the fundamental
proposition of tangents can be undertaken. That proposition is proved
in art. 51.iv.  After these chief propositions have been proved, the
whole of the demonstrations in Chasles’s Sections Conigues can be
adapted stigmatically by mere alteration of terminology.
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49. Intersections of Duoquadrals by Primals.—(1.) The intersections of
a hyperel é*(y—a)*+g** = *¢* bya primal y—a+te=1>
give at once (fP+et)a”—2bte*e = (P —b*) . & oo ),
whence (Pt = bte*£eqg/ (FP+EP—17) oo 2),
which is constructed by putting

el =m, ¢g*+m?=n? W*—0=1 bm=nm, gr=nr,
whence nxy = em’ +er, nr,= em —er.
In particnlar cases this construction may be greatly simplified.

(ii.) There is no intersection, if ¢*+¢*> =0 and b =o0; for the
equation (1) in (i.) then reduces to v =¢*? an impossibility. In this
case, the primal is an asymptal, as already found.

(m) If ¢°+¢* =0, but b not =0, the equation (1) in (i.) reduces
to (y*—0%) +20tx = o, giving only one value of #, or a parasymptal cuts
the hyperel in one stigmal only.

(iv.) If b does not = o, but g*+ ¢’ = % then there is also only one
value of @, produced however not by the reduction of the equation (1)
in (i.) to a simple form, but to a complete square. This makes the primal
a tangental at (2y), and on determining ¢ from this condition, and from
the equations to the primal and the hyperel, we find #*(y—x) = ¢z, so
that (2,7,) being any other stigmal on the tangental, its equation is

e(y—a) . (.Vl_vl)+g v = eyt
Hence tangentals to a central can be drawn through any stigmal, except
the centre stigmal (00). The whole theory of the tangental and polar
can now be deduced ; see arts. 50. and 51.

(v.) For the particular case of the cyclal proceed thus, fig. 34, where
the let{ering must first be understood in a general, nota Cartesian, sense.
Primal y—z+itz=0=ct; cyclal a®— (;y—t)2 = é’;
bt 4= /(D> + > —e*1?) _ b /(P +E—e tz)
t— » Y= t+1

Put (2,21, (2,9,) for the two values of the stinnals.

The orthal from (00) on the primal is ¢(y—=)+« = o, -and if its

stinnal with the primal be (;ma), and with the cyclal be (od), (¢'d’),

wlhence z =

b bt t—1
we have n = Pl m = Eg d* = PR . &,
whence 2n=y+y. 2m=a4x, ny.=40,

so that (nm) is the middle stigmal of chordal (2, wz./‘,), and Y, Y,
lie harmonically with respect to D, D.

Also ™% — £J (WP +eE—e ) n—y _ 33«/(52-11;62—62152)’

m bt ’ "
e D=ttt 1=t _ o 4
and (n—y)*= e =n’4 ¢ +t =n'—d’ = (n—d) (n—d).

(1) First particular case. The primal and cyclal are Cartesian,
e=1Se, b=Vb, t=Vi, or Ve=8Sb=8t=o0; €&=T%, b*=17.T",
=714 V+e—e=17. T+ T+ T%. T = (i+T%) {T°e—T"n},
since 12b = (¢+1%t).T?n. If then Te > Th, or the line CB cuts the
circle (this case is not drawn in the figure),

U(*+e—et®) =i, andhence V2= %=o, and S2¥=,,
m ~ n
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or XMO is a straight line, and ONY a right angle. This corresponds
to the case of art. 34. x. But if Te < Th, as in fig. 34,
U(b*+e*—e*t*) =4, and hence Smyzw =o, Vn;y =o,

or OMX is a right angle, (and hence X,MX, a straight line perpen-
dicular to O3L,) and ONY or Y,NY,0 is a straight line. In this case
T? (n—y) = T?n—T2?e. Hence set off NZ' or NS of the same length
as OfJ, and with centre Z’ and radius of the same length as ON de-
scribe a circle which will cut ON in Y}, Y,. It is easily seen that this
construction is the same as that for finding the double points in the
hommal resulting from the intersections with OB of rays from K, I,
the extremities of the diameter parallel to C, B passing through any
points in the circle. Thus the tangents KZ’, LS determine the solitary
stigma and index, and the rays ICD, LD two other points, (drawn but
not lettered in the figure,) whence Y;, ¥, are found. Chasles’s defi-
nition of the imaginary points of intersection corresponds to their
being the double points thus obtained. Then X, X, are found by
making OX,Y; A 0X,Y, A OOB. It is well to verify by construc-
tion that (2,7,), (257,) are really stigmals belonging to the cyclal.
If X,Y; and X,Y, ave produced to the same length backwards, they
will fall on other parts of the stigmod corresponding to the indit X;X,.
This is seen to be a two-branched curve in the figure. The stigmods
described by two different stigmata for any indit are necessarily so;
but the two branches of the carstigmod in this case, as mentioned in
art. 48. v., coalesce and form the circle, whereby, as so frequently
happens in OCartesian geometry, the real relations are completely
disguised.

Observe that since (n—y)* = (n—d)(n—d), if we were to sup-
pose ¢, and hence d, &', to vary, (dd) will become the stigma on an
inval of which N is the solitary point and Y, Y, the double points.
This would give a series of cyclals having the common chordal (2 7,, 25 y,)
on the primal, of which OD is the carstigmod, and hence being the only
part hitherto recognisable, was used to represent that chordal and called
the radical axis. Since (art. 50.1i.) the symmetrals of a cyclal are
orthal, no generality is lost by considering this chordal to be the ordi-
nal, and taking the origin O at N, and the equation to the cyclal as
(c—2)—(y—a)* = (c—h)*= (¢—k)? so that C is its centre, and HI
its axis. Let (0e), (of) be the stinnals of the ordinal with this cyclal,
then the inval becomes ¢*=jf*= Ik, and all the general cyclals which
the ordinal intersects in (oe), (of) will be found from their axis HK,
which forms an ordinate in this inval. This at once generalises and
simplifies the investigation of the properties of this common chordal.

(2) Next suppose the primal to be Cartesian, but the cyclal to be
2 —(y—=)®=¢* where g =je, and is hence a vector. This may be
distinguished as the wec-cyclal, and corresponds to Chasles’s ‘‘imagi-
nary circle,” (see below, p. 78, col. 1, at bottom,) which here becomes a
geometrical reality ; see art. 48. v. In this case,

: U+ g’ — g =" " —Tg—T7g . T",
and hence S (V*+g¢°—¢*#*) =o0 in all cases. Hence we have as

before S m”_;x =y, Vq%/ =o0; but T*(n—y) = T"u+1T".
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Hence make len NY' = len Y’N = len 0Z’, and the stigmins Y', ¥’
are determined. Then find X', X” from (CX'Y" A OX”"Y” A COB.
The figure shews that X”Y” is a mean bisector of X"@, X"H, and
hence that (z#”y”) is a stigmal in the vec-cyclal as well as in the car-
primal. This will suffice to initiate the very interesting relations of
this case.

(vi.) Carnot’s Transversals for conals may be considered thus:—(1)
Let two primals through any stigmal (2y) cut the conal whose equa-
tionis ¢ (2, 9) =0, In (2,9), (wy,.) and (2y), (2”"y”) respectively.
Then if A be the coeflicient of y* in ¢ (2, ) and «, ; be coeflicients de-
pending on the direction points of the primals (put the equation in the
distal form, and apply art. 40. iv.), each of the following expressions
represents ¢ (2, ¥), and we have consequently

k. (=) . (y—=9) = 1. (Y—=9) . (¥—=9") ceverrinnen. (D).
If the second primal is tangental, the second side becomes
K (F—Y) e, (2).

If the second primal is a parasymptal, it cuts the conal in one stigmal
only, and the second side becomes k3. (¥—=%") ..ooveriviiiniininn.e. 3).
If the second primal be an asymptal, it does not cut the conal at all,

and (F=9) . (Y—Y2) =Kg cevrerinieiananns e (4).
(2) If two primals be drawn intersecting each other in (zy) and the
conal in (2,71), (#292) and (2y"), («”y”) respectively. And two others
parallel to the former respectively and intersecting each other in (én)
and the conal in (4,7,), (&), and (&%), (£n") respectively, then
$(1.=9) (=) =¥ =9 (¥ =)
and k (m—n) (p—n) =« (0" —n) (" — n),
so that, on eliminating «, «,
(=2 (=y) — =) (/=)
m=n)(—n) (=) ("—n)

(8) Let the laterals (30, yc), (ve, aa), (aa, 3b), of the tri (aa, 3b, yc)
intersect the conal in (Al), (N'T), in (um), (u'm’), and in (vn), (¥%'), re-
spectively, and let &, &, k3 be the coeflicients due to their direction
points respectively, then

k. (c=1) . (c=1) =«y.(c—m).(c—m),
k. (a—m) . (a—m') = «3. (a—n) . (a—n'),
k3. (b—n) . (b—n') =« . (6—1) .(6=10);
whence eliminating i, &;, ;3 we have
(=D (=) . (a—m)(a—m) (b—n)(h—n") _ p
(c—m)(c—m)  (a—n)(a—n') (b—=1)(=0) ~ ~
and this expression holds for non-Cartesian as well as for Cartesian
intersections. Thus, in fig. 84, the laterals (oo, cc), (cc, 0b), (08, 00) of
the Cartesian trilateral (oo, cc, 0b) intersect the Cartesian cyclal in
(ee), (ff), in (@1y1), (%29.), and in (og, ok), respectively, and hence
gh . (e=0)(f=0)  (n=0)(m=b) _,
o (=0 (p—c) (g—-b)(—0)
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U (7/!’_b) (I/?—'b)
(1h—c)(y2—¢)
and bence £CY,B = £ BY,0, which on account of the perpendicularity
of Y,Y, on BC is easily verified, and shews a real geometrical rela-
tion of the “imaginary points” Y;, Y,.
In a similar way all the other transversal relations may be gene-
ralised.

The position of the triangle then shews that

50. Symmetrals,.or Conjugate Diameters generalised.—(i.) A primal,
drawn through the stigmal of which the ceutre of a central is the stigma,
cutting the central in two known stinnals, is called a diametrul,and those
stinnals its terminals. The major and minor axals (ee, ff), (og, oh) of
a central, which in this form are the abscissal and ordinal, are such dia-
metrals, of which the stigmals just named are the terminals. The
central expressed as ¢*2*4¢’ (y—a)’=¢’y® has then this property,
that for any value of @ the two values of y—z are equal and opposite.
The equations to these principal diametrals are 2 =0 and y—a = o.

(ii.) Now, transordinate indicially (art. 47. ii.), putting

w=ax+b(y—a') o (D),
Wllence y—x = (i—a)a’+ ((—=0). (y—a) .cccoin, (2).
Then, putting alternately a’=o, y—a'=o0, for the equations to new dia~
metrals, they give, in the old coordination, z=by, z=ay re%pectlvely

1f T, T}, be the two direction points of these plmnlq, then b(t—t) =<
and a (¢t—1%,) =% Putting these values for o and b, and then the
resulting values for z and y—a in the equation to the central, and
reducing, we find
@_f; (P +e8) 4 24+ ) & (y—a) + L0 () (y—')?
‘1

=g ... 3).
This therefore will have the same form as before, if ¢*+¢*,f, = o.
Hence the pairs of diametrals satisfying this condition form a ray-
inval, and the two rayals in each rayar pair (art. 39. ix.) may be called
symmetrals (con-jugate, con- represented by sym-, and dia-metral). The
double rayals are determined by ¢*+¢** = 0, but these are not dia-
metrals, for‘, putting &=t = ¢, this condition reduces equation (3)
to o=¢%’, which is clearly impossible. But these double rays are
the asymptals (see alt 48. viii.), and, calling their direction points
A, A,, we have ft,= a = az, which gives an easy construction, when
the asymptals and one symmetml is known, to find the other sym-
metral. In the cy clal, since #+9* =0, we hme tit; =1, or the sym-
metrals of any pair in the cyclal are orthal.

@1i1.) Let (uc, u'c’), (vd, v'd") be two symmetrals expressed by their
terminals, havmg' the direction points Ty, T;. Let a primal from (uc)
orthal to (vd, v d) cut the latter in (m'm) having the dircction point I,
so that tzpl =1

Then 2 e (c—u)? = g, q"v +&(d—v)® = &,

_ (= u)(r]—v)

uly = u—c, vf=v—d, g = {1,



ART. 50. iii.—51. 1i.] CORRESPONDENCE OF POINTS. 67

Substituting from the third and fourth in the first and second, and
reducing by the fifth of these equations,

g’ ¢ = (c—w)’ (¢*+4¢), e =% (447,

w.(c—u)+v.(d—v) = 0. D),
Wt =1¢ (c—u)+(d—v)’=g*...cviiini. (2),
A= 4 =8 (3),
v.(c—u)y—u(d—v) =Fe.g ..ol 4),

o=m _ =t o h=h g0 g 41,

c h—1 p1—1,
_ Bt —} b=t _ d v(c—u)—u (d—-v)

ty—1 Rt,—t, ¢ (d—v)*—*

whence (c—m).(2v—d) ==eg ..ol (5).

These are generalisations of mostly well known properties, but (3)
was I believe never noticed till my second memoir on Plane Stigmatics
(14 June, 1866), though it gives a very neat and useful construction by
art. 33. v. for finding the focus from any pair of symmectrals of which
the terminals are known, or the terminal of a second symmetral from
the foci and one symmetral. Compare especially Chasles, Sect. Con.,
art. 205, and observe that that article applies only to the ellipse and to
the case of “real” or Cartesian symmetrals, whereas the present cqua-
tion applies generally. The reduction of these to the usual tensor
relations in the Cartesian case of either ellipse or hyperbola presents
no difficulty.

(iv.) Putting for ¢, 1, the values in (iii.), we have for the transor-
dination in (ii. ),

@ y—a _ u

Lot L (g—a),

i—t i——t2 T e

T =

y— z= g b . (y— fc)—~;b‘a:'+d
t—1 1‘ -
and then substituting in the equatlon to the central and reducing by
(iii.), we find a2+ (y—a')? = *d?,
 so that the central referred to symmetrals has always the same form.

&1, Tangentals, Polals, Polarals, Focals, Confocal Centrals, and Curva-
cyclals, or the Relations of Tangents, Poles, Polars, Foci, Confocal Conics,
and Circle of Curvatnre, generalised.—(i.) Notation as in art. 50. If T,
be the direction point of the tangential to a central at (uc), and T, T}
those of the diametral (oo, uc) and its symmetral, it appears by the
equation to the tangental in art. 49. iv. that

2 2
ty=9 . X =09 byart. 50.iii, = &, by art. 50. ii.

o
e c—u et

The tangental is consequently parallel to the symmetral.

(ii.) If the double point of the tangental at (uc) be W, it appears by
the equation in art. 49. iv. that ww = ¢? or U, W are harmonically
situate with respect to IJ, I As the stigma C does not appear, the
co-stigmal (uc’) will have a tangental with the same double point. On
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account of art. 49. iv. the same is true for the co-stigmals of any index,
when the central is referred to symmetrals. Hence, to draw two tan-
gentals to a central through a given stigmal (w'w), first draw a diametral
(00,uc) through that stigmal, then its symmetral (00,vd), and then deter-
mine the ternnnals (u¢),(vd) of both. Find X'so that ".w = ¢* and taking
X’ as the index of a stigmal referred to the symmetrals as axals, find its
stigmata X3, X5, and then find the indices X, X, of these stigmata referred
to the old axals. The two tangents referred to the symmeha,ls are
(ww, «’y,) and (ww,xy,), and referred to the old axals are (ww, 2,71),
(Ww, zyy,).

(iii ) The primal (@, 2,9,) or contact-chordal is the polaral (polar+al)
of the stigmal (ww) in rveference to the central, and this stigma is the
polal (pul-e+al) of that chordal. The ploperties of these stigmals and
primals depend upon the inval equation 2w = c¢* by which they were
determined in (ii.).

(iv.) “If through four fixed stigmals in a central there be drawn any
four tangentals, intersecting any fifth tangental, and also four
chordals meeting in any fifth stigmal of the central, the anral of
the four stigmins of the four first with the fifth tangental will be
equal to the anral of the direction points of the four chordals.”” This
is the stigmatic expression of Chasles’s fundamental property (Sections
Coniques, art. 2.) referred to in art. 48. xii. The following is the de-
monstration I gave in 1866, in my second memoir on Plane Stigmatics,
art. 110, reduced to the preseut terminology.

The anral of the four chordals remains unaltered, whatever be the
fifth stigmal to which they are drawn (art. 48. xi.) ; hence it is sufficient
to prove the proposition for any particular position of the fifth stigmal.
Assume it to be the contact stigmal of the fifth tangental with the cen-
tral, and through the stinnals of the four tangentals with the fifth,
draw four rayals to the stigmal of which the centre of the central is
the stigma. These will be symmetrals to the diametrals which are
parallel to the four chordals (as they are all contact chordals), and
their direction points will have the same anral as the direction points
of these diametrals (on account of the inval, art. 50. ii.), and hence as
the anral of the direction points of the four chordals. But the direction
points of the four rayals have also the same anral as the four stigmins
of the four tangentals with the fifth, through which the rayals were
drawn (art. 42. 1ii.). Hence the proposition is established in all its
generality for all central quadrals, Cartesian or non-Cartesian, and
consequently all deductions made from it, by adapting the reasoning in
Chasles’s Sections Coniques to the btlgmatlc generalisations, must also
be necessarily correct. For non-central quadrals, see avt. 52. xii.

(v.) If B be the original point of the tangental, and T'iis direction
point, then, by art. 49. iv., ¢*4¢*? = 1*. Hence, if tangentals be
parallel to the a‘:ympta,ls of a cyclal, that is, be parassal, so that ¢ = 1,
we have 12 =¢% + ¢ =s’=172% Ience all such tangentals contain the
stigmals (0s) or (0z). In this case then the equation to the tangental at
(xy) reduces to y=sorz and2zx—y=sorz

Now the double points in both cases are (ss) or (22). Consequently
there are four primals (ss, 05), (22, 0s), (%2, 02), (22, 0s), having either



ART. 51. v.—vii.] CORRESPONDENCE OF POINTS. 69

S or Z as the double point, and also either S or Z as the original point,
which possess the property of being at once parassal and tangental to
the central. These two points, S, Z, are known as the foci, and the four
stigmals (ss), (0s), (22), (0z), may be termed the focals. By confusing
foci with focals (i.e., stigmata with stigmals, as usual in Cartesian geo-
metry), Plicker (System, p. 106, 1. 6) recognises four Brennpuncte or
Joctina central ; two real, lying on the major axis,—these are the focals
(ss) and (#z) ; and two imaginary, lying on the minor axis,—these are
the focals (0s), (0z). This results from his definition of jfocus, which
is really only that of focal. Salmon (Conics, 3rd ed. p. 233, 4th ed.
p- 242) also says that the two imaginary points, meaning the two stig-
mals (0s), (0z), ““may be considered as imaginary foci of the curve.” He
also speaks of a quadrilateral, corresponding to that stigmatic quadri-
lateral of which the four are the four tangentals just named. Chasles
(Sections Coniques, art. 294) speaks of this quadrilateral, but recognises
as foci two only of its apicals (ss), (22), as will be found only translating
his language stigmatically. His words are: “ Les foyers d'une conique
dont les dewr sommets réels du quadrilatére imaginaire circonserit & la
courbe, et dont les points du concours des cdtés opposés sont les'deux
points imaginaires situés a l'infini sur un cercle.” Points, which are
cither indices or stigmata, should be kept distinet from stigmals, which
consist of stigmata referred to indices. If we Jso focz f'or the poiuts,
there are but two in a central, determined by $*=2*=¢ + 9t =+ d,
but there are four jfoculs, which, referred to the principal axals, are
(ss), (z2), (0s), (0z), the ﬁzst two on the abscissal and the second two
on the ordinal. In fig. 82, §is so taken that ss’ = ¢?, hence the ordinal
through (s%s') is the contwcn chordal for tangeuntals from (ss). Counse-
quent]y (s's), which is a stigmal in the parunal through (ss), must be
the stigmal of contact. It is readily seen by actual construction that
(s's) is o stigmal in the central. If for any indit through S we find the
corresponding stigmod for the central, and also for the parunal, the
latter would remain the point S, and hence the fact of contact would
not appear to the eye. But on turning all the ordinates through a
right angle, we obtain supplementary figures in which the contact is
visible.  For illustration this is shewn in fig. 82 for the car-ellipsal

¢*(y—wn)*+¢"" = ¢”y”, in the tangental from (#2), of which the con-
tact-chordal is the parordinal (27, z'zl), where 22’=¢?  The ordinates
turned through a right angle generate one of Poncelet’s supplementary
hyperbolas, and the tangent to this from 2 represents the stigmod of
the actual tangental, and is scen also to be a tangental from (22). It
must be remembered that this arrangement in the figure does not
represent the actual state of things, but merely serves to make it clearer
to the eye by separating points which would have otherwise coalesced,
or have lain on the same straight line.

(vi.) “If pairs of rayals be drawn from any focal of a central to the
corresponding stinnals of a movable tangental and two fixed tangentals,
the tannal of the direction points of the rayals will be constant.”
This is a generalisation of Chasles (Sections Coniques, art. 293), and
applies to all four focals; the demonstration follows from art. 4. iii.

(vil.) “The sum of the tannals of the direction points between the
rayals drawn from any stigmal in a central to the two focals (ss), (22),

F
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or of those drawn to the two focals (0s), (0z), and the normal (or orthal
to the tangental at the point) is null.” This is a generalisation of the
property whence the foci received their name. The existence of this
property for both pairs of stigmals (ss), (z2) and (os), (02), justifies
therefore the application of the term focal to all four.

Let N; be the direction point of the normal (that is, the orthal to
the tangental) at (xy), and S), Z,; S, Z,, the direction points of the
rayals from (zy) to (ss), (22), (0s), (0z) respectively. Then, art.49.iv.,

ny = (y=o).¢ ®  while §=4"% ,=¢=f_7""Y

x. g s—zx r— s+a
=) _s—(—2) , _e—(y=5) _ st (y—n)
! @ z : @ )
Hence tal SN, = S =" = £ 0=2) _ M=t _ ) 7,
T—8 My g T —2m
and tal SN, = S2—™ — ¥6 =MT% — 3]l N\ Z,.
t—8Mm 4 1—"N) %

(viii.) Theequations s* = &*+¢* = ¢*+g* = ¢ +¢", fig. 32, point to
a series of conals with a common centre O and common foci S, Z.
These are called confocal centrals. If we put =27 g¢°=(y—=)?% these
equations reduce to s* =a?+ (y—w=)?% which gives an equiperbal (art. 48.
vi.) whence, given S, Z, the whole system can be found. If we assume
any pair of values of ¢, g, to give a standard hyperel, then by art. 50.
iil. (8), another pair, as ¢, d, will give terminals of symmetrals, which
must be referred to indices by being taken as clinants of stigmata in the
hyperel determined by the other.

To find the stinnals of two confocal hyperels (ee,00,0¢) and (¢'¢’, 00,09'),

gza}2+e2 (y—a)? = 62_(]2, g'2m2+e'2(y —2)= e'zglz,

where s =é+9*=¢?+g"? fig. 32.
These equations give s%* = ¢*¢?, s*(y—u)® = g’
If then 7, 1" be the direction points of the tangentals to these hyperels

t=_2 7 =2 9

y—a e’ y—a &%

so that ¢/ =1, or the tangentals are orthal. This stinnal is very nearly
the (@y,) of fig. 82. If in the same figure we take the Cartesian
ellipsal (#¢, oo, 0g), and the confocal Cartesian hyperbal (¢”¢”, 0o, 0g”),
their stigmin is #, and the perpendicularity of the carstigmods of the

two Cartesian tangentals at F is evident.

(ix.) The theory of transversals in art. 49. vi. is sufficient to determine
the curva-cyclal (curva-ture+cyclal) to any conal whatever.

Let (aa), (d'a’), (B'V") be three stigmals in a central. (The reader
should draw a Cartesian case; there was no room for the figures.) Draw
the chordal (aa, a'a’), and through (6'0") draw an orthal to this chordal,
cutting it in (Al), and also cutting the central again in (£b), and the
cyclal drawn through the three first stigmals,in (0d). Take 2u =3+,
2m = b+, and through (um) draw a primal parallel to the chordal
(aa, «'@’), and cutting the centralin (yc), (v'c). Let («'w) be the stigmal
of which the centre of the cyclal is the stigma, and draw the symmetrals
(w'w, p'p), (w'w, ¢'q), parallel to the chordals (aa, «’'«’) and (Bb, B¥), so

at (zy), we have



ART. 51, ix.—52. ili.]  CORRESPONDENCE OF POINTS. 71

that (w—p)*+ (w—g)* = o, because, being orthal, they are symmetrals
in a cyclal, art. 50. iii. Then by transversals,
. V=-0(@=0) _ (v—q)" _
1 ( S 1
in the cycla (D=0 — (o—p)? D,
b= =) _ b=—m)(t'—m) _ 7 (b—m)’
the central ¢ = (2
in the centra (a ~—l)(w-l) (c—m)(d—m) ~ (¢c—m)(d —m) (),
b— __(b—m)®
............ feveneeenen (8).
d~l (c—m) (€ —m) ®)
This holds for all circles. Now take the circle which is the limit as
A, 4, B approach L. The tangental at (Al) will be the limit of the
chordal (aa, «’a’), and since the normal to it in the cyclal will be a
diametral, (o'w) will lie on (A, éd), and d—1 =2 (w—1). Also
b—1=2(0—-m)=17.2(—m). Hence the last equation becomes

o __(e=m)(d—m)
l-w = BT e 4),
a new expression, giving an easy construction for the axis of the curva-
cyclal at (M) in the general case by making UMC A "ML and
LQ=UM.

For the general form of the usual expression for centrals, from (00)
draw an orthal to the tangental cutting it in (pr), and; parallel to the
tangental, a diametral to the conal cutting the latter in (n), then
w—l=mn*.Ir. Make VON A NOR, and LQ= OV.

and by division

52. Parab’bals.—(i.) There is no figure. If the reader will draw an
ordinary Cartesian parabola with vertex O, focus S, parameter OI =
408, directing point D, when DO= 08, axis OF, ordinate XY, he will
probably experience no difficulty.

(ii.) Putting 4s=e, the general equation to the parabbal (art. 48. iii.)
is (y—a)’+ex=o0. To construct Y, join X0, draw OF = FO, and
make XY equal to the mean bisector of OF, OX. If X is on OF, the
stigmod is the usual parabola. Aslong as X is on any straight line
through O, as OX;, the ordinates remain parallel to each other and len XY
=len X,Y;, where X,Y, is the Cartesian ordinate at X; and len 0X; =
len OX. Hence the locus of Y is again an ordinary parabola, with
“diameter” OX, and tangent at O parallel to XY. If the index X
move on OF, away from 8, then XY, XY’ lie on OF, and one of the
stigmata will encroach on OS, but never farther than S. If these or-
dinates be turned through a right angle, the result is an ordinary pa-
rabola with focus D and axis OD. If X fall on S, (y—s)*+4s°=o,
and len YY' =1len OH. If X fall on D, (y—d)* = 4s% and if
2d = s+, then (ds), (ds) are the two stigmins of the directrix
d—a = o with the parabbal. In all cases

(d—0)* = (s+0)* = (s—a)*+4sw = (s— )’ (y—a),
which is the generalisation of the property whence the directrix was
named, giving in the Cartesian case, len SY = len DX.

(iii.) To determine the stinnals of the primal y —z+tx = b with the
parabbal (y—a)®+4sz =0, we find
0 — 280z 40 = 4d@ .0vierieveenincnnnennenn o (1),
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whence o = 0t+2d L2,/ (Ud+d?) .ovvieviinineinn e (2).
In the general case this is best constructed as in (viii.).

(iv.) If ¢t =0, or the primal is parabscissal, (i.) becomes b* = 4duw,
and hence there is only one stinnal. Such primals are termed par-
axials (par-a+ awi-s+al) in preference to diametrals, a term applicable
to central quadrals only. There is no asymptal.

(v.) If bt=s, there will be only one stinnal by the reduction of (1)
to a complete square. ln this case #(y—x) = 2s gives T, the direc-
tion point of the tangental at (xy), of which, if (z;y:) be any stigmal
upon it, the equation is  (y,—a1) (y—2z) +2s (x+2) = o.

If N, P be the double and original points of tangental at (zy),

ntx =0, p==Li(y—ax)=s.Rt ¢t=s.Dp,
n=p.Rt=s. I =p*. Rs, p*=sn=71.s2.

If T° be the direction point of pri (ss, op), then 7=p . Rs=1I4, or
rt=1i, so that this primal is orthal to the tangental. Also, since
s(s—y) =s[s—o—(y—a)] = s(s+p*. Rs—2p) = (s—p)? SP is the
mean bisector of SY, SO. These generalise known properties.

The value of IV being independent of Y, two tangentals can be drawn
from (nn), and the ordinal (zy, #y") will be the contact chordal.

(vi.) Transordinate indicially ; assuming a=u+a (x —v) +0 (2 (y—2).
The cquations to the new axals found by putting y=2', and 2'= v alter-
nately, are z=wu+a (y—v), z=u+b (y—v), which intersect in (uv).
Substituting in  (y—x)*+4sx =0, and assuming (v—wu)’+ dsu = o,
a=1, (v—u—2s) b = v—u, in which case (wv) is a stigmal on the
parabbal, and the new axals are a paraxial and a tangental at (uv),
we find (y—a')*+4 (s—v).(¢'—v) =0, an equation of precisely the
same form. as before. To find Y from X', draw VZ= 48V, and take
X'Y equal to mean bisector of VX', VZ.

(vii. ) Let (2y") be a stigmal referred to the axals in (vi.), and let
%20 =a"+4a’, then

(f=a")p =74 (s—v).(@"—v) =7 4 (s—v)(v—0) = 7. (y—2)}
and hence these ordinates are of equal length and at right angles, so
that (¢"y”) can be constructed from (2’y).

(viii.) To determine intersections of pri (aa, 0b) with the parabbal,
see (iii.). Draw tangental (un, op) parallel to (aa, ob), touching
parabbal ab (wv). 1t is determined by bp = as, bn = ap, u+n=o,
v—u = 2p ; see (v.). Through (uv) draw a pamXIaI cutting pri (aa,
ob) in (wx”) and find (2”y,) and (¢"y.) as (¢"y”) was found in (Vu) In
the Cartesian case Y, Y, is perpendicular to AB. Then (2y), (&"y.)
are the stinnals referred to the paraxial and tangental as axes, and
Y, Y, are the required stigmins. T'o these the indices Xj, X, referred
to the old axes may now be found from the pumal But since
w—u =" — v, (v—u—us)('vl-—w = (v—u)(n—2"), we find on sub-
stituting in  (y,—a") +4 (s—v) (2" —v), that (,—w)*+4u (v—w) = o,
so that (wa,), (wa,) are stigmals on a parabbal of which (uw) is the
vertical, and (0o0) the focal. In the Cartesian case the same equations
shew that if Y; W, be drawn perpendicular to the carordinate WX”,
then w,—a"= w,—w = w—uw,, which give X, and X, immediately.
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(ix.) For tangentals from (%%). Through (%) draw a paraxial cut-
ting parabbal in (wv), take 2v = 2"+F%, and find (2"y,), (2"y,), asin
(viil.), then (kk,«"y1),(kk, 7y,) are the tangentals referred to the par-
axial and tangental at its extremity, and (Ak, @y,), (hk, 2.y,) the same
referred to old axes, and (@1, 57/5), thatis (an, 0b) in the chordal of
contact, or polaral of the polar (k). The paraxial through the stinnal
of the tangentals cuts the chordal of contact at its middle stigmal.

(x.) For focal. Ifiniv. (2) we put bt =s, for tangental, and make
t =i or ¢, we obtain as the equations to the parassal tangentals (see
art. 51. v.) y = s, and 22—y = s, or the primals (ss, 0s), and (ss, od).
There is therefore only one focal (ss) where these two tangentals inter-
sect. The stigmals of contact are respectively (ds), (ds’) where
s+ = 2d, and hence (compare ii.) the contact chordal is the directrix.

(xi.) If N, be the direction point of the normal or orthal on tan-
gental at (2y), and S, of the pri (ss, y) from the focal, then 2sn;, = y—u,
(s—u) s, = y—w, whence tal SN, = n, = tan N,0, which is the gene-
ralisation of the property that gave its name to the focus; see art. §1. vii.

(xii.) To demonstrate (art. 51. iv.)for parabbals, proceed thus. From
any stigmal on a parabbal draw chordals to four other stigmals on it,
and draw tangentals at all the five stigmals, and through the stin-
nals of the last four tangentals with the fifth draw paraxials (having
therefore the same anral as the stigmins of these tangentals), these will
pass through the middle stigmals in the four chordals of contact, and
hence have the same anral as the original points of four paraxials drawn
from the first four stigmals of contact (art. 46.vi.). But this last
anral is equal to the anral of the four chordals, which is again equal to
the anral of four chordals drawn from the same four stigmals to any
other stigmal.

(xiii.) The anral of the stigmins of four tangentals with a fifth is
equal to the anral of the direction points of these four tangentals; see
Chasles Sec. Con. art. 58, where, as the tangentals have no common
stinnal, he has been obliged to invent a new name, not here required.

Let the four stigmals of contact be (aa), (80), (yc), (¢d), and the
four stinnals (a’a’), (BV'), (¥/¢), (6'd"), and the four direction points of
the tangentals at the four first stigmals be 4,, B, Ci, D,; and the ori-
ginal points of the paraxials be 47, B”, C”, D”. Then, by (v.),

20" =a—a = 2s.Ra,, 20'=0b—B=2s.Rb, &c.,

oy — oo man _ (Bay—Rby) (Re,—Rdy) _
hence (a¥¢d) = (a"V'¢"d") = (Bar— By (Lo — by —

(a'lblcldl)'

53. Multindicials, or the meaning in Plane Geometry of Algebraical
Equations with several Independent Variables—(i.) In stating the gene-
ral conception in art. 36. 1., only one index, X, was mentioned, for clear-
ness. But it is evident that in the equation f(@, @ ... %, y) = 0,
the points X, X,, ... X, may be assumed as indices respectively, and
the resulting values of y determined, giving stigmata of which each
one corresponds to many indices. Such stigmatics are distinguished
as mult-indicials. Hence there is no meed to proceed beyond plane
geometry for the perfect treatment of the relations of all. such equa-
tions as are now referred to real geometry of three dimensions or ima-
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ginary geometries of # dimensions. As long as commutative algebra
only is used, the stigmatic conception, with the algebra of clinants,
allows of every result being clearly and distinctly considered as the al-
gebraical expression of a geometrical relation of points on a plane.

(ii.) But multindicials as well as sol-indicials (having one index) may
be treated in the manner which originally suggested itself to me (Ap-
pendix 1IL.) by assuming O%,, OF,, OF; ... OZ,, OH’, as unit radii, and
determining a point I, by the condition =& +aé+... +2.E +yn.
This is what is in fact done in Cartesian geometry, in the form
r = w&+yn, only scalar values of # and y being then admissible, whereas
clinant values give the complete generalisation. We have thus derived
stigmatics, of which the most general form would be

r=T[fi(@, .. 2,y). b fil@y, 2. 20 y). by . ... ].
Some of these I investigated in my original papers of 1855 and 1850,
(see Appendix IIL,) and the results are sometimes very curious.

54. Solid Stigmatics.—(1.) The Cartesian solid geometry results from
a species of the derived stigmatics just mentioned, OI, OJ, OK being
three unit radii (here supposed to be rectangular) of a unit sphere, and
I the point that we wish to investigate; on assuming OI = x.O0I+
y.0J+2z. OK, any equation f(w, y, 2) = o, will, for any given values
for @, y, determine values of z. 1f the given values of @, y, and the
determined values of 2, be all scalar, the point £ can be drawn. But
if they be not scalar the conception is insufficient to determine I, until
it is supplemented in various ways, and hence the custom of supposing
R to become an * imaginary point,” the fact being that no provision
had been made for this case.

(ii.) Among such provisions as might be suggested, the following
would always give a position for I, which would agree with that now
assigned so far as the Cartesian case is concerned. Suppose OIJ to be the
clinant plane, but suppose it also to be movable, and that it can be
placed so as to make OI, OJ coincide with OI, OK, or with OK, OI
respectively. This amounts to saying, allow OJ, OK on the plane
JOK, and OK, OI on the plane KOI to function as OI, OJ on the plane
OI. In this case, #. OI gives a line 0X on the plane I0J; y . OJ gives
a line OX; on the plane JOK; and z.OK gives a line OZ, on the plane
KOI, with perfect certainty and distinctness; and then, as before,
OR = 0X,+ O+ 0OZ, by the usual operations of directional addition
of directed lines in space, I being the summit opposite to O of the
parallelopipedon of which OX,, OY,, 0Z, are adjacent sides. This is
only one out of numerous possibilities. It is clearly not a general con-
ception. It is merely one of those geometric contrivances ad hoc, useful
enough as illustrations, but not suitable for universal adoption, like
Poncelet’s supplementary ellipses and hyperbolas, all very well in their
way, but needing no farther notice in a Tract on principles.

(iii.) Clinant or purely commutative algebra is not adapted for the
purposes of solid geometry, which involves non-commutative operations,
when the plane on which the similar triangles are to be constructed, is
constantly movable. The required instrument is furnished by quater-
nions, but the resultant stigmatic geometry differs from the former,
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owing to the variability of plane. In clinants, two points, O and I,
could be considered fixed, and one only, X, being variable, could pass
into any point of the plane, and hence determine any triangle on that
plane. Now it might also pass into any point in space, but in doing so
it would determine triangles only on such planes as intersect in OI.
To complete the geometry of space, the standard line must be itself
movable, but its origin may be fixed, and the length of its initial limit
may be unchanged. Let then OM be a unit radius in the same unit
circle as before, so that OM = m.OI, and T = 7, where m is a cli-
nant. OM may be called the (unit) base, M the base point. Let X be
any point in space, which may be called the vertexz. Then MOX will be
any triangle on, or parallel to, any plane in space; and if O4 be any
line parallel tothe plane of MOX, it is possible to construct AOB AMOX,
and thus determine B. The operation thus performed is called a qua-
ternion, and may be represented by a,,, the subscript letter referring to
the clinant m, so that OB = #,,. OA. This is the operation, differently
conceived, of which Sir W. R. Hamilton has investigated the laws, and
we see that clinants are quaternions with a constant base point and con-
stant plane of rolation, or for which =, always = a; = 2" on the
plane I0J. Now assume the laws of quaternions as established
by Sir W. R. Hamilton, and let y, be some other quaternion, and let
¢ (@, y,) = 0. Then, so far as this equation can be solved, (which is
not very far, for Sir W. R. Hamilton only solved the equation of the
first degree completely,) the assumption of any two points M, X, form-
ing a quin (qu-aternion in-dex) will determine two other points N, T,
forming a quas (qua-ternion s-tigma). The relation then is not one
between two points, index and stigma, forming a stigmal, but between
two pairs of points, quin and quas, forming a qual (qu-aternion stigm-
al), and hence partakes of the character of the relation between an indi-
stigmal and a stigmo-stigmal in the case of a transordinated stigmatic,
(art.47.1.) This bare statement of the conception must here suffice. Solid
stigmatics, and the correspondence of points lying in different planes,
lie beyond the scope of this Tract, although the geometry here developed
allows of such correspondence being expressed in various particular
cases, by the aid of conventions similar to those in (ii.) and those indi-
" cated in the first case of art. 44. iv.

CoNCLUSION.

55. Such is my Stigmatic Geometry. The sketch is rough, and bare
of detail, but the outline is, I trust, sufficiently firm and true for Ma-
thematicians to recognise the main features of my Theory, and to
justify my own confidence that Clinants and Stigmatics are a New
Power in Mathematical Analysis, a New Instrument for Geometrical
Investigation, and a New Form of Life for Algebra.
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