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I. Introduction 

This chapter provides some auxiliary results and notations needed in the subsequent 
chapters. As most of them can be easily found in the plentiful literature on linear 
algebra, real functions, functional analysis etc. we give only the necessary references 
without including their proofs. More attention is paid only to the Perron-Stieltjes 
integral in sections 4, 5 and 6. 

1. Preliminaries 

1.1. Basic notations. By R we denote the set of all real numbers. For a < b we denote 
by [a, b] and (a, b) respectively the closed and the open interval with the endpoints 
a, b. Similarly [a, b), (a, b] means the corresponding halfopen intervals. 

A matrix with m rows and n columns is called an m x n-matrix, n x 1-matrices 
are called column n-vectors and 1 x m-matrices are called row m-vectors. 

Matrices which in general do not reduce to vectors are denoted by capitals while 
vectors are denoted by lower-case letters. Given an m x n-matrix A, its element in 
the j-th row and k-th column is usually denoted by aM (A = (aM), j = 1,...,m, 
k = \,...,n). Furthermore, A* denotes the transpose of-A (A* = (akj), k = \,...,n, 
j = l,...,m), 

\A\ = max £ \ahk\, 
1=1,...,m k = 1 

rank (A) is the rank of .4 and det (A) denotes the value of the determinant of .A. 
If m = n and det (A) #= 0, then A1 denotes the inverse of A. \m is the identity 
m x m-matrix and 0mn is the zero m x m-matrix (/m = (djk) j,k = \,...,m, where 
5jk = 1 if j = k, Sjk = 0 if j + k and 0mn = (njk) j=l,...,m, k=l,...,n, 
where njk = 0 for all j = l,...,m and k = \,...,n). Usually, if no confusion may 
arise, the indices are omitted. The addition and multiplication on the space of 
matrices are defined in the obvious way and the usual notation 

A + B, AB, kA (XeR) 
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is used. Let the matrices A, B, C be of the types m x n, m x p and q x n, respectively. 
Then D = [A,B] is the m x (n + p)-matrix with djJk = aM for j = l,...,m, 
k=\,...,n and rfM = bM_/l for j = l,...,m, fc = n + 1, n + 2, ..., n + p. Analo­
gously 

- Й 
is the (m + q) x n-matrix with hM = aM if j < m and feM = Cj-mtk if ; > m. 

JR„ is the space of all real column H-vectors and R* is the space of all real row 
n-vectors, Rx = R* = R. For xeR„ x* e JR* we write 

and 
x = max X; 

1 j=l,...,n •" 

И-IW 
j = í 

Given an m x n-matrix A, x e Rn and y e Rm, then \Ax\ < \A\ |X| and |y*-4| < 
< |y*| \A\. The Euclidean norm in Rn is denoted by |.|e 

.1/2 

x G K n - | x | e = (x*x)^ = (^X^2 

It is easy to see that any xeRn satisfies |x|e = |x*|e and |x| < |x|e < |x*| < n\x\. 
The space of all real m x n-matrices is denoted by L(Rn, Rm) (L(Rn, Rn) = L(.Rn)j. 
If M, N are sets and f is a mapping defined on M with values in N then we write 

f: M -> N or x e M - » f(x) e N. For example, if f is a real function defined on an 
interval [a, b], we write simply f: [a, b] -> R. 

The words "measure", "measurable" without specification stand always for 
Lebesgue measure in Rn and measurability with respect to Lebesgue measure. 

1.2. Linear spaces. A nonempty set X is called a (real) linear space if for every 
x,yeX and AeR the sum x + yeX and the product AxeX are defined and the 
operations satisfy the usual axioms of a linear space. The zero element in X is 
denoted by 0. 

A subset L cz X is a linear subspace of K if L is a linear space with respect to the 
sum and product with a real number given in X. 

The elements x l5..., xn of X are called linearly independent if a -^ + ... + anx„ = 0, 
ateR, i = 1,...,n implies oc1 = a2 = ... = a„ = 0. Otherwise the elements x l 5 . . . ,xn 

are linearly dependent. 
If X is a linear space and a norm x e K -• ||x|| e R is defined, X is called a normed 

linear space. If K is a normed linear space which is complete with respect to the 
metric induced by the norm, then X is called a Banach space. 
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A real linear space X is called an inner product space (or pre-Hilbert space) if 
on X x X a real function (xux2)x is defined ((xux2)eX x X -> (xux2)xeR) 
such that for all x ,x I ,x 2 ,x 36 .Y 

(x1 + x2, x3)x = (xux3)x + (x2 ,x3 )x , 

(X1>X2LY — ( X 2 > X l ) x > 

laxl9x2)x = a(x1 ,x2)x , 

(x,x)x > 0 and (x,x)x 4= 0 for x + 0. 

The real function (., .)x is called an inner product on K. 
If K is an inner product space then the relation 

(*) xeX-+\\x\\x = (x,x)l
x'

2eR 

defines a norm on X. 
A real inner product space X which is complete with respect to the norm defined 

by (*) is called a real Hilbert space. Consequently a Hilbert space is a Banach space 
whose norm is induced by an inner product on X. 

1.3. Function spaces. We shall deal with some usual spaces of real functions on an 
interval [a,b], — oo < a < b < +oo. The sum of two functions and the product 
of a scalar and a function is defined in the usual way. For more detailed information 
see e.g. Dunford, Schwartz [1]. 

(i) We denote by Cn[a, b] the space of all continuous column n-vector functions 
f: [a, b] -> Rn and define 

f e Cn[a, b] -> \\f\\cn[a,b] = sup \f(t)\. 
te[a,b) 

||. \\Cn[a,b) -s a norm on C„[a, b]; C„[a, b] with respect to this norm forms a Banach 
space. The zero element in C„[a, b] is the function vanishing identically on [a, b]. 

(ii) If 1 < p < oo we denote by Lp
n\a, b] the space of all measurable functions 

f: [a, b] -* jRn such that 

rb 
\f(t)\p dt<oo. f 

We set 

feL^,b]-If||L>,M = (JWd í)1 / P-

The elements of LPn\a, b] are classes of functions which are equal to one another 
almost everywhere (a. e.)*) on [a, b]. For the purposes of this text it is not restrictive 

*) If a statement is true except possibly on a set of measure zero then we say that the statement is 
true almost everywhere (a.e.). 
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if we consider functions instead of classes of functions which are equal a.e. on [a, b]. 
LPna,b] with respect to the norm l|.||/P[fl,bl is a Banach space. By L%\a,b] we 

denote the space of all measurable essentially bounded functions f: [a, b] -> Rn 

with the norm defined by 

f e L™\a, b] -> ||f \\LnaM = sup ess \f(t)\. 
te[a,b) 

Ln\a, b] is a Banach space with respect to the norm || .||L«,[fltfc]. The zero element 
in LPn\a, b] (1 < p < oo) is the class of functions which vanish a.e. on \a,b]. 

(iii) We denote by BVn\a, b] the space of all functions f: [a, b] -> Rn of bounded 
variation varb

(l f < oo where 

var*f = supt | f ( . 1 . ) - f ( t i - i ) | 
i = l 

and the supremum is taken over all finite subdivisions of [a, b] of the form a = 
= t0 < tx < ... < tk = b. Let ce [a, b] then 

varjjf = var£ f + var^f. 
If we define 

feBVn\a,b\ -> I f l^ j . .* , = |f(-)| + varjf 

then ||. HjEtKja.i,] 1s a norm on BVn\a, b] and -BV [̂a, b] is a Banach space with respect 
to this norm. 

By NBVn\a,b] the subspace of BVn\a,b] is denoted such that fENBVn\a,b] 
if f is continuous from the right at every point of (a, b) and f(a) = 0. The norm in 
NBVn\a,b\ is defined by 

fENBVn\a,b] - ||f||/v^[a.M = var^f. 

A function f: [a, b] -> _Rn is called absolutely continuous if for every e > 0 
there exists d > 0 such that 

i = l 

where (at,bt), i = 1,..,,k are arbitrary pairwise disjoint subintervals in \a,b] such 

that X |bi - fli| < <*• 
i= 1 

Let _4Cn[a, b] be the space of all absolutely continuous functions f: [a, b] -> _Rn. 
It is ACn\a, b] cz _9V„[a, b] and -4C„[a, b] is a Banach space with respect to the 
norm of BVn\a, b], i.e. 

fEACn\a,b] - ||f |Ucnla.« = |f(*)| + var^ f. 

The zero element in ACn\a, b] and BVn\a, b] is the function vanishing identically 
on \a,b]. 
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Given an interval [a, b], we write simply Cn, L
p, Ln, BVn, NBVn, ACn instead of 

Cn[a, b], Lp[a, b], L™[a, b], BVn[a, b], NBVn[a, b], ACn[a, b] if no misunderstanding 
may arise. If n = 1 then the index n is omitted, e.g. Cx[a,b] = C[a, b], Lp

x[a, b] = 
= LP[a, b] etc. The index n is also sometimes omitted in symbols for the norms, 
i.e. instead of ||.||Cri, \\-\\Bvn> ll-IIL* w e w r i t e II-Ho Il-II_?V> II-II LP> respectively. 

A matrix valued function F: [a, b] -• L(Rn, Rm) is said to be measurable or con­
tinuous or of bounded variation or absolutely continuous or essentially bounded 
on [a, b] if any of the functions 

te[a,b]-+fiJ{t)eR (i = 1,2, ...,m, j=l,2,...,n) 

is measurable or continuous or of bounded variation or absolutely continuous or 
essentially bounded on [a, b], respectively. 

Let us mention that 

v a r j F = s u p t | F ( . i ) - F ( t i _ 1 ) | 

where the supremum is taken over all finite subdivisions of [a, b] of the form 

a = t0 < tx < ... < tk = b 
and 

m n 

max (var> fj < var* F < £ £ var* fhl. 

We denote ||F||L00 = supess |F(t)| and ||F||LP= (JJ \F(t)\pdt)1/p for 1 <p < oo. 
fe[a,_»] 

If F: [a,b] -+ L(Rn,Rm) is measurable and ||F||LP < oo (1 < p < oo), then the 
matrix valued function F: [a, b] -> L(Rn,Rm) is said to be LMntegrable on [a,b]. 
(Instead of LMntegrable we write simply L-integrable.) 
1.4. Properties of functions of bounded variation. If feBV[a, b] then the limits 
lim f(t) = /(r0-h), t0e[a,b), lim f(t) = f(t0~), t0e(a,b] exist and the set of 

t->t0+ r -* t 0 -

discontinuity points of/ in [a, b] is at most countable. 
U feBV[a,b] then f(t) = p(t) - n(t), te[a,b] where p,n: [a,b]-+R are 

nondecreasing functions on [a,b]. Let a sequence tvt2,... of points in [a,b], 
tt =t= tp i =)= j and two sequences of real numbers cl9c2,...,dud2,... be given such 
that tn = a implies cn = 0 and tn = b implies dn = 0. Assume that the series 
Xc«> YAn converge absolutely. Define on [a, b] a function s: [a, b] -> _R by the 
n n 

relation , v v v 

^ = L cn + L dn • 
In < < (n < ' 

Every function of this type is called a break function on [a, b]. Clearly s(t„ +) — s(t„) = 
= d„ and s(rn) - s(t„-) = cn, n = l , 2 , . . . and s(t + ) = s(t) = s(f-) if t e [a ,6] , 
t * t„, n = 1,2,.... Further seBV[a,fc] and var*s = Jj(|c,| + |_*-|). 

H 
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If feBV[a,b] then there exist uniquely determined functions fceBV[a, b], 
fh e BV[a, b] such that / is a continuous function on [a, b], fb is a break function 
on [a, b] and f — fc+ fh (the Jordan decomposition of feBV[a,b]). 

If fe BV[a, b] then the derivative / ' of / exists a.e. on [a, b]. 
If fe BV[a, b] then / is expressible in the form 

f = fac+fs+fb 

where faceAC[a, b], fb is a break function on [a, b] and / ; [a, b] -* R is con­
tinuous on [a, b] with the derivative / ' = 0 a.e. on [a, b] (the Lebesgue decom­
position of fe BV[a, b]). 

If feAC[a,b] then the derivative / ' exists a.e. on [a,b] and f el}[a,b], i.e. 
f5 | / ' ( t ) |d t<ooandvarS/=JS | / ' ( t ) |d f . 

The following statement is important: 

Helly's Choice Theorem. Let an infinite family F of real functions on [a, b] be given. 
If there is K > 0 such that 

\f(t)\ < K for te[a,b] and v a r ^ / < K for every feF 

then the family F contains a sequence {/}^°=i such that \imfn(t) = cp(t) for every 
te[a, b] and cpeBV[a,b], i.e. the sequence fn(t) converges pointwise to a function 
<p: [a, b] -* R which is also of bounded variation. 

On functions of bounded variation see e.g. Natanson [ l ] , Aumann [1]. 

2. Linear algebraical equations and generalized inverse matrices 

Let us consider linear algebraical equations for xeRn and y* e R* 

(2.1) Ax = b, 

(2.2) Ax = 0 

and 

(2.3) y*_4 = 0 , 

where A is an m x n-matrix (A e L(Rn, Rm)) and b e Rm. 
By N(A) we denote the set of all solutions to (2,2). Obviously, N(A) is a linear 

subspace in Rn, i.e. if x1,x2eIV(i4) and a1?a2e.R, then xtax + x2<x2eN(A). It is 
well-known that 

(2.4) dim N(A) = n - rank (A), 

i.e. either (2,2) possesses only the trivial solution x = 0 (if rank (A) = n) or N(A) 
contains a subset of fc = n — rank (A) elements x l 5x2 , . . . , xk which are linearly 
independent, while any subset of k + 1 its elements is linearly dependent. (We say 
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also that the homogeneous equation (2,2) has exactly k = n — rank (A) linearly 
independent solutions.) The set [xv x2,..., xfc} forms a basis of N(A) and any 
x e N(A) can be expressed as their linear combination 

k 

x = YJ xjaj > where a, eR (j = 1,2,..., k). 
1=i 

As (2,3) is equivalent to A*y = 0, N(A*) denotes the linear subspace in R* of all 
solutions to (2,3) and 

(2.5) dim N(A*) = m- rank (A*) = m- rank (A). 

Furthermore, the equation (2,1) possesses a solution if and only if (2,3) implies 
Y*b = 0. In particular, (2,1) possesses a solution for any beRm if and only if (2,3) 
implies y* = 0 (dim N(A*) = 0). 

The equation (2,4) is said to be an adjoint equation to (2,1). 
The concept of a generalized inverse matrix introduced by R. Penrose (Penrose 

[1] and [2]) enables us to express the solutions to (2,1) if they exist. 
The following assertion is helpful. 

2.1. Lemma. BAA*= CAA* implies BA = CA and BA*A=CA*A implies BA*=CA*. 
Proof. If BAA* = CAA*, then 0 = (BAA* - CAA*)(B - C)* = (BA - CA)(A*B* 
— A*C*), whence BA = CA immediately follows. (Given a matrix D, DD* = 0 
if and only if D = 0.) As (A*)* = A, the latter implication is a consequence of the 
former one. 

2.2. Theorem. Given A e L(Rn, Rm), there exists a unique matrix X e L(Rm, Rn) such 
that 

(2.6) AX A =A, 

(2.7) X.4X = X , 

(2.8) X*A* = AX, 

(2.9) A*X* = XA. 

Proof, (a) Putting (2,8) into (2,7) we obtain 

(2.10) XX*A* = X. 

On the other hand, if (2,10) holds, then AX = AXX*A*. Since (AXX*A*)* = AXX*A*, 
this means that (AX)* = AX and (2,8) holds. Moreover, (2,8) and (2,10) yields 
X = XX*A* = XAX, i.e. the couple of equations (2,7), (2,8) is equivalent to (2,10). 

(b) Analogously, the system (2,6), (2,9) is equivalent to 

(2.11) XAA* = A* . 
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(c) Furthermore, to find a solution X to the system (2,10), (2,11) it is sufficient 
to find a solution B to the equation 

(2,12) BA*AA* = A* . 

In fact, (2,12) implies immediately that X = BA* satisfies (2,11) and consequently 
also (2,9). Hence 

A*X*A* =XAA* = A* and XX * A* = BA*X*A* = BA* = X. 

(d) Now, let us consider the set of n x n-matrices (A*Ay (j = 1,2,...). Since 
the dimension of the space of all real n x n-matrices is finite (n2), there exist a natural 
number k and real numbers Xl9X2,...9Xk such that |A-] + |A2| + ... + |Ak| > 0 and 

(2.13) X,A*A + X2(A*Af + ... + Xk(A*Af = 0. 

Let r be the smallest natural number such that Xr + 0. If we put 

(2.14) B = -Xr~
l{Xr+1l + Xr+2A*A + ... + A ^ A ) * - ' - 1 } , 

then according to (2,13) 
B(A*A)r+1 =(A*A)r. 

Hence if r > 2, B(A*A)r A*A = (A*A)r~l A*A and according to 2.1 

B(A*A)r = (A*A)r~1. 

In this way we can successively obtain 

B(A*Af = (A*Ay- * for j = 2, 3,..., r. 

In particular, B(A*Af = A*A and by 2.1 BA*AA* = A*. The matrix B defined 
in (2,14) satisfies (2,12) and hence X = BA* verifies the system (2,6)-(2,9). 

(e) It remains to show that this X is unique. Let us notice that by (2,9) and (2,7) 

A*X*X = XAX = X 

and by (2,8) and (2,6) 

A* AX = A*X*A* = (AXA)* = A* 

Now, let us assume that Y e L(Rm, Rn) is such that 

(2.15) A*Y*Y = Y, A*A Y = A* . 

Then, according to (2,10) and (2,11) 

X = XX*A* = XX*A*AY = XAY = XAA*Y*Y = A*Y*Y = Y. 

2.3. Definition. The unique solution X of the system (2,6)—(2,9) will be called 
the generalized inverse matrix to A and written X = A*. 
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2.4. Remark. By the definition and by the proof of 2.2 A* fulfils the relations 

(2.16) AA*A = A, A*AA* = A* , (A*)* A* = AA* , A*(A*)* = A*A 

and 

(2.17) A# (A# )* A* = A* , A#AA* = A* , A*(A#)* A* = A* , A*AA# = A* 

(cf.(2,6)-(2,ll) and (2,15)). 

2.5. Remark. If m = n and A possesses an inverse matrix A 1 , then evidently A - 1 

is a generalized inverse matrix to A. 

2.6. Proposition. Let A e L(R„ Rm), B e L(Rp, Rm). Then the equation for X e L(Rp, Rn) 

(2.18) AX=B 

possesses a solution if and only if 

(2.19) (lm-AA*)B = 0. 

If this is true, any solution X of (2,18) is of the form 

(2.20) X = X0 + A # B , 

where X0 is an arbitrary solution of the matrix equation 

AXo = 0mp. 

Proof. Let AX = B, then by (2,6) (/ - AA*)B = (A - AA*A)X = 0. If (2,19) 
holds, then B = AA*B and (2,18) is equivalent to A(X - A*B) = 0, i.e. to X = 
= X0 + A*B, where AX0 = 0. 

2.7. Proposition. Let A e L(Rn, Rm). Then AX0 = 0m p i/ and on/y i/ there exists 
Ce L(/?p, R„) such that X0 = (l„ - A*A) C. 

Proof. A(/„ - A*A) C = (A - AA*A) C = 0 for any Ce L(i?p, R„). If AX0 = 0, 
then X0 = X0 - A*AX0 = (I - A*A) X0. 

Some further properties of generalized inverse matrices are listed in the following 
lemma. 

2.8. Lemma. Given AeL(Rn,Rm), 

(2.21) A** =(A*)* =A, 

(2.22) ( A * ) * = ( A * ) * , 

(2.23) (XA)* = X~lA* for any XeR, X*0 and 0*„ = 0„,m, 

(2.24) (A*A)* = A*(A*)*, (AA*)* = (A*)* A* . 
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(The relations (2,21)-(2,24) may be easily verified by substituting their right-hand 
sides in the defining relations for the required generalized inverse.) 

2.9. Lemma. Let AeL(R„Rm) and let UeL(Rm,Rn) and VeL(R„Rm) be such that 

A*AU = A* and AA*V = A. 
Then 

V*AU = A* . 

Proof. Let A*AU = A* and AA*V = A. Then by 2.6 

U = U0 + (A*A)* A* and V = V0 + (AA*)* A, 

where A*AU0 = 0 and AA*V0 = 0. It follows from 2.1 that A*AU0 = 0 (i.e. 
U*A*A = 0A*A) and AA*V0 = 0 (i.e. V*AA* = OAA*) implies AU0 = 0 and 
V*A = 0, respectively. Furthermore, by (2,22) and (2,24) 

((AA*)*)* = (AA*)* = (A*)* A* and (A*A)* = A*(A*)* . 

Hence by the definition of A* (cf. 2.4) 

V*AU = [A*(A*)*] [A*AA*] [(A*)* A*] = A*AA*AA* = A* . 

2.10. Lemma. Given AeL(Rn,Rm\ there exist UeL(Rm,Rn) and VeL(Rn,Rm) such 
that 

(2,25) A*AU = A*, AA*V = A. 

Proof. By (2,24) and (2,17) 

(A*A)* A* = A*(A*)* A* = A* 

and by (2,16) and (2,22) AA* = (A*)* A* = (A*)* A*. Thus 

[/ - (A*A) (A*A)*] A* = A* - A*AA* = A* - A*(A*)* A* = 0. 

Since (A*)* = A, this implies also 

[/ ~(AA*)(AA*)*]A = 0. 

The proof follows now from 2.6. 

2.11. Remark. Let us notice that from the relations (2,16) defining the generalized 
inverse of A, only AA*A = A was utilized in the proofs of 2.6 and 2.7. Some authors 
(see e.g. Reid [1]) define any matrix X fulfilling AX A = A to be a generalized in­
verse of A. 

Let A e L(Rn, Rm) and h = rank (A). If h = n, then Ax = 0 if and only if x = 0. 
Let us assume h < n. By (2,4) there exist an n x (n — h)-matrix X0 such that its 
columns form a basis in N(A), i.e. Ax = 0 if and only if there exists ceRn_h such 
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that x = X0c. Consequently XeL(Rp,Rn) fulfils AX = 0mp if and only if there 
exists C G L(KP, Rn-h) such that X = X0C. In particular, there exists C0 _ L(Kn, #„_,.) 
such that 

(2.26) ln-A*A~X0C0. 

Furthermore, let h = rank (A) < m. Then by (2,5) there exists Y0e L(Rm,Rm_h) 
such that its rows form a basis in N(A*). Consequently y e L(Rm, R ) fulfils YA = 0 n 

if and only if there exists DeL(Rm_h,Rp) such that Y = Dyo. In particular, there 
exists D0eL(Rm-h,Rm) such that 

(2.27) / m - A A # = D o y o . 

(If h = m, then y*A = 0 if and only if y* = 0.) 

2.12. Proposition. Let AeL(R„Rm) and X = L(Rm,Rn). Then AXA = A if and 
only if there exist H and D e L(Rm, Rn) such that 

X = A* + (/„ - A*A) H + D(/m - AA*) 

or equivalently if and only if 

X = A* +X 0 K + Ly0, 

where X0eL(Rn-h,Rn) and Y0eL(Rm,Rm_h) (h = rank(A)) were defined above, 
KeL(Rm9Rn_h) and Le L(Rm_h,Rn) are arbitrary, the term X0K vanishes if h = n 
and the term LY0 vanishes if h = m. 

Proof. Let us assume h < m and h < n. Let both AXXA = A and AX2A = A. 
Then A(XX - X2) A = 0MiB and hence (Xx - X2) A = (/„ - A*A)C with some 
C _ L(Rn). By 2.6 and 2.7 this is possible if and only if 

Xx - X2 = (/„ - A*A) CA* + D(/m - AA*) 

or by (2,26) and (2,27) if and only if 

X, - X2 = X0[C0CA*] + [DD0] Y0 . 

Putting CA# = H, C0CA* = K and DD0 = L we obtain the desired relations. 
The modification of the proof in the case that h = m and/or h = n is obvious. 

2.13. Lemma. Le£ A e L(R„ Rm). If rank (A) = m, then det (AA*) + 0. If rank (A) = n, 
then det (A*A) + 0. 

Proof. Let rank (A) = m. Then by (2,5) A*y = 0 if and only if y = 0. Now, since 
A* = A#AA* (cf. (2,17)), AA*y = 0 implies A*y = A*AA*y = 0 and hence y = 0. 
This implies that rank (AA*) = m (cf. (2,4)). 

If rank (A) = rank (A*) = n, then by the first assertion of the lemma rank (A*A) 
= rank (A*(A*)*) = n. 
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2.14. Remark. It is well known that rank (AX) = min(rank(A), rank(X)) when­
ever the product AX of the matrices A, X is defined. Hence for a given A e L(Rn, Rm) 
there exists X e L(Rm, Rn) such that AX = lm only if rank (A) = m. Analogously, 
there exists X e L(Rm, Rn) such that XA = /„ only if rank (A) = n. 

2.15. Lemma. Let AeL(Rn,Rm). If rank (A) = m, then AA* = lm. If rank (A) = n, 
then A*A = ln. 

Proof, (a) Let rank (A) = m. Then by 2.13 (AA*) possesses an inverse (AA*)'1 

and according to the relation A*AA* = A* (cf. (2,17)) 

(2.28) A* =A*(AA*)~X 

and hence AA* = lm. 
(b) If rank (A) = n, then the relation A*AA* = A* from (2,17) and 2.13 imply 

(2.29) A* =(A*A)~' A 

and hence A*A = /„. 

2.16. Lemma. Let AeL(Rm), BeL(R„Rm) and CeL(Rn). If rank (A) = rank (B) 
= m, then (AB)* = B*A l. If rank(B) = rank(C) = n, then (BC)* = C 'B*. 

Proof. Let rank (A) = rank (B) = m. Then by 2.15 BB* = I. Consequently 
ABB*A * = /. Furthermore, (B*A~1)(AB) = B*B = B*(B*)* = B*A*(A~1)*(B*)* 
= (AB)*(B*A~1)*. This completes the proof of the former assertion. The latter 
one could be proved analogously. 

For some more details about generalized inverse matrices see e.g. Reid [1] 
(Appendix B), Moore [1], Nashed [1] and "Proceedings of Symposium on the Theory 
and Applications of Generalized Inverses of Matrices" held at the Texas Techno­
logical College, Lubbock, Texas, March 1968, Texas Technological College Math. 
Series, No. 4. 

3. Functional analysis 

Here we review some concepts and results from linear functional analysis used in 
the subsequent chapters. For more information we mention e.g. Dunford, Schwartz 
[1], Heuser [1], Goldberg [1], Schechter [1]. 

Let X be a linear space over the real scalars R. If F, G are linear subspaces of K, 
then we set 

F + G = {zeX; z = x + y, xeF , yeG}. 

F + G is evidently a linear subspace of X. 
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F + G is called the direct sum of two linear subspaces F, G if F n G = {0}. Let 
the direct sum of F and G be denoted by F © G. 

If F ® G = X then G is called the complementary subspace to F in X. 
It can be shown (see e.g. Heuser [1], II.4) that 
(1) for any linear subspace F c l there exists at least one complementary sub-

space G cz X 
(2) for any two complementary subspaces Gl,G2 to a given subspace F a X 

we have dimGl = dimG2 where by dim the usual linear dimension of a linear 
set is denoted. 

This enables us to define the codimension of a linear subspace F cz X as follows. 
Let X = F ® G; then we set 

codim F = dim G. 

(If dim G = oo or X = F, we put codim F = oo or codim F = 0, respectively.) 
If F c= X is a linear subspace, then we set x ~ y for x, y e X if x — y e F. By ~ 

an equivalence relation on X is given. This equivalence relation decomposes X 
into disjoint classes of equivalent elements of X. If x e X belongs to a given equiva­
lence class with respect to the equivalence relation ~ then all elements of this class 
belong to the set x + F. 

Let us denote by XjF the set of all equivalence classes with respect to the given 
equivalence relation. Let the equivalence class containing x e l b e denoted by [x], 
i.e. 

[x] = x + F. 
Then 

XjF = {[x] = x + F; xeX}. 

If we define [x] + [y] = [x + y], a[x] = [ax] where x e [x], y e [y], a e R 
then XjF becomes a linear space over R called the quotient space. It can be shown 
that if X = F ® G, then there is a one-to-one correspondence between XjF and G 
(see e.g. Heuser [1], 111.20). Hence 

codim F = dim G = dim (XjF). 

Let X and Y be linear spaces over JR. We consider linear operators A which assign 
a unique element Ax = y e Y to every element x e D(A) c: K. The set D(A) called 
the domain of A forms a linear subspace in X and the linearity relation 

A(ax + pz) = aAx + pAz 

holds for all x , z e l , a,j8eR. 
The set of all linear operators A with values in Y such that D(A) = K will be 

denoted by L(X, 7). If X = ^ then we write simply L(X) instead of L(K, K). The 
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identity operator xeX -+ xeX on X is usually denoted by /. For an operator 
A e L(X, Y) we use the following notations: 

R(A) = {yeY; y = Ax, xeX} 

denotes the range of A, the linear subspace of values of A e L(X, Y) in Y 

N(A) = {xeX ; Ax = 0eY} 

denotes the null-space of A e L(K, Y); N(A) cz X is a linear subspace in K. Further 
we denote 

a(A) = dim N(A) 
and 

j8(A) = codim R(A) = dim (YJR(A)). 

If a(A), [1(A) are not both infinite, then we define the index ind A of A e L(K, Y) 
by the relation 

indA = j3(A)-a(A). 

The operator A e L(K, Y) is called one-to-one if for x l5 x2 e K, Xj =t= x2 we have 
Ax. 4= Ax2. Evidently AeL(X, Y) is one-to-one if and only if N(A) = {0} (or 
equivalently a(A) = 0). 

The inverse operator A'1 for Ae L(K, Y) can be defined only if A is one-to-one. 
By definition A'1 is a linear operator from Yto X mapping y = Axe Y to x e l . 
We have D(A"*) = R(A\ R(A~l) = .0(A) = X, A~ x(Ax) = x for x e X, A(A1y) = y 
for yeR(A). If R(A) = Y and N(A) = {0} (i.e. a(A) = j8(A) = 0) then we can 
assign to any yeY the element A_1y which is the unique solution of the linear 
equation 

(3,1) Ax = y. 

In this case we have A'1 eL(Y, X). The linear equation (3,1) can be solved in general 
only for y e R(A). 

The linear equation (3,1) for AeL(X,Y) is called uniquely solvable on R(A) 
if for any yeR(A) there is only one x e K such that Ax = y. The equation (3,1) 
is uniquely solvable on R(A) if and only if A is one-to-one (i.e. N(A) = {0}). 

Let now X, X+ be linear spaces. Assume that a bilinear form <x, x+ >: X x X+ ->R 
is defined on X x X+ (i.e. <ax + j8y, x+> = a<x,x+> + )3<y,x + >, <x, ax+ + j8y+> 
= a<x,x + > + )3<x,y+> for every x ,yeK , x + , y + e K + , a,j5e.R). 

3.1. Definition. If X, X+ are linear spaces, <x, x+> a bilinear form on X x X + 

we say that the spaces X, X+ form a dual pair (X, X+) (with respect to the bilinear 
form <., . » if 

<x,x + > = 0 for every xeX implies x+ = 0eX + 

and 
<x,x+> = 0 for every x + eX+ implies x = OeX . 
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In Heuser [1], VI.40 the following important statement is proved. 

3.2. Theorem. Let (X. X "*) he a dual pair of linear spaces with respect to the bilinear 
form <., .> defined on X x X +. Assume that AeL(X) is such an operator that there 
is an operator A+ eL(X + ) such that 

<Ax,x + > = <x,A + x + > 

for every xe X, x+ eX +. 
If indA = indA+ = 0 , then 

a(A) = a(A + ) = p(A) = p(A + ) < oo 
and moreover 

Ax = y has a solution if and only if <y, x + > = 0 for all x+ e N(A+\ 
A + x+ = y+ has a solution if and only if <x, y + > = 0 for all xeN(A). 
In the following we assume that X and Y are Banach spaces, i.e. normed linear 

spaces which are complete with respect to the norm given in K, Y respectively. 
The norm in a normed linear space X will be denoted by \\.\\x or simply ||.|| when 
no misunderstanding may occur. 

3.3. Definition. An operator A e L(X, Y) is bounded if there exists a constant 
M e R such that 

||Ax|| < M||x|| 
for all xeX. 

The set of all bounded operators A e L(K, Y) (A e L(X)) will be denoted by 
B(X, Y) (B(X)). 

It is well-known that A e B(X, Y) if and only if A is continuous, i.e. for every 
sequence {xn}n=l, lim xn = x we have lim Axn = Ax. 

n->ao n-> oo 

For A G B(X, Y) we define 

(3,2) ||AIUx,Y) = SUP ||Ax|| = SUP V l T -
X = J X : 0 ||X|| 

It can be proved that by the relation (3,2) a norm on B(X, Y) is given and that B(X, Y) 
with this norm is a Banach space (see e.g. Schechter [1], Chap. III.). 
3.4. Theorem (Bounded Inverse Theorem). If A e B(X, Y) is such that R(A) = Y 
and N(A) = {0}, then A"1 exists and A"1 eB(Y,X). 
(See Schechter [1], III. Theorem 4.1). 

3.5. Definition. We denote X* = B(X, R), where R is the Banach space of real 
numbers with the norm given by a e R - > |a|. The elements of K* are called linear 
bounded functionals on X and X* is the dual space to X. Given f e K*, its value 
at x e X is denoted also by 

f(x) = <x , f> x . 
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If f (x) = 0 for any xe X, f is said to be the zero functional on X and we write 
f = 0. 

3.6. Remark. K* equipped with the norm 

\\f\\x.= sup |f(x)| = s u p M for feX* 
11*11* • x ' 0IIXII* 

(cf. (3,2)) is a Banach space. Furthermore, 

xeK, f eK *^<x , f>* 

is evidently a bilinear form on K x K*. Clearly, <x,f >x = 0 for any x e K if and 
only if f is the zero functional on X (f = Oe X*). Moreover, it follows from the 
Hahn-Banach Theorem (see e.g. Schechter [1], H.3.2) that <x, f } x = 0 for any 
feX* if and only if x = 0. This means that the spaces X and its dual X* form 
a dual pair (K, K*) with respect to the bilinear form <., .}x. 

For some Banach spaces X there exist a Banach space Ex and a bilinear form 
[., ,~\x on X x Ex such that feX* if and only if there exists geEx such that 

<*> f>x = [x> * ] * for a n y x 6 x • 
If this correspondence between Kx and K* is an isometrical isomorphism*), 

we identify Ex with K* and put 

<x>g>* = [x>g]x-

3.7. Definition. Let K, Y be Banach spaces. By X x Y we denote the space of all 
couples (x, y), where xeX and y e Y Given (x, y), ( u , v ) e l x Y and XeK, we 
put (x, y) -F (u, v) = (x + u, y + v), A(x, y) = (Ax, Ay) and 

| |(x,y)||xxy=||x||x-f ||y||y. 

(Clearly, ||.||xxy 1s a norm on X x Y and X x Y equipped with this norm is 
a Banach space.) 

3.8. Lemma. If (X, X+) and (Y, Y+) are dual pairs with respect to the bilinear forms 
[., . ] x and [., . ] y , respectively, then (X x Y, X+ x Y+) is a dual pair with respect 
to the bilinear form 

(x,y)eK x Y, (x + ,y+ )eK+ x Y+ -> 

[(*> y). (x+^ y+)]xxy = [x, x + ] x + [y, y + ] y . 

*) A linear operator mapping a Banach space X into a Banach space Y is called an isomorphism if it 
is continuous and has a continuous inverse. An isomorphism &: X -> Y is isometrical if ||#x||y = ||x||x 

for any xe X. Banach spaces X, Y are isometrically isomorphic if there exists an isometrical isomorphism 
mapping X onto Y. 
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Proof. [., .]Xxy 1s clearly a bilinear form. Furthermore, let us assume that 

(3.3) [ (x ,yMx + ,y + ) ] X x y = 0 for all ( x + , y + ) e X + x Y+. 

In particular, we have 

[(x,y),(x + , y + ) ] x x y = [ x , x ^ = 0 

for all (x+,y+)eX+ x Y+ with y+ = 0. Since (X,X+) is a dual pair this implies 
x = 0 and (3,3) reduces to [y ,y + ] y = 0 for all y+ e Y, i.e. y = 0. Analogously, 
we would show that [(x, y), (x+, y+)]x x y = 0 for all (x, y) e K x Y if and only if 
x + =0, y+ =0. 

3.9. Remark. In particular, (X x Y)* = K* x Y*, where 

<(x,y),(€^)>xxy-<x,«>x + <y,9>y 

for any x e l , ye Y, £eX* and t\e Y*. 

3.10. Examples, (i) It is well-known (cf. Dunford, Schwartz [1]) that A is a linear 
operator acting from Rn into Rm if and only if there exists a real m x n-matrix B 
such that _4: XGK„ -• BxeRm. Thus the space of all linear operators acting from 
Rn into Rm and the space of all real m x n-matrices may be identified. Clearly, 
B(Rn9 Rm) = L(R„ Rm). In particular, R* = B(Rn, R) = L(Rn, R) is the space of all 
real row n-vectors, while 

<x, y*}Rn — y*x for any y* e Rn and xeRn. 

(ii) Let — o o < a < b < + o o . The dual space to Cn[a,b] is isometrically iso­
morphic with the space NBVn[a, b] of column w-vector valued functions of bounded 
variation on [a, b] which are right-continuous on (a, b) and vanishes at a. Given 
y* eNBVn[a9 b], the value of the corresponding functional on xeCn[a,b] is 

(3.4) <x,y*>c= fd[y*(t)]x(t) 
Ja 

and 
\\y*\\c = sup |<x,y*>c| = varjy* = ||y*||BF. 

| |x| |c=l 

(The integral in (3,4) is the usual Riemann-Stieltjes integral.) This result is called the 
Riesz Representation Theorem (see e.g. Dunford, Schwartz [1], IV.6.3). As a conse­
quence K e B(Cn[ay b], Rm) if and only if there exists a function K: [a, b] -> L(Rn9 Rm) 
of bounded variation on [a, b] and such that 

K:xєCn[a,b]^ ГdГK(t)] x(ř) є R m . 
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Let us notice that the zero functional on Cn[a, b] corresponds to the function 
y* e NBVn[a, b] identically vanishing on [a, b]. 

(iii) Let — oo < a < b < oo, 1 < p < oo, q = p\{p — 1) if p > 1 and q = oc 
if p = 1. The dual space to LPn[a, b] is isometrically isomorphic with Lq

n[a, b] 
(whose elements are row ri-vector valued functions). Given y* e Lq[a, b], the value 
of the corresponding functional on x e LPn[a, b] is 

(3,5) <x,y*>L= I y*{t)x{t)dt 
Ja 

and 
||y*||L*= sup |<x,y*>L| = ||y*||L, 

H X | | L P = 1 

(see e.g. Dunford, Schwartz [1], IV.8.1). (The integral in (3,5) is the usual Lebesgue 
integral.) The zero functional on LPn[a, b] corresponds to any function y* e Lq[a, b] 
such that y*{t) = 0 a.e. on [a, b]. 

(iv) Any Hilbert space H is isometrically isomorphic with its dual space. If 
x, yeH -> (x, y)HeR is an inner product on H and xeH -> ||x||H = (x,x)1/2 

the corresponding norm on H, then given h e H, the value of the corresponding 
functional on xeH is given by 

<x, h>H = (x, h)H 

and 
||h||H*= sup |<x,h>H| = \\h\\H. 

I | X | | H = 1 

If X, Y are Banach spaces and A e B{X, Y), then for every g e Y* the mapping 
xeX -> {Ax,g}Y 1s a linear bounded functional on X. (Given xeX and ge Y*, 
|<Ax, g>y| < ||Ax||y ||g||y* < ||-A||B(X,y) ||g||Y* ||x||x-) Thus there is an element of X* 
denoted by A*g such that (Ax,g}Y = <x, A*g}x. This leads to the following 

3.11. Definition. Given Ae£(K, Y), the operator A*: Y* -> X* defined by 

(Ax,g}Y = <x, A*g}x 

for all x e X and geY* is called the adjoint operator to A. 
Let us notice that A*e£(Y*, X*) and ||A*|| = j|A|| for any Ae£(K, Y). (See 

Schechter [1], 111.2.) 

3.12. Definition. For a given subset M c l w e define 

M 1 = {feX*; <x,f>x = 0 for all XEM) 

and similarly for a subset N a X* we set 
1N = {x e K; <x, f}x = 0 for all feN}. 
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3.13. Definition. The operator A e B(X, Y) is called normally solvable if the equation 
Ax = y has a solution if and only if (y,f}Y = 0 f°r a ' l solutions f e Y* of the 
adjoint equation A*f = 0. 

(In other words, A e B(X, Y) is normally solvable if and only if the condition 
1N(A*) = R(A) is satisfied.) 

3.14. Theorem, if AeB(X, Y), then the following statements are equivalent 

(i) R(A) is closed in Y, 
(ii) R(A*) is closed in X*, 

(iii) A is normally solvable (R(A) =- LN(A*)), 
(iv) R(A*) = N(A)\ 

(See e.g. Goldberg [1], IV.1.2.) 

3.15. Theorem. Let AeB(X, Y) have a closed range R(A) in Y Then 

a(A*) = p(A) and a(A) = P(A*). 

If ind A is defined, then ind A* is also defined and 

ind A* = — ind A . 

(See e.g. Goldberg [1], IV.2.3 or Schechter [1], V.4.) 

3.16. Definition. If X, Y are Banach spaces then a linear operator K e L(X, Y) is 
called compact (or completely continuous) if for every sequence {xn}n=1, xneX 
such that \\xn\\x < C = const, the sequence {Kxn}n=zl in Y contains a subsequence 
which converges in Y 

Let the set of all compact operators in L(X, Y) (L(X)) be denoted by K(X, Y) 
(K(X)). 

The set K(K, Y) cz L(K, Y) is evidently linear. Moreover every compact operator 
is bounded, i.e. K(X,Y) cz B(X,Y). Indeed, if K e K(K, Y)\B(X, Y), then there 
exists a sequence {x„} cz X, \\xn\\x < C such that ||KxJ -> oo and the sequence 
{Kx„} cz Y cannot contain a subsequence which would be convergent in Y 

3.17. Theorem. Suppose that KeB(X,Y) and that there exists a sequence {Kn} 
cz K(X, Y) such that lim Kn = K in B(X, Y). Then KeK(X, Y), i.e. K(K, Y) is 

M-*00 

a closed linear subspace in B(X, Y). 
(See Schechter [ l ] , IV.3.) 

3.18. Proposition. / / X, Y, Z are Banach spaces, AeB(X, Y), KeK(Y,Z), then 
KAeK(X,Z). Similarly BLeK(X,Z) provided LeK(X,Y), BeB(Y,Z). 
(See Schechter [1], IV.3.) 
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For the adjoint of a compact operator we have 

3.19. Theorem. K e K(X, Y) if and only if K* e K(y*, X*). 

(See Goldberg [ l] , 111.1.11 or Schechter [1], IV.4 for the "only if" part.) 

3.20. Theorem. Let K e K(X) and let both the identity operator on X and the identity 
operator on X* be denoted by I. Then I + KeB(X), I -f K*eB(X*) and 
(i) R(l + K) is closed in X and R(l + K*) is closed in X*, 

(ii) a(/ + K) = fi(l + K) = a(/ + K*) = p(l + K*) < oo. 
(In particular, ind (I + K) = ind (/ + K*) = 0.) 
(See Schechter [1], IV.3.) 

3.21. Remark. It follows easily from the Bolzano-Weierstrass Theorem that any 
linear bounded operator with the range in a finite dimensional space is compact. 
(B(X, Rn) = K(X, Rn) for any Banach space X.) Analogously B(Rn, Y) = K(Rn, Y) 
for any Banach space Y 

3.22. Definition. Let Ex and £y be Banach spaces and let Jx e B(X*, Ex) and 
JY e B(Y*, £y) be isometrical isomorphisms of X* onto Ex and Y* onto £y, respec­
tively. Let [., .]x be a bilinear form on X x Ex such that <x, f>x = [x, Jx£]x 

for any xeX and %eX* and let [., . ] y be a bilinear form on Yx EY such that 
<Y^>Y = [YJY*I]Y for any Y^Y and jyey*. If AeB(X, Y) and B e L(£y, £*) 
are such that 

[Ax,<p]y = [x,Bq>]x for every xeX and <peEY, 

then B is called a representation of the adjoint operator to A. 

3.23. Remark. If A e B(X9 Y) and B e L(EY, Ex) is a representation of the adjoint 
operator A*eB(Y*, X*) to A, then for any x e K and <peEY we have 

[Ax,<p]y = <AxJy » y = <x,.4*7y V>x = [xJxA*/y > ] * . 

Thus B = JxA*JY
 1 G B(Ky, £x). It follows easily that if we replace the dual spaces 

to X and Y respectively by the spaces Ex and EY isometrically isomorphic to them 
and the adjoint operators A* and K* to A and K e B(X, y), respectively, by its 
representations B and CeB(EY,Ex) defined in 3.22, then Theorems 3.14, 3.15, 
3.19 and 3.20 remain valid. This makes reasonable to use the notation .4* also 
for representations of the adjoint operator to A. 

In the rest of the section X stands for an inner product space endowed with the 
inner product (., .)x and the corresponding norm x e K -• ||x||x = (x, x)x'

2. 
Furthermore, Y is a Hilbert space, (., .)y is the inner product defined on Y and 
||y||y = (y>y)y/2 for any YeY 
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3.24. Definition. Given AeL(X, Y) and yeY, ueX is said to be a least square 
solution to (3,1) if 

| |Au-y| |y < | |Ax-y | | y for all x e K . 

3.25. Proposition. If Ae L(K, Y) and U0G X is such that 

(3.6) (Ax, Au0 - y)y = 0 for all x e X , 

then u0 is a least square solution to (3,1). Furthermore, xe X is a least square solution 
to (3,1) if and only if x — u0 e N(A). 

Proof. Given xeK , Ax — y = A(x — u0) + Au0 — y and in virtue of (3,6) 

||Ax - y\\2 = \\A(x - u0)\\
2 + 2(A(x - u0), Au0 - y)Y + \\Au0 - y\\2 = 

= ||A(x - u0)\\
2 + \\Au0 - y\\2 > \\Au0 - y\\2. 

Thus u0 is a least square solution to (3,1), while ||Ax — y||y = || Au0 — y||y if and 
only if A(x — u0) = 0. 

3.26. Remark. Let us notice that if R(A) is closed in Y, then the Classical Projection 
Theorem (cf. e.g. Luenberger [1], p. 51) implies that the equation (3,1) possesses 
for any y e Y a least square solution, while u0 e X is a least square solution to 
(3,1) if and only if (3,6) holds. 

3.27. Definition. Given A 6 L(X, Y) and y e Y, u0 e X is a best approximate solution 
to (3,1) if it is a least square solution to (3,1) of minimal norm (i.e. \\u0\\x < ||u||x 

for any least square solution u of (3,1)). 

3.28. Proposition. Let A e L(K, Y) and let u0eX fulfil (3,6). If besides it 

(3.7) (v,uo)* = 0 for all veN(A) 

holds, then u0 is a best approximate solution of (3,1). 

Proof. By 3.25 u0 is a least square solution to (3,1) and u — u0eN(A) for all least 
square solutions u of (3,1). Thus assuming (3,7) we have 

u , = u - U o||i + 2(° - "o. »o)x + KUŠ = II" - Holi + K U ! > ||uo||x 

for any least square solution u of (3,1). Let us notice that ||u0||x = |u0 | |x if and 
only if u = u0. 

3.29. Remark. Let A e L(X, Y). If k = dim N(A) < oo, then applying the Gramm-
Schmidt orthogonalization process we may find a orthonormal basis x l 9x2 , . . . ,x k 
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in N(A), i.e. (xp x ^ = 0 if i =+= j and (xf, xt)x = 1. Let us put 
k 

P: x e X - ^ X ( x ' 4 x i -
. = i 

Then PeB(X\ R(P) = M(A) and P2x = P(Px) = Px for every xeX. Moreover, 

(3.8) (x - p x , v)x = 0 for all x e X and v e N(A). 

If R(A) is closed in y, then there exists QeB(Y) such that R(Q) = R(A), Q2 = Q 
and 

(3.9) (Ax, Qy - y)Y = 0 for all y e Y and xeX 

(cf. Luenberger [1]). P is said to be a /mear bounded orthogonal projection of K 
onto N(A) and Q is a linear bounded orthogonal projection of Y onto R(A). Let 
us notice that since 

R(l -P) = N(P) and R(l - Q) = N(Q), 

R(l - P) and R(l - Q) are closed. 
As a restriction A|K(/_p) of A onto R(l — P) is a one-to-one mapping of R(l — P) 

onto R(A), it possesses a linear inverse operator A+ eL(R(A), R(l — P)), i.e. 

(3.10) AA+A = A. 

As obviously AA+Q = Q, it follows from (3,9) that (Ax, AA+Qy - y)y = (Ax, Qy - y)Y 

= 0 for every yeY and x e l Hence by 3.25 A+Qy is for any y e y a least square 
solution of (3,1). 

Let us put 

(3.11) A# =(I-P)A+Q. 

Evidently A(l - P) = A and hence (Ax, AA*y-y)Y = (Ax, AA + Qy- y)Y = 0 
for every x e l and yeY. Since according to (3,8) (v, A*y)x = (v, (/ - P) A+Qy)x 

= 0 for each v e N(A) and y e y, it follows from 3.28 that for every yeY, u0 = A*y 
is a best approximate solution to (3,1). Moreover, it is easy to verify that 

(3.12) AA*A = A, A*AA*=A*, A*A = I-P, AA* = Q. 

3.30. Remark. If AeB(X, y), then the condition (3,6) becomes A*Au0 = A*y or 
denoting u0 = A*y, 

(3.13) A*AA* =A*. 

Let us notice that if R(A) is closed, then (3,12) implies (3,13). In fact, given xeX 
and y e i ; we have by (3,9) 0 = (x, A*Qy - A*y)x, i.e. A*Q = A*. This together 
with the relation AA* = Q from (3,12) yields A*AA* = A*Q = A*. Finally, as 
A# = A*AA*9 A# = (/ - P) A* and hence by (3,8) (v, A*y)x = (v, (/ - P) A*y)x 

= 0 for every veN(A) and ye Y. It means that (3,12) implies also (3,7). 
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Given AeL(X, Y), any operator A+ eL(Y,X) satisfying (3,10) is called a gener­
alized inverse operator to A. If AeB(X, Y), then the unique operator _4# e B(Y, X) 
satisfying (3,12) is called the principal generalized inverse operator of A. 

3.31. Remark. If X = K„, Y = Rm and A is an m x ^-matrix and -4# its generalized 
inverse matrix defined by 2.2, then the vector u0 = A*beRn satisfies the con­
ditions (3,13) and (3,7). In fact, as by 2.7 v e N(A) if and only if v = (/ - A*A) d 
for some deR„ we have owing to (2,16) (v, A*b) = v*A*b = d*(l - (_4M)*).4#b 
= d*(_4# - _4#_4_4#) b = 0. Furthermore, A*AA* = A* by (2,17). Thus iSRH and Rm 

are equipped with the Euclidean norm |.|e, _4#b is for any beRm a unique best 
approximate solution of (2,1). 

4. Perron-Stieltjes integral 

This section contains the definition of the Perron-Stieltjes integral based on the 
work of J. Kurzweil [1], [2]. Some facts concerning this integral are collected here. 
These facts are necessary for the subsequent study of equations and problems in­
volving the Perron-Stieltjes integrals. 

Let a fixed interval [a, b], — oo < a < b < + oo be given. We denote by £f = £f[a, b] 
the system of sets S = R2 having the following property: 

for every T G [a, b] there exists such a S = S(T) > 0 that (T, t) e S whenever 
T G [a, b] and t G [T - 5(T\ T + 3(T)]. 

Evidently any set Se£f[a, b] is characterized by a real function S: [a, b] -• (0, + oo). 
Let / : [a, b]-> R and g: [a, b] -> R be real functions, — o o < a < a < b < / ? 

< +oo. If a(t) is defined only for tG[a, b] then we assume automatically that 
g(t) = g(a) for t < a and g(t) = g(b) for t > b. It is evident that if var£ g < oo, 
this arrangement yields varf g = var£g for any a, j? such that <x<a<b< /?. 

4.1. Definition. A real valued finite function M: [a, b]-> K is a major function 
of f with respect to g if there exists such a set Se^\a,b] that 

(T - T0)(M(T) - M(T0)) > (T - T0)/(T0)(</(T) - g(z0)) 

for (T0, T) G S. The set of major functions of/ with respect to g is denoted by M(f g). 
A function m: [a, b] -> R is a minor function off with respect to g if — meM( —/ #), 

i.e. if — m is a major function of —/ with respect to g. The set of minor functions 
of / with respect to g is denoted by m(f g). 

4.2. Definition. Let M(f g) + 0 and m(f g) =t- 0. The lower bound of the numbers 
M(b) - M(a) where M e M(f g) is called the upper Perron-Stieltjes integral of f 
with respect to g from a to b and is denoted by \b

a f da. Similarly the upper bound 
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of the numbers m(b) — m(a), m e m(f, g) is called the lower Perron-Stieltjes integral 
of f with respect to g from a to b and is denoted by \b

a f dg. 

4.3. Lemma. // M(f g) =t= 0 and m(f g) # 0, then 

}dg. 
a 

For the proof of this lemma see Kurzweil [1], Lemma 1,1,1. 

4.4. Definition. If M(f g) 4= 0, m(f g) 4= 0 and the equality 

Гfdg< [/ 
Ja Ja 

i fdg= [V dg 

holds, then by the relation 

ffdg= Pfdg 
Ja Ja 

the Perron-Stieltjes integral j"Jj f dg of the function f with respect to g from a to b 
is defined. In this case f is called integrable with respect to g on [a, b]. If a = b, 
then we set J«fdg = 0 and if b < a, then we put J£fdg = -Jjjfda. 

Now we give a different definition of the Stieltjes integral which is also included 
in the paper Kurzweil [1] and is equivalent to Definition 4.4. This is a definition 
of the integral using integral sums which is close to the Riemann-Stieltjes definition. 

For the given bounded interval [a, b] cz R we consider sequences of numbers 
A = {a0, T15 a1?..., xk, a j such that 

(4.1) a = a0 < (xl < ... < ak = b, 

(4.2) otj_ l <Tj< ocj, j = 1,2,..., k. 

For a given set Se^[a, b], A satisfying (4,1) and (4,2) is called a subdivision 
of [a, b] subordinate to S if 

(4.3) (Tj,t)eS for te [ a ^ ^ a j , j=l,2,...,k. 

The set of all subdivisions A of the interval [a, b] subordinate to S is denoted 
by ,4(S). 

In Kurzweil [1], Lemma 1.1.1 it is proved that for every Se^\a, b] we have 

(4.4) -4(S)*0. 

If now the real functions f: [a, b] -+ R, g: [a, b] -+ R are given and 
A = {a0,Tpttj,...,xk,afc} is a subdivision of [a,b] which satisfies (4,1) and (4,2), 
we put 

(4.5) B/,^) = ZfW(«(«J)-#J-i)). 
J = I 
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If no misunderstanding may occur, we write simply B(A) instead of Bfg(A). 

4.5. Definition. Let / : [a, b] —> R and g: [a,b] -* R. If there is a real number J 
such that to every e > 0 there exists a set S e £f[a, b] such that 

\Bf,g(A) - J\ < s for any A e A(S), 

we define this number to be the integral 

"fdg 
l 

of the function f with respect to g from a to b. 
The completeness of the space R of all real numbers implies that the integral 

ja / dg exists if and only if for any e > 0 there exists a set Se £f[a, b] such that 

\BLg(A,) - BfjA2)\ < e for all Ax,A2eA(S). 

In Kurzweil [1] (Theorem 1.2.1), the following statement is proved. 

4.6. Theorem. The integral §a f dg exists in the sense of Definition 4.4 if and only 
if \b

a f dg exists in the sense of Definition 4.5. If these integrals exist, then their values 
are equal. 

4.7. Remark. In Schwabik [3] it is shown that the integral introduced in 4.4 and 4.5 
is equivalent to the usual Perron-Stieltjes integral defined e.g. in Saks [1]. Con­
sequently the Riemann-Stieltjes, Lebesgue and Perron integrals are special cases 
of our integral. In particular, if one of the functions / g is continuous and the other 
one is of bounded variation on [a, b], then the integral \b

a f dg exists and is equal 
to the ordinary Riemann-Stieltjes integral of / with respect to g from a to b. 

The a-Young integral described in Hildebrandt [1] (II. 19.3) is not included in 
the Perron-Stieltjes integral (see Example 2,1 in Schwabik [3]). However, if 
/ : [a, b]-^R is bounded and geBV[a,b], then the existence of the o-Young 
integral Y\b

afdg implies the existence of the Perron-Stieltjes integral \b
afdg 

and both integrals are then equal to one another (Schwabik [3], Theorem 3,2). 
Now we give a survey of some fundamental properties of the Perron-Stieltjes 

integral. The proofs of Theorems 4.8 and 4.9 follow directly from Definition 4.5. 

4.8. Theorem. / / / : [a,b] -• R, g: [a,b] -* R, XeR and the integral \b
af dg exists, 

then the integrals \b
a If dg and \b

a f d[Xg] exist and 
rb rb n rb 
\Xfdg = l\fdg, \fA[Xg\ = X \ f dg. 

Ja Ja Ja Ja 

4.9. Theorem. If fv,fi'- [a,b] -* R, g: [a,b] -» R and the integrals \b
aft dg and 
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la fi dg exist, then the integral \b
a (fx + f2) dg exists and 

ľ(fi+f2)d«= ľ/.dø 
Ja Ja 

fгàg-

If f: [a, b] -> JR, gl5g2: [a, b] -> K and the integrals Ja/dg i and Ja/dg2 exist, 
then t/ie integral ja /d[g i + g2] exists and 

ľ / d [ đ l + ű 2 ] = ľ/dflf. 
Ja Ja + /dg2 

4.10. Theorem. If f: [a, b] -> JR, g: [a, b] -+ R and Ja/dg exists, then for any 
c, d e R, a < c < d < b the integral \d

c f da exists. 

4.11. Theorem. I/' f: [a, b] -+ JR, g: [a, b] -+ #, c e [a, b] and t/ze integrals 
la f dg, Jc / dg exist, then also the integral ]a f dg exists and the equality 

holds. 
f / d a = \Cfdg+ \"fdg 

Ja Ja Je 

The statement 4.10 can be proved easily if 4.6 is taken into account. The proof 
of 4.11 is given in Kurzweil [1] (Theorepi 1.3.4). 

4.12. Theorem. Let f: [a, b]-• #, g: [a, b]-• JR be given and let the integral 
la f dg exist. If ce [a, b], then 

hm 
t-*c 

te[a,b] І fdg-f(c)(g(t)-g(c)) = \ f dg . п 
(See Kurzweil [1], Theorem 1.3.5.) 

4.13. Corollary. If the assumptions of 4.12 are satisfied, then 

lim 
t-*c 

te[a,b] 

fdg = fàg 

if and only if lim g(t) = g(c) or f(c) = 0. 
t-*c 

te[a,b] 

If g: [a,b] ->K possesses the onesided limits g(c + ), g(^~) fl* ce[a,fc] (e.g. if 
ae£V[a,b]) , then 

(4,6) lim Pfdg 
t-*c+ 1 
*e[a,5] • / f l 

»»=[. 
Ja 

fdg+f(c)(g(c+)-g(c))= f dg + f(c) A+g(c) 
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and 

<4'7) ,!™ \/d9 = \/dg ~ f^^c) - (fa-)) = f/dff ~ f(c) A~g(c) 
te[a,b] ° Jo 

for ce(a,b] 

where we have used the notation A+g(c) _ g(c + ) — g(c), A~g(c) = g(c) — g(c-). 

4.14. Lemma . / / / : [a, b]^R, i - 1 , 2 , geBV[a,b] and A = {«0,Tl,..., -_,»_} 
is an arbitrary subdivision of [a, b] satisfying ( 4 j ) an^ (42), then 

(4,8) \B,JA) - B/2,9(A)| s sup \f(t) - f2(t)\ var$ g. 
*e[a,fc] 

Proof. Evidently 

KM) - BfxM)\ = £ ( / I ( T .) _ /_(,.)) (f l(a.) _ 3(a._ i)} 
1=1 

< l\Uh)-f2(rj)\\g(*j)-g(«j-1)\ 
1=1 

< sup 1 / ^ ) - / ^ __!_(«.)-«(«,_,)! 
and (4,8) holds. ' ^ i~1 

In the same trivial way the following lemma can be proved. 

4.15. Lemma. Let f. [a, b] -> R, \f(t)\ _ M /or a// 1e [a, 0], & e BV[a, fc], i = 1,2. 
Then for any subdivision A = {a0,Tj, ...,Tk,aJ o/t/ie interval [a,b] satisfying (4,1) 
and (4,2) we have 

(4,9) |B / i f t(A) - BfjA)\ < M vat* (g_ - g2). 

4.16. Lemma. / / / : [a, &]-•_*, ae£V[a,b] and the integral J*/da exists, then 
the inequality 

holds. 
fàg <sup|Д í) |vаr£a 

Ja te[a,b] 

Proof. Since the integral J«/dg exists, for every e > 0 there exists Se^[a,b] 
such that for any A e A(S) we have 

BfM)-[fd9 <e-
Let us set fx(t) = f(t\ f2(t) = 0 for t e [a, b]. Then by 4.14 we have for any A e A(S) 

*fM ~ [f dg + \Bf,9(A)\ < £ + KM) - BfjA)\ 

< s + sup |/M| varj g. 
te[a,b] 

/ : 
fda 
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Hence the inequality is proved because e > 0 is arbitrary. 

4.17. Theorem. / / /„: [a, b] -+R, n = 1,2,..., limfn=-f uniformly on [a,b], 
geBV[a,b] and $bfndg exists for all n = 1,2, ^^then the limit lim$af„dg as 
well as the integral \b

afdg exist and the equality 

(4.10) \im[fndg = P/dg n-*°°Ja Ja 
holds. 

The proof of the existence of the limit lim \b
a fn dg and of the integral [b

a f dg 
follows from 4.14. The equality of these quantities is an immediate consequence 
of 4.16. 

4.18. Theorem. Let gn,geBV[a,b], n = 1,2,... and lim var*(gn - g) = 0. Assume 
n-*ao 

that f: [a,b] -> R is bounded and \b
afdgn exists for all n = 1,2,.... Then the limit 

lim \b
a f dgn as well as the integral \b

a f dg exist and 
n-+ao 

(4.11) lim \bfdgn= [bfdg. 
"""Ja Ja 

(The proof follows from 4.15; cf. Schwabik [3], Proposition 2,3.) 
If fgeBV[a,b], then by Hildebrandt [1] (II.19.3.11) the tx-Young integral 

y \b
af dg exists. Taking into account the relationship of the or-Young and the 

Perron-Stieltjes integrals (cf. 4.7) we obtain immediately the following. 

4.19. Theorem. If f, g e BV[a, b], then the integral \b
afdg exists. 

4.20. Remark. For a given a e [a, b] and for t e [a, b] we define 

(4.12) </C(0 = O if t<a, ifr:(t)=l if a < t 

and 

(4.13) xl*;(t) = 0 if t < a, iAa"(t) = 1 if oi<t. 

The functions i/ta
+, ij/' are called simple jump functions. 

A real function / : [a, b] -• JR is said to be a finite-step function on the interval 
[a,b] if there is a finite sequence a = d0 < dx < ... < d* = b of points in [a,b] 
such that in every open interval (^_ l 5^) (i = l,2,...,/c) the function / equals 
identically a constant ct e JR. Let us put for t e [a, b] and i = 1,2,..., fc 

gi(t) = <# + „,(t) - *i(t)) + M-i)(^- .W - *-.-.('))• 

It is easy to see that 0;(t) = f(t) if t e [<i,_.,<*,) and af(t) -* 0 if t e [a,6]\[di_.,cff). 
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Hence, for any t e [a, b] we have 

Ati-ioM+mKit) 
1 = 1 

i c ,#t ,w - * J ; W ) + M - .) (^- ,w - ^ . , w ) + m M). 
І = I 

i.e. any finite-step function can be expressed in the form of a finite linear combination 
of functions of the type </t+ and if/'. 

Since any function /: [a, b]->R which possesses the onesided limits /(c + ) 
for any ce[a,b) and f(c — ) for any ce(a,b] can be approximated uniformly on 
[a, b] by a sequence of finite-step functions (see e.g. assertion 7.3.2.1 (3) in Aumann 
[1]), it follows from 4.17 that to prove 4.19 it is sufficient to show that the integrals 
JJj \jt + da and \b

a i>~ da exist for any g e BV[a, b] and any a e [a, b]. 

4.21. Lemma. Let cce[a, b] and let \j/+: [a, b]->R and \l/~: [a, b]->R be the 
simple jump Junctions defined by (4,12) and (4,13) in 4.20. 

(a) The integrals \b

a g d</̂ + and \b

a g dif/' exist for an arbitrary function g: [a, b] ~> R 
and 

]>-{.* V.-.: 
<̂> f----{r ?:::: 

(b) If fe BV[a, b] then the integrals \b

a <>+ d/ JJ <>~ d/ exist and 

(4,16) Í / ' + d / = { ( 

j>«4? 

/(*>)-/(« + ) if a < b , 
0 • j / a = b, 

(4,n) U . - d / - | f > - ^ - > ' • < • • 
1 ' n i/ a = a. 

Proof, (a) If a = b then by definition i/t+(t) = 0 for every te[a,b] and for any 
subdivision A: a = a0 < xx < OL1 < ... < xk < ock = b we have Bgl>+(A) = 0. Hence 
JJ g d^+ = 0. If a < b let us define <5(f) = ±|t - a| for t G [a, 6], "r * a, <5(a) = 1. 
Evidently <5: [a, b] -• (0, + oo). We define 

S = {(T, t) e R2; xe [a, b], t e [x - <5(T), T + <5(T)]} , 

by definition we have Se^[a,b]. For every subdivision AeA(S) we have 
O j - i , * J <= [T,. - <5(T,), T,. + <5(T,)], i.e. 

0 < (Xj- a7-_! < 2<5(T,) 

for any I'^ 1,2,..., fc (see (4,1), (4,2)). Moreover, there exists an index i, 1 ̂  i*^ /c, 
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such that a e [a f_!, af). If T, =j= a then we obtain a contradictory inequality 

0 < a, - a<_! < 2(5(T,) = ^ - a| < ^ - a,. -J. 

Hence x{ = a. For every subdivision A e A(S) we have 

-WW = t */)[*>,) - *.+(«,-i)l = flfo) [+M - *.+(««-i)] = flfo) = a(a). 
1= 1 

Hence the integral \b
agd\l/a exists and equals g(a) by Definition 4.5. The result 

for the integral \b
a g d^~ can be proved similarly. 

(b) The existence of the integrals \b
a \j/a df j * \l/~ df follows imeediately from 4.19. 

It is not difficult to compute their values using 4.11 and 4.13. See also Schwabik [2], 
Proposition 2.1. 

4.22. Lemma. For ae[a , b] define \l/a(t) = 0 if te[a, b], t =# a, ^a(a) = 1. Then 
for any geBV[a, b] the integrals JJi/^da, j_gd^ a exist and 

(4,18) [V a dg = g(a + ) - a(a-) = Aa(a), 

(reca// that g(a — ) = g(a) and g(b + ) = g(b)), 

(4,19) gdt/^ = 0 řf ae(a,fc), 

í gdlAa = -g(^)» g d*Aь = g(Ь). 

r 

Proof. It is easy to see that \j/a(t) = \l/~(t) - il/a(t) where ^ + , i/f" are given by (4,12) 
(4,13) respectively. The existence of the integrals is clear by 4.19, the relations (4,18), 
(4,19) follow immediately from 4.21. 

4.23. Lemma. Let gB e BV[a, b] be a break function, fe BV[a, b]. Then the integral 

\b

a f dg_ e^sts and 

fdgB = f(a)A+g^a)+ ~ f(x)AgB(x) + f(b)A-g^b) 
a<x<b 

where A+

gB(t) = gjt + ) - 9^), A ~ gB(t) = gB(t) - aB(t - ) , AaB(t) = gB(t+) - g^t -). 

Proof. Since aB is a break function, there exists an at most countable set (tu t2,...) 
of points in [a, b\ and two sequences c+, cf, i = 1,2,... such that 

9s(t) = ~ c,+ + ~ cr 
a<n<t a<u<t 

where var£gB = £ \c~\ + £ \c+\ < + oo. By definition it is c+ = A+gB(tt), 
a<ti<b a<tti<b 
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cr = A"aB(ti). Using the functions i/t + , $* defined by (4,12), (4,13) we can write 

00 

»*M = I [c.+MO+ <f *.:(')] 
i = l 

= f [ A + ^ ( t i ) ^ ( 0 + A-9B(t,)-A,7W]-
i = l 

Let us define 

9i(t) = I [A+^t.) *.! W + A-^t,) «A,7(t)] , 
i = l 

we have 
/ 00 > 

var*(gB - gN
B) -= var£ £ [A+aB(t;) ^,+(t) + A ^ t , ) ^ ( t ) ] 

= N+1 

= £ [|A+
flB(l.)| + |A-9B(t,)|]. 

i = iV + 1 

This yields 
lim vara (g5 - g2) = 0 

since the series £ [|A+aB(t;)| -f | A - a ^ ) | ] = var£gB converges by the asumption. 
i = l 

Evaluating \b
afdgN

B we obtain by the results of 4.21 

PVdg£ = £ |A+gB(tf) [* /# + + A-g^-) [V#-T = 
Ja i=l L Jfl Ja 

= I[A+aB(ti)fW + A-^) f ( t i ) ] -
i = l 

Recall that we assume g(a-) = g(a), g(b) = g(b + ). By 4.18 we have 

\bfdgB = lim fVdg£ = £ (A+g^.) + A-a^))/^.) 
Ja "-"'Ja i=l 

and the proof is complete. 

In Hildebrandt [1] (II. 19,3.14) the following result is proved for the Young 
integrals. 

Osgood Convergence Theorem. If /„: [a, b] -» JR, n = 1,2,... are uniformly bounded 
on [a,b], i.e. |/n(r)| < M /or a// re [a, b] and n = 1, 2,..., ge£V[a, b], lim/.(f) 

n-*oo 

= /(t) /or a// te[a,b], and i/ Yjjj/da and YJ^/da exist, then lim Yj^/da 
H-*00 

= Y ftfdg. 
In virtue of the relations between the Young integral and the Perron-Stieltjes 

integral mentioned in 4.7 the following statement can be deduced. 
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4.24. Theorem. If f,g,fneBV[a,b], \fn(t)\ < M for all te[a,b], n = 1,2,... and 
lim j„(f) = f(t) for all t e [a, b], then the integrals J* j„ da, J* j da exist and 

n\imSbfndg = $bfdg. 
n-*ao 

This statement follows from the above quoted Osgood Convergence Theorem 
in the following way: Since all functions in question belong to BV[a, ft], the integrals 
tfj,da, tfjda, Y\b

ajndg and Ytfjda exist and \b

afnAg=Y\b

afndg, $fdg 
= Y Ja fdg (see 4.7). Hence all the assumptions of the Osgood theorem are satisfied 
and our statement holds. 

4.25. Theorem (Substitution Theorem). If h e BV[a, ft], g: [a, ft] -> R and 
f: [a, ft] -* K, the integral \b

a g dh exists a/irf / is bounded on [a, ft], then the integral 
J« /(0 d(Ja g(T) dMT)) exfefs if and only if the integral J* f(t) g(t) dh(t) exists and in 
this case the two integrals are equal. 

Proof. Let us show that the following statement holds. If \b

agdh exists then for 
every n > 0 there is an Sle9)[a,ft] such that for every AeA(S1)9 A: a = a0 

< tj < ... < Tk < ock = ft we have 

(4,20) 
k 

I 
1=1 

J a , - i <ч. 

Let .7 > 0 be given. By definition there exists Sx e £?[a, ft] such that if A e A(SX) 
then 

: • 
Bв,h(A)- gàh 

and if also A' e A(SX) then 

1=1 

lą^-^ИH^-

Ja, _ ! J 

Let A: a = a0 < i t < ... < Tk < ock = ft, AeA^) be fixed. Assume that Uj 
= {Ii>I2>--v,jm}> m < / is an arbitrary set of integers such that 1 <jt <j2 < ... 
< j m < k. Since by 4.10 the integrals Ĵ «_ a dh, i = 1,2,..., m exist there is an 

Ji 1 

5 2 e^[a, ft], S2 c: 5X such that for any subdivision A. of the interval [a^.-j, a .J 
which is subordinate to St we have 

(4,21) BJA,)- ('" 
J a 1 i " l 

gdh 
Am 

Let us refine the subdivision A in such a way that for i = 1,...,m the points a^.j 
< tj. < oij. are replaced by the points of At and the points a ^ < T} < ay, j$ Ux 
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remain unchanged. Let us denote this refinement by A\ evidently A eA(Sx). 
We have 

IM*ЛM«,)-%,- i) ]- | gdh 
1ЄU 

Z W * A ) M « * ) - M - A - . ) ] - - U - « ) ) + i(вMÒ- gdh 
" J , - l 

I g(ь) Ш - Қ*j-.)] - I g(h) ÍҚ*j) - Қ*j-.)] - 1 -U-«) 
1=1 

+ 1 в. r,h(A,)- V fldh 

1=1 
HUІ 

<\BM)-B.ÅП + ^<\ĄĄ 

because A, A e A(S^ and (4,21) holds. 
Since the set Ul a {1,..., k} of indices was arbitrary, we obtain that for a given 

r\ > 0 there exists Sx e/f[a,/3] such that for any AeA(Sl) and Ul <= {1,2,..., k} 
the inequality 

holds. Let us set 
I^ЛM«,)-%,-i)]- Г gdh 

J=V\ Jaj-i 
< 2 

dj = ФjШ*j)-Қ*j-г)l gdh 

and assume that U1 is the set of all je {l,...,k} for which d}> 0, U2 = {1,..., fc}\t/1. 
Then we have 

IШ-24-24--
1=1 JeUt jeU2 

24 
jeUi 

+ 24 
JeV2 

<*l, 

i.e. (4,20) holds. 
Now, let us prove the theorem. Assume that e > 0 is given. If the integral 

$b

afydh exists then by definition there exists S. e Sf[a, b] such that for all 
AeA(Si) 

(0 \if(*j)g(*j)[h(«j) ~ M«,-i)] - [fg*h\ <\. 

Since the integral \b

a g dh exists, by the above statement there is S2 e £f[a, b] 
such that for any A e A(S2) we have 

(-) 
1=1 

ФJШ«J) " % , - . ) ] - Г' Иlt 2c 
where C > 0 is the bound for/ i.e. |/(*)| < C for all t e [a, b]. If we set S = SxnS2 

then S € /5^[a, b] and for any >1 e A(S) the inequalities (i), (ii) are satisfied. Let us 
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set k(t) = \l

a g(x) dh(t), t e [a, b]. Then for A e A(S) we have by (i) and (ii) 

ЬÁЛ) - £ fgdh lAtj) 
1=1 -í ^d fc - fgáh 

I /(T,) <? dh - f(xj) g(xj) [h(aj) - %,_ . ) ] 
1=1 Jf l t j - i 

'5 

+ I j ( ^ Л % , ) - % , - > ) ] -
1=1 

jffdh 

< c l 
J=i 

\g(xj)[h(aj)-h(a . - . ) ] - f" fldЛ 
JOLj- 1 

є Cє є 
" } - - < + - = £ . 

2 2C 2 

Hence according to Definition 4.5 the integral \a f dk = ja f(t) d(\a g dh) exists 
and equals \b

a fg dh. Using the same technique the second implication can be also 
proved. 

4.26. Theorem. Assume that for the functions g,h e BV[a, b]9 / : [a, b] -> JR, 
<p: [a, b]-># the integrals J*/da, Ja<pdh exist. I/ to every re [a, b] there is a 
(5*(T) > 0 such that 

(4,22) \t - x\ \f(x) (g(t) - g(x))\ <(t-x) cp(x) (h(t) - h(x)) 

holds for every x e [a, b], t e [a, b] n [T — <5*(T), T -f <5*(T)], then 

fdg 

This statement is proved in Kurzweil [2]. 

cpdh. 

4.27. Corollary. Assume that geBV[a,b]. / / / : [a,b] -> K, |/(t)| < M = const. 
for all t e [a, b] and §a f da exists then for every [c, d] cz [a, b] we have 

/dflf < Mvarfg 
Jc 

and consequently var* (Jj. / dgr) < M var£g < oo. 

/ / fe BV[a, b] then j£ / da exists and 
Гь 

fdg 
ГЬ 

| /(t) |d(vari 0 )<sup|/(r) |var*a. 
te[a,b] 

Proof. In the first case we have 

' \t~A IfM (g(t) - g(*))\ < (t - t) |f(T)| (vari g - varj g) 

<(t-x) M(vari g - vari g) 
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for every xe[a, b], re [a, b]. Since the integral j^Md(var^a) exists and equals 
Mvarfg we obtain the result by 4.26. The second statement can be derived in 
a similar way, when 4.19 and the fact that | / |eBV [a , b] are taken into account. 

4.28. Theorem. Let us assume that g: [a, b] -• R is nondecreasing, fuf2: [a, b] -> _R, 
/-(f) < f2(t) for all t e [a, b] and \b

a f da exists for i = 1,2. Then 

/ i dg < /2 dg • 

This statement follows from 4.26. 

4.29. Theorem. / / h: [a, b] -> R is nonnegative, nondecr easing and continuous from 
the left in [a, b] (i.e. h(t — ) = h(t) for every re (a, b]), then 

(4.23) I hk(t) dh(t) < — 1 — [hk+ x(b) - h'+ *(a)] 
Ja k + 1 

for any k = 0,1,2, . . . .// h: [a, b] -• K is assumed to be nonnegative, nonincreasing 
and continuous from the right (i.e. (h(t +) = h(t) for every t e [a, b)), then 

(4.24) \\k(t) dh(t) > -±— [hk+ \b) - hk+ '(a)] 
Ja k + I 

for any k = 0,1,2,... 

The proof of the first part is given in Kurzweil [2]. The second part can be proved 

similarly. 

4.30. Theorem. Assume that g: [a, b] -> R is a nonnegative nondecreasing function, 
cp: [a, b] -> R nonnegative and bounded, i.e. cp(t) < C = const, for all t e [a, b]. 

(a) Ifg is continuous from the right on [a, b) and if there exist nonnegative constants 
Ku K2 such that 

(4.25) <p(Z)<Ki + K2 [V)da(T) 

for every £ e [a, b], then 

(4.26) CP(T) < x.e-^-w-*™ 

for any T e [a, b]. 

(b) Ifg is continuous from the left on (a, b] and if there exist nonnegative constants 
KUK2 such that 

(4.27) <p(i)<Kl + K2 [V(t)da(T) 
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for every £, e [a, b], then 

(4,28) ^ ( T ) ^ K 1 C K ^ > - » ( - » 

for any x e [a, b]. 

Proof. We prove only (a). The statement (b) can be proved in the same way. Let 
us define 

w(t) = LeK2{g{b)~9{t)), te[a,b] 

where L > 0 is a constant. 

For any £ e [a, b] we have 

L + K2 vv(t)dg(T) = L + K2L\ eK2{g{b)-g{x))dg(x) 

00 

Since the series £ K2(g(b) - g(T))l/i! evidently converges uniformly on [a,b], 
i = 0 

4.17 ensures that in the last term the integration and summation are interchangeable. 

Hence by (4,24) from 4.29 we obtain 

L + K2 I W(T) dg(T) = L ( l + K2 f ^ J"(#) - <,(T))' dfl(-)) = 

- L 0 - *-|0 l £ J W ) - «M/<*(#) - flto)) < 
( oo j ^ i v 

1 + Io~(g(6) - 0(£))'J = Le^ (b )-^ . 
Let a > 0 be arbitrary. We set 

we(t) = (K! + e) e«2(»(fc)-»(0) ? t e [a> b] . 
Then 

<4'29> ^ ^ ^ ^ J W ) ^ ) ^ ^ ) , {6[a,6]. 
For the difference mtf) = ^ - wj^ w e h a y e b y ( 4 ^ ^ 

(4,30) ^ ) ^ - e + K 2 L ( T ) d , ( T ) ; -e[ f l,6-
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and, in particular, mE(b) < —e<0. Moreover, it is easy to see that \mc(£)\ s Cl 

= const, for £ e [a, b]. By 4.12 we have 

mtf) <-s + K2 mt(b) [g(b) - g(b-)] + lim K2 \ mc(z) dg(x) 
<5-0+ J^ 

< - £ + K2 mE(b) [g(b) - g(b-)] + C2[g(b-) - g(£)] , C2 = K2C{ . 

Since geBV, there exists n > 0 such that if 0 < b — ^ < n then C2(g(b^) — g(£)) 
< a/2. Hence for £ e [b — n, b] we have mE(£) < 0. Let us set 

(4,31) T = inf {t e [a, b]; mg) < 0 for { e [t, b]}. 

We have shown that T< b and we have evidently mE(t) < 0 for te(T,b]. Further 
by (4,30) and 4.12 

Cb 

mXT)< -г + K2 m k)Ч*) 

= - e + K2 mE(T)(g(T+) - g(T)) + lim K2 | mc(T)da(r) < - e < 0 
d^° + jT + d 

since g(T+) - g(T) = 0 and J7+<5m£(T)dg(T) < 0 for every d > 0. 
If T > a then we repeat the above procedure and show in the same way that 

there exists an n > 0 such that mE(£) < 0 for all £e[T-n, T]. This contradicts 
(4,31). Hence T= a and mj£) < 0 for all £e[a ,b] , i.e. 

</>(£) < K e * 2 ^ - ^ + seK2{9(b)~g{a)) 

for all £ e [a, b] and e > 0. This yields (4,26). 

4.31. Theorem. Let h: [a,b] x [c,d] -+ R be such that \h(s,t)\ < M < oo and 
var£ h(., t) + varj! h(s, .)<oo for every (t, s) e [a, b] x [c, d]. Then for any feBV[a, b] 
and any geBV[c, d] both the iterated integrals 

[V(s)([W)d0(o) and {" (["df(s)h(s,t))dg(t) 

exist and are equal. 

(See Hildebrandt [2], p. 356 and [1], 11.19.) 

4.32. Theorem (Dirichlet formula), if h: [a,b] x [a,b] -> R is bounded on fob] 
x [a, b] and varjj h(s, .) < oo for every s e [a, b], var* h(., t) < OO for every 
t e [a, o], then for any fge BV[a, b] we have 
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(4,32) 

= ^{jЬdg(t)h(s,t)) 

м h(s,t)d/(s) 

dg(t)h(s,t) d/(s) + X A-g(t)h(t,t)A-f(t)- £ A+g(t)h(t,t)A+f(t) 
/ te(a,b) te[a,b) 

whereA'g(t) = g(t) - g(t-\ A+g(t) = g(r-f) - g(t). 

Proof. Let us define fc(s, t) = h(s, t) for a < s < t < b and fc(s, t) = 0 for a < t 
< s < b. Then fc: [a, b] x [a, b] -• K evidently satisfies the assumptions of 4.31 
and this theorem gives 

(4,33) £dg(<)( 

Moreover for t e [a, b) it is 

fc(s, t) df(s) = 'h(s, t) df(s) + k(s, t) df(s) 
Ja Jt 

= \'h(s,t)df(s) + h(t,t)A+f(t), 

since from 4.13 and from the definition of k(s, t) we have by (4,6) 

"fc(s, t) d/(s)) = J" (Jàg(t) k(s, t)) dДs). 

f 

k(s, t) df(s) = lim fc(s,ř)dДs) + fc(t,í)(Дt + ) - Д t ) ) 

= k(t,t)A+f(t) = h(t,t)A+f(t). 

If t = b, then Ĵ  fc(s, b) df(s) = Ĵ  /z(s, b) df(s). Hence for an arbitrary t e [a, b] we 
can write 

(4,34) Tfc(s, t) df(s) = [\(s, t) d/(s) + h(t, t) A+f(t) 
Ja Ja 

if we set A+f(b) = 0. 
A similar argument gives 

(4,35) ţ"dg(t)k(s,t) = | ' àg(t) h(s, t) + A g(s) h(s, s) 

for every se [a, b] if the convention A g(a) = 0 is used. Setting (4,34) and (4,35) 
into (4,33) we obtain 

(4,36) da(t] (J> o« 
"dfís) ( [ V t)da(t)) + f*A-g(s) h(s, s) df(s) - \dg(t)h(t, t) A+f(t 

a \Js / Ja Ja 
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Since g e BV[a, b], there is an at most countable set of points al9 a2,... in [a, b] 
oo 

such that A~a(s) = 0 for all se[a ,b] , s + a, and £ |A~a(a,)| < varjjg < -hoc. 

Let us set H(s) = A~a(s)h(s, s) for any se[a , b]. Then H(s) = 0 for all se[a , b], 
s =t= a„ i = 1,2,... and 

f Я(s)dДs) A-a(s)/i(s,s)d/(s) = 

Let us define for N = 1,2,... and s e [a, b] 

where i/ta(s) = 0 if s + a and i/̂ a(a) = 1. 

Evidently HN(s) = 0 for all se[a, b], s =t= a1 ?a2,..., aN and HN(ai) = H(a,) for 
i = 1,2, ...,N. For se[a, fc], s£a l 9a2 , . . . , aN we have 

Iff^s) - H(s)| = |H(s)| < sup |ff(«,)|< £ |A-a(ai)h(a„a,)| 
i = N+l,... . - - M J . 1 i = N + 1 

< M £ |A-a(a,)| 
i = N+l 

where M is the bound of |/i(s, t)|. 
00 

Since the series £ |A~a(a,;)| is convergent, we obtain that for any e > 0 there is 
i = l 

oo 

a natural N such that M £ |A~g(af)| < e and also 
i = /V+l 

|HN(s) - H(s)\ < e 

for all s G [a, b], i.e. lim HN(S) = H(s) uniformly in [a, b]. Using (4,18) we conclude 
N-+00 

"HN(S) df(s) = £ A-g(a,) % „ a,) A/(a,) 

and by 4.17 we obtain 

Va (s )h (s , s )d / (s )= (bH(s)df(s) = TM \bHN(s)df(s) = 
2 Ja * a 

= t A-0(«.) %> «<) Af(«<) = I A"3(s) % s) A/(s). 
i = l se(a,b] 

. Similarly it can be proved that 

I dg(t) (h(t, t) Д+/(í)) = I Лöftø Қt, t) Д+/(t). 
te[a,b) 
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If we set these expressions into (4,36) we obtain 

M Һ(s,t)df(s) 

dg(t)h(s, t)Jdf{s) + Z [A'g(s)h(s, s) Af(s) - Ag(s) fa s) A+f(s)] 

+ A~g(b) h(blb)Af{b) - Aa(a) h(a, a) A 7(a) 

and this yields the result. 

4.33. Theorem (integration-by-parts). Let / geBV[a, ft]; the# / o r any interval 
[c, d] cz [a, ft] we have 

f fda + űd/^ jИaИ-Лc)^)- X Д+j(т)Д+
ð(т)+ Z Д-j(т)Д-«(т) 

c ^ r < d 

where A+f(x) = f(x + ) - f(x), A~f(x) = f(x) - f(x-) and similarly for A+g(x), 
A-a(t). 

Proof. If we set h(s,t) = 1 on [a,b] x [a,b] then for every f,9sBV[a,b] we 
have by 4.32 

(4,37) 

-f(í 
df(s))dg(t) 

<Mt))dj(s) + Z Д-a(t)ДY(t)- £ Д+ö(t)A+f(t). 
řє(c,d] řє[c,J) 

Moreover, 

£ (j'dj(s)) da(t) = JV(0 - A4 m = f f(t) Mt) - fW foM - «(c)) 

and similarly 

ľ([W) 
*lC \VS ' 

Гd 

df(s) a(()dj(t) + flИ(fИ-fW)-

Inserting this into (4,37) we obtain the result. (A direct proof of the integration-
by-parts theorem 4.33 is given in Kurzweil [3].) 

The Lebesgue-Stieltjes integral has been defined and studied in many monographs 
on integration theory. (See e.g. Saks [1], Hildebrandt [1], Dunford, Schwartz [1] 
etc.) In the next theorem its relationship with the Perron-Stieltjes integral is cleared 
up. The proof follows e.g. from Theorem VI (8.1) in Saks [1]. 

4.34. Theorem. Let geBF[a,ft] and /: [a,ft]->.R fte such that the Lebesgue-
Stieltjes integral (L-S) J(a b) / da over the open interval (a, ft) exists. Then the Perron-
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Stieltjes integral §h
a f dg also exists and 

fàg = (L-S) fdg+f(a)A+g(a) + f(b)A-g(b). 
(a,b) 

4.35. Remark. If f: [a, b] -» R is bounded, h: [a, b] -> R is Lebesgue integrable 

on [a,b] (heLl[a,b]) and g(t) = g(a) + \l
ah(x)dx on [a,b] (geAC[a,b]\ then 

in virtue of 4.25 and 4.34 

f(t)àg(t) = f(t)Қt)dt, 

where the right-hand side integral is the Lebesgue one. 

For the proof of the following assertion see e.g. Natanson [1] (Corollary of 
Theorem XII.4.2). It is also included as a special case in the "symmetrical Fubini 
theorem" for Lebesgue-Stieltjes integrals (cf. Hildebrandt [ l ] , X.3.2). 

4.36. Theorem (Tonelli, Hobson). If h: D = [a, b] x [c, d] -> R is measurable and 
if any one of the three Lebesgue integrals 

\h(t, s)\ dř ds, 

exists, then the Lebesgue integrals 

h(t, s) dř ds , 

\h(t, s)\ ds I dř, 

h(t, s) dsjdt, 

\h(t, s)\ dř ds 

h(t, s) dř J ds 

all exist and are equal to one another. 

One of the most helpful tools for the investigation of integro-differential and 
functional-differential equations is the "unsymmetrical Fubini theorem" 4.38. For 
its proof the following lemma is needed. 

4.37. Lemma. Let h: [a, b] x [c, d] -+ R be such that h(., s) is measurable on [a, b] 
for any s e [c, d], %(t) = \h(t, c)\ + varf h(t, .) < oo for a.e. t e [a, b] and x e Lp[a, b], 
1 < p < oo. Then 

(a) given fe Lq[a, b] with q = pj(p — 1) if p > 1 and q = oo if p = 1, the function 

cp: se [c,d] f(t) h(t, s) ds 

is defined for any s e [c, d], belongs to BV[c, d] and 

(4,38) q>(s + ) = f(t)h(t, s + )dt forany se[c,d), 

(p(s —) = f(t) h(t, s — )dt for ony s e (c, d] ; 
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(b) given g e C\c, d] (or g e BV\c, d]), the function 

rj: te\a,b]-+\ ds\h(t, s)] g(s) 

is defined a.e. on [a, b] and belongs to LF\a, b\ 

Proof. Clearly, cp(s) is defined for any se\c,d\ For an arbitrary subdivision 
c = s0 < s, < ... < sk = d of [c,d] we have 

I \<p(sj) - ^ V ,)| < P|/(0| I | % -y) " Mt, s,- ,)| dt 
1=1 Ja 1=1 

Гь 

< | / (r) |x(0dr<oo, 

i.e. <p G BV[c, d\ Furthermore, 

\f(t) h(t, G)\ < \f(t)\ x(t) for a.e. t e [a, b] and any a e [c, d] . 

Applying the Lebesgue Dominated Convergence Theorem we obtain immediately 
(4,38). 

(b) Under our assumptions rj(t) is defined a.e. on [a, b\ If g: \c, d] -* R is a finite 
step function with jumps at s,e[c, d] (j = 1,2,..., k) (cf. 4.20), then according to 
4.21 rj(t) is a.e. on \a,b] equal to a linear combination of the values h(t, b), h(t,a), 
h(t,Sj + ) and h(t,Sj — ) (j = 1,2,..., k). In particular, in this case rj is measurable 
on [a, b\ Making use of the fact that any function a which is continuous on [a, b] 
or of bounded variation on [a, b] can be approximated uniformly on [a, b] by finite 
step functions (Aumann [1]) and applying 4.17 we complete the proof oi' the mea-
surability of rj on [a, b\ By 4.16 

\rj(t)\ < x(t) (sup |g(s)|) a.e. on [a, b] 
se[c,d] 

and hence rj e Lp\a, b] for any a e C\c, d] (or a e BV\c, d]). 

4.38. Theorem (Cameron, Martin). Let h: [a, b] x [c, a1] -» K fulfil the assumptions 
of 4.37. Then for any fel3\a,b\ where q -= p/(p — 1) z/p > 1 ana7 q = cc if p = I, 
and any g e C\c, d] (or a e BV[c, d]) the integrals 

м ds[h(t, s)] g(s) I dr anď d. 
Гь 

f(t)h(t,s)dt Ф) 

both exist and are equal to one another. 

Proof. Let the functions cp: [c,d] -> R and rj: \a,b]-+ R be defined as in 4.37. 
By 4.19 and 4.37 both the integrals 

bf(t)rj(t)dt and Pd\cp(s)] g(s) 

50 



1.4 

exist. Let gn: [c,d] -> R (n = 1, 2,...) be a sequence of finite step functions such 
that lim gn(t) = g(t) uniformly on [c, d\ (Such a sequence exists according to 

n-+ oo 

7.3.2.1 (3) in Aumann [1].) To prove the theorem it is sufficient by 4.17 and 4.20 
to show that 

(4,39) ^f(t)rj(t)dt = ^d[cp(s)]g(s) 

holds for all simple jump functions g(s) = ^a

+(s) or g(s) = ij/~(s) (ae [c,d]) defined 
by (4,12) and (4,13). Let ae[c, d] and g(s) = i/C(s) o n [c,d], then in virtue of 4.21 

\h(t,d) - h(t,(x + ) if a < d 

^ (0 if « = d 
аnd 

\<p(d) - <p(a +) if a < d 
d[(p(s)] g(s) = , LV W J uy ' ' 0 if a = d 

and (4,39) follows from (4,38). Analogously we can show that (4,39) holds also if 

g(s) = *l**(s) on [c,d]. 

4.39. Integrals of matrix valued functions. If F = (fd), i'.= 1,2,..., p\ j; = 1,2,..., r; 
G = (g7,fc), j

f = 1, 2,..., r, k = 1, 2,..., q are matrix valued functions defined on the 
interval [a, b] (fy. [a, b] -> R, gjk: [a, b] -> P), then we use the following symbols 

FdG =(a / f c ) , i = l , 2 , ...,p, k=l,2, ...,q, 

and 

d[F]G = ( jSj , i=l,2,...,p, k=l,2,...,q 

r p r p 
a»,fc = Z /ijdffM a n d A.k = Z ffMd/-,j» 

1= 1 Ja 1=1 Ja 

whenever the integrals appearing in these sums exist. In the same way it is possible 
to define also integrals of the type J J Fd[G] H etc. if the products of matrices oc­
curring in the expressions are well defined. 

Since the integral of a matrix valued function with respect to a matrix valued 
function is a matrix whose elements are sums of Perron-Stieltjes integrals of real 
scalar functions with respect to real scalar functions, all statements from this section 
can be used also for such integrals. 

where 
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5. The space BVn 

In this section we recall some basic properties of the linear space of functions with 
a bounded variation from the functional analytic point of view. 

Let us consider the linear set of all functions x: [0, 1] -» R with a bounded 
variation var0 x. Let this linear set with the norm 

(5.1) xeBV-> \\x\\BV = |x(0)| F var0x 

be denoted by BV[0, l] or simply BV 
It is easy to check that (5,1) satisfies all the axioms of a norm. 
If x e BV, then evidently 

(5.2) |x(r)| < |x(f) - x(0)| F |x(0)| < |x(0)| F var0 x < ||x|| BV for any t e [0,1] . 

5.1. Proposition. The normed linear space BV is a Banach space (i.e. BV is complete). 

(See Dunford, Schwartz [ l ] or Hildebrandt [1], II.8.6.) 
Further it can be easily shown that BV is not separable. Indeed, if we set xa(t) = 0 

for 0 < t < a, xa(r) = 1 for a < t < 1 for any ae(0,1), then evidently x aeBV 
for any ae(0,1) and 

provided a, /Je(0,1), a 4= ft. Hence BV cannot contain a countable subset which 
would be dense in BV This implies that BV is not separable. 

In the same way we can introduce the Banach space BV„ of all column n-vector 
functions x = (xl5..., x,,)*: [0,1] -» B„ of bounded variation if for the definition 
of var0 x some norm in Rn is used. The norm in BVn is given by 

x e BVn -> ||x||BVn = |x(0)| F var0 x . 

It is evident that x: [0,1] -• Rn belongs to BJ^, if and only if any component xi9 

i = 1,2,..., n belongs to BV Hence it is sufficient to consider only the space BV 
instead of BJ^.. All essential properties of BV are transferable to BVn. 

Let us consider some subspaces of BV which are of interest for the subsequent 
investigations. 

By NBV we denote the set of all functions (peBV for which cp(t + ) = cp(t) if 
te(091) and cp(0) = 0. 

Similarly NBV" denotes the set of all functions cpeBV such that (p(t-) = q>(t) 
for t G (0,1) and cp(0) — 0. Further we denote by 5 the linear set of all functions 
WGBVsuch that w(t + ) = w(t-) = c = const, for every te(091), w(0) = W(0F) = c, 
w(l) = w(l—) = c. 
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5.2. Proposition. The linear sets NBV, NBV~, S are closed in BV 

Proof. Let {rDJ, / = 1,2,... be a sequence with (pxeNBV, such that lim \<px — (p\\BV 

= 0 for some (peBV For t e (0,1) we have 

M ' + ) - <p(t)\ = M ' + ) - <Pi(t+) - (<p(t) - <PM)\ <\\<PI- <p\\By 

for any natural / since (pteNBV Hence cD(f + ) = q>(t). Similarly for any / we have 

|</>(0)| = |(p,(0) - <p(0)| < \q>{ - (p\\BV 

and consequently <p(0) = 0 and (peNBV The closedness of NBV~ and S can be 
proved by the same reasoning. 

We denote by AC the linear set of all absolutely continuous functions on [0,1]. 
If xeAC then by definition there exists S > 0 such that for every system [ah fej, 
i = 1,..., k of nonoverlapping intervals on [0,1] with 

i(bi-a,)<5 
i = l 

we have 

i \x(b() - x(at)\ < 1 . 
i = l 

If we subdivide the interval [0,1] into m intervals by the division points 0 = c0 

< cx < ... < cm = 1 such that ct — c,-_, < <5, i = 1,2,..., m, then vdLVc
c\_x x < 1 

m 

for i = 1,2,..., m and consequently var0x = Y, va rc!-, x < m. Hence xeBV and 
i = l 

the inclusion AC a BV holds. 

5.3. Proposition. The linear set AC is closed in BV 

Proof. Let lim \(pk - <p\\BV = 0 for (peBV and (pkeAC, fc = 1,2,.... For an 
fc-+oo 

arbitrary system [a,-,fej, i = 1,..., fc of nonoverlapping intervals in [0,1] we have 

I W(b) - <p(ai)\ < i \<plbt) - <p(b) - (<p,(a,.) - ^ l + i \<p{b) - 9Ha,$ 
i = l i=i , = 1 

k 

^ \\<Pi - <P\\BV + Z \<Pi(bi) - <Pi(ai)\ 
i = l 

for any / = 1,2,.... Let 8 > 0 be given. Let us choose an integer /0 > 1 such that 
\\<Pi ~ <P\\BV < z\2 for / > l0. For any fixed / > /0 there is S > 0 such that if 

k 

I 
i = l 

then 
fc 

I \<Pi(bi) ~ <Pi(ai)\ < e • 
i = l 
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k 

Hence by the inequality given above we have £ |<p(̂ i) ~~ <P(tfi)| < 8 ar-d (pe AC. 
i= 1 

5.4. Remark. From 5.2 and 5.3 it is evident that if the closed linear sets NBV, NBV~, 
S, AC in BV are equipped with the norm (5,1) of BV, then they are Banach spaces. 

By NBVn, NBV~, Sn, ACn we denote the closed linear subsets in BVn which are 
defined similarly as NBV, NBV~, S, AC for n-vector functions. For the same reason 
as above NBVn, NBV~, Sn, AC„ equipped with the norm of BVn are Banach spaces. 

Let us now assume that xe BV and define w(0) = w(l) = x(0), w(t) = x(t) — x(r + ) 
+ x(0) for te(0, 1). Then evidently weS, since the difference x(t) — x(t + ) is 
nonzero only on an at most countable set A c (0, 1) and 

var0 w = 2 ]T |x(t +) — x(t)\ < 2 var0 x < oo . 
re.4 

Further let us set cp(t) = x(t) - w(t) for f e[0, 1]. It is cp(0) = x(0) - w(0) = 0, 
cp(t) = x(t + ) - x(0) for te(0, 1), <p(l) = x(l) - x(0), i.e. cpeNBV 

In this way we have obtained 
x = cp + w 

for any xeBV where cpeNBV and weS. Since evidently NBVnS = {0}, this 
decomposition is unique. Hence the Banach space BV can be written in the form 
of the direct sum of closed subspaces NBV and S, i.e. 

(5,3) BV = NBV®S. 

Similarly it can be shown that also the decomposition 

BV= NBV 0 S 
holds. 

For any xe BV and i/t e BV we can define the expression 

(5,4) f{x) = Гx| í ) # ( t ) -

By 4A9 the integral on the right-hand side in (5,4) exists. The functional f is evidently 
linear. Further it is 

I/WI < sup |x(ř)| var0 i/t < \x\BV \\\t\BV 
ře[0.1] 

x(t) d\j/(t 

(see 4.27). Hence if / is given by (5,4) with ij/eBV, then fe BV 

5.5. Proposition. Assume that weBV. Then 

(5,5) x(t)dw(t) = 0 
Jo 

for any x e BV if and only if weS. 
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Proof. Let us suppose that f0x(r)dw(r) = 0 for any xeBV For a given ae [0, 1] 
we define xa(t) = 0 if te[0, l]\{a}, xa(a) = 1. Then evidently xaeBV and we 
obtain by the assumption 

xa(r)dw(r) = w(a + ) - w(a-) = 0, 
o 

i.e. w(a + ) = w(a-) for any ae(0,1) and j 0 x.(r)dw(r) = w(l) - w(l - ) = 0, 
j 0 x0(t) dw(t) = w(0 +) - w(0) = 0 (cf. 4.22). This means that w differs from a con­
tinuous function only on an at most countable subset in (0,1). 

Assume that w <£ S. Then there exist two points a, /} e [0,1], a < /? such that a, ft 
are points of continuity for w and w(a) =t= w((l). We define x[afi](t) = 1 for r e [a, f\ 
and x[afi](t) = 0 for te [0, l ] \ [a , /?]. Evidently x[aP]eBV. Using the properties 
of the integral we obtain the relation 

f1 P 
x[ap](t)dw(t) = w(a)- w ( a - ) + dw(r) + w(/J + ) - w((3) 

Jo Ja 

dw(r) = w(p) - w(a) + 0 

which contradicts the assumption. Hence weS. Let us assume that weS; w is 
evidently a break function with Aw(r) = w(r + ) — w(t —) = 0 for every re(0, 1) 
and A+w(0) = w(0 + ) - w(0) = 0, A"w(l) = w(l) - w(l - ) = 0. Hence by 4.23 we 
have J0 x(t) dw(t) = 0 for every xeBV 

5.6. Corollary. Let \jj e BV be given. Using (5,3) ij/ can be uniquely written in the form 
ij/ =- cp + w where cpeNBV, weS and 

f1 f1 

j- x(t) di>(r) = x(t) dcp(t) 
Jo Jo 

for every xe BV. 
Let us define for x e BV, cpe NBV the relation 

(5,6) <*,<?> = x(t)dcp(t). 
Jo 

This relation evidently defines a bilinear form on BV x NBV 

5.7. Lemma. Let cpe NBV. If <x, cp} = 0 for every xeBV, then cp = 0. 
Let xeBV If <x, cp} = 0 for every cpeNBV, then x = 0. 

Proof. (1) If <*,</>> = 0 for every xeBV, then cpeS by 5.5. Hence cpeNBVnS 
and by (5,3) we obtain cp = 0. 

(2) Assume that (x,<p} = 0 for every cpe NBV but x =t= 0. Then either there 
exists a e (0,1] such that x(a) * 0 or x(t) = 0 for all t e (0,1] and x(0) + 0. In the 
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first case we set <p(t) = 0 for fe[0,a), cp(t) = 1 for te[a, 1]. Evidently cpeNBV 
and cp is a simple jump function (see 4.20). By 4.21 we have {x,<p} = J0 x(t) dcp(t) 
= x(a) + 0 and this contradicts the assumption. For the second case we set (p(t) = 1 
for te(0, 1], cp(0) = 0, then cpeNBV is also a simple jump function (cp = i^0) 
and by 4.21 we have <*,<?> = §l

0 x(t) d(p(t) = x(0) 4- 0. Again we have obtained 
a contradiction and our lemma is proved. 

5.8. Proposition. The pair of spaces BV, NBV forms a dual pair (BV, NBV) with 
respect to the bilinear form <., .> given by (5,6). 

Proof follows immediately from 5.7 and from the definition of a dual pair given 
in 3.1. 

5.9. Remark. It follows easily from 5.8 that (BVn, NBVn) is a dual pair with respect 
to the bilinear form 

xєBVn,q>єNBVn-+<x,q>У **(t)<Mt) = I Xj(t)d<Pj{t). 

Let us mention that for every fixed <p e NBVn by <x, <p> a bounded linear functional 
on BVn is defined. In fact, we have by 4.27 

|<*,Ф>| џ{t)M) < ( sup |x(ř)|)(vari <p) = (var0 <p) \\x\\BVn 
re[0, l ) 

for every x e BVn and <p e NBVn. 
The space BVn has important subspaces called the Sobolev spaces Wp (1 <p< oo) 

including in particular the space ACn of absolutely continuous functions on [0,1]. 

5.10. Definition. Given a real number p, 1 < p < oo, Wp denotes the space of all 
absolutely continuous functions x: [0,1] -> Rn whose derivatives x' are Lp-integrable 
on [0,1]. Furthermore, 

/f1 \1/p 

\x\wP = |x(0)| 4- M |x'(r)|*dt) = |x(0)| + llx'H^ for any xeWp. 

(Wp = Wp and instead of ||. \\wP we write ||. H^.) 

5.11. Remark. Evidently, any Wp (peR, p > 1) equipped with the norm ||.| |^p 
is a linear normed space. 

5.12. Remark. It is well-known that any x e BVn possesses a.e. on [0,1] a derivative 
x'(t) which is L-integrable on [0,1] (x' eL\). Furthermore, xeACn if and only if 
there is z e Li such that 

x(ř) = x(0) + z(т) dт on [o.i], 
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i.e. Wn = ACn. Given XEAC„, we have var 0x = ||x'||L. and therefore also the 
norms ||. H^ and ||. \\wi are identical (cf. e.g. Natanson [1]). 

5.13. Proposition. Given peR9 p > 1, the space Wp is isometrically isomorphic 
with the product space Lq

n x Rn and its dual space is isometrically isomorphic with 
Lq x R*9 where q = pj(p — 1) if p > \ and q = oo if p = 1. 

Proof, (a) The mapping xeWn

p-+(x'9x(0))eLp x Rn and its inverse (z,c)eLJ x Rn 

-> x(r) = c + Jo Z(T) dT G Wp establish an isometrical isomorphism between Wp 

and Lp x Rn. 
(b) Let f be an arbitrary linear bounded functional on Wp and let us put for any 

ceRn and zeLp f,(z) = f(<Pz) and f2(c) = f(4>c), where 

f : ж є Ц - »£ z(T)dxeWp
9 &: ceRn - u(t) = ce Wp. 

Then f and f2 are linear bounded functionals on Lp and Rn9 respectively, while 
f(x) = f(Vx' + *x(0)) = fi(x') + f2(x(0)) for any xeWp. Consequently, given 
fe(Wp)*9 there exist uniquely determined y*eL^ (q = p\(p — 1) if p > 1, q = oo 
if p = 1) and A* e K* such that (cf. 3.10) 

f(x) = y*(t) x'(t) dr + k* x(0) for any xeWp. 

Furthermore, 

H f l ^ sup |/i(z)|= ||y*||Lq, | |f2 | |=SUp|f2(c)| = |A*| 
I I - | | L P = 1 | C | = 1 

and hence 

1/1 = S«P l/WI = l(y*.A*)1I..X* = «y*|w + |A*| • 
HYP : = 1 

5.14. Remark. In accordance with 3.6 we denote for x e Wp
9 y* eLq

n and k*eR* 

<x, (y*, A*)>„, = <x', y*>L + A* x(0) = J y*(t) x'(t) dr + k* x(0). 

Let us notice that x e Wp -• <x, (y*, A*)>^ is the zero functional on Wp if and only 
if y*(t) = 0 a.e. on [0,1] and k* = 0. As a consequence we have 

5.15. Proposition. / / Y*eLq and A*eK*, then 

J0 
OГ 

['-y*(í)x'(í)dí + A*x(0) = 0 forany xeWn" 

í y*(t)z(t) At + A*c = 0 for any zeLp and ceRn 

if and only if y*(t) = 0 a.e. on [0, l ] and k* = 0. 
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5.16. Proposition. SeB(Wn
p, Rm) if and only if there exist an m x n-matrix M and 

an m x n-matrix valued function K with \\K\\Lq < oo (q = p\(p — 1) if p > 1, 
a = oo if p = 1) such that 

Sx = M x(0) + K(t) x'(f) dí jor any x є rV/ 
Jo 

5.17 Lemma. Let JeBV be right-continuous on [0,1) and left-continuous at 1 and 
f(\) = 0. Then 

M 

x(s) df(s) = 0 for any x e IV/ with x(0) = x(l) = 0 
o 

if and only if f(i) = 0 on [0,1]. 

Proof. Let us assume that f(t) ^ 0 on [0,1], e.g. let /(t0) 4- 0. Then var0 / 
> |/(1) - /(r0)| = |/(t0)| > 0. Let e > 0 be such that a = var0 / > 3e > 0. By the 
definition of a variation there exists a subdivision {0 = t0 < tx < ... < tm = 1} 
of [0,1] such that 

Z|A/| = £ | / ( ^ ) - / ( V i ) l > - - ^ 
a 1=1 

for any of its refinements o = {0 = s0 < sl < ... < sq = 1}. In virtue of the one­
sided continuity of / there exist T7G(0, 1) (j = 1,2,...,m) such that 0 < T0 < 
< T - < . . . < T m < 1, tj_x <Tj_1 <tj(j= l , 2 , . . . , m - l ) , t m _ ! < T m _ ! < T m < t m = l 

and 
I \f(tj) - JK)\ + |j(l) - j(OI -5 I var?; j + v < j < £. 

1=0 1=0 

Putting x(0) = 0, x(t) = sign (/(*,) - / ( T ^ - ) ) for ^ [ v ^ J (j = 1,2, ...,m- 1), 
x(t) = sign(/(Tw) - / ( T ^ - ) ) for t e ^ . ^ i j , x(l) = 0 and extending the defi­
nition of x to the whole [0,1] in such a way that x is linear on the rest of [0,1], 
we obtain 

m-í rxj 

I *(sKMI + 
1=0 Jtj J 

x(s)d[j(s)] 
m - 1 

< Z Varrj / + VarL / < £ ' 
1=0 

Hence 
x(s)d[j(s)] 

m - 1 Пj 

i ю-ňъ-ä + iлo -л^-л +1 x(s)d[л-)] + 1=i 
m - l 

1 = 0 

X(5)d[/(S)] 

> Z IЛ^) - ЛVi)l + ІЛO -Л^m-i)| - в > ЦAfl - 2г > a - Зв > 0, 
1=i 

where a = {0 = r0 < T0 < tx < zx < ... < tm-x < xm-x < xm < tm = 1}. Since 
obviously xeWp and x(0) = x(l) = 0, this completes the proof. 
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6. Variation of functions of two variables 

Various definitions of the variation of functions of two or more variables are known., 
In our considerations we use one of them, the so called Vitali variation. This section 
is devoted to the definition of this sort of variation for functions of two variables 
and to the fundamental properties of functions with finite variation in this sense. 

Let a nondegenerate interval I = [a, b] x [c, d] a R2 be given. We consider 
a real function k: I -> R defined on I. 

For a given subinterval J = [a, b'] x [c', d'] c / , a < a' < b' < b, c < c < d' < d 
we set 

(6.1) mk(J) = k(b', d') - k(b', c') - k(a', d') + k(a', c'). 

Let us define 

(6.2) v;(/c) = supXK(^.)|, 
i 

where the supremum is taken over all finite systems of nonoverlapping intervals 
J. c= I (i.e. for the interiors J° of the intervals J. we assume that J? n J° = 0 
whenever i + j). 

6.1. Definition (Vitali). The real function k: I -• R is of bounded variation on I 
if v,(k) < +oo. 

6.2. Remark. If on the interval / = [a, b] x [c, d] an n x n-matrix K(s, t) = (k0(s, t)) 
(i,j = 1,..., r) is given, i.e. K: I -> L(-R„), then we can set 

mK(J) = K(b', d') - K(b', c') - K(d, df) + K(a', cr) 

as above and define the number v7(K) = sup^|mK(Jt)| in the same way as in (6,2) 
i 

where the norm in the sum on the right-hand side is some norm of an n x n-matrix 
(cf. 1.1). For the case of the norm defined in 1.1 we have evidently v7(k0) < v7(K) 
for all ij = 1,2, ...,n. 

6.3. Remark. Assume that a = a0 < ocl < ... < <xk = b, c = y0 < yl < ... < yt = d 
are some finite subdivisions of the intervals [a, b], [c, d] respectively. The finite 
system of subintervals 

Jij = [<*i-i,*i] x IT,-1>)'/]> i = l,...,fe, ; = 1,...,/ 

is called a net-type subdivision of the interval / = [a, b] x [c, d]. Evidently every 
net-type subdivision of / is a finite system of nonoverlapping intervals. 

It is easy to see that for every finite system of nonoverlapping intervals J, c I 
there is a net-type subdivision of I such that every J. is the union of some of its 
elements. Using this fact it is not difficult to show that for the definition of v7(k) 
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from (6,2) the supremum can be taken over all finite net-type subdivisions and the 
number v7(k) remains unchanged. 

6.4. Examples. Assume that f e BV[a, b], g e BV[c, d]. Then for k(s, t) 
— f(s) g(0: [fl> ^] x [c> d] -» R we have by definition 

Let us set vwlx ,c - J(*) - va r j / varj | - < co . 

h(s, t) = 0 for 0 < t < s < 1 , h(s, t) = 1 for 0 < s < t < 1 . 

Then for every net-type subdivision Ji} = [ a^^a , ] x [ a ^ - ^ a j , i,j = 1,...,k, 
0 = a0 < aj < ... < <xk = 1 we have 

t WI.J = I WIu)l + _ M-VOI =2k - i 
i,j= 1 i= 1 i = 2 

since mfc(J4il.) = 1, m,,(J.,.-i) = 1 and m^JiJ = 0 if j 4= i,i-l. Hence vl01]x[0a](/z) 
cannot be finite. 

The following lemma can be easily verified. 

6.5. Lemma. // Ij a I a R2, j = 1,..., m is a finite system of nonoverlapping in­
tervals in I and k: I -• R, then 

m 

(6.3) _v,,(fc)_v.(*). 
1=1 

6.6. Lemma. Lef k: / = [a, b] x [c, d] -+ R be given such that v7(k) < oo, 
var*k(., y0) < oo for some y0e[c,d], i.e. k(.,y0)eBV[a,b] for some y0e[c,d]. 
Then k(.,y)e BV[a, b] for all y e [c, d] and 

(6.4) varba k(.,y)< v,(k) + var» k(., y0). 

If k: [a,b] x [c, d] -* R and ye[c,d] is fixed, then we denote the usual variation 
of the function k(s,y) in the interval [a,b] by var*k(.,y). Similarly for varfk(a, .) 
where (xe[a,b] is fixed. 

Proof. For any y, y0 e [c, d], a;_ x, <x} e [a, b] we have 

\k(<*Py) - fc(a/-i,,)| < \mjj(k)\ + |fc(ap7o) " fc(aj-i,7o)| 

where J} = [ a ^ ^ a j x [y0, y]. Hence for each finite decomposition a = a0 <a x 

< ... < afc = b we have 

i\K*j.v)-K*j-»vi 
1=1 

k k 

-- I \m4k)\ + I HaP Vo) - K*j-1. To)| <• v,(fc) + var£ k{., y0) 
; = i J = I 

and this inequality implies (6,4). 
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For a given fc: I -> R, I = [a, b] x [c, d] we put 

(6.5) co1(a) = 0, tt>1(o-) = v[flifflx[Ci<f](/c) for o"G(a,fc] 

and similarly 

(6.6) co2(c) = 0, CO2(T) = v[flibl x [c<r](fc) for T G (C, ci] . 

6.7. Lemma. The function col: [a, fc] -• R from (6,5) is nondecreasing on [a, fc], 
co^b) = Vj(fc); hence coleBV[a, b] if v7(fc) < +oo. Similarly for the function 
a>2: [c, d] -+ R from (6,6). 

The proof follows easily from the definitions. 

6.8. Lemma. If k: I -+ R, I = [a, b] x [c,d], v7(fc) < oo and varflfc(., c) < oo, 
then the set of discontinuity points of fc in the first variable s lies on a denumerable 
system of lines in I, which are parallel to the t-axis. 

Proof. For any s, s 0 e[a , b], te[c, d] we have 

|fc(s, t) - fc(s0, t)\ < |fc(s, t) - fc(s, c) - fc(s0, t) + fc(s0, c)| + |fc(s, c) - fc(s0, c)| 

< jco^s) - co^So)! + |varflfc(., c) - varfl° fc(., c)\ 

where cox: [a, b] -> JR is given by (6,5). Since col G BV[a, b] by 6.7 and the function 
varfl fc(., c) is also of bounded variation on [a, fc], the above inequality gives that 
there exists an at most denumerable set of points M a [a, fc] such that lim fc(s, t) 

= fc(s0, t) whenever s0 e [a, fc]\M and t e [c, d] are arbitrary. This yields our 
proposition. 

6.9. Lemma. If fc: I -» _R, v7(fc) < oo, varfl fc(., c) < oo, varc fc(a, .) < oo, then the 
set of discontinuities ofk in I = [a, fc] x [c, ci] //cs on a denumerable set of lines in I 
parallel to the coordinate axes. 

This proposition is proved in Hildebrandt [1], III.5.4. If fc(s, t) satisfies the 
assumptions of 6.8 then h(s, t) = fc(s, t) — fc(a, t) satisfies the assumptions of 6.9 
and 6.8 is a corollary of 6.9. 

6.10. Lemma. If fc: I -* _R, 7 = [a, fc] x [c, d], v7(fc) < +oo, then for an arbitrary 
subdivision c = y0<yl<...<yl = d and any two points sus2e[a,b] we have 

І [vаr? (fc(., Уj) - Қ., ľ,_ 0) - vаr- (fc(., ľ,) - fc(., ľ,_,))] < jшДsг) - ©.(s.)! 

where col: [a, fc] -> JR is defined by (6,5). 

Proof. Let us set h(s, t) = fc(s, t) — fc(s, c) for (s,t)el. Then h(s, c) = 0 for any 
s G [a, fc] and by 6.6 varj h(., t) < oo for any t e [c, ci] because evidently v7(h) < oo. 
Hence varfl h(., t) is finite for any sG [a, fc], t e [c, d]. For any j = 1,..., / we have 
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h(s, yj) - h(s, y,-_,) = k(s, y,-) - k(s, y}_ x) and var* (fc(., y,) - fc(., y,_ J) is also finite 
for every se [0, 1]. This implies that for any j = 1,..., / we have 

|var^(fe(., y.) - fc(., y,._1;) - var? (fc(., y-) - fe(., ŷ— 0)1 

< |var;̂  (fe(., y,) - fe(., y;_i;)| < v[SllS2myj.uYj](k). 

By 6.5 we obtain the inequality 
/ 

LV[SuS2)x[yj_uyj)(k) < V [ s i f S 2 ] x [ C i d ] ( f c ) 

1=1 

^ K,S2]*[cAk) - V»llMcd)(fc)| = K f o ) - ^ l (S l ) | 

which yields our result. 

6.11. Lemma. If k: I -» R, I = [a, b] x [c, d], v7(fe) < oo and for some s0e[a,b] 
the relation 

(6.7) lim |fe(s, t) - k(s0, t)\ = 0 
S->SQ± 

holds for all t e [c, d], then 

(6.8) lim co^s) = CO^SQ) 
S-*SQ± 

where col: [a, b] -» R is defined by (6.5). 

This is proved in Schwabik [2], Lemma 2.L 

6.12. Remark. If for fe: I -> R we have v7(fe) < oo and var£ fe(., c) < oo, then by 
6.8 the relation (6,7) is satisfied for all s0 e [a, b] except for a denumerable set of 
points in [a, b]. Moreover, in this case fe(., t)eBV[a, b] for every te[c, d] (cf. 6.6). 
Hence by the elementary properties of functions of bounded variation the onesided 
limits lim k(o, t) = fe(s0 +, t), lim k(o, t) = fe(s0 —, t) exist for every s0 e [a, b), 

a -* so + O-*SQ — 

s0 s (a, b], respectively, and for every t e [c, d]. 

6.13. Lemma. If k: I -> R (I = [a, b] x [c, d]) is given, then for every sl,s2e [a, b] 
we have 

(6.9) varf (k(s2, .) - k(st, .)) < |©.(s2) - a>,(Sl)| 

where co1: [a, b] -> R is defined in (6,5). 

Proof. For an arbitrary subdivision c = y0 < yx < ... < yl = d we have by 6.5 
/ 

£ IMS2, y^ - % , y^ - Ks» yj- 0 + % , y,._ 1;| 
j=i 

-̂  v[si,S2]x[c,#) < |v[fl,S2]x[M](fc) - vIfltSl]x[Cid](fc)| = Ico^s,) - co^sJI 

and proceeding to the supremum for all finite subdivisions of [c, d] we obtain (6,9). 
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6.14. Lemma. Assume that k: I -» R (I = [a, b] x [c, J]) is aiven with v,(k) < oo 
and /or some s0 e [a, b) the limit 

(6,10) lim /c(s,f) = /c(s0 + , t) 
S -• so + 

exists for every t e [c, d\. Then 

lim vard (k(s0 + 5, .) - /c(s0 + , .)) = 0. 
d~* o + 

Proof. Define k°: I -» K such that k°(s, t) = k(s, t) if (s, t)e 1, s + s0 and k°(s0, t) 
= k(s0 + , t). Since varc(k(s0 + , .) — k(s0, .)) < oo we obtain Vj(k°) < co. Let 
co?: [a, b] -> R, a>?(a) = 0, co?(cr) = v[fliff] x [cui](k

0) for cr e (a, b\. Since 
lim (k°(s, t) - k°(s0, t)) = 0 for every t e [c, d], we have by 6.11 lim co%s) = (O?(s0). 
s->so + s-*so + 

For every 6 > 0 such that s0 + 5 e [a, b] we have by 6.13 

varf (/c°(s0 + 3, .) - /c°(s0, .)) = varf (/c(s0 + 5, .) - /c(s0 + , .)) 

< K ( s 0 + <5)-co?(s0)|. 

The limitation process S -> 0+ yields our result. 

6.15. Corollary. If k: I-> K (1 = [a, b] x [c, d]) is such that v7(k) < oo and 
var£ k(., c) < oo, then for any s0 e [a, b) wc have 

varc
d(k(s0 + , .) - k(s0, .)) < CDX(S0 + ) - CO^SQ) 

where a)l: [a, b] -• K is given by (6,5). 

Proof. The assumptions assure by 6.6 that var£k(., t) < oo for every r e [c, ti] 
and consequently the limit lim k(s, t) = k(s0 + , t) exist for every te[c , d\ The 

s-*s0 + 

statement follows immediately from 6.13. 

6.16. Corollary. If k: I -> £, v7(k) < oo, var£ k(., c) < oo, then for any s0e [a, b) 
we have 

lim sup |k(s0 + (5, t) - k(s0 +, t)| = 0, 
<5-+0+ te[cjy ' 

i.e. 
lim k(s0 + 5, t) = k(s0 +, t) uniformly in [c, d] . 

d—*o + 

Proof. For any t e [c, d] we have evidently 

|k(s0 + <5, t) - k(s0 + , t)\ < |k(s0 + <5, c) - k(s0 + , c)| + varf (k(s0 + 5, .) - k(s0 + , .)) 

and our result follows immediately from the fact that lim k(s, c) = k(s0 +, c) 
exists and from 6.14. 

6.17. Remark. It is easy to see that the statements from 6.14, 6.15 and 6.16 are 
also reformulate for the case of left-hand limits. 
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Further it is clear that 6.4 — 6.16 are also valid if the real function fc: / -> R is 
replaced by a matrix valued function K(s, t) = (fcjs, r)). If some continuity properties 
are needed, then the usual norm of a matrix is used. Compare also 6.2. 

6.18. Theorem. Let fc: / -> R, I = [a, b] x [c, d] be given. Let us suppose that 
v7(fc) < -Poo and varf fc(a, . )< oo. 

/ / a e BV[c, d], then the integral 

(6,12) £a(t)d,[/c(5,t)] 

exists for every se[a,b]. For any se[a,b] the inequality 

(6,13) g(t)d,[k(s,t)] \g(t)\ dr[var^ k(s, .)] < sup \g(t)\ var? fc(s, .) 
Je teled] 

holds and moreover 

(6,14) vaп g(t) dt[k(., t)] < |a(t)| dtó2(t) < sup |0(t)| v7(/c) 
íє[c,d] 

where cO2: [c\d] -^ R is defined by (6,6). T/iws tne integral (6,12) as a function of the 
variable s belongs to £V[a, b]. 

Proof. By 6.6 fc(s, .)e£V[c,d] for every se[a,fc]. Hence by 4.19 the integral 
(6,12) exists for every _e[a,b]. The inequality (6,13) follows immediately from 
4.27. In order to prove (6,14) we assume that an arbitrary subdivision a = a0 < <x1 

< ... < ak = b of the interval [a, b] is given. By 4.27 we have 

a(Odf[fc(ai,.)-k(ai_1,t)] 

Consequently 

< |g(t)| d(var<,(%, . ) - % , - „ .))). 

(6,15) I 
І = l 
I г g(í)d,[% i,t)-fc(a í_1,t)] 

^ [VOI d^Iv-i. (%,.)-%_,,.)) 

Using 6.10 we obtain for all f, T G [a, b] 

kH.WI 
k^ 

i=í 

X vаr< (fc(ař, .) - fc(ař_ l9 .)) - £ vаr^ (fc(ař, .) - fc(a,_ l9 .)) 
І = I 

< (í - -t) И*)l (a>2(t) - co2(x)) 
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since cO2: [c, d] -> R is nondecreasing and consequently 4.26 gives the estimate 

)d(t)\ d(t va i i (%, .) - % _ „ •))) < \\g(t)\ da>2(t). 
Jc \ i = l / Jc 

Since this holds for every subdivision of [a, b] we get by (6,15) the inequality 

var ( p . ) _,[*(.,.)] < \g(t)\da>2(t) 

By 4.27 we have 

\g(t)\ dco2(t) < sup \g(t)\ vaif (o2 = sup \g(t)\ x,(k). 
te[c,d] te[c,d) 

6.19. Corollary. If the assumptions of 6.IS are satisfied, then 

(б,iб) sup 
sє[a,Ъ) í g(t)d,[k(s,t)] < sup \g(t)\ (var? % .) + v,(/c)). 

<e[c.-] 

Proof. For any se [a, b] we have by 4.27 

Í g(t) d,[k(s, t)] < ţ"g(t)d,[k(a,t)] + var' g(t)Ф(-,t)] 

< sup \g(t)\ varf % .) + vara ( g(t) d,[k(., t)]). 
te[c,d] \JC J 

(6.16) follows now easily from (6,14). 

6.20. Theorem. Let k: I = [a, b] x [c,d] -> R be given. Suppose that v,(k) < oo, 
var? k(a, .) < oo and var* £(.,._) < oo. IffeBV[a,b], geBV[c,d], then 

(6.17) p _ ) d< ( [ V 0 df(s)) = £ (£W) d<[%')]) df(s) 

holds and the integrals on both sides of (6,17) exist. 

Proof. By 6.18 jd
c g(t)dt[k(., t)]eBV[a,b] and 4.19 yields the existence of the 

integral on the right-hand side of (6,17). By 6.6 we obtain fc(., t)eBV[a,b] for 
every t e [c, d] and by 4.19 also the existence of the integral JJ fc(s, t) df(s) for any 
£e [c, d]. Let c = y0 < 7i < ••• < 7/ = d be an arbitrary subdivision of [c, d]. For 
any se [a, b] and i = 1,..., / we have 

|fc(s,yl.)-fc(5,y,_1)| 

< |fc(s, y.) - fc(a, y£) - fc(s, y,_ x) -F fc(a, y4_ Jj + |fc(a, y4) - fc(a, y,_ ,)| 

-- V ] x [ 7 M , J ) + l % y . ) - % y . - i ) | • 
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Hence by 4.27 and 6.5 

I I (/c(s,ľí)-fc(S,ľj_1))dДs) 

^ I K..«x „,_,.„,(*) + 1 % y.) - %vi-i)|] v a i-/ 
i = 1 

< (v7(fc) + varf fc(a, .)) var* / < oo . 

Taking the supremum over all finite subdivisions of [c, d] on the left-hand side 
of this inequality we obtain 

(6,18) var? ( |fc(s, .) d/(s)J < (v,(fc) + varf fc(a, .)) var* / < oo . 

From 4.27 the existence of the integral on the left-hand side of (6,17) follows. 
Let now ae [c, d] and let ^(t) be the simple jump function defined for t e [c, d] 

(see 4.20). By 4.21 we have 

i/ta

+(t)dt[fc(s,t)] = fc(s,d)-fc(s,a + ) 

аnd 

(6,19) JV(s, d)-fc(s,a + ))d/(s). ^+(t)d([fc(s,0]jd/(s) 

On the other hand, we have by 4.21 

(6,20) j Va+(t) d, I V 0 df(s) 1 = J V -) 4j(s) - ton T fc(s, a + S) df(s 

= lim (fc(s, d) - k(s, a + 8)) d/(s). 

< sup |fc(s, a + ) - fc(s, a + ô)\ vаr* / 
sє[a,b] 

By 4.27 we have 

Cb 

(fc(s,a + )-fc(s,a + <5))d/(s) 
•la 

and by 6.16 we obtain 

lim+ (fc(s, a + ) - fc(s, a + 5)) d/(s) = 0. 

Hence by (6,20) 

«/C(t)d, 
Гь 

k(s,t)df(s) (k(s,d)-k(s,a+))df(s) 

and this together with (6,19) yields that for g = i/t* the equality (6,17) is satisfiec 
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In the same way it can be proved that (6,17) holds if we set g(t) = ij/~(t), where 
\\J~ is the simple jump function given by (4,13). From these facts and from the linearity 
of the integral it is now clear that (6,17) holds whenever geBV[c, d] is a finite 
step function (cf. 4.20). 

Let now g e BV[c, d]. There is a sequence g{ e BV[c, d], I = 1, 2,... of finite step 
functions such that lim gt(t) = g(t) uniformly on [c, d] (see Aumann [ l] , 7.3.2.1). 

/ - O P 

Since by (6,18) it is \b
ak(s, .) df(s)eBV[c,d], we have by 4.17 

(6,21) lim r^f) d, ( [ V t) df(s)) = \g 
Jc \*!a / Je 

9(t)à, k(s,t)df(s)\. 

Further by 6.19 we obtain 

r\g(t)-g((t))d,[k(s,t)] sup 
se[a,b] f < sup \g(t) - g,(t)\ (vaří k(a, .) + v,(*)). 

<6[C,<Í] 

Hence Гd 

lim 
l->ao 

g,(t)d,[k(s,t)]= | g(t)d,[k(s,t)] 

uniformly on [a, b] and by 4.17 the relation 

Гь 
(6,22) lim 

. - o o 

^ ř ) d,[k(s, t)]J df(s) = £ (Jф) d,[k(s, í)]) d/(s) 

holds. Since g{ are finite step functions we have for any / = 1,2,... 

g,(t)d,[k(s,t)] d/(s) = 
Гd 

a,(í)d, k(s,t)df(s) 

as was shown above. Consequently, by (6,21) and (6,22) we obtain the desired 
equality (6,17) and the proof is complete. 

6.21. Remark. If all assumptions of 6.20 are satisfied, then it can be proved that 
the equality 

(6,23) f0(0 d, ( f / (s) ds[k(s, tft = f / (s) ds ( \"g(t) dt[k(s, t)] 
Jc \Ja Ja \Jc 

also holds (see Schwabik [2]). 

6.22. Theorem. Let K(s,t): I = [a,b] x [c,d] -+L(Rn) be given, K(s,t) = (ktj(s,t)), 
i,j = 1,..., n. Suppose that v7(K) < oo, var? K(a, .) < oo, varj K(., c) < oo. If 
x e BVn[c, d], y e BVn[a, b], then the equality 

Cb / Cd \ * rd / ri> 
(6,24) f(fd,[K(S' í)]' x(í) dy(s) = x*(í)d, K*(s,f)dy(s] 

holds and the integrals on both sides of (6,24) exist. 
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Proof. By definition we have 

(6,25) d,[K(s,t)]x(t) dy(s) 

- I P ( l P*A)d([Ms,t)]W) = £ t r([''x/t)dI[Ms,t)3)dyI.(s). 
i = l Jfl \ j = l Jc / «=- 7=1 Jfl \Jc / 

Since all xp yh kip ij = 1,...,n satisfy the assumptions of 6.20 we can use this 
theorem for the interchanging of the order of integrations in the expression (6,25). 
If we do this we obtain 

£(p.[кfcO- x(t) dy(s) = I £ xþ) d, k,js, t) àУi(s) 

Xj{t) d, JX(s, t) djф)) = jV(í) d, (jV(s , t) dy(s)) 

and (6,24) is proved. 

6.23. Remark. A similar formulation in terms of a matrix valued function K and 
vectors x, y can be given for the equality (6,23) from 6.21. 

6.24. Remark. In this paragraph only such results on functions of bounded variation 
in two variables are presented which are in some manner used in the forthcomming 
investigations of integral equations in the space BVn. For the reader interested 
in this topic we refer to further results contained in the book Hildebrandt [1], III.4. 
(for example Helly's Choice Theorem, Jordan decomposition, etc.). 

6.25. Remark. Let / = [a, b] x [c, d] be given. Let us denote by SBV(I) the set 
of all functions k: I -+ R such that vf(K) < oo, var£fc(., c) < oo, var^fc(a, .) < oo. 
SBV(I) is evidently a linear set. SBV(I) can be normed by setting 

||fc|| = |fc(a,c)| + var£fc(., c) + vaif fc(a, .) + v7(fc). 
Evidently 

|fc(s, t)\ < ||fc|| for every (s, t) e / . 

The same holds even if the functions on / are matrix valued. 

1. Nonlinear operators and nonlinear operator equations 
in Banach spaces 

This section provides the basic tools for the investigation of nonlinear boundary 
value problems for ordinary differential equations contained in Chapter V, The 
reader interested in more details concerning differential and integral calculus on 

68 



-•7 

Banach spaces is referred to the monographs on functional analysis (e.g. Kantorovic, 
Akilov [1]). 

Throughout the paragraph, X, Y and Z are Banach spaces. 

7.1. Preliminaries. Given a Banach space X with the norm ||.||x, Q0 > 0 and 
x 0 eX , 93(x0,o0; X) denotes the set of all xeX such that ||x - x0\\x < Q0. 

Let F be an operator acting from X into Y and defined on D cz X (F: D -> Y). 
F is lipschitzian on D0 a D if there exists a real number A, 0 < A < oo, such that 

\\F(x') - F(x")\\y < l\\x' - x"\\x 

for all x', x" eD0. If A < 1, F is said to be contractive on D0. 
The operator F : D c z X x Z - > Y i s said to be locally lipschitzian on D0 a D 

near z — z0 if for any x0 e D0 there exist Q0 > 0, o0 > 0 and X > 0 such that 
x', x" G 93(x0, £0; X) and z e S(z0, a0; Z) implies (x', z) e Z), (x", z)eD and 

| |F(x',z)-F(x",z)| |y<A||x'-x"||x . 

7.2. Gateaux derivative. The operator F acting from X into Y and defined on 
D c X is Gateaux differentiable at x0eD if there exists a bounded linear operator 
G e £(X, Y) such that for any f e X 

lim 
a-o 

F(x0 + a{) - Ғ(x0) 
GÇ 9 

= 0. 

G is the Gateaux derivative of F at x = x0 and is denoted by G = F(x0). If F(x) 
exists for all x e !>', where D' c= D is an open subset in X, and the mapping 

F:xeD0-+F(x)eB(X, Y) 

possesses the Gateaux derivative H e B(X, B(X, Y)) at x = x0 e D0, H is said to 
be the second order Gateaux derivative of F at x = x0 and H = F"(x0). 

In general, if H is the k-th order Gateaux derivative of F on D0 c D c I and 
L is the Gateaux derivative of H at x = x0 e D0, then L is the (k + l)-th order 
Gateaux derivative of F at x0 and L = F**+1)(x0). 

Let X,,X2,...,Xn be Banach spaces. Let F: (x1?x2,...,x„) -> F(xl5x2, ...,X„)G Y 
be an operator from the product space S = Xx x X2 x ... x Xn into a Banach 
space Y The derivative of F at a point x = (x1,x2,...,x„) with respect to thej-th 
variable (i.e. if we fix the other variables and F is considered as an operator from 
Xj into Y) is denoted by FJ(x) or FXj(x). (F(x) is defined and continuous on the open 
subset D c S if and only if FJ(x) (j = 1,2,..., n) are defined and continuous on D. 
Then for any x e 3 and { = ({l5 $2, ...,£„) e 2 

[f(x)]« = ZWx)]5,.). 
1=1 
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If on D c S F possesses all the derivatives F{?j)(x) (7 = 1,2,...,«) which are con­
tinuous in x on D, we shall write FeCPlP2 Pn(D). If F is continuous on D, we 
shall write FeC(D). 

Let us summarize some basic properties of the Gateaux derivative, 
(i) Any linear mapping A e B(X, Y) is Gateaux differentiable on X and A'(x) = A 

for any xeX. 
(ii) If the operators Fl,F2: X -+Y are Gateaux differ entiable at x0eX and 

ax,OL2eR, then also OLXFX + a2F2 is Gateaux differ entiable at x0 and 

(a-F. + a2F2)' (x0) = a.F;(x0) + a2F2(x0). 

(iii) Let the operators F: X -+ Y and G: Y -+ Z be Gateaux differ entiable on open 
subsets DF cz X and Dc cz Y (DF z> F(DF)), respectively. Then, if the mapping 

yeDGcz Y-+G'(y)eB(XB(Y,Z)) 

is continuous (GeCi(DG)), then the composed operator T = GF: K-• Z is 
Gateaux differ entiable on D . If moreover, FeCl(D ), then also TeCl(D ). 

(iv) If the operator F: X —> Y is Gateaux differ entiable at any point x of the domain 
D in X and \F'(x)\B{X Y) < M < 00 for any xeD, then F is lipschitzian on D 
(with the Lipschitz constant M). 

7.3. Abstract functions. The operators acting from R into a Banach space Y are 
called abstract functions. 

The derivative f' of the abstract function f: JR -* Y at the point t0 e R is defined by 

lim 
í - í o 

f(t) - f(h) f%) = 0. 

Let the abstract function f: R -> Y be defined and continuous on the interval 
[a,b] ( — 00 < a < b < 00). Then there exists ye Y such that given s > 0, there 
is a S > 0 such that for any subdivision a = [a = t0 < tx < ... < tm<j = b] of the 
interval [a, b] with (t} — tj-x) < d (7 = 1,2,..., mj and for an arbitrary choice 
of t'j e (tj.!, tj) (7=1,2, . . . , mc) it holds 

imh-h-i)-ү 
1=1 

< г. 

We denote 

-І f(t)dt 

and y is said to be the abstract Riemann integral of f(t) over the interval [a, b\. 
The abstract Riemann integral possesses analogous properties as the usual 
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Riemann integral of functions [a, b] -> R. In particular, if ||f(0||y < M < oc on 
[a, b], then 

f(t)dt \\f(t)\\rdt<M(b-a) 

Furthermore, if f' exists and is continuous on (a, ft) -=> [a, b], then 

V(t)dt = f(b)-f(a). 

7.4. Lemma (Mean Value Theorem). Let X, Y, Z be Banach spaces, and x0 e X, 
z0 e Z. Let the operator F: X x Z ^ Y be defined and Gateaux differentiable on 
S(x0 ,e0; X) x 93(Z0,CT0; Z) (Q0 > 0, c0 > 0). 77ien for any x „ x 2 e23(x0,e0; *) 
and Z!,z2€S(z0, a0; Z) 

F(x2,z2) - F(Xl,Zl) = [F;(x, + % 2 - x,), z, + 9(z2 - z,))](x2 - x.)d3 
Jo 

+ I [Fz'(x, + % 2 - x,), z. + 9(z2 - z,))] (z2 - z.)d9 . 
Jo 

(The mapping 

8e[0,1] -> [F(x, + 5(x2 - x.), z, + 9(z2 - z.))] [(x2,z2) - (x„z.)] 

= [Fx(Xl + 9(x2 - x,), z. + 9(z2 - z,))] (x2 - x,) 

+ [f5(x, + % 2 - x.), z, + S(z2 - z.))] (z2 - z.)e y 

is an abstract function.) 

7.5. Theorem (Implicit Function Theorem). Let X, Y and Z be Banach spaces, 
x0el, z 0 eZ , g0 > 0, r/0 > 0. Let the operator F: X x Z -+ Y be defined and 
continuous on 93(x0, Q0 ; X) x 93(z0, o0; Z), whi/e 

(i) F(xO9zo) = 0; 
(ii) F e C 1 ' 0 ^ , ^ ; K) x 93(z0,c/0; Z)) (cf. 7.2); 

(iii) Fx (x0, z0) possesses a bounded inverse operator. 

Then there exist o > 0 and o > 0 such that for any ze93(z0, a; Z) there exists 
a unique solution x = <p(z) 6 93(x0, Q ; K) to the equation 

(7,1) F(x,z) = 0. 

Moreover, the mapping ze93(z0, a; Z) -> <p(z)e9?(x0, o; K) is continuous. 

(Proof follows easily by applying Corollary 7.7 of the Contraction Mapping 
Principle 7.6 to the equation 

x = x-[Fx ' (x0 ,z0)]-1F(x,z).) 
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7.6. Theorem (Contraction Mapping Principle). Let X be a Banach space and let 
D a X be closed. Let the operator T: X -+ X be contractive on D and T{D) cz D. 
Then there exists a unique xeD such that x = T{x). 

(The sought solution is the limit of successive approximations 

xll-=T(x11_I) ( n= l , 2 , . . . ) , 

where x0 may be an arbitrary element of D.) 

7.7. Corollary. Let X and Z be Banach spaces. Let x0 e K, z0 e Z, Q0 > 0, o0 > 0, 
0 < X < 1 and let T be a continuous mapping of 93(x0, Q0; X) x 93(z0, o0; Z) into X 
such that 

(0 ||T(*i.*) - T(x2 ,z) | |x < X\\Xl - x2\\x 

for all Xj,x2 e93(x0, ^0; X) and ze93(z0, o0; Z); 

(ii) | | T ( x 0 , z ) - x 0 | | x < ^ 0 ( l - A ) 

for all z e ©(z0, o0; Z). 
Then, given z e 93(z0, o0; Z\ there exists a unique element x = q>{z) e 93(x0, Q0 ; X) 

such that x = T(x, z). 
The mapping z e 93(z0, o0; Z) -> <p{z)e 93(x0, ̂ 0; X) is continuous. 

Another version of the Implicit Function Theorem which is of interest for our 
purposes is the following theorem which also follows from the Contraction Mapping 
Principle. 

7.8. Theorem. Let X and Y be Banach spaces. Let x0eX, Q0 > 0 and x0 > 0. 
Let the operators F: X -> Y and G: X x [0, XQ] -• Y satisfy the assumptions 

(i) F(*oH<>; 
(ii) FEC^X^Q^X)); 

(iii) F(x0) possesses a bounded inverse operator; 
(iv) G is locally lipschitzian on -B(x0, g0; X) near e = 0. 

Then there exist Q > 0 and x > 0 such that for any e e [0, x] there is a unique 
solution x = <p(e)e93(x0, Q; X) of the equation 

(7.2) F(x) + eG(x,e) = 0. 

Moreover, the mapping e e [0, x] -• <p{e) e 93(x0, Q; X) is continuous. 

7.9. Quasilinear equation — noncritical case. Of special interest are quasilinear 
(weakly nonlinear) equations of the form 

(7.3) Lx-eN(x9e) = 0, 

72 



1.7 

where L is a linear bounded operator acting from a Banach space X into a Banach 
space y with the definition domain D(L) = X (L e B(X, Y)) and N is in general 
a nonlinear operator acting from X x R, into y 

The case when L possesses a bounded inverse operator is called noncritical case. 
In such a case the equation (7,3) is reduced to the equivalent equation 

(7.4) x = eL~1 N(x,e). 

For e = 0 (7,4) has the unique solution x0 = 0. To solve it for e > 0 we may apply 
Theorem 7.8, where F = L and 6 = — N. 

7.10. Quasilinear equation — critical case. A linear bounded operator LeB(X, Y) 
possesses a bounded inverse if and only if N(L) = {0} and R(L) = Y (cf. Bounded 
Inverse Theorem 3.4). 

In a general case when either dim N(L) > 0 or R(L) §; Y the projection method 
may sometimes be used to consider the equation (7,3). 

Let L G B(X, Y) be such that 

(7.5) R(L) is closed, a(L) = dim N(L) < oo , 

j3(L) = codim R(L) < oo 

(L is said to be noetherian). Then there exist linear bounded projections P of K 
onto N(L) (PeB(X\ R(P) = N(L), P2 = P) and Q of Y onto R(L) (QeB(y), 
R(Q) = R(L\ Q2 = Q) such that R(l - P) is closed in X, dim R(l - Q) = jB(L) and 

(7.6) X = N(L) © K ( l - P ) , y = K(L) 0 K(/ - Q) 

(cf. Goldberg [1] II.1.14 and IL1.16). Thus Lx = eN(x,e) if and only if both 

(7.7) Q(Lx - e N(x, e)) = Lx - eQ N(x, e) = 0 

and 

(7.8) (/ - Q) (Lx - e N(x, e)) = - e(/ - Q) N(x, e) = 0. 

Any x G K may be written in the form x = Px + (/ — P) x. For x G X let us denote 
u = (I — P) x and v = Px. Then the system (7,7), (7,8) becomes 

Lxu - eQ N,(u, v, e) = 0, (/ - Q) N^u, v, e) = 0, 
where 

Lx: ueK(/ - P)->LueR(L) = K(Q) 
and 

N^u, v, e) = N(u + v, e) 

for u e R ( l - P), vG/V(L) and ee [0,x0]. Clearly, LA eB(R(I - P), K(L)) is a one-
to-one mapping of R(l - P) onto R(L). (L^ = 0 implies UGR(P) and since 
,R(P) n R(l - P) = {0}, u = 0). 
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7.11. Theorem. Let LeB(X, Y) fulfil (7,5) and let PeB(X) and QeB(Y) be the 
corresponding projections of X onto N(L) and of Y onto R(L), respectively. Let 
h G R(L) and Lx0 = h. 

Let Q0>0, x0 > 0 and D = 93(x0,o0; X) x [0, x 0 ] , Let NeCl0(D), N(xo ,0) 
G R(L) and (I — Q) N'x(x0,0) possesses a bounded inverse. 

Then there are x > 0 and Q > 0 such that for any e G [0, x] there exists a unique 
solution x = <p(e) G 23(X0, g; X) of the equation 

(7,9) Lx = h + eN(x,e) . 

The mapping <p: s e [0, x] -> <p(e) G 93(X0, O ; K) is continuous. 

Proof. Let us denote U = R(l - P), V = R(P) = N(L). Then U and V are Banach 
spaces with the norms induced by \\.\\x- Given xeX, let us put u == (/ — P)x 
and v = Px. In particular, u0 = (/ - P)x 0 , v0 = Px0 . Since hGK(L), (/ - Q)h = 0 
and (7,9) becomes 

Lxu-h- sQ N(u + v, e) = 0 , (/ - Q) N(u + v, e) = 0, 

where Lx = L ^ G B(J7, K(L)) possesses a bounded inverse. Let D1 czU x Vx [0, x0] 
denote the set of all (u, v, C)G U X Vx [0, x0] such that ||u - u ^ * < \Q0 and 
||v — v0 | |x < ^Q0. Given ( u j ^ j e D j , (u + v, s)eD and we may define 

- / ^ /^ L i u - h - eQN(u + v, e)\ , . , . 

^ ' • * » - ( ( . - Q ) N ( „ + , , £ , > * < 1 » - * 

Clearly, T is a continuous mapping of £>, c U x V x [0, x 0 ] into Yx Y Moreover, 

for any (u,v,e)eDl and (£,ij)eU x V 

^ - £ Q [ N ' > + v,£)]({ + ^ 
[T' (u>,v,e)].(^) V ( / _ Q ) [ N , ( u + v e ) ] ^ + i / ) ; , 

the mapping (u, v,e)eD x -» T(uv)(u, v,e)GB(L7 x 17 Yx Y) being continuous. 

Since N(u0 + v0, 0 ) G R(L) and L ^ o = h, T(u0, v0,0) = 0. Moreover, 

[ T ; U > O , V 0 , O ) ] ( ^ ) = ( ( / _ Q ) N ^ O ) ( ? + | ? ) 

for any (£, tj) e U x K It is easy to see that for any p G R(L) and q G K(/ - (?) 

[T-;u>>o,vo,0)](?,iy) = ^ 

if and only if { = L" lp and 9 = [(/ - Q) Nx (x0 ,0)] " l q _ £. Applying the I m p l i c i t 

Function Theorem 7.5 we complete the proof. 
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