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I. Introduction

This chapter provides some auxiliary results and notations needed in the subsequent
chapters. As most of them can be easily found in the plentiful literature on linear
algebra, real functions, functional analysis etc. we give only the necessary references
without including their proofs. More attention is paid only to the Perron-Stieltjes
integral in sections 4, 5 and 6.

1. Preliminaries

1.1. Basic notations. By R we denote the set of all real numbers.For a < b we denote
by [a, b] and (a, b) respectively the closed and the open interval with the endpoints
a, b. Similarly [a, b), (a, b] means the corresponding halfopen intervals.

A matrix with m rows and n columns is called an m x n-matrix, n X 1-matrices
are called column n-vectors and 1 x m-matrices are called row m-vectors.

Matrices which in general do not reduce to vectors are denoted by capitals while
vectors are denoted by lower-case letters. Given an m x n-matrix A, its element in
the j-th row and k-th column is usually denoted by a;, (A =(a;s), j=1,...m,
k = 1,...,n). Furthermore, A* denotes the transpose of A (A* =(q, ), k = 1,...,n,
i=1..m), "

Al = max ), |l »
ji=1, .., m =1

rank (A) is the rank of A and det (A) denotes the value of the determinant of A.
If m=n and det(A) + 0, then A~' denotes the inverse of A. I, is the identity
m x m-matrix and 0, , is the zero m x m-matrix (I,, = (6;,) j. k = 1,...,m, where
S u=11if j=k 6, =01if j+k and 0,,=(n,) j=1...m k=1..n,
where n;, =0 for all j=1,..,m and k = 1,...,n). Usually, if no confusion may
arise, the indices are omitted. The addition and multiplication on the space of
matrices are defined in the obvious way and the usual notation

A+B, AB, JA  (ieR)
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is used. Let the matrices A, B, C be of the types m x n, m x p and q x n, respectively.
Then D =[A,B] is the m x (n + p}matrix with d;, = a;, for j=1,..,m,
k=1,..,n and d;, =b;,_, for j=1,...m k=n+1,n+2, ..,n+p. Analo-

gously
[ ]
(o

is the.(m +g) x n-matrix with h;, = a;, if j<m and h;, = ¢;_p, if j>m.
R, is the space of all real column n-vectors and R* is the space of all real row
n-vectors, R; = RY = R. For xeR,, x* e R* we write

x| = max |x|
and

el = 5 e

Given an m x n-matrix A, xeR, and yeR,, then |Ax| < |A||x| and |y*A| <
< |y*| |A]. The Euclidean norm in R, is denoted by |.|,

" 12
xeR, — |x|, = (x*x)'? = (42 xf) .
=1

It is easy to see that any x e R, satisfies |x|, = |x*|, and |x| < |x|, < |x*| < n|x|.
The space of all real m x n-matrices is denoted by L(R,, R,) (L(R,, R,) = L(R,)).
If M, N are sets and f is a mapping defined on M with values in N then we write

fi M > N or xe M - f(x)e N. For example, if f is a real function defined on an

interval [a, b], we write simply f: [a,b] - R.

The words “measure”, “measurable” without specification stand always for

Lebesgue measure in R, and measurability with respect to Lebesgue measure.

1.2. Linear spaces. A nonempty set X is called a (real) linear space if for every
x,y€ X and A€ R the sum x + y e X and the product Ax e X are defined and the
operations satisfy the usual axioms of a linear space. The zero element in X is
denoted by 0.

A subset L — X is a linear subspace of X if L is a linear space with respect to the
sum and product with a real number given in X.

The elements x,, ..., x,, of X are called linearly independent if a;x, + ... + o,x,, =0,
o;€R, i=1,..,n implies a; =oa, =...=0a,=0. Otherwise the elements x,,..., x,
are linearly dependent.

If X is a linear space and a norm x € X — || x| € R is defined, X is called a normed
linear space. If X is a normed linear space which is complete with respect to the
metric induced by the norm, then X is called a Banach space.
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A real linear space X is called an inner product space (or pre-Hilbert space) if
on X x X a real function (x,X,)x is defined ((X;,x,)€ X x X — (x;,x,)x€R)
such that for all x, x;, x,, x;€ X

(%y 4+ X2, X3)x = (xy, X3)x + (%, X3)x s
(15 X2)x = (%2, X )x 5
(oxy, X,5)y = o(xy, %)y,

(x,x)xy >0 and (x,x)y+0 for x=+0.

The real function (., .)x is called an inner product on X.
If X is an inner product space then the relation

) xeX = x| = (x 2§ R

defines a norm on X.

A real inner product space X which is complete with respect to the norm defined
by (%) is called a real Hilbert space. Consequently a Hilbert space is a Banach space
whose norm is induced by an inner product on X.

1.3. Function spaces. We shall deal with some usual spaces of real functions on an
interval [a,b], —o0 <a <b < +00. The sum of two functions and the product
of a scalar and a function is defined in the usual way. For more detailed information
see e.g. Dunford, Schwartz [1]. )

(i) We denote by C,[a, b] the space of all continuous column n-vector functions
f: [a,b] » R, and define

feC,lab] - ||f|

Cota) = SUP ()] -
tela,b)

|- lc.aey i @ norm on C,[a,b]; C,[a, b] with respect to this norm forms a Banach
space. The zero element in C,[a, b] is the function vanishing identically on [a, b].

(i) If 1 < p < oo we denote by LZ[a, b] the space of all measurable functions
f: [a,b] > R, such that

f’|f(t)|v dt < oo.

b 1/p
LPla,b] = (J |f(t)|p dt) :

The elements of L?[a, b] are classes of functions which are equal to one another
almost everywhere (a. e.)*) on [a, b]. For the purposes of this text it is not restrictive

We set

felfab] - |f

*) If a statement is true except possibly on a set of measure zero then we say that the statement is
true almost everywhere (a.e.).
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if we consider functions instead of classes of functions which are equal a.e. on [a, b].

Lfa, b] with respect to the norm |.|py,, is a Banach space. By L?[a,b] we
denote the space of all measurable essentially bounded functions f: [a,b] —» R,
with the norm defined by

feL?[ab]-|f

Lieta) = SUp ess [f(1)] .
tela,b]

L, [a,b] is a Banach space with respect to the norm |||| Lefas) 1h€ Zero element
in Lf[a,b] (1 < p < o0) is the class of functions which vanish a.e. on [a, b].

(iii) We denote by BV,[a, b] the space of all functions f: [a,b] — R, of bounded
variation rar® f < oo where

var’ f = SUP.;If(ti) — f(ti-y)|

and the supremum is taken over all finite subdivisions of [a, b] of the form a =
=1y <t; <..<t,=b. Let ce[ab] then

varl f = varS f + varb f.
If we define

f € BV,[a,b] = [f|sv,10n = If(a) + vars f

then ||.||py,a is @ norm on BV,[a,b] and BV,[a,b] is a Banach space with respect
to this norm. _

By NBV,[a,b] the subspace of BV,[a,b] is denoted such that fe NBV,[a,b]
if f is continuous from the right at every point of (g, b) and f(a) = 0. The norm in
NBV,[a.,b] is defined by

fe NBV..[a, b] - Hf”NBV,,[a.h] = VarZ f.

A function f: [a,b] —» R, is called absolutely continuous if for every ¢ >0
there exists 6 > 0 such that

-

|f(bi) - f(ai)l <ée

where (a;, b;), i = 1,...,k are arbitrary pairwise disjoint subintervals in [a, b] such
k
that ) |b, — a| < 6.
i=1

Let AC,[a, b] be the space of all absolutely continuous functions f: [a,b] - R,.
It is AC,[a,b] = BV,[a,b] and AC,[a,b] is a Banach space with respect to the
norm of BV,[a,b], ie.

f e AC,[a,b] > |f[uc,amr = If(a) + varc f.

The zero element in AC,[a,b] and BV,[a,b] is the function vanishing identically
on [a,b].
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Given an interval [a, b], we write simply C,, L?, LY, BV,, NBV,, AC, instead of
C,[a,b], L¥[a, b], L*[a,b], BV,[a,b], NBV,[a,b], AC,[a, b] if no misunderstanding
may arise. If n = 1 then the index n is omitted, e.g. C,[a,b] = C[a, b], L5[a,b] =
= I*[a,b] etc. The index n is also sometimes omitted in symbols for the norms,
ie. instead of [.[c, |- lav, [|- ]z We write [[.{lc, [[-]ays |- ].0o respectively.

A matrix valued function F: [a,b] - L(R,, R,,) is said to be measurable or con-
tinuous or of bounded variation or absolutely continuous or essentially bounded
on [a, b] if any of the functions

te[a,b] - f{t)eR (i=12..,m, j=12,..,n)

is measurable or continuous or of bounded variation or absolutely continuous or
essentially bounded on [a, b}, respectively.
Let us mention that

k
var® F=sup Y |F(t;) — F(t;-,)|
i=1
where the supremum is taken over all finite subdivisions of [a, b] of the form

a=ty<t;<..<t,=b
and

uM;

n
Z var) f;, .

mzax (var’; fi) s v
2l

We denote ”F”Lw = sup ess |F(¢)| and ||, = (f%|F(e)}?de)'’" for 1< p< oo.

tefa.b)
If F:[ab]— L(R,R,) is measurable and |F|, <o (1 <p< ), then the
matrix valued function F: [a,b] — L(R,,R,) is said to be [*-integrable on [a,b].
(Instead of L'-integrable we write simply L-integrable.)

1.4. Properties of functions of bounded variation. If fe BV[a,b] then the limits
'Ef:l+f(t) = f(to+), to€la,b), hm  f(t) = flto—), to€(a,b] exist and the set of
discontinuity points of f in [a, b] is at most countable.

If fe BV[a,b] then f(t) = p(t) — n(t), te[ab] where p,n:[a,b] >R are
nondecreasing functions on [a,b]. Let a sequence t,,t,,... of points in [a,b],
ti # tj, i #j and two sequences of real numbers ¢y, ¢,, ..., dy,d,, ... be given such
that t, = a implies ¢, =0 and t,=b implies d, = 0. Assume that the series
Yec, >d, converge absolutely. Define on [a,b] a function s: [a,b] > R by the

relation s(t) _ Z ¢ + Z d..

th<t th <t

Every function of this type is called a break function on [a, b]. Clearly s(t,+) — s(t,) =

=d, and s(t,) — s(t,—)=c¢, n=12,... and s(t+)=s(t) = s(¢t—) if te[a,b],
t+t, n=12,... Further se BV[a,b] and varts = Y (|c,| + |d.])-
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If feBV[a,b] then there exist uniquely determined functions f, e BV[a,b],
f»€ BV[a,b] such that f, is a continuous function on [a, b], f; is a break function
on [a,b] and f = f, + f, (the Jordan decomposition of f€BV[a,b]).

If fe BV[a,b] then the derivative f* of f exists a.e. on [a, b].

If fe BV[a,b] then f is expressible in the form

J=Jat L+ 1o

where f, € AC[a,b], f, is a break function on [a,b] and f;; [a,b] > R is con-
tinuous on [a, b] with the derivative f, = 0 ae. on [a,b] (the Lebesgue decom-
position of fe BV[a,b]). ‘

If fe AC[a,b] then the derivative f’ exists a.e. on [a,b] and f'e L'[a,b], ie.
[21f(e) dt < oo and var® f = [&|f(¢)| dr.

The following statement is important:

Helly’s Choice Theorem. Let an infinite family F of real functions on [a, b] be given.
If there is K > 0 such that
/) <K  for te[a,b] and varif< K forevery feF

then the family F contains a sequence {f,}=-, such that lim f,(t) = ¢(t) for every
te[a,b] and @ € BV[a,b], i.e. the sequence f|t) convergés pointwise to a function
¢: [a,b] > R which is also of bounded variation.

On functions of bounded variation see e.g. Natanson [1], Aumann [1].

2. Linear algebraical equations and generalized inverse matrices

Let us consider linear algebraical equations for xe R, and y* e R}

(2.1) Ax=b,
(2.2) Ax =10
and

(2.3) y*A=0,

where A is an m x n-matrix (A€ L(R,,R,)) and beR,,

By N(A) we denote the set of all solutions to (2,2). Obviously, N(A) is a linear
subspace in R,, ie. if x;, x, € N(A) and a,,a, € R, then x,0; + x,a, € N(A). It is
well-known that

(2:4) dim N(A) = n — rank (A),

ie. either (2,2) possesses only the trivial solution x = 0 (if rank (A) = n) or N(A)
contains a subset of k = n — rank (A) elements x,, x,,..., X, which are linearly
independent, while any subset of k + 1 its elements is linearly dependent. (We say
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also that the homogeneous equation (2,2) has exactly k = n — rank (A) linearly
independent solutions.) The set {x,, x,,..,x,} forms a basis of N(A) and any
x € N(A) can be expressed as their linear combination

k
x =Y x, where a;€R (j=1,2,...k).
j=1
As (2,3) is equivalent to A*y = 0, N(A*) denotes the linear subspace in R} of all
solutions to (2,3) and

(2,5) dim N(A*) = m — rank (A*) = m — rank (A).

Furthermore, the equation (2,1) possesses a solution if and only if (2,3) implies
y*b = 0. In particular, (2,1) possesses a solution for any be R,, if and only if (2,3)
implies y* = 0 (dim N(A*) = 0).

The equation (2,4) is said to be an adjoint equation to (2,1).

The concept of a generalized inverse matrix introduced by R. Penrose (Penrose
[1] and [2]) enables us to express the solutions to (2,1) if they exist.

The following assertion is helpful.

2.1. Lemma. BAA*= CAA* implies BA = CA and BA*A = CA*A implies BA*= CA*.
Proof. If BAA* = CAA*, then 0 = (BAA* — CAA*)(B — C)* = (BA — CA)(A*B*
— A*C*), whence BA = CA immediately follows. (Given a matrix D, DD* =0
if and only if D = 0.) As (A*)* = A, the latter implication is a consequence of the
former one.

2.2. Theorem. Given A€ L(R,, R,,), there exists a unique matrix X e L(R,, R,) such
that

(2,6) AXA = A,
2.7) XAX = X,
(2,8) X*A* = AX,
(2.9) A*X* = XA.

Proof. (a) Putting (2,8) into (2,7) we obtain
(2,10) XX*A* = X.

On the other hand, if (2,10) holds, then AX = AXX*A*. Since (AXX*A*)* = AXX*A*,

_ this means that (AX)* = AX and (2,8) holds. Moreover, (2,8) and (2,10) yields

X = XX*A* = XAX, ie. the couple of equations (2,7), (2,8) is equivalent to (2,10).
(b) Analogously, the system (2,6), (2,9) is equivalent to

(2,11) XAA* = A*.
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(c) Furthermore, to find a solution X to the system (2,10), (2,11) it is sufficient
to find a solution B to the equation
(2,12) BA*AA* — A*.

In fact, (2,12) implies immediately that X = BA* satisfies (2,11) and consequently
also (2,9). Hence

A*X*A* = XAA* = A* and XX*A* = BA*X*A* = BA* = X.

(d) Now, let us consider the set of n x n-matrices (A*AY (j = 1,2,...). Since
the dimension of the space of all real n x n-matrices is finite (n?), there exist a natural
number k and real numbers A,, 4, ..., 4, such that |4,| + |4,| + ... + |4/ > 0 and

(213) L A*A + Ay(A*A)? + ... + A(A*A) = 0.
Let r be the smallest natural number such that A, # 0. If we put
(2.14) B = —A "{Aisl + A rA*A + ..+ A(A*A)TTTNY,

then according to (2,13)
B(A*Ay "' = (A*AY .

Hence if r > 2, B(A*A) A*A = (A*A)' ! A*A and according to 2.1
B(A*A) = (A*Ay~'.
In this way we can successively obtain
B(A*AY = (A*A)y~! for j=23,..,r.

In particular, B(A*A)* = A*A and by 2.1 BA*AA* = A*. The matrix B defined
in (2,14) satisfies (2,12) and hence X = BA* verifies the system (2,6)—(2,9).
(¢) It remains to show that this X is unique. Let us notice that by (2,9) and (2,7)

A¥XX*X = XAX = X
and by (2,8) and (2,6)
A*AX = A*X*A* = (AXA)* = A*
Now, let us assume that Y € L(R,, R,) is such that
(2,15) A*YXY = ¥, A*AY = A*,
Then, according to (2,10) and (2,11)

X = XX*A* = XX*A*AY = XAY = XAA*Y*Y = A*Y*Y =Y.

2.3. Definition. The unique solution X of the system (2,6)—(2,9) will be called
the generalized inverse matrix to A and written X = A*,
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2.4. Remark. By the definition and by the proof of 2.2 A* fulfils the relations
(2,16) AA*A=A, A*AA* =A%, (A*)*A* = AA*, AYA*)* = A*A
and '
(2,17) A*(A*)* A* = A%, A*AA* = A*, AXA¥)*A* = A%,  A*AA* = A*
(cf. (2,6)—(2,11) and (2,15)).
2.5. Remark. If m = n and A possesses an inverse matrix A~ !, then evidently A~!
is a generalized inverse matrix to A.
2.6. Proposition. Let Ae L(R,, R,), Be L(R,, R,,). Then the equation for X € L(R,, R,)
(2,18) AX =B
possesses a solution if and only if
(2,19) (I, — AA*)B=0.
If this is true, any solution X of (2,18) is of the form
(2,20) X=X, + A*B,
where X, is an arbitrary solution of the matrix equation

AX, =0, ,.
Proof. Let AX = B, then by (2,6) (I — AA*)B = (A — AA*A) X = 0. If (2,19)

holds, then B = AA*B and (2,18) is equivalent to A(X — A*B) =0, ie. to X =
= X, + A*B, where AX, =0.

2.7. Proposition. Let A€ L(R,,R,). Then AX, =0, , if and only if there exists
CeL(R,R,) such that X, = (I, — A*A) C.

Proof. A(l, — A*A)C = (A — AA*A)C =0 for any CeL(R,,R,). If AX, =0,
then X, = X, — A*AX, = (I — A*A) X,.

Some further properties of generalized inverse matrices are listed in the following
lemma.

2.8. Lemma. Given A€ L(R,,R,,),

(2.21) A** = (A*)* = A,

222) (a%)* = (a*)r,

(223) (AA)* =1"'A*  forany AeR, A+0 and 0;, =0
(2,24) (A*A)* = A*(A%)*, (AA*)* = (A¥)* A% .

n,m>
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1.2

(The relations (2,21)—(2,24) may be easily verified by substituting their right-hand
sides in the defining relations for the required generalized inverse.)
2.9. Lemma. Let Ae L(R,,R,,) and let Ue L(R,,, R,) and Ve L(R,, R,,) be such that

A*AU = A* and AA*VY =A.
Then
V*AU = A* .

Proof. Let A*AU = A* and AA*V = A. Then by 2.6
U=U, + (A*A)* A* and V=V, + (AA%)* A,

where A*AU, =0 and AA*V, =0. It follows from 2.1 that A*AU, =0 (ie.
UXA*A = 0A*A) and AA*V, = 0 (ie. VXAA* = 0AA*) implies AU, = 0 and
VA = 0, respectively. Furthermore, by (2,22) and (2,24)

(AA*)¥)* = (AA¥)* = (A*)* A* and (A*A)* = A*(A%)*.

Hence by the definition of A* (cf. 2.4)

V*AU = [A*(A*)*][A*AA*][(A¥)* A*] = A*AA*AA* = A*
2.10. Lemma. Given Ae L(R,, R,,), there exist Ue L(R,,,R,) and Ve L(R,, R,,) such
that
(2,25) A*AU = A*, AA*Y = A.
Proof. By (2,24) and (2,17)

(A*A)* A* = A¥*(A¥)* A* = A*

and by (2,16) and (2,22) AA* = (A¥)* A* = (A*)* A*. Thus

[1 — (A*A)(A*A)*] A* = A* — A*AA* = A* — A¥(A*)* A* = 0.
Since (A*)* = A, this implies also

[1 — (AA*)(AA*)*]A =0.
The proof follows now from 2.6.
2.11. Remark. Let us notice that from the relations (2,16) defining the generalized
inverse of A, only AA* A = A was utilized in the proofs of 2.6 and 2.7. Some authors
(see e.g. Reid [1]) define any matrix X fulfilling AXA = A to be a generalized in-
verse of A.
Let Ae L(R,, R,) and h = rank (A). If h = n, then Ax = 0 if and only if x = 0.

Let us assume h < n. By (2,4) there exist an n x (n— h)-matrix X, such that its
columns form a basis in N(A), i.e. Ax = 0 if and only if there exists ce R,_, such

18
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that x = X,c. Consequently X e L(R,,R,) fulfils AX = 0, , if and only if there
exists Ce L(R,, R, 1) such that X = X,C. In particular, there exists C, € L(R,, R,_})
such that

(2,26) I,— A*A = X,C,.

Furthermore, let h = rank (A) < m. Then by (2,5) there exists Y, e L(R,, R,,_;)
such that its rows form a basis in N(A*). Consequently Y € L(R,. R ) fulfils YA=0,
if and only if there exists De L(R,,_,, R,) such that Y = DY,. In particular, there
exists Dy € L(R,,—s R,,) such that

(2,27) I, — AA* = D,Y,.
(If h = m, then y*A = 0 if and only if y* = 0.
2.12. Proposition. Let Ae L(R,,R,) and X = L(R,,R,). Then AXA = A if and
only if there exist H and D € L(R,,, R,) such that
X = A* + (I, — A*A)H + D(I, — AA*)
or equivalently if and only if
X = A* + XK + LY,,

where Xo€ L(R,-» R,) and Y,€L(R,,R,,_,) (h = rank (A)) were defined above,
KeL(R,,R,-,) and Le L(R,,_,, R,) are arbitrary, the term X,K vanishes if h = n
and the term LY, vanishes if h = m.

Proof. Let us assume h <m and h < n. Let both AX;A= A and AX,A = A
Then A(X; — X;)A=0,, and hence (X, — X,)A = (I, — A*A)C with some
Ce L(R,). By 2.6 and 2.7 this is possible if and only if

X, — X, = (I, — A*A) CA* + D(I, — AA¥)
or by (2,26) and (2,27) if and only if
X, — X, = X,[C,CA*] + [DD,] Y, .
Putting CA¥ = H, C,CA* = K and DD, = L we obtain the desired relations.
The modification of the proof in the case that h = m and/or h = n is obvious.
2.13. Lemma. Let Ae L(R,, R,,). If rank (A) = m, then det (AA*) = 0. If rank (A) = n,
then det (A*A) * 0.

Proof. Let rank (A) = m. Then by (2,5) A*y = 0 if and only if y = 0. Now, since
A* = A*AA* (cf. (2,17)), AA*y = 0 implies A*y = A*AA*y = 0 and hence y = 0.
This implies that rank (AA*) = m (cf. (2,4)).

If rank (A) = rank (A*) = n, then by the first assertion of the lemma rank (A*A)
= rank (A*(A*)*) = n.
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2.14. Remark. It is well known that rank (AX) = min (rank (A), rank (X)) when-
ever the product AX of the matrices A, X is defined. Hence for a given Ae L(R,, R,,)
there exists X € L(R,, R,) such that AX = I,, only if rank (A) = m. Analogously,
there exists X e L(R,, R,) such that XA = I, only if rank (A) = n.

2.15. Lemma. Let Ae L(R,, R,). If rank (A) = m, then AA* = I, If rank (A) = n,
then A*A =1,

Proof. (a) Let rank (A) = m. Then by 2.13 (AA*) possesses an inverse (AA*)™!
and according to the relation A*AA* = A* (cf. (2,17))

(2,28) A* = A¥(AA¥)"!

and hence AA* =1,.
(b) If rank (A) = n, then the relation A*AA* = A* from (2,17) and 2.13 imply

(2,29) A* = (A*A)' A
and hence A*A =1,

2.16. Lemma. Let Ae L(R,), Be L(R,,R,) and CeL(R,). If rank (A) = rank (B)
= m, then (AB)* = B*A~'. If rank (B) = rank (C) = n, then (BC)* = C™'B*.

Proof. Let rank(A)=rank(B)=m. Then by 215 BB* =I. Consequently
ABB*A~! =|. Furthermore, (B*A™')(AB)=B*B = B*(B*)* = B*A*(A~')* (B*)*
= (AB)*(B*A™')*. This completes the proof of the former assertion. The latter
one could be proved analogously.

For some more details about generalized inverse matrices see e.g. Reid [1]
(Appendix B), Moore [1], Nashed [1] and “Proceedings of Symposium on the Theory
and Applications of Generalized Inverses of Matrices” held at the Texas Techno-
logical College, Lubbock, Texas, March 1968, Texas Technological College Math.
Series, No. 4.

3. Functional analysis

Here we review some concepts and results from linear functional analysis used in’
the subsequent chapters. For more information we mention e.g. Dunford, Schwartz
[1], Heuser [1], Goldberg [1], Schechter [1].

Let X be a linear space over the real scalars R. If F, G are linear subspaces of X,
then we set

F+G={zeX;z=x+y,xeF, yeG}.

F + G is evidently a linear subspace of X.
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F + G is called the direct sum of two linear subspaces F, G if F n G = {0}. Let
the direct sum of F and G be denoted by F @ G.

If F® G = X then G is called the complementary subspace to F in X.

It can be shown (see e.g. Heuser [1], IL4) that

(1) for any linear subspace F — X there exists at least one complementary sub-
space G < X

(2) for any two complementary subspaces G,,G, to a given subspace F < X
we have dim G, = dim G, where by dim the usual linear dimension of a linear
set is denoted.

This enables us to define the codimension of a linear subspace F < X as follows.

Let X = F @ G; then we set

codim F = dimG.

(If dimG = 00 or X = F, we put codimF = oo or codim F = 0, respectively.)

If F < X is a linear subspace, then we set x ~ y for x,ye X if x — ye F. By ~
an equivalence relation on X is given. This equivalence relation decomposes X
into disjoint classes of equivalent elements of X. If x € X belongs to a given equiva-
lence class with respect to the equivalence relation ~ then all elements of this class
belong to the set x + F.

Let us denote by X/F the set of all equivalence classes with respect to the given
equivalence relation. Let the equivalence class containing x € X be denoted by [x],
ie.

[x]=x+F.
Then
X|F={[x]=x+F; xeX}.

If we define [x] + [y] =[x +y], o[x]=[xx] where xe[x], ye[y], aeR
then X /F becomes a linear space over R called the quotient space. It can be shown
that if X = F @ G, then there is a one-to-one correspondence between X /F and G
(see e.g. Heuser [1], I11.20). Hence

codim F = dim G = dim (X/F).

Let X and Y be linear spaces over R. We consider linear operators A which assign
a unique element Ax = ye Y to every element x € D(A) = X. The set D(A) called
the domain of A forms a linear subspace in X and the linearity relation

A(ox + pz) = aAx + PAz

holds for all x,ze X, a,feR.
The set of all linear operators A with values in Y such that D(A) = X will be
denoted by L(X, Y). If X = Y, then we write simply L(X) instead of L(X, X). The
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identity operator x€ X — x€ X on X is usually denoted by I. For an operator
Ae L(X,Y) we use the following notations:

R(A) = {yeY;y = Ax, xe X}
denotes the range of A, the linear subspace of values of Ae L(X,Y) in Y.
N(A)={xeX; Ax =0€eY}

denotes the null-space of Ae L(X,Y); N(A) = X is a linear subspace in X. Further
we denote
*(A) = dim N(A)
and
B(A) = codim R(A) = dim (Y/R(A)).

If o(A), B(A) are not both infinite, then we define the index ind A of Ae L(X,Y)
by the relation
ind A = B(A) — «(A).

The operator Ae L(X, Y) is called one-to-one if for x,, x, € X, x, * x, we have
Ax, + Ax,. Evidently Ae L(X,Y) is one-to-one if and only if N(A)= {0} (or
equivalently ofA) = 0).

The inverse operator A™! for Ae L(X, Y) can be defined only if A is one-to-one.
By definition A~ is a linear operator from Y to X mapping y = Axe Y to xe X.
We have D(A™')=R(A), R(A"!)=D(A)= X, A" !(Ax)=x for xe X, A(A"'y)=y
for yeR(A). If R(A)=Y and N(A)= {0} (ie. oA)= B(A)=0) then we can
assign to any ye Y the element A~'y which is the unique solution of the linear
equation

(3,1) Ax=y.

In this case we have A~' € L(Y, X). The linear equation (3,1) can be solved in general
only for y € R(A).

The linear equation (3,1) for Ae (X, Y) is called uniquely solvable on R(A)
if for any y € R(A) there is only one xe€ X such that Ax = y. The equation (3,1)
is uniquely solvable on R(A) if and only if A is one-to-one (ie. N(A) = {0}).

Let now X, X* be linear spaces. Assume that a bilinear form (x,x*>: X x X* >R
is defined on X x X* (i.e. Cax + By, x* > = alx, x* ) + ply, x ), {x, ax* + By™)
=o{x,x"y + B(x,y*) for every x,ye X, x*,y* e X*, «, feR).

3.1. Definition. If X, X* are linear spaces, {x,x*)> a bilinear form on X x X*
we say that the spaces X, X* form a dual pair (X, X *) (with respect to the bilinear
form (., .)) if

{(x,x*>=0 forevery xeX implies x* =0eX"
and

(x,x*y =0 forevery x*eX* implies x=0eX.
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In Heuser [1], VL.40 the following important statement is proved.

3.2. Theorem. Let (X. X ) he a dual pair of linear spaces with respect to the bilinear
form (., . defined on X x X . Assume that A€ L(X) is such an operator that there
is an operator A* € L(X ™) such that
A, x*y = (x, A*x*)

for every xe X, xt e X,

If ind A =ind A* =0, then

o(A) = oA”) = B(A) = B(A") < o

and moreover

Ax =y has a solution if and only if {y,x*)> =0 for all x* e N(A*),

A*x* =y* has a solution if and only if {(x,y*> =0 for all xe N(A).

In the following we assume that X and Y are Banach spaces, i.c. normed linear
spaces which are complete with respect to the norm given in X, Y respectively.

The norm in a normed linear space X will be denoted by |. |y or simply | .| when
no misunderstanding may occur.

3.3. Definition. An operator A€ L(X,Y) is bounded if there exists a constant
M e R such that
Jax] < M|x|

for all xe X.

The set of all bounded operators AeL(X,Y) (AeL(X)) will be denoted by
B(Y, Y) (B(Y).

It is well-known that Ae B(X, Y) if and only if A is continuous, ie. for every
sequence {x,},, llmx = x we have lim Ax, = Ax.

For Ae B(X, Y) we define

Ax
62) (Al = sup ] = sup 1221

It can be proved that by the relation (3,2) a norm on B(X, Y) is given and that B(X, Y)
with this norm is a Banach space (see e.g. Schechter [1], Chap. IIL).

3.4. Theorem (Bounded Inverse Theorem). If AeB(X,Y) is such that R(A)=Y
and N(A) = {0}, then A~ " exists and A~' € B(Y, X).
(See Schechter [1], III. Theorem 4.1).

3.5. Definition. We denote X* = B(X, R), where R is the Banach space of real
numbers with the norm given by ae R — |¢x|. The elements of X* are called linear
bounded functionals on X and X* is the dual space to X. Given fe X*, its value
at xe X is denoted also by

f(X) = <X, f>x .
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If f(x) =0 for any xe€ X, f is said to be the zero functional on X and we write
f=o0.

3.6. Remark. X* equipped with the norm

for feX*

Il = ix Ilf(")| = sup )

x vofx|x

(cf. (3,2)) is a Banach space. Furthermore,
xeX, feX* - {x, D

is evidently a bilinear form on X x X*. Clearly, {x,f>x = 0 for any xe X if and
only if f is the zero functional on X (f = 0€ X*). Moreover, it follows from the
Hahn-Banach Theorem (see e.g. Schechter [1], 11.3.2) that {x,f)y = 0 for any
fe X* if and only if x = 0. This means that the spaces X and its dual X* form
a dual pair (X, X*) with respect to the bilinear form <., .)y.

For some Banach spaces X there exist a Banach space Ey and a bilinear form
[.,.]x on X x E such that fe X* if and only if there exists ge Ey such that

Gy =[x, 8]x forany xeX.
If this correspondence between Ey and X* is an isometrical isomorphism*),
we identify E, with X* and put
<x1 g>X = [x9 g]x .

3.7. Definition. Let X, Y be Banach spaces. By X x Y we denote the space of all
couples (x,y), where xe X and ye Y. Given (x,y), (u,v)e X x Y and 1eR, we
put (x,y) + (u,v) = (x + u, y +v), A(x,y) = (4x, dy) and

166 W)l = xllx + lylly -

(Clearly, |.|xxy is @ norm on X x Y and X x Y equipped with this norm is
a Banach space.)

3.8. Lemma. If (X, X ™) and (Y, Y*) are dual pairs with respect to the bilinear forms
[., .Jx and [., .]y, respectively, then (X x Y, X* x Y*) is a dual pair with respect
to the bilinear form

(ey)eX x Y, (x*,y")eX* x Yt >
(o6 y) (x5 y Ve = D6 x 1 + [y, ¥y ']y

*) A linear operator mapping a Banach space X into a Banach space Y is called an isomorphism if it
is continuous and has a continuous inverse. An isomorphism ®: X — Y is isometrical if |®x])y = |x|x
for any x € X. Banach spaces X, Y are isometrically isomorphic if there exists an isometrical isomorphism
mapping X onto Y.
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Proof. [., .]x«y is clearly a bilinear form. Furthermore, let us assume that

(33) [(ey), (x*,y*)]xxy =0 forall (x*,y*)eX* x Y*.

In particular, we have
(66 y) "y *)lxny = [0 x7]x = 0

for all (x*,y*)eX* x Y* with y* = 0. Since (X, X ") is a dual pair this implies
x =0 and (3,3) reduces to [y,y*], =0 for all y* €Y, ie. y =0. Analogously,
we would show that [(x,y), (x*,y*)]x«y = 0 for all (x,y)e X x Y if and only if
xt =0 y"=0. :

3.9. Remark. In particular, (X x Y)* = X* x Y*, where

<(X, Y), (é, ")>X xY = <X, €>X + <y’ ">Y

forany xe X, ye Y, £e X* and ne Y*

3.10. Examples. (i) It is well-known (cf. Dunford, Schwartz [1]) that A is a linear
operator acting from R, into R,, if and only if there exists a real m x n-matrix B
such that A: xe R, - Bx e R,,. Thus the space of all linear operators acting from
R, into R,, and the space of all real m x n-matrices may be identified. Clearly,
B(R,, R,) = L(R,, R,,). In particular, R¥ = B(R,, R) = L(R,, R) is the space of all
real row n-vectors, while

(X, y*Dr, = ¥*x forany y*eR* and xeR,.

(ii) Let —o0 <a <b < +oo. The dual space to C,[a,b] is isometrically iso-
morphic with the space NBV,[a, b] of column n-vector valued functions of bounded
variation on [a, b] which are right-continuous on (a, b) and vanishes at a. Given
y* € NBV,[a,b], the value of the corresponding functional on x e C,[a,b] is

64) xyse = [[dyen <0

a

and

”Y*HC = | SHUP IK"’ Y*>c' = varp y* = ”Y*“BV .
xllc=

(The integral in (3,4) is the usual Riemann-Stieltjes integral.) This result is called the
Riesz Representation Theorem (see e.g. Dunford, Schwartz [1], IV.6.3). As a conse-
quence K e B(C,[a,b], R,) if and only if there exists a function K: [a, b] - L(R,, R,,)
of bounded variation on [, b] and such that

K: xeC,[a,b] > jbd[K(t)] x(1)eR,,.
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Let us notice that the zero functional on C,[a,b] corresponds to the function
y* € NBV,[a, b] identically vanishing on [a, b].

(i) Let —0o <a<b<o, 1<p<o, g=pl/p—1)if p>1 and g=
if p=1. The dual space to LZ[a,b] is isometrically isomorphic with L a,b]
(whose elements are row n-vector valued functions). Given y* € L[a, b], the value
of the corresponding functional on x € L?[a, b] is

b

(3.9) xoy*ss = j y¥(0) x(t)di

a

and
ly*lee = sup [<y*>e| = [ly*| e

lIxliLp=1
(see e.g. Dunford, Schwartz [1], IV.8.1). (The integral in (3,5) is the usual Lebesgue
integral.) The zero functional on L2[a, b] corresponds to any function y* e LY[a, b]
such that y*(t) = 0 a.e. on [a, b].

(iv) Any Hilbert space H is isometrically isomorphic with its dual space. If
x,yeH —(x,y)yeR is an inner product on H and xeH - ||x||y = (x, x)'/?
the corresponding norm on H, then given he H, the value of the corresponding
functional on x € H is given by

(¢, hyy = (x, h)H
and
Ih

= S”uP_lK"’ hyul = [h]lx.

If X, Y are Banach spaces and A€ B(X, Y), then for every ge Y* the mapping
x€ X — (Ax, g)y is a linear bounded functional on X. (Given xe X and ge Y*,
|<Ax, g>y| < |Ax|y [ig]y- < [|A|sx.y) |&]l v+ | x||x-) Thus there is an element of X*
denoted by A*g such that (Ax, g, = {x, A*g),. This leads to the following

3.11. Definition. Given A€ B(X, Y), the operator A*: Y* — X* defined by
CAx,g>y = {x, A*g)y

for all xe X and ge Y* is called the adjoint operator to A.
Let us notice that A*eB(Y*, X*) and |A*| = |A| for any AeB(X,Y). (See
Schechter [1], II1.2.)

3.12. Definition. For a given subset M < X we define
M* = {feX*; {x,f>)x =0 forall xeM}
and similarly for a subset N < X* we set

N ={xeX; (x,fyxy=0 forall feN}.
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3.13. Definition. The operator A€ B(X, Y) is called normally solvable if the equation
Ax =y has a solution if and only if <{y,f)y = 0 for all solutions fe Y* of the
adjoint equation A*f = 0.

(In other words, Ae B(X, Y) is normally solvable if and only if the condition
+N(A*) = R(A) is satisfied.)

3.14. Theorem. If A€ B(X, Y), then the following statements are equivalent
() R(A) is closed in Y,
(i) R(A*)is closed in X*,
(iii) A is normally solvable (R(A) = “N(A*)),
(iv) R(A*) = N(A)-.
(See e.g. Goldberg [1], IV.1.2.)

3.15. Theorem. Let A€ B(X,Y) have a closed range R(A) in Y. Then
«(A*) = B(A) and «(A) = (A*).
If ind A is defined, then ind A* is also defined and
ind A* = —indA.
(See e.g. Goldberg [1], IV.2.3 or Schechter [1], V.4

3.16. Definition. If X, Y are Banach spaces then a linear operator Ke L(X, Y) is
called compact (or completely continuous) if for every sequence {x,}=,, x,€X
such that |x,[x < C = const. the sequence {Kx,}>., in Y contains a subsequence
which converges in Y.

Let the set of all compact opérators in L(X, Y) (L(X)) be denoted by K(X, Y)
(K(X).

The set K(X, Y) = L(X, Y) is evidently linear. Moreover every compact operator
is bounded, ie. K(X,Y)< B(X,Y). Indeed, if KeK(X, Y)\B(X,Y), then there
exists a sequence {x,} = X, |x,|x < C such that |Kx,| — o and the sequence
{Kx,} = Y cannot contain a subsequence which would be convergent in Y.

3.17. Theorem. Suppose that Ke B(X,Y) and that there exists a sequence {K,,}
< K(X,Y) such that limK, =K in B(X,Y). Then KeK(X,Y), ie. K(X,Y) is
a closed linear subspace in B(X,Y).

(See Schechter [1], 1V.3.)

3.18. Proposition. If X, Y, Z are Banach spaces, A€ B(X,Y), KeK(Y, Z), then
KAe K(X, Z). Similarly BLe K(X,Z) provided Le K(X,Y), Be B(Y, Z).
(See Schechter [1], IV.3.)
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For the adjoint of a compact operator we have

3.19. Theorem. K € K(X, Y) if and only if K* € K(Y*, X*).
(See Goldberg [1], 11L1.11 or Schechter [1], IV.4 for the “only if” part.)

3.20. Theorem. Let K € K(X) and let both the identity operator on X and the identity
operator on X* be denoted by I. Then | + Ke B(X), | + K* e B(X*) and

(i) R(! + K) is closed in X and R(I + K*) is closed in X*,

(ii) ot + K) = B(I + K) = o(l + K*) = (I + K*) < c0.

(In particular, ind (I + K) = ind (I + K*) = 0,

(See Schechter [1], IV.3.)

3.21. Remark. It follows easily from the Bolzano-Weierstrass Theorem that any
linear bounded operator with the range in a finite dimensional space is compact.
(B(X,R,) = K(X,R,) for any Banach space X.) Analogously B(R,, Y) = K(R,, Y)
for any Banach space Y.

3.22. Definition. Let E, and E, be Banach spaces and let J,e B(X* Ey) and
Jy € B(Y*, E,) be isometrical isomorphisms of X* onto E, and Y* onto E,, respec-
tively. Let [., .]x be a bilinear form on X x Ey such that {(x, &>y = [x, Jx&]x
for any xe X and e X* and let [., .], be a bilinear form on Y x E, such that
<y,m>y =[y,Jyn]y for any yeY and neY* If AeB(X,Y) and Be L(Ey, Ey)
are such that

[Ax,¢]y = [x,Bp]y  forevery xeX and @€k,

then B is called a representation of the adjoint operator to A.

3.23. Remark. If Ae B(X,Y) and Be L(Ey, Ey) is a representation of the adjoint
operator A*e B(Y*, X*) to A, then for any x€ X and ¢ € E, we have

[Ax, @]y = <AX, J; '¢Dy = <x, A%}y '@)y = [x, JxA*]y ‘o] .

Thus B = JyA*J; ' € B(Ey, Ey). It follows easily that if we replace the dual spaces
to X and Y respectively by the spaces Ey and E, isometrically isomorphic to them
and the adjoint operators A* and K* to A and Ke B(X, Y), respectively, by its
representations B and Ce B(Ey, Ey) defined in 3.22, then Theorems 3.14, 3.15,
3.19 and 3.20 remain valid. This makes reasonable to use the notation A* also
for representations of the adjoint operator to A.

In the rest of the section X stands for an inner product space endowed with the
inner product (., .)y and the corresponding norm x e X — |x|y = (x, x)¥*
Furthermore, Y is a Hilbert space, (., .)y is the inner product defined on Y and
lylly = (y.y)/* for any ye Y.
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3.24. Definition. Given Ae L(X, Y) and ye Y, ue X is said to be a least square
solution to (3,1) if

|[Au—y|y < |Ax—y|y forall xeX.

3.25. Proposition. If Ae L(X,Y) and u,€ X is such that
(3,6) (Ax, Auy—y)y =0  forall xeX,

then uy, is a least square solution to (3,1). Furthermore, x € X is a least square solution
to (3,1) if and only if x — uy € N(A).

Proof. Given xe X, Ax —y = A(x — uy) + Auy, — y and in virtue of (3,6)
|Ax = y[§ = |A(x — uo)[7 + 2AAl(x — uo), Aug — y)y + [Au, — y[7 =
= [|A(x = uo)[} + [[Auo — y||7 = [|Auo -yl
Thus u,, is a least square solution to (3,1), while |Ax — y||y = |Au, — y||y if and

only if A(x — uy) = 0.

3.26. Remark. Let us notice that if R(A) is closed in Y, then the Classical Projection
Theorem (cf. e.g. Luenberger [1], p. 51) implies that the equation (3,1) possesses
for any ye Y a least square solution, while uye X is a least square solution to
(3,1) if and only if (3,6) holds.

3.27. Definition. Given Ae L(X, Y) and y€ Y, uy € X is a best approximate solution
to (3,1) if it is a least square solution to (3,1) of minimal norm (i.e. |u,|yx < |lufx
for any least square solution u of (3,1)).

3.28. Proposition. Let Ae L(X,Y) and let uge X fulfil (3,6). If besides it
(3,7 (v, up)x = for all veN(A)

holds, then uy, is a best approximate solution of (3,1).

Proof. By 3.25 u, is a least square solution to (3,1) and u — u, € N(A) for all least
square solutions u of (3,1). Thus assuming (3,7) we have

lullz = llu — wollZ + 2(u — uo, wo)x + [luol|z = [lu — woZ + fuolZ = fuo%

for any least square solution u of (3,1). Let us notice that |ju,|x = ||ju,|x if and
only if u = u,.

3.29. Remark. Let Ae L(X, Y). If k = dim N(A) < oo, then applying the Gramm-
Schmidt orthogonalization process we may find a orthonormal basis x,, x,, ..., X,
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in N(A), ie. (x;, X;)x = 0 if i + j and (x; x;)x = 1. Let us put
k
P:xeX > (x,x)y x;.
i=1

Then Pe B(X), R(P) = N(A) and P>x = P(Px) = Px for every x e X. Moreover,
(3.8) (x —Px,v)y =0 forall xeX and veN(A).

If R(A) is closed in Y, then there exists Q € B(Y) such that R(Q) = R(A), Q* = Q
and

) x,Qy —y)y = orall yeY and xe
39 Ax,Qy—y), =0 forall yeY and xeX

(cf. Luenberger [1]). P is said to be a linear bounded orthogonal projection of X
onto N(A) and Q is a linear bounded orthogonal projection of Y onto R(A). Let
us notice that since

R(I — P)= N(P) and R(l - Q)= N(Q),

R(I — P) and R(I — Q) are closed.
As a restriction A|g,- p of A onto R(I — P) is a one-to-one mapping of R(I — P)
onto R(A), it possesses a linear inverse operator A* € L(R(A), R(I — P)), i..

(3,10) AA*A=A.

As obviously AA*Q = Q, it follows from (3,9) that (Ax, AA*Qy —y), =(Ax, Qy —y)y
= 0 for every ye Y and x € X. Hence by 3.25 A*Qy is for any y € Y a least square
solution of (3,1).

Let us put

(3,11) A* = (- P)A*Q.

Evidently A(l —P)= A and hence (Ax, AA*y—y), =(Ax, AA*Qy—y)y =0
for every xe X and ye Y. Since according to (3,8) (v, A*y)x = (v, (I — P) A*Qy)x
=0 for each ve N(A) and ye Y, it follows from 3.28 that for every ye Y, u, = A"y
is a best approximate solution to (3,1). Moreover, it is easy to verify that

(3,12) AA*A=A, A*AA* = A*, A*A=1-P, AA* = Q.

3.30. Remark. If Ae B(X, Y), then the condition (3,6) becomes A*Au, = A*y or
denoting u, = A%y,

(3.13) A*AA* = A*.

Let us notice that if R(A) is closed, then (3,12) implies (3,13). In fact, given x€ X
and ye Y, we have by (3,9) 0 = (x, A*Qy — A*y),, i.e. A*Q = A*. This together
with the relation AA* = Q from (3,12) yields A*AA* = A*Q = A*. Finally, as
A* = A*AA*, A* = (I — P) A* and hence by (3,.8) (v, A*y)x = (v, (I — P)A*y)x
= 0 for every ve N(A) and ye Y. It means that (3,12) implies also (3,7).
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Given AeL(X, Y), any operator A* € L(Y, X) satisfying (3,10) is called a gener-
alized inverse operator to A. If Ae B(X, Y), then the unique operator A* € B(Y, X)
satisfying (3,12) is called the principal generalized inverse operator of A.

3.31. Remark. If X = R,, Y= R,, and Ais an m x n-matrix and A* its generalized
inverse matrix defined by 2.2, then the vector u, = A*beR, satisfies the con-
ditions (3,13) and (3,7). In fact, as by 2.7 ve N(A) if and only if v = (I — A*A)d
for some d e R,, we have owing to (2,16) (v, A*b) = v*A¥*b = d*(I — (A*A)*) A*b
= d*A* — A*AA*)b = 0. Furthermore, A*AA* = A* by (2,17). Thus if R, and R,,
are equipped with the Euclidean norm .]e, A*b is for any beR,, a unique best
approximate solution of (2,1).

4. Perron-Stieltjes integral

This section contains the definition of the Perron-Stieltjes integral based on the
work of J. Kurzweil [1], [2]. Some facts concerning this integral are collected here.
These facts are necessary for the subsequent study of equations and problems in-
volving the Perron-Stieltjes integrals.

Letafixed interval [a, b], —o0 <a <b < + oo begiven. Wedenote by & = #[a, b]
the system of sets S = R, having the following property:

for every te[a,b] there exists such a 6 = §(tr) > 0 that (z,t)e S whenever
t€[a,b] and te[t — §(z), T + (1))

Evidently any set Se %[, b] is characterized by a real function é: [a, b] - (0, + ).

Let f: [a,b] > R and g: [a,b] > R be real functions, —oc0 <a<a<b<p
< +00. If g(r) is defined only for te[a,b] then we assume automatically that
g(t) = g(a) for t <a and g(t) = g(b) for ¢ > b. It is evident that if varig < oo,
this arrangement yields var® g = vartg for any a, B such that a <a<b<§B.

4.1. Definition. A real valued finite function M: [a,b] > R is a major function
of f with respect to g if there exists such a set Se€ .%[a,b] that

(z = 7o) (M(z) = M(zo)) = (v = 70) f(%o) (9(7) — 9(%0))

for (to, 7)€ S. The set of major functions of f with respect to g is denoted by M(f, g).

A function m: [a,b] — R is a minor function of f with respect to g if —meM(—/, g),
ie. if —m is a major function of —f with respect to g. The set of minor functions
of f with respect to g is denoted by m(f; g).

4.2. Definition. Let M(f,g) + @ and m(f, g) * 0. The lower bound of the numbers
M(b) — M(a) where M e M(f,g) is called the upper Perron-Stieltjes integral of f
with respect to g from a to b and is denoted by [® f dg. Similarly the upper bound
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of the numbers m(b) — m(a), me m(f, g) is called the lower Perron-Stieltjes integral
of f with respect to g from a to b and is denoted by [} f dg.

4.3. Lemma. If M(f,g) + 0 and m(f,g) + 0, then

Jf@sjf@-

For the proof of this lemma see Kurzweil [1], Lemma 1,1,1.

4.4. Definition. If M(f,g) + 0, m(f,g) + @ and the equality

Jf@=}f®
ff®=jf®

the Perron-Stieltjes integral |5 f dg of the function f with respect to g from a to b
is defined. In this case f is called integrable with respect to g on [a,b]. If a = b,
then we set [°fdg =0 and if b < a, then we put 5 fdg = —[; fdg.

Now we give a different definition of the Stieltjes integral which is also included
in the paper Kurzweil [1] and is equivalent to Definition 4.4. This is a definition
of the integral using integral sums which is close to the Riemann-Stieltjes definition.

For the given bounded interval [a,b] = R we consider sequences of numbers
A = {09, Ty, 0y, ..., Ty %} such that

holds, then by the relation

(4.1) a=ay<o; <..<o=b,
(4.2) <1<, j=12.,k.

For a given set Se #[a,b], A satisfying (4,1) and (4,2) is called a subdivision
of [a, b] subordinate to S if

(43) (tpt)eS  for tela;_y o], j=1,2,..k.

The set of all subdivisions A4 of the interval [a, b] subordinate to S is denoted
by A(S).

In Kurzweil [1], Lemma 1.1.1 it is proved that for every Se %[a,b] we have
(4.4) AS) + 0.

If now the real functions f: [a, b] - R, g:[a, b] - R are given and
A = {ay,1,,0,,....T, 0]} is a subdivision of [a,b] which satisfies (4,1) and (4,2),
we put

(43) By ) = 3. (6 6le) ~ ofe-1).
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If no misunderstanding may occur, we write simply B(A) instead of B, (A).

4.5. Definition. Let f: [a,b] - R and g: [a,b] — R. If there is a real number J
such that to every & > 0 there exists a set Se &[a, b] such that

|B;(A4) —J| <& forany AeA(S),

we define this number to be the integral

b
deg

of the function f with respect to g from a to b.
The completeness of the space R of all real numbers implies that the integral
{b f dg exists if and only if for any € > O there exists a set S€ ¥[a,b] such that

|Brg(41) — B, j(A,)] <& forall A,,A,eA(S).

In Kurzweil [1] (Theorem 1.2.1), the following statement is proved.

4.6. Theorem. The integral [’ f dg exists in the sense of Definition 4.4 if and only
if |5 f dg exists in the sense of Definition 4.5. If these integrals exist, then their values
are equal.

4.7. Remark. In Schwabik [3] it is shown that the integral introduced in 4.4 and 4.5
is equivalent to the usual Perron-Stieltjes integral defined e.g. in Saks [1]. Con-
sequently the Riemann-Stieltjes, Lebesgue and Perron integrals are special cases
of our integral. In particular, if one of the functions f, g is continuous and the other
one is of bounded variation on [, b], then the integral (5 f dg exists and is equal
to the ordinary Riemann-Stieltjes integral of f with respect to g from a to b.

The o-Young integral described in Hildebrandt [1] (I1.19.3) is not included in
the Perron-Stieltjes integral (see Example 2,1 in Schwabik [3]). However, if
f: [a,b] > R is bounded and ge BV[a,b], then the existence of the o-Young
integral Y (5 fdg implies the existence of the Perron-Stieltjes integral [3 f dg
and both integrals are then equal to one another (Schwabik [3], Theorem 3,2).

Now we give a survey of some fundamental properties of the Perron-Stieltjes
integral. The proofs of Theorems 4.8 and 4.9 follow directly from Definition 4.5.

4.8. Theorem. If f: [a,b] > R, g: [a,b] = R, A€ R and the integral |} f dg exists,
then the integrals [5Af dg and [} f d[Ag] exist and

b b b b
jlfdg=lffdg, de[ig]=ljfdg-
4.9. Theorem. If fi.f>: [a.b] > R, g: [a,b] > R and the integrals [; f, dg and
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[ f, dg exist, then the integral (% (f, + f,)dg exists and

b b b
J(fl +fz)dg=[f1 dg+szdg-

If f: [a,b] > R, g,,95: [a,b] > R and the integrals [’ f dg, and [} f dg, exist,
then the integral [} f d[g, + g, exists and

jfd[yl+gz]=degx+degz.

4.10. Theorem. If f: [a,b] > R, g: [a,b] > R and [} fdg exists, then for any
c,deR, a < c <d <b the integral | f dg exists.

4.11. Theorem. If f: [a,b] > R, g:[a,b] > R, ce[a, b] and the integrals
fifdg, [ fdg exist, then also the integral [} f dg exists and the equality

b c b
dg = dg + d
holds. J:.f I £f 9 ch I

The statement 4.10 can be proved easily if 4.6 is taken into account. The proof
of 4.11 is given in Kurzweil [1] (Theorem 1.3.4).

4.12. Theorem. Let f: [a,b] > R, g: [a,b] > R be given and let the integral
|t f dg exist. If ce[a,b], then

im [ (100 1060~ 00| = [ 100

te[a b]

(See Kurzweil [1], Theorem 1.3.5.)

4.13. Corollary. If the assumptions of 4.12 are satisfied, then

11m jfdg—deg

te[u b]
if and only if lim g(t) = g(c) or f(c) =
t—=c
tefa,b)

If g: [a,b] = R possesses the onesided limits g(c+), gc—) at ce[a,b] (eg. if
geBV[a,b]), then ~

t—~c+
tela, b]

(4,6) llmjfdg—ffdg+f()((c+)~g deg+f)A+()
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and
(4,7) lim J"f dg - J‘cf dg — f(C) (Q(c) _ g(c__)) — ch dg — f(c)A_g(c)

t—=c—
tefa,b] ¥'¢ 4

for ce (a,b]
where we have used the notation A*g(c) = glc+) — g(c), A glc) = g(c) — glc—).
4.14. Lemma. If fl [a, b] - R, i = 1, 2, ge BV[a, b] and A = {ao’ Tiseenr T ak}
is an arbitrary subdivision of [a,b] SALisfying (4,1) and (4,2), then

(4.8) |B;, o(4) — By, (A4) < sup | £,(2) — f(t)| vartg.
Proof. Evidently €la,b]

M=

[Br.d) = Brofa) = | ¥ (i) = £o(e)) (o) — a(e;- 1))

1

i

< 3 1) = o) lote) ~ oo}

< sup |£1(0) = (o) _zilg(a,-) = 9(0y-1)

and (4,8) holds.
In the same trivial way the following lemma can be proved.

4.15. Lemma. Let f: [a,b] - R, |f()] < M forall te [a,b), gi€ BV[a,b], i =1,2.
Then for any subdivision A = {09, 7,5, 7, 0} of the interval [a, b] satisfying (4,1)
and (4,2) we have

(49) [B/6,(4) — By.p(4)] < Mvar; (g, — g2).

4.16. Lemma. If f: [a,b] > R, 'geBV[a,b] and the integral (°fdg exists, then

the inequality .
J. fdg

Proof. Since the integral [% fdg exists, for every & > 0 there exists Se #[a,b]
such that for any 4 e A(S) we have

Bf,q(A) - \[ fdg

Let us set fi(¢) = f(t), f(t) = 0 for t € [a, b]. Then by 4.14 we have for any A € A(S)
b
By (4) - J fdg

b
[
< ¢+ sup |f(t)| var,’jg.

. te[a,b]

< sup |f(t)| var g
tela,b]

holds.

<eE€.

+ |Bf,g(A)| <&+ lex,y(A) - sz,g(A)l
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Hence the inequality is proved because ¢ > 0 is arbitrary.

4.17. Theorem. If f,: [a,b] >R, n=1,2,..., limf,=f uniformly on [a,b],
geBV[a,b] and [’ f,dg exists for all n=1,2," "then the limit lim [} f,dg as
well as the integral |5 f dg exist and the equality e

b b
(4,10) limf f.dg = J fdg
holds. ’ ’

The proof of the existence of the limit lim [% f,dg and of the integral [% fdg
follows from 4.14. The equality of these quaftities is an immediate consequence
of 4.16.

4.18. Theorem. Let g,, g€ BV[a,b], n=1,2,... and lim var}(g, — g) = 0. Assume

that f: [a,b] > R is bounded and [’ f dg, exists for all n = 1,2,.... Then the limit
lim |4 f dg, as well as the integral [° f dg exist and

a a

(4.11) lim rf dg, = fbf dg .

(The proof follows from 4.15; cf. Schwabik [3], Proposition 2,3.)

If f,ge BV[a,b], then by Hildebrandt [1] (I1.19.3.11) the o-Young integral
Y [%fdg exists. Taking into account the relationship of the o-Young and the
Perron-Stieltjes integrals (cf. 4.7) we obtain immediately the following.

4.19. Theorem. If f,g€ BV[a,b], then the integral [} f dg exists.

4.20. Remark. For a given a€[a,b] and for te[a,b] we define

(4,12) Yr()=0 if t<a, YS()=1 if a<t
and
(4,13) Ya()=0 if t<a, Y ()=1 if a<rt.

The functions ', Y, are called simple jump functions.

A real function f: [a,b] — R is said to be a finite-step function on the interval
[a, b] if there is a finite sequence a = dy < d; < ... < dy = b of points in [a,b]
such that in every open interval (d;_,,d;) (i=1,2,.., k) the function f equals
identically a constant c;e R. Let us put for te[a,b] and i = 1,2,...,k

git) = cbii_ () = va(0) + f(di- 1) (Wa_.(0) = ¥, (1)-
It is easy to see that gt) = f(¢) if te[d;—,, d) and g{t) = 0 if te[a,b]\[d:-}, d).
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Hence, for any t€[a,b] we have
10 = 3 ait) + 1) 5 0
= 3 Vi 0 — i) + i) Wi 0 = Vi) + 1) i 0,

i.e. any finite-step function can be expressed in the form of a finite linear combination
of functions of the type ¢, and ¥ .

Since any function f: [a,b] > R which possesses the onesided limits f(c+)
for any ce[a,b) and f(c—) for any ce(a,b] can be approximated uniformly on
[, b] by a sequence of finite-step functions (see e.g. assertion 7.3.2.1 (3) in Aumann
[1]), it follows from 4.17 that to prove 4.19 it is sufficient to show that the integrals
by dg and [,y dg exist for any ge BV[a,b] and any a€[a,b].

4.21. Lemma. Let oe[a,b] and let Y, : [a,b] > R and Y, : [a,b] > R be the
simple jump functions defined by (4,12) and (4,13) in 4.20.

(a) Theintegrals [® g dy, and [ g dy, exist for an arbitrary function g: [a,b]— R
and

(4,14) L gy = {g(a) Z, Z : I;
(4,15) fg dy; = {g(“) z; e

(b) If f BV[a,b] then the integrals {2y df, f2yi; df exist and
T
R A T

Proof. (a) If & = b then by definition ¥, (t) = 0 for every t€[a, b] and for any
subdivision A: a =0, < 7, < a; < ... < rk < oy = b we have B, ,+(4) = 0. Hence
fogdyy =0.1f « < b let us define 6 =4t —of for te[ab], t +a &)=
Evidently 6: [a,b] - (0, + c0). We deﬁne

S = {(e)eRy; velab), tels— &) «+ 5]},
by definition we have Se ¥[a, b] For every subdivision A€ A(S) we have
[o-n ] = [5; = 8(z)) 7, + 8(z)] . e
0 <o —a;_; <231)

for any j=1,2,..,k (see (4,1), (4,2)). Moreover, there exists an index i, 1 <i<k,
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such that ae[o;-y, ). If 7, + « then we obtain a contradictory inequality
0 <o —o_y <20(t) =HYr; — o] < Hoy — oi—y)-

Hence 1; = o. For every subdivision 4 € A(S) we have

( D (@) = v (-1)] = g(z) [¥a () — ¥ (- 1)] = 9(z:) = gl@).-

Hence the mtegral (g dy,; exists and equals g(x) by Definition 4.5. The result
for the integral (g dy, can be proved similarly.

(b) The existence of the integrals [5y." df, [5y, df follows imeediately from 4.19.
It is not difficult to compute their values using 4.11 and 4.13. See also Schwabik [2],
Proposition 2.1.

nM»

Bq"ﬁ: (A)

J

4.22. Lemma. For a€[a,b] define Y, (t) =0 if te[ab], t +a, Y, (a) = 1. Then
for any ge BV[a,b] the integrals {5, dg, {gdy, exist and

b
(4,18) j Y, dg = gla+) — gla—) = Ag(«),

(recall that gla—) = g(a) and g(b+) = g(b)),

(@.19) j ‘U =0 if ae(ab),

[[oar.= 0. [oas=a00.

Proof. It is easy to see that y,(t) = ¥, (t) — ¥, (t) where y,7, ¥, are given by (4,12)
(4,13) respectively. The existence of the integrals is clear by 4.19, the relations (4,18),
(4,19) follow immediately from 4.21.

4.23. Lemma. Let gge BV[a,b] be a break function, f€ BV|[a,b]. Then the integral
|t f dgp exists and

j fdgs = fl0) A*aa) + T F6) Agale) + 116) A~ aulb)

where A*gg(t) = gg(t+) — gu(t), A gslt) = gs(t) — gslt—), Agslt) = gslt+)— gslt—).

Proof. Since g is a break function, there exists an at most countable set (z,,1,,...)
of points in [a, b] and two sequences ¢;", ¢, i = 1,2,... such that

gs(t) = X oo+ Y
asti<t a<t;<t
where varlgy = Y |c7|+ Y || < +oo. By definition it is ¢ = A*gy(t),
a<ti<b

as<t;<b
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¢ = A~ gg(t). Using the functions ¢, , Y. defined by (4,12), (4,13) we can write
gslt) = X [ ¥ ) + i ¥ (0]

i1

[A*gy(ts) ver (1) + A7 gu(t) ¥, (1)].

e

1

Let us define
o3e) = i} [A* gs(t) Wit () + A”a5lt) Wi ()],

we have
5 (8000 + A 0e) 0] =

 + 1

var gy — o) = var

= Y [|a*gs(t)] + [A"gs(t)] -
i=N+1
This yields
lim vart (95 — 95) =0

N—o
since the series . [|A*gy(t)| + |A™gs(t:)|] = var;gp converges by the asumption.
i=1
Evaluating (% f dgj we obtain by the results of 4.21
N

f fdgy =3 [A+ga(ti)J fdy; + A_gB(ti)J fd!//,il =

=l§l[A+gB(t,.) f(t) + A7 gg(t:) £()] -

Recall that we assume g(a—) = g(a), g(b) = g(b+). By 4.18 we have
b b ©
[[raas=tim [[r0at = £ 0 ade) + a-ai) 10
and the proof is complete.

In Hildebrandt [1] (I 19.3.14) the following result is proved for the Young
integrals.

Osgood Convergence Theorem. If f,: [a,b] — R, n = 1,2,... are uniformly bounded
on [a,b], ie. |f(t)) <M for all te[a,b] and n=1,2,..., ge BV[a,b], lim f(t)

= f(t) for all te[a,b], and if Y [; f,dg and Y[, fdg exist, then lim Y [} f,dg

=Y fdg.
In virtue of the relations between the Young integral and the Perron-Stieltjes
integral mentioned in 4.7 the following statement can be deduced.
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4.24. Theorem. If f,g,f,€ BV[a,b], |f(t)) <M for all te[a,b], n=1,2,... and
lim f,(t) = f(t) for all te[a,b], then the integrals [} f,dg, [%fdg exist and

lim {2 f,dg = {2 f dg.

This statement follows from the above quoted Osgood Convergence Theorem
in the following way: Since all functions in question belong to BV[a, b}, the integrals
fofudg, [afdg, Y[if,dg and Y [;fdg exist and [;f,dg=Y[;f,dg, [ifdg
= Y [* fdg (see 4.7). Hence all the assumptions of the Osgood theorem are satisfied
and our statement holds.

4.25. Theorem (Substitution Theorem). If he BV[a,b], g: [a,b] > R and
f: [a,b] > R, the integral |5 g dh exists and f is bounded on [a,b], then the integral
b f(t) d([% g(z) dh(z)) exists if and only if the integral (5 f(t) g(t) dh(r) exists and in
this case the two integrals are equal.

Proof. Let us show that the following statement holds. If [%gdh exists then for
every n >0 there is an S, € #[a,b] such that for every Ae A(S,), 4:a=a,
<1, <..<71 <o =b wehave

o) )~ Ho -] = [ o al <n.

;-

a

M=

(4,20)

Jj=1

Let n > 0 be given. By definition there exists S, € #[a, b] such that if 4 € A(S,)
then

b
B, 4) — J gdh' =

a

jé {g(Tj) [Alo;) — hlo;-1)] = ajg dh}‘ < g

and if also 4’ € A(S,) then

, n
|By.h(A) - Ba.h(A )I < Z

Let Ata=ay<1, <..<1,<q=>b A€A(S,) be fixed. Assume that U,
= {j1,J2»-- Jm}» m <1 is an arbitrary set of integers such that 1 <j, <j, <...
< jn < k. Since by 4.10 the integrals _[:j_l gdh, i=1,2,...,m exist there is an
S,e¥[a,b], S, =S, such that for any subdivision 4, of the interval [a; _,, ;]
which is subordinate to S, we have

B, (4) - J %ji

%ji—1

(4,21)

n
dh| < —.
d ' 4m

Let us refine the subdivision A in such a way that for i = 1,...,m the points «;, _,
< 1;, < a;, are replaced by the points of 4; and the points a;_, < 7; < a; j¢ U,
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remain unchanged. Let us denote this refinement by A’; evidently A’e A(S,).

We have
5 (o) toe) = ey [ g
6 ) — ey )1 = B + |5 (Bt - [ an)

Ji—1

- j;g(r,-) [He) )] = 5. o) a) — ) - § )

1¢U|

<

;o

, n
g dh‘ < |B,W(A) = BuA) + m <

B,uA) - f

%ji—1

because A, A€ A(S,) and (4,21) holds.

Since the set U, < {1,...,k} of indices was arbitrary, we obtain that for a given
n > 0 there exists S, € #[a,b] such that for any A€ A(S,) and U, < {1,2,....k}
the inequality

3 ole) (W) - Hs)] - j gdh\<_

holds. Let us set =0

= o) [x) ~ W] — | g

and assume that U, is the set of all je {1,...,k} for which d; > 0, U, = {1,...,k}\U,.
Then we have

> di| +

JjeU;

Ydi| <

jeUz

k .
2ldj=%d—3d; <
i=1 jeUy jeUz
i.e. (4,20) holds.
Now, let us prove the theorem. Assume that ¢ > 0 is given. If the integral
| fgdh exists then by definition there exists S, € ¥[a, b] such that for all
A€ A(S,)

(i)

o) [hie) — M) — j fa dh

Since the integral [gdh exists, by the above statement there is S, € ¥[a,b]
such that for any A4 € A(S,) we have

(i) 3 ot

<_

)0~ o] = [ g

where C > 0 is the bound for fie. |f(t)| < C forall te[a,b]. Ifweset S =S, N S,
then Se &[a,b] and for any A e A(S) the inequalities (i), (ii) are satisfied. Let us
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set k(t) = [, g(r)dh(z), te[a,b]. Then for A€ A(S) we have by (i) and (ii)

Y1) j Y gdn - J f dh’

aj-y

BMM—JmMF

<| 50 [ 0= st ot ) - )

; 7;) 9(t;) [hle;) — hlo;- )] = Jfgdh
Z

o(t,) [h(o) — hle,_ )] — J gdh‘+ <—Ziiae

Hence according to Definition 4.5 the integral [ fdk = [® f(¢) d([% g dh) exists
and equals (% fg dh. Using the same technique the second implication can be also
proved.

4.26. Theorem. Assume that for the functions g,he BV[a,b], f: [a, b] - R,
@: [a,b] = R the integrals [} fdg, [>@dh exist. If to every t€[a,b] there is a
0*(t) > O such that

(422) |t — || 1(2) (9(t) = 9(2))| < (t — 1) ol5) (h(e) - h())
holds for every t€[a,b], te[a,b] N[t — 6*(), T + 6*(1)], then

b b
jfdg}sfqzdh.

This statement is proved in Kurzweil [2].

4.27. Corollary. Assume that geBV[a,b]. If f:[a,b]—> R, |f(t) < M = const.
for all te[a,b] and [} f dg exists then for every [c,d] < [a,b] we have

deg

and consequently var} ({% f dg) < M varbg < co.

< Mvarlg

If fe BV[a,b] then [} f dg exists and

b
J.fdg' flf (¢)] d(vars g) < sup | f(t)| vartg.

tefa,b]
Proof. In the first case we have

|t—‘L’||f )(9(t) — 9())] < (¢ — )| f(z)| (var’ g — varig)
< (t— t) M(var, g — var g)
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for every te[a,b], te[a,b]. Since the integral ¢ M d(var, g) exists and equals
M var?g we obtain the result by 4.26. The second statement can be derived in
a similar way, when 4.19 and the fact that |f|e BV[q,b] are taken into account.

4.28. Theorem. Let us assume that g: [a,b] — R is nondecreasing, f,, f,: [a,b] >R,
£it) < fo(t) for all te[a,b] and [ f,dg exists for i = 1,2. Then

J‘fldgﬁj‘fzdéﬁ

This statement follows from 4.26.

4.29. Theorem. If h: [a,b] - R is nonnegative, nondecreasing and continuous from
the left in [a,b] (i.e. h(t—) = h(t) for every te(a,b]), then

(4.23) J;bh"(t) dh(t) < ﬁ—l [ 3(b) — B 1(a)]

for any k =0,1,2,... If h: [a,b] > R is assumed to be nonnegative, nonincreasing
and continuous from the right (i.e. (h(t+) = h(t) for every te[a,b)), then

(4.24) j "We) dh(t) g [ (0) = ()

forany k=0,1,2,...
The proof of the first part is given in Kurzweil [2]. The second part can be proved
similarly.

4.30. Theorem. Assume that g: [a,b] > R is a nonnegative nondecreasing function,
@: [a,b] > R nonnegative and bounded, i.e. ¢(t) < C = const. for all t€[a,b].

(a) If g is continuous from the right on [a, b) and if there exist nonnegative constants
K,, K, such that

b

(4.25) (&) <K, + K, J (7) dg(v)
&

for every E€[a,b], then

(4,26) o(r) < K eX2e®) -0

for any t€[a,b].

(b) If g is continuous from the left on (a,b] and if there exist nonnegative constants

K,, K, such that
4

(4,27) o) <K, + K, '[ o(7) dg(7)

a
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for every £€[a,b], then
(4,28) (p(‘l) < K 1eK2(a(t)—a(a))
for any t€[a,b].

Proof. We prove only (a). The statement (b) can be proved in the same way. Let
us define

w(t) - LeKz(a(b)-g(t)) , te [a’ b]
where L > 0 is a constant.

For any ¢ €[a,b] we have

b - b
L+ KZJ w(r) dg(t) =L + KZLJ‘ eKzlgd) - g(x) dg(t)
¢ ¢

b K .
~ (1o [ 5560 - a0 aat).
gi=1 ¢
Since the series ) K(g(b) — g(t))'/i! evidently converges uniformly on [a,b],
i=0
4.17 ensures that in the last term the integration and summation are interchangeable.
Hence by (4,24) from 4.29 we obtain

b

L+K, wa(r) dg(t) = L (1 + Kz.i 5'3 f (g(b) — glx)y dg(r)) =

=Ol &

Let e >0 bé arbitrary. We set
w(t) = (K, + €) eKa(g(b)— g(t)) , te [a, b] .

Then

b

(4,29) K, +e+ K, £we(1:) dg(r) < wy(9), ¢ela,b].

For the difference m,(¢) = ¢(¢&) — wil &) we have by (4,25), (4,29)

(4,30) m(¢) < —e + K, J‘bms(‘r) dg(l’),' ¢ela,b]
<
44



1.4

and, in particular, m/(b) < —& < 0. Moreover, it is easy to see that |m£(§)l <C,

= const. for ¢ € [a, b]. By 4.12 we have

m(¢) < —¢ + Ky m(b) [g(b) — 9(b~)] + lim K, L " nde) gl
< —e+ Ky m(b)[g(b) — 9(b—)] + C[a(b—) — 9(¢)],  C,=K,Ci.

Since g e BV, there exists 1 > 0 such that if 0 < b—¢ <7 then Cy(g(b—) ~ g(¢))
< ¢[2. Hence for £ e[b—n, b] we have m(£) < 0. Let us set

(4,31) T=inf{te[a,b]; m(&) <0 for &e[1b]}.

We have shown that T < b and we have evidently m,(t) < 0 for t € (T, b]. Further
by (4,30) and 4.12

b

m(T) < —¢ + K, me(r) dg()

= —¢+ K, m(T)(g(T+) — g(T)) +al—i~%1+K2j m(t)dg(t) < —e <0

T+46

since g(T+) — g(T) = 0 and [}, ;m(t)dg(r) < O for every § > 0.

If T > a then we repeat the above procedure and show in the same way that
there exists an # > 0 such that m(¢) < 0 for all ée[T—n, T]. This contradicts
(4,31). Hence T=a and m(¢) <O for all ¢e[a,b], ie.

(P(f) < Klel(z(g(b)~g(¢)) + geKata®) —g@)

for all {e[a,b] and & > 0. This yields (4,26).

4.31. Theorem. Let h: [a,b] x [c, d] — R be such that |h(s,t)) <M < oo and
varb h(., t) + vard h(s, .) < co for every (t,s) € [a, b] x [c,d]. Thenfor any fe BV[a, b]
and any g e BV[c,d] both the iterated integrals

fdf(s) ( j s, 1) dg(t)> and j ( J "dr(s) K, z)) aalt)

exist and are equal.

(See Hildebrandt [2], p. 356 and [1], I1.19.)

4.32. Theorem (Dirichlet formula). If h: [a,b] x [a,b] = R is bounded on [a,b]
x [a.b] and var®h(s,.) < oo for every se[a,b], varbh(.,t) < oo for every
te[a,b), then for any f,ge BV[a,b] we have
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(4,32) Lbdg(z) <£h(s, t) df (S)>

N J b (J bdg(t) h(s, z))df(s) + Y ATgle)h(t, ) Af()) = Y, Atg(e) At ) A*£()

s te(a,b] tela,b)
where A™g(t) = g(t) — g(t—), A" g(t) = g(t+) — g(t).

Proof. Let us define k(s,t) = h(s,t) for a<s<t<b and k(s,t) =0 for a <t

< s <b. Then k: [a,b] x [a,b] > R evidently satisfies the assumptions of 4.31
and this theorem gives

(4.3 [0 ([ M0 09) = [([[estomis ) .

Moreover for t€[a,b) it is

b

[ Me99 = [ .09 + [ e 019

a t

= J.!h(s, t)df(s) + h(t,t) A*f(t),

a

since from 4.13 and from the definition of k(s, t) we have by (4,6)

j,bk(s, t) df(s) = lim U,bk(s, ) df(s) + ke, ) (f(t+) = f (t»]

Tt

= k(t, ) A*f(¢) = h(t, 1) A*1(2) .
If ¢t = b, then [ k(s, b)df(s) = [’ h(s, b) df(s). Hence for an arbitrary te[a,b] we

can write

(4.34) j K, 0 df() = fh(s, 0 df(s) + e, ) A*1(0)

if we set A*f(b) = 0.
A similar argument gives
b b
(4,35) J dg(e) ks, t) = J dg(¢) h(s, t) + A~ g(s) h(s, s)

for every se[a,b] if the convention A~g(a) = 0 is used. Setting (4,34) and (4,35)
into (4,33) we obtain

(436) [[aat0 ([ 1.0

= [or([[Hs.0000) + [ 5t 9709 - [ty a*s09.

a S a
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Since g e BV[a, b], there is an at most countable set of points oy, a,,... in [a,b]

such that A g(s) =0 for all se[a,b], s+« and ZIA glo)| < varhlg < +o0.
Let us set H(s) = A~g(s) h(s, s) for any se[a,b]. Then H( ) =0 for all se[a,b],
s+o,i=12,..and

b

J‘bA_g(s) h(s, s) df(s) = J H(s) df(s).

a a

Let us define for N = 1,2,... and se[a,b]

HS) = XA 0lo) W 3) 1,5

where Y (s) = 0 if s + a and ¥,(¢) =

Evidently Hy(s) = 0 for all s€(aq, b], S * oy, 0y,..,0y and Hy(x) = H(x) for
i=12..N.For se[a,b], S¢ay,o,,...,ay We have

0

[H(5) = H(s) = [H()| < _sup .I (@) < 3 A" glo) hlan, )]

i=N+1

<M |A'9(°‘i)|

i=N+1

where M is the bound of |k(s, t)|-

o0
Since the series ). |A”g(x)| is convergent, we obtain that for any ¢> 0 there is
i=1

a natural N such that M i |A~g(x;)| < ¢ and also
i=N+1

|Hy(s) — H(s)| < ¢

for all se[a,b], ie. Jim H x(s) = H(s) uniformly in [a, b]. Using (4,18) we conclude

Mz

[a =

a i

A~ g(or;) hloy, o) Af (o)

1

and by 4.17 we obtain

b

[ 85,9479 = [ 1119 = pim [ 1,50 010 =

a a

= 5 8 glo) o) () = T A”0(5) (s 9 A1(5).

se(a,b]

. Similarly it can be proved that

fmwmmwm=2m0()W)

tela,b)
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If we set these expressions into (4,36) we obtain

[0t ([h(s, ) df(s>)

= ["([[aut0s.0) a9 + 5, 1870t 1) — 3t M) 1)

a s se(a,b)

+ A g(b) h(b, b) Af(b) — y(a) h(a, a) A*f(a)

and this yields the result.

4.33. Theorem (integration-by-parts). Let f,ge BV[a,b]; then Jor any interval
[c, d] < [a, b] we have

[raa+ [a0r = s - naae - 3 asatat + T ast9a ot
where A*f(t) = f(t+) — f(r), Af(z) = f(z) — flz—) and similarly for A*g(z),
A7 g(r).

Proof. If we set h(s,t) =1 on [a,b] x [a,b] then for every f,9€BV[a,b] we
have by 4.32

(@) [ ([la6) et

zrqddg(t)) )+ Y Agl)As() - Y ATgl)ATS).

te(c,d] tefc,d)
Moreover,

f (fdf (S)> aolo) = ch(f (1) — /(c)) dglt) = ff (£) dg(t) — () (9(d) — g(c))

and similarly

| (f“g“’) o) = - [ 50 + o) (10 - ).

c

Inserting this into (4,37) we obtain the result. (A direct proof of the integration-
by-parts theorem 4.33 is given in Kurzweil [3].)

The Lebesgue-Stieltjes integral has been defined and studied in many monographs
on integration theory. (See e.g. Saks [1], Hildebrandt [1], Dunford, Schwartz [1]
etc.) In the next theorem its relationship with the Perron-Stieltjes integral is cleared
up. The proof follows e.g. from Theorem VI (8.1) in Saks [1].

4.34. Theorem. Let ge BV[a,b] and f: [a,b] > R be such that the Lebesgue-
Stieltjes integral (L-S) (.5 f dg over the open interval (a, b) exists. Then the Perron-
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Stieltjes integral [} f dg also exists and

b

[aa=w-9[ e+ maatdasmado.
a (a.b)

4.35. Remark. If f: [a,b] - R is bounded, h: [a,b] — R is Lebesgue integrable

on [a,b] (heL'[a,b]) and g(t) = g(a) + [, h(r)dt on [a,b] (g€ AC[a,b]), then

in virtue of 4.25 and 4.34
b b

(000 = [ romoa.

a a

where the right-hand side integral is the Lebesgue one.

For the proof of the following assertion see e.g. Natanson [1] (Corollary of
Theorem XII1.4.2). It is also included as a special case in the “symmetrical Fubini
theorem” for Lebesgue-Stieltjes integrals (cf. Hildebrandt [1], X.3.2).

4.36. Theorem (Tonelli, Hobson). If h: D = [a,b] x [c¢,d] - R is measurable and
if any one of the three Lebesque integrals

~[L[h(t, s)|de ds, f (J;d]h(t, s)| ds) dr, f <Lb|h(t, s)| dz) ds

exists, then the Lebesgue integrals

th(t, s)deds, L ' ( £ dh(t, s) ds) de, f (fh(t, s) dt) ds

all exist and are equal to one another.

One of the most helpful tools for the investigation of integro-differential and
functional-differential equations is the “unsymmetrical Fubini theorem” 4.38. For
its proof the following lemma is needed.

4.37. Lemma. Let h: [a,b] x [c,d] - R be such that h(., s) is measurable on [a, b]
for any se[c,d], x(t) = |h(t, )| + var?h(t, .) < oo for ae. te[a,b] and ye L*[a,b],
1 <p< . Then

(a) given fe Lf[a,b] withq = p[(p — 1) if p> 1 and q = oo if p = 1, the function

b
¢:selc,d] - J f(e) ht, s) ds
is defined for any se|[c,d], belongs to BV[c,d] and

a

(4,38) ols+) = rf(t) h(t,s+)dt  for any se[c,d),

P(s—) = rf(t)h(t,s——)dt for any se(c,d];
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(b) given ge C[c,d] (or ge BV[c,d]), the function

d
n:tela,b] - j d,[h(t, 5)] g(s)
is defined a.e. on [a, b] and belongs to L"[a, b].

Proof. Clearly, ¢(s) is defined for any se[c,d]. For an arbitrary subdivision
c=15,<5; <..<s =d of [¢,d] we have

jg|¢(.s-,) —ols ) < J | f(z);j:ilwt, 5) = (e, 5;. )| de

i.e. € BY[c,d]. Furthermore,
|[/(t)h(t, o) < [f(6) x(t)  forae te[a,b] andany oe|c,d].

Applying the Lebesgue Dominated Convergence Theorem we obtain immediately
(4,38).

(b) Under our assumptions #(t) is defined a.e. on [a, b]. If g: [c,d] — R is a finite
step function with jumps at s;e[c,d] (j = 1,2,...,k) (cf. 4.20), then according to
4.21 n(t) is a.e. on [a,b] equal to a linear combination of the values h(t, b), h(t, a),
h(t,s;+) and h(t,s;—) (j = 1,2,...,k). In particular, in this case # is measurable
on [a, b]. Making use of the fact that any function g which is continuous on [a, b]
or of bounded variation on [a, b] can be approximated uniformly on [a, b] by finite
step functions (Aumann [1]) and applying 4.17 we complete the proof of the mea-
surability of n on [a,b]. By 4.16

In(e)| < x(t)(sglllcg]lg(S)l) ae. on [ab]

and hence ne L”[a,b] for any ge C[c,d] (or ge BV[c,d]).

4.38. Theorem (Cameron, Martin). Let h: [a,b] x [c,d] — R fulfil the assumptions
of 4.37. Then for any fe L[a,b], where q = pl(p — 1) if p>1and g= o0 if p=1,
and any ge Clc,d] (or ge BV|[c,d]) the integrals

L bf (1) ( j[ dds[h(t, s)] g(8)> dt and des [J;b 1£(e) hle, s) dz] 4(s)

both exist and are equal to one another.

Proof. Let the functions ¢: [¢,d] - R and 7: [a,b] > R be defined as in 4.37.
By 4.19 and 4.37 both the integrals

jb f()n(r)dt and rd[(p(s)] g(s)

a c

50



14

exist. Let g,: [c,d] > R (n=1,2,...) be a sequence of finite step functions such
that lim g,(t) = g(t) uniformly on [c,d]. (Such a sequence exists according to

7.3.2.1 (3) in Aumann [1].) To prove the theorem it is sufficient by 4.17 and 4.20
to show that

(4.39) [0 ac= [[atoton s

holds for all simple jump functions g(s) = ( ) Or g(s) = ¥, (s) (x€[c,d]) defined
by (4,12) and (4,13). Let ae[c,d] and g(s) = ) on [c,d], then in virtue of 4.21
(e, d) — (e, ) if «<d
“0_% it ox=d
and

g .
_ fold) = ola+) if a<d
[[atonats = {6 o<
and (4,3 ) follows from (4,38). Analogously we can show that (4,39) holds also if
) =

o9 = Y2 () on [e.d]

4.39. Integrals of matrix valued functions. If F=(f;)), i=1,2,..,p; j=1,2,..,r;
G=(9;4 j=12,..,r, k=1,2,...,q are matrix valued functions defined on the
interval [a,b] (fi;: [a.b] = R, g, [a, b] = R), then we use the following symbols

b
JFdG = (ot; ) i=12..,p, k=12..,q,

a

and

b
Jqﬂc=wm, i=12..p, k=12..q

where

r (b )
= Z J ﬁ,jdgj,k and Bi,k = Z Jgj,k d:/;',j’
j=1Ja ji=1Ja
whenever the integrals appearing in these sums exist. In the same way it is possible
to define also integrals of the type [2Fd[G]H etc. if the products of matrices oc-
curring in the expressions are well defined.

Since the integral of a matrix valued function with respect to a matrix valued
function is a matrix whose elements are sums of Perron-Stieltjes integrals of real
scalar functions with respect to real scalar functions, all statements from this section
can be used also for such integrals.
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5. The space BV,

In this section we recall some basic properties of the linear space of functions with
a bounded variation from the functional analytic point of view.

Let us consider the linear set of all functions x: [0,1] - R with a bounded
variation var) x. Let this linear set with the norm

(51) x€BV - ||x|| g = |x(0)] + varg x

be denoted by BV[0, 1] or simply BV.
It is easy to check that (5,1) satisfies all the axioms of a norm.
If x € BV, then evidently

(52) |x(r)] < |x(¢) = x(0)] + |x(0)| < |x(0)| + varyx < ||x|sy forany te[0,1].

5.1. Proposition. The normed linear space BV is a Banach space (i.e. BV is complete).

(See Dunford, Schwartz [1] or Hildebrandt [1], 11.8.6.)

Further it can be easily shown that BV is not separable. Indeed, if we set x,(t) =0
for 0<t<a, x(t)=1 for a <t <1 for any ae(0,1), then evidently x,e BV
for any a€(0,1) and

[]xa - xB”BV =2

provided a, f e (0, l), o # B. Hence BV cannot contain a countable subset which
would be dense in BV. This implies that BV is not separable.

In the same way we can introduce the Banach space BV, of all column n-vector
functions x = (xy,...,x,)*: [0,1] > R, of bounded variation if for the definition
of varg x some norm in R, is used. The norm in BV, is given by

x€BV, > | x| sy, = |x(0)| + varj x.

It is evident that x: [0,1] — R, belongs to BV, if and only if any component x;,
i=1,2,..,n belongs to BV. Hence it is sufficient to consider only the space BV
instead of BYV,. All essential properties of BV are transferable to BV,

Let us consider some subspaces of BV which are of interest for the subsequent
investigations.

By NBV we denote the set of all functions ¢ € BV for which ¢(t+) = ¢(t) if
te(0,1) and ¢(0) = 0.

Similarly NBV ~ denotes the set of all functions ¢ € BV such that ¢(t—) = ¢(t)
for t€(0,1) and ¢(0) = 0. Further we denote by S the linear set of all functions
we BV such that w(t+) = w(t—) = ¢ = const. for every te(0,1), w(0) = w(0+)=c,
w(l)=w(l-)=c
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5.2. Proposition. The linear sets NBV, NBV ™, S are closed in BV.

Proof. Let {¢}, I = 1,2,... be a sequence with ¢, € NBV, such that llm lo: — @ sy
= 0 for some ¢ € BV. For te(O 1) we have

lo(t+) — o(t) = lo(t+) — oft+) — (o(t) — )] < [0 — @] av

for any natural | since ¢, € NBV. Hence ¢(t+) = ¢(t). Similarly for any | we have

l0(0)] = |@(0) — @(0)] < [l¢, — @]

and consequently ¢(0) = 0 and ¢ € NBV. The closedness of NBV ~ and S can be
proved by the same reasoning.

We denote by AC the linear set of all absolutely continuous functions on [0, 1].
If xe AC then by definition there exists & > 0 such that for every system [a;, b;],
i = 1,..., k of nonoverlapping intervals on [0, 1] with

n[\/]:e

(b—a) 1)

we have

™M=

Ix(b) — x{a)| < 1

1

]

i
If we subdivide the interval [0, 1] into m intervals by the division points 0 = c,
<¢; <..<cp=1 such that ¢; —¢;_; <d, i=12,..,m, then vari x <1

m
for i =1,2,...,m and consequently var}x = Z vary_ x < m. Hence xe BV and

i=1
the inclusion AC = BV holds.

5.3. Propeosition. The linear set AC is closed in BY.
Proof. Let klim lew — @|sy =0 for 9BV and ¢, € AC, k =1,2,.... For an

arbitrary system [a;, b;], i = 1,...,k of nonoverlapping intervals in [0, 1] we have
k
i; le(b) — ola) < Z lodb) — o(b) — (edar) — ola)) + Z lodb) — oda)]

< o — ollay + zk: lodby) = o)

forany I'=1,2 .. Lete>0 be given. Let us choose an integer /, > 1 such that
le: = olls < e/2 for I > l,. For any fixed | > I, there is 6 > 0 such that if

S (b — a) < 6

i=

then

N

lodb:) — ea) < e.

i=1
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Hence by the inequality given above we have Z Iq)(b,») - (p(a,—)‘ < ¢ and @€ AC.
i=1

5.4. Remark. From 5.2 and 5.3 it is evident that if the closed linear sets NBV, NBV ~,
S, AC in BV are equipped with the norm (5,1) of BY, then they are Banach spaces.

By NBV,, NBV,”, S,, AC, we denote the closed linear subsets in BV, which are
defined similarly as NBV, NBV ", S, AC for n-vector functions. For the same reason
as above NBV,, NBV,", S,, AC, equipped with the norm of BV, are Banach spaces.

Let us now assume that x € BV and define w(0) = w(1) = x(0), w(t) = x(t) — x(¢+)
+ x(0) for te(0,1). Then evidently wesS, since the difference x(t) — x(t+) is
nonzero only on an at most countable set A < (0, 1) and

vargw =23 |x(t+) — x(t)] < 2varj x < oo.
teA

Further let us set ¢(r) = x(t) — w(¢) for te€[0,1]. It is ¢(0) = x(0) — w(0) = 0,
@(t) = x(t+) — x(0) for te(0, 1), (1) = x(1) — x(0), i.e. p € NBV.
In this way we have obtained

X=¢+w

for any xe BV where ¢ € NBV and weS. Since evidently NBVn S = {0}, this
decomposition is unique. Hence the Banach space BV can be written in the form
of the direct sum of closed subspaces NBV and §, i.e.

(5.3) BV =NBV@®S.
Similarly it can be shown that also the decomposition

BV=NBV~® S
holds.
For any x e BV and € BV we can define the expression

(54) flx) = ~le(t) dy(e).

By 4.19 the integral on the right-hand side in (5,4) exists. The functional f is evidently
linear. Further it is

10 = | 00w

(see 4.27). Hence if f is given by (5,4) with ¢ € BV, then fe BV*.

= s%pllx(t)| varg ¥ < [ x|y [V v
te[0,1

5.5. Proposition. Assume that w € BV. Then

(5,5) Jlx(t) dw(t) =0

0
for any xe BV if and only if weS.
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Proof. Let us suppose that [§ x(t)dw(t) = 0 for any xe BV. For a given a€ [0, 1]
we define x,(t) =0 if te[0,1]\{a}, x,(«)= 1. Then evidently x,e BV and we
obtain by the assumption -

Jl.x,(t) dw(t) = wa+) — w(o.c—) =0,

0
ie. wo+)=wa—) for any ae(0,1) and [§x,(r)dw(t) = w(l) — w(l=) =0,
[6 xo(t) dw(t) = w(0+) — w(0) = O (cf. 4.22). This means that w differs from a con-
tinuous function only on an at most countable subset in (0, 1).

Assume that w¢ S. Then there exist two points a, f € [0, ]], o < f8 such that o, f8
are points of continuity for w and w(x) + w(B). We define x, ,,(1) = 1 for 1€ [, §]
and X 4(t) =0 for te[0,1]\[«, . Evidently x, 4z BV. Using the properties
of the integral we obtain the relation

0 a

[ ekt 0 = wte) o)+ [ 0wt + () < w00
= [t = ) — vt + 0

which contradicts the assumption. Hence we S. Let us assume that we S; w is
evidently a break function with Aw(t) = w(t+) — w(t—) = 0 for every t€(0, 1)
and A*w(0) = w(0+) — w(0) = 0, A"w(1) = w(1) — w(1 —) = 0. Hence by 4.23 we
have [} x(t) dw(t) = O for every x e BV.

5.6. Corollary. Let y € BV be given. Using (5,3) ¥ can be uniquely written in the form
Y =@ + w where e NBV, we S and

le(t) dy(r) = le(t) do(t)
for every x € BV.

Let us define for x € BV, ¢ € NBV the relation
1
(5.6) (X, 9) = f x(t) do(z).
0

This relation evidently defines a bilinear form on BV x NBYV.

5.7. Lemma. Let ¢ € NBV. If {(x,¢)> =0 for every xe€ BV, then ¢ = 0.
Let xe BV. If {x,®) = 0 for every ¢ € NBV, then x = 0.

Proof. (1) If <x,@) = 0 for every xe BV, then ¢ €S by 5.5. Hence pe NBV N S
and by (5,3) we obtain ¢ = 0.

(2) Assume that <{x,¢)» =0 for every ¢ e NBV but x #+ 0. Then either there
exists ae (0, 1] such that x(a) + 0 or x(t) = 0 for all te(0,1] and x(0) + 0. In the
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first case we set ¢(t) = 0 for t€[0,a), ¢(t) =1 for te[a,1]. Evidently (peNBV
and ¢ is a simple jump function (see 420) By 4.21 we have <(x,¢) = [§ x(t) do(t)
= x{a) # 0 and this contradicts the assumption. For the second case we set (p(t) =1
for te(0,1], ¢(0) =0, then @e NBV is also a simple jump function (¢ = V)
and by 421 we have <{x, @) = [§ x(t)de(t) = x(0) + 0. Again we have obtained
a contradiction and our lemma is proved.

5.8. Proposition. The pair of spaces BV, NBV forms a dual pair (BV, NBV) with
respect to the bilinear form (., .) given by (5,6).
Proof follows immediately from 5.7 and from the definition of a dual pair given

in 3.1.

5.9. Remark. It follows easily from 5.8 that (BV,, NBV,) is a dual pair with respect
to the bilinear form

xeBV,, e NBV, » {x, @) = jx* de(t) = Z J(t doj1).

Let us mention that for every fixed ¢ € NBV, by {(x, ¢) a bounded linear functional
on BV, is defined. In fact, we have by 4.27

[ x000t0] <

for every x e BV, and ¢ € NBV,.
The space BV, has important subspaces called the Sobolev spaces WP (1 <p < )
including in particular the space AC, of absolutely continuous functions on [0,1].

(sup |x(t))) (varg @) = (varg @) || x|| sy,
te[0,1]

[<x, @)| <

5.10. Definition. Given a real number p, 1 < p < oo, WP denotes the space of all
absolutely continuous functions x: [0, 1] — R, whose derivatives x’ are I*-integrable
on [0, 1]. Furthermore,

el = <0 + (| el ar) "= w0

WP = WP and instead of |. |, » we write |. |,
1 (4 w

forany xe WPF.

5.11. Remark. Evidently, any W7 (peR, p > 1) equipped with the norm .|
is a linear normed space.

5.12. Remark. It is well-known that any x € BV, possesses a.e. on [0, 1] a derivative
x'(t) which is L-integrable on [0, 1] (x'€L}). Furthermore, x € AC, if and only if
there is ze L such that

x(t) = x(0) + J(:z(r) dt  on [0,1],
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ie. W' = AC,. Given x€AC,, we have varyx = ||x'||,, and therefore also the
norms |.| 4 and |.|, are identical (cf. e.g. Natanson [1]).

5.13. Proposition. Given pe R, p > 1, the space W} is isometrically isomorphic
with the product space LI x R, and its dual space is isometrically isomorphic with
L% x R¥, where q=pl(p — 1) if p>1and g= o0 if p=1.

Proof. (a) The mapping xe W’ —(x’, x(0))eL? x R, and its inverse (z, ¢)eL? x R,
— x(t) = ¢ + [, z(r)dre W7 establish an isometrical isomorphism between W
and L? x R,.
(b) Let f be an arbitrary linear bounded functional on W? and let us put for any

ceR, and zeL? f,(z) = f(¥Yz) and f,(c) = f(Pc), where

t

'I’:zeLf,—»Jz(r)dzeW,,", P: ceR,—>ut) =ceWr.

0
Then f, and f, are linear bounded functionals on L2 and R,, respectively, while
f(x) = f(¥x + ®x(0)) = f,(x') + f2(x(0)) for any xe W?. Consequently, given
f€(Wp)*, there exist uniquely determined y*e LZ (g=p/(p —1)if p>1, g= o0
if p=1)and A*€ R} such that (cf. 3.10)

1
flx) = j y*(t)x'(f)dt + 4* x(0)  for any xeW/?.
0
Furthermore,

14 = sue 1A= ly*lee, [f2] = sup| ()] = 4%
and hence v

1=, 5017 = " #s = Iy + 44
x Wp= .
5.14. Remark. In accordance with 3.6 we denote for x e WP, y*e L? and 4* e R}
1

x, (y*, A%y = X, y*>, + A* x(0) = J y*(¢) x'(¢) dr + A* x(0).

0

Let us notice that x € WP — (x, (y*, A*))y is the zero functional on W} if and only
if y*(t) =0 ae. on [0,1] and A* = 0. As a consequence we have

5.15. Proposition. If y* € LI and i* € R*, then

1
J y*e)x'(t)dt + 2*x(0) =0  forany xe W}
0o

or

1
J y*t)z(t)dt + A*¢ =0  forany zel? and ceR,

0

if and only if y*(t) =0 a.e. on [0,1] and A* = 0.
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5.16. Proposition. Se B(W?, R,) if and only if there exist an m x n-matrix M and
an m x n-matrix valued function K with ||K|,, <o (@=p/lp—1) if p>1,
q = if p=1) such that

Sx = M x(0) + J K(t)x'(t)dt  for any xe WP,

5.17 Lemma. Let fe BV be right-continuous on [0, 1) and left-continuous at 1 and
J(1) = 0. Then

J]x(s) df(s) =0  forany xe W’ with x(0)= x(1)=0

0
if and only if f(t)=0 on [0, 1].
Proof. Let us assume that f(¢{) %0 on [0,1], e.g let f(t,) + 0. Then var} f
> | f(1) = f(to)] = | f(to)] > O. Let & > 0 be such that « = varg f > 3¢ > 0. By the
definition of a variation there exists a subdivision {0 =1, <1, <...<t, =1}
of [0, 1] such that

SIaf] = Y1)~ Sl > o=

for any of its refinements ¢ = {0 = 5, < s, <... <s, = 1}. In virtue of the one-
sided continuity of f there exist t;€(0,1) (j =1,2,...,m) such that 0 <7, <
<t <<t <Lt <t <t;(j=12...m=1)¢t, <7, <1,<t,=1

m—1

and

S0 = 1)+ 110) = flea) < 3, vari £+ vard, /<.

Putting x(0) = 0, x(t) = sign(f(¢;) — f(t;-,)) for te[7;_,t;] (j=1,2,...m—1),
x(t) = sign(f(t,) — f (tm-y)) for te[t,-,, 7], x(1) =0 and extending the defi-
nition of x to the whole [0, 1] in such a way that x is linear on the rest of [0, 1],
we obtain

m—1

5 [ soats) + | el

L‘x@)

A+ e = a5, [ 50000 + | el

m—1
< Y vary f+ var) f<e.
i=o

Hence

> L AS) = S )l + | f(5) = Sl = 2> TS| = 26> 2 = 36> 0,

ji=1
where 6 ={0=1,<1y<t, <74 <...<lpy < Tpoy < Tp <1, = 1}. Since
obviously xe W? and x(0) = x(1) = 0, this completes the proof.
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6. Variation of functions of two variables

Various definitions of the variation of functions of two or more variables are known.,
In our considerations we use one of them, the so called Vitali variation. This section
is devoted to the definition of this sort of variation for functions of two variables
and to the fundamental properties of functions with finite variation in this sense.

Let a nondegenerate interval I = [a,b] x [c,d] = R, be given. We consider
a real function k: I - R defined on .

For a given subinterval J = [d,b'] x [¢,d]|cl,a<a <b' <b, c<' <d' <d
we set

(6.1) myJ) = k(b', d') — k(b', ¢') — k(a', d') + k(da, ).
Let us define
(6.2) v,(k) = sup Zi:|mk(‘]i)| )

where the supremum is taken over all finite systems of nonoverlapping intervals
J; =1 (ie. for the interiors J? of the intervals J, we assume that J) nJ9 =0
whenever i + j).

6.1. Definition (Vitali). The real function k: I - R is of bounded variation on I
if v,(k) < + oo.

6.2. Remark. If on the interval I = [a,b] x [c,d] ann x n-matrix K(s, t) = (k;{s, t))
(i,j = 1,...,r) is given, ie. K: I - L(R,), then we can set

my(J) = K(b', &) — K(¥/, ¢') — K(d, d') + K(d, ¢')

as above and define the number v,(K) = sup ) |m(J;)| in the same way as in (6,2)

where the norm in the sum on the right-hand side is some norm of an n x n-matrix
(cf. 1.1). For the case of the norm defined in 1.1 we have evidently v,(k;;) < v,(K)
forall i,j=1,2,...,n

6.3. Remark. Assume that a =y <o, <... <o, =b, c=p, <y, <...<y =d
are some finite subdivisions of the intervals [a, b], [c,d] respectively. The finite
system of subintervals

Jyi=[oi-no] x [vjopv;]s =Lk, j=1,..1

is called a net-type subdivision of the interval I = [a,b] x [c,d]. Evidently every
net-type subdivision of I is a finite system of nonoverlapping intervals.

It is easy to see that for every finite system of nonoverlapping intervals J; = I
there is a net-type subdivision of I such that every J; is the union of some of its
elements. Using this fact it is not difficult to show that for the definition of v (k)
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from (6,2) the supremum can be taken over all finite net-type subdivisions and the
number v,(k) remains unchanged.

6.4. Examples. Assume that fe BV[a, b], ge BV[c,d]. Then for ks, 1)
= f(s) g(t): [a,b] x [c,d] - R we have by definition

b
Let us set Vla.mx[c,al(k) = var, fvarlg < w .

h(s,t) =0 for 0<t<s<1,  hst)=1 for 0<s<r<l.

Then for every net-type subdivision J;; = [a;_y, 0] x [o;_y,05], i,j=1,..,k,
0=0ay<a; <..<o =1 wehave
k k k
,Z,lmh(lf.j)l Z'ZJmh(Ji.i)' + ,Zzlmh(" i) =2k — 1
ij= i= i=
since my(J, ;) = 1, m(J;;—,) =1 and my(J; ) = 0 if j % i,i— 1. Hence V(o 1;x(0.1)(h)
cannot be finite.
The following lemma can be easily verified.

6.5. Lemma. If I;c I <R, j=1,...m is a finite system of nonoverlapping in-
tervals in I and k: 1 — R, then

s

(6,3) vi (k) < vilk).

1

]

J

6.6. Lemma. Let k: I =[a,b] x [c,d] > R be given such that v (k) < oo,
vart k(., 7o) < 0o for some y,€[c,d], ie. k(., 7)€ BV[a,b] for some y,€[c,d].
Then k(., y)€ BV[a, b] for all y€[c,d] and

(6:4) varb k(., 7) < vi(k) + varj k(., 7).

If k: [a,b] x [c,d] = R and ye[c,d] is fixed, then we denote the usual variation
of the function k(s,y) in the interval [a,b] by varik(.,y). Similarly for vard k(a, .)
where o€ [a,b] is fixed.

Proof. For any y,7,€[c,d], o;_,,a;€[a,b] we have
Ik(“j’ y) — ka1, y)' = lm-’j(k)| + |k(°‘j, o) — Kkl@- 15 Vo)'

where J; = [o;_;,a;] X [70,7]. Hence for each finite decomposition a = a, < a,
<..<ao =b wehave

k
.Zl|k(°‘j’ ¥) = ko1, 7))
i
k k
< Zl|m 5, (k)| + lek(af’ Vo) — k(&tj— 1, Vo)| < Vi(k) + varb k(., 7o)
j= j=
and this inequality implies (6,4).
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For a given k: I - R, I = [a,b] x [c,d] we put

(6.5) o(a) =0,  y(0) = Vg xiak) for oe(ab]
and similarly
(6,6) 0y(c) =0,  @y(1) = Vpapyxpeqglk)  for te(c,d].

6.7. Lemma. The function w,: [a,b] > R from (6,5) is nondecreasing on [a,b],
w,(b) = v,(k); hence w,eBV[a,b] if v,(k) < +o0. Similarly for the function
w,: [¢,d] = R from (6.,6).

The proof follows easily from the definitions.

6.8. Lemma. If k: I >R, I=[ab] x [c,d], vik) < oo and varlk(.,c) < oo,
then the set of discontinuity points of k in the first variable s lies on a denumerable
system of lines in I, which are parallel to the t-axis.

Proof. For any s,s,€[a,b], te[c,d] we have
|k(s, £) — k(so, 1) < |k(s, ) — k(s, ¢) — K(so, t) + k(so, )| + |k(s, c) — k{so, c)|
< |oy(s) — @,(so)| + |vari k(., c) — vari k(., ¢)|
where ,: [a,b] — R is given by (6,5). Since w, € BV[a, b] by 6.7 and the function
var$ k(., ¢) is also of bounded variation on [a, b], the above inequality gives that
there exists an at most denumerable set of points M < [a, b] such that lim (s, t)

= k(so,t) whenever so€[a,b]\M and te[c,d] are arbitrary. This yields our
proposition.

6.9. Lemma. If k: I > R, v,(k) < co, varjk(., c) < oo, var! k(a, .) < oo, then the
set of discontinuities of k in I = [a,b] x [c, d] lies on a denumerable set of lines in I
parallel to the coordinate axes.

This proposition is proved in Hildebrandt [1], 1I1.5.4. If k(s,¢) satisfies the
assumptions of 6.8 then h(s,t) = k(s,t) — k(a, t) satisfies the assumptions of 6.9
and 6.8 is a corollary of 6.9.

6.10. Lemma. If k: [ > R, I = [a,b] x [¢,d], v,(k) < + o0, then for an arbitrary
subdivision ¢ =7y, <7y, <...<7y, =d and any two points s,s,€[a,b] we have

1

> [var (k(., v) = k(. y;-1)) — varit (k(-, 7)) = k(- 7;- )| < [@i(s2) = @4(s,)]

=1
where w,: [a,b] > R is defined by (6,5).

Proof. Let us set h(s,t) = k(s, t) — k(s,c) for (s,¢)el. Then h(s,c) =0 for any
se[a,b] and by 6.6 var h(., t) < oo for any t € [c,d] because evidently v,(h) < co.
Hence vars k(., t) is finite for any se[a,b], te[c,d]. For any j = 1,...,] we have
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h(s,y;) = h(s, ;- 1) = k(s,7;) — k(s, 7;-,) and var} (k(., 7;) — k(., 7,-,)) is also finite
for every se[0,1]. This implies that for any j = 1,...,] we have
[var? (k(.. 7)) = k(- vj-1)) = varit (k(., 7)) = K(-. 7;- 1)
< |varjf (k(’ yj) - k(’ yj— l))| < V[s;,.\zlxl)',—hv_;](k)’

By 6.5 we obtain the inequality
]
‘Zlvlm.xz] <ty 1) = Vi sarxiealk)
i<

= |"[a.szlx[c.-11(k) - V[a.mx[c.dl(k)i = |w1(52) - (1)1(51)1

which yields our result.

6.11. Lemma. If k: I > R, I =[a,b] x [¢,d], v,(k) < oo and for some s, € [a,b]
the relation

(6,7) lim [k(s, t) — k(so, t)| = 0

s—sot

holds for all t € [c,d]. then
(6,8) lim w,(s) = w,(so)

s—sot
where w,: [a,b] - R is defined by (6.5).
This is proved in Schwabik [2], Lemma 2.1.
6.12. Remark. If for k: I - R we have v,(k) < oo and var k(., ¢) < oo, then by
6.8 the relation (6,7) is satisfied for all s, €[a,b] except for a denumerable set of
points in [a, b]. Moreover, in this case k(., t)e BV[a,b] for every te[c,d] (cf. 6.6).
Hence by the elementary properties of functions of bounded variation the onesided
limits lim k(o, 1) = k(s,+, 1), lim k(o,1) = k(sy—, t) exist for every s, € [a,b),
g—+so+ [camd I
S € (a, b], respectively, and for every te[c,d].

6.13. Lemma. If k: I - R (I = [a,b] x [c,d]) is given, then for every s,, s, €[a, b]
we have

(6.9) var? (k(s, .) — k(sy, ) < |oy(sy) — wy(s,)|
where w,: [a,b] — R is defined in (6,5).
Proof. For an arbitrary subdivision ¢ =y, <7y, <...<y, =d we have by 6.5
j§1|k(52’ 7i) = K1 7)) = kl(s2,75-1) + K(s1.v;-1)
< Vs eal®) < Vasxealk) = Viesaxealk) = loi(s:) — o4(sy))

and proceeding to the supremum for all finite subdivisions of [, d] we obtain (6,9).
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6.14. Lemma. Assume that k: I - R (I = [a,b] x [c.d]) is given with v,(k) < o
and for some s, € [a, b) the limit

(6,10) lim k(s, 1) = k(so+, t)

s—*sot+

exists for every t€[c,d]. Then

lim var? (k(so + 0, .) — k(so+, .)) = 0.

-0+
Proof. Define k°: I - R such that k%s,t) = k(s, 1) if (s,t)e I, s + s, and k%(so, 1)
= k(so+, t). Since var?(k(so+, .) — k(so, .)) < o0 we obtain v,(k°) < oo. Let
) [a,b] > R, wia) =0, 0) = Viaoxieaq(k’) for o€ (a, b). Since
lim +(ko(s, t) — k%so, 1)) = 0 for every t € [c, d], we have by 6.11 Slﬂiin*wo(s) = 0)(s,)-

For every 6 > 0 such that s, + & € [a,b] we have by 6.13
vard (k%(so + 6, .) — k°(so, .)) = vard (k(so + 3, .) — k(so+, .))
< |@(so + &) — @(s)| -
The limitation process 6 — 0+ yields our result.
6.15. Corollary. If k: I >R (I =[a,b] x [c,d]) is such that v,(k) < o and
var) k(., ¢) < oo, then for any s, € [a,b) we have
varg (k(so+, -) = K(so, -)) < @i(so+) — @y(so)
where w,: [a,b] = R is given by (6.5).

Proof. The assumptions assure by 6.6 that var} k(., t) < oo for every te[c,d]
and consequently the limit lim k(s,t) = k(so+, t) exist for every te[c,d]. The
s—so+

statement follows immediately from 6.13.

6.16. Corollary. If k: I > R, v,(k) < oo, varb k(., ¢c) < co, then for any s,€[a,b)
we have
lim  sup |k(so + 6, t) — k(so+, 1)) =0,

-0+ tefed]
aljrgl+k(so + 0, t) = k(so+, t) uniformly in [c,d].
Proof. For any t€[c,d] we have evidently
|k(so + 0, t) — k(so+, t)| < |k(so + 8, ¢) — k(so+, ¢)| + var? (k(so + 3, .) — k(so+, .))

and our result follows immediately from the fact that lim k(s, c) = k(so+, c)
exists and from 6.14. s~s0+

6.17. Remark. It is easy to see that the statements from 6.14, 6.15 and 6.16 are
also reformulabie for the case of left-hand limits.
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Further it is clear that 6.4—6.16 are also valid if the real function k: I - R is
replaced by a matrix valued function K(s, t) = (k;{s, t)). If some continuity properties
are needed, then the usual norm of a matrix is used. Compare also 6.2.

6.18. Theorem. Let k: I > R, I =[a,b] x [c,d] be given. Let us suppose that
vi(k) < + 00 and var! k(a, .) < oo.
If ge BV[c,d], then the integral

(6,12) rg(t) d/[ (s, 1)]

c

exists for every se[a,b]. For any se[a,b] the inequality

[[ot0 0

<

(6,13)

j lg(2)] d,[vart k(s, .)] < sup [g )| var? k(s, .)

holds and moreover

019 vart( 000 1) < [t dout) < sup o] v

<

where w,: [¢,d] — R is defined by (6,6). Thus the integral (6,12) as a function of the
variable s belongs to BV[a, b].

Proof. By 6.6 k(s, .)e BV[c,d] for every se[a,b]. Hence by 4.19 the integral
(6,12) exists for every se[a, b], The inequality (6,13) follows immediately from
4.27. In order to prove (6,14) we assume that an arbitrary subdivision a = «, < o,
<...< o = b of the interval [a,b] is given. By 4.27 we have

j "gl0) 4kt 1) — Ko, )]

<

< (‘oo dvar e ) - K1)
Consequently

(6,15) i

j "g(0) Ko ) — Koy, 0]

< f|g(x)| d (i‘;var’c (Ko ) — Kot .))).

Using 6.10 we obtain for all t,t€[a,b]

[t = 7| lo(o)

i‘;vari (ke ) — Kl s, ) — zvar (koo ) — Kot _)),
< (t = 1) |9(0)] (@2(t) — 5(v))
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since ,: [¢,d] - R is nondecreasing and consequently 4.26 gives the estimate

flg(rn d (Z (ko -) = Kl 1, -”) = f'g(')' ol

Since this holds for every subdivision of [a, b] we get by (6,15) the inequality

var} (J'dg(t) d[k(., t)]) < Jd|g(t)| dw,(t).
By 4.27 we have
J lg(¢)| dev,(r) < sup |g(1)] varé w, = sup |g(t)| v,(k).

te[c,d) tefe,d)

6.19. Corollary. If the assumptions of 6.18 are satisfied, then

£ "ol0) 4 [Ks. 0]

< sup |g(¢)| (var? k(a, .) + v,(K)).

te[c,d]

(6.16) sup

sefa,b]

Proof. For any se[a,b] we have by 4.27
[0 ats.0) < | [ "0 afsta 1| + varz ([ a0 a s 1)
< sup |g(t)| var? k(a, .) + var® ( J dg(t) d,[K(., t)])

tefc,d] c

<

(6,16) follows now easily from (6,14).

6.20. Theorem. Let k: I = [a,b] x [c,d] - R be given. Suppose that v,(k) < oo,
vard k(a, .) < oo and varb k(.,.c) < oo. If fe BV[a,b], ge BV|[c,d], then

@) [awa([ws00w)=['([wamea)eo

holds and the integrals on both sides of (6,17) exist.

Proof. By 6.18 [?g(z)d,[k(., t)]€ BV[a,b] and 4.19 yields the existence of the
integral on the right-hand side of (6,17). By 6.6 we obtain (., t)e BV[a,b] for
every te[c,d] and by 4.19 also the existence of the integral {5 k(s, t) df(s) for any
telc,d]. Let ¢ = yo <7, <... <7 =d be an arbitrary subdivision of [c,d]. For
any se[a,b] and i = 1,...,] we have
ks, 72) = kls, 7i-)|
< Ik(S, 'y,~) - k(a, 7.') - k(S, Yi- 1) + k(a, Yi- 1)| + |k(a, 7.') - k(a, Yi- 1)|
=< V(ﬂ-t]*[r.--x.v.-)(k) + lk(a’ 7:') - k(a, Yi- I)I .
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Hence by 4.27 and 6.5

f(k(s, 2) = K. 3,_1) 4108

a

:

s .g‘, [Viabrx e 1palk) + [Klas 7:) = k@, vi- )] varg f
< (vik) + var? k(a, .)) var® f < 0.

Taking the supremum over all finite subdivisions of [c,d] on the left-hand side
of this inequality we obtain

(6,18) var? ( J s, ) df(s)> < (vy(k) + var? k(a, ) var® f < .

a

From 4.27 the existence of the integral on the left-hand side of (6,17) follows.

Let now a€[c,d] and let Y] (¢) be the simple jump function defined for € [c,d]
(see 4.20). By 4.21 we have

j"w:(r) 4 [k, )] = ks, d) — K{s,a+)

and

(6,19) j‘b (jdwj (¢) d,[k(s, t)]) df(s) = jb (k(s, d) — K(s, e +)) df(s) .

On the other hand, we have by 4.21

620 [w0a| [Meawi|= [ - im [koara o

c a

= lim r(k(s, d) — k(s, o+ 9)) df(s).

a

By 4.27 we have

r(k(s, a+) — k(s, o + 8)) df(s)

< sup |k(s, o +) — k(s, o + 8)| var® f

sela,b)

and by 6.16 we obtain

=0+ J,

lim Jb(k(s, a+) — k(s, a +9)) df(s) = 0.
Hence by (6,20)

[w0a] [Hs.0909] = [666.0 - k5wt )ty

and this together with (6,19) yields that for g =y, the equality (6,17) is satisfiec
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In the same way it can be proved that (6,17) holds if we set g(t) = ¥ (t), where
y, is the simple jump function given by (4,13). From these facts and from the linearity
of the integral it is now clear that (6,17) holds whenever ge BV|[c,d] is a finite
step function (cf. 4.20).

Let now ge BV[c,d]. There is a sequence g,€ BV[c,d], | = 1,2,... of finite step
functions such that lim g/(t) = g(t) uniformly on [c,d] (see Aumann [1], 7.3.2.1).

Since by (6,18) it is [*k(s, .) df(s) € BV[c,d], we have by 4.17

) g [o0a([000) = [0 (] kena).

Further by 6.19 we obtain

f‘lg(t) ~ o) d[Ks. 0]

< suplg(t) — g/(t)| (vars K(a, .) + v(k)).

tefc,d)

sup
sela,b]

d

tm [*ai) 4l 01 = [ o) [kt )

(4

Hence

uniformly on [a, b] and by 4.17 the relation

62 im ([ a0t on)o = [ ([ a0 a0 o

a < a <

holds. Since g, are finite step functions we have for any I =1,2,...

[ ([atra0s.00) ) = [‘aty ([ s 169

as was shown above. Consequently, by (6,21) and (6,22) we obtain the desired
equality (6,17) and the proof is complete.

6.21. Remark. If all assumptions of 6.20 are satisfied, then it can be proved that
the equality

6 [wa([ e = [ ([ aameo)
also holds (see Schwabik [2]).
6.22. Theorem. Let K(s,t): I = [a,b] x [c,d] - L(R,) be given, K(s, t) = (ki{s, t)),

i,j=1,...,n. Suppose that v/(K)< co, var?K(a, .) < o, variK(.,c) < oo. If
x e BV,[c,d], ye BV,[a,b], then the equality

029 [ ([[armenx0) v = [0 0 (] K60009)

holds and the integrals on both sides of (6,24) exist.
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Proof. By definition we have

(629 [/ ([ atxs.01x0) ans
(% [oattsn)ans = £ £ ['([0atesan)ans.

i=1 j=1 Ja
Since all x;, y;, k;j, i,j =1,...,n satisfy the assumptions of 6.20 we can use this
theorem for the interchanging of the order of integrations in the expression (6,25).
If we do this we obtain

[[([atwsonxo) avs = 3 3 [t ([ s ant0)
-3, [ (], Epsan >)=fx*<t> o[ an9)

and (6,24) is proved.

it

6.23. Remark. A similar formulation in terms of a matrix valued function K and
vectors x, y can be given for the equality (6,23) from 6.21.

6.24. Remark. In this paragraph only such results on functions of bounded variation
in two variables are presented which are in some manner used in the forthcomming
investigations of integral equations in the space BV,. For the reader interested
in this topic we refer to further results contained in the book Hildebrandt [1], I11.4.
(for example Helly's Choice Theorem, Jordan decomposition, etc.).

6.25. Remark. Let I = [a,b] x [c,d] be given. Let us denote by SBV(I) the set
of all functions k: I — R such that v/(K) < oo, varbk(., ¢) < oo, vardk(a, .) < c.
SBV(I) is evidently a linear set. SBV/(I) can be normed by setting
[k]| = |k(a, c)| + varbk(., c) + var? k(a, .) + v/(k).
Evidently
k(s,t)] < ||k|  for every (s, t)el.

The same holds even if the functions on I are matrix valued.

7. Nonlinear operators and nonlinear operator equations
in Banach spaces

This section provides the basic tools for the investigation of nonlinear boundary
value problems for ordinary differential equations contained in Chapter V. The

reader interested in more details concerning differential and integral calculus on
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Banach spaces is referred to the monographs on functional analysis (e.g. Kantorovi¢,
Akilov [1]).
Throughout the paragraph, X, Y and Z are Banach spaces.

7.1. Preliminaries. Given a Banach space X with the norm |.||x, ¢o > 0 and

xo€ X, B(x,,0,; X) denotes the set of all xe X such that ||x — xo[/x < go.
Let F be an operator acting from X into Y and defined on D < X (F: D - Y).

F is lipschitzian on D, = D if there exists a real number 4, 0 < 4 < o, such that

[Fix) = Fx')ly < A% = x| x

for all x',x"eD,. If A < 1, F is said to be contractive on D,

The operator F: D = X x Z — Y is said to be locally lipschitzian on D, < D
near z = z, if for any x,€ D, there exist g5 >0, 6, >0 and A > 0 such that
x', x" € B(x,,00; X) and ze B(zy, 0y; Z) implies (x',z)eD, (x",z)eD and

|Fix', 2) = Fix", 2)]ly < A% = x"[ x.

7.2. Giteaux derivative. The opefator F acting from X into Y and defined on
D < X is Gdteaux differentiable at x, € D if there exists a bounded linear operator
Ge B(X, Y) such that for any ée X

F(x, + 9&) — F(x,)

li
m 9

$-=0

=0.

Y

— G¢

G is the Gdteaux derivative of F at x = x, and is denoted by G = F/(x,). If F(x)
exists for all xe D', where D' = D is an open subset in X, and the mapping

F: xeD,— F(x)e B(X, Y)

possesses the Gateaux derivative H e B(X, B(X, Y)) at x = x, €Dy, M is said to
be the second order Gdteaux derivative of F at x = x, and H = F'(x).

In general, if H is the k-th order Gdteaux derivative of F on D, « D < X and
L is the Giteaux derivative of H at x = x, € D,, then L is the (k + 1)-th order
Gateaux derivative of F at x, and L = F**1(x,).

Let X,, X,,..., X, be Banach spaces. Let F: (x,, x,,...,x,) > F(x,,x,,...,x,)€ Y
be an operator from the product space £ = X, x X, x ... x X, into a Banach
space Y. The derivative of F at a point x = (x,, X,, ..., x,) with respect to the j-th
variable (i.e. if we fix the other variables and F is considered as an operator from
X into Y) is denoted by F{x) or F; (x). (F(x) is defined and continuous on the open
subset D < E if and only if F{x) (j = 1,2,...,n) are defined and continuous on D.
Then for any xeZ and & = (§,,&,,..,&,) €&

[F(]¢ = 3 [F(c) & ).
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If on D = £ F possesses all the derivatives F}”J"(x) (j = 1,2,...,n) which are con-
tinuous in x on D, we shall write Fe CP*-?>-P«D). If F is continuous on D, we
shall write Fe C(D).
Let us summarize some basic properties of the Gateaux derivative.
(i) Any linear mapping A€ B(X,Y) is Gdteaux differentiable on X and A'(x)=A
for any xe X.
(ii) If the operators F,F,: X - Y are Gdteaux differentiable at x,e X and
oy, €R, then also a,F, + a,F, is Gdteaux differentiable at x, and

(@, F, + oyFy) (%) = a,Fi(xo) + a2F3(xq) .

(iii) Let the operators F: X - Y and G: Y —» Z be Gdteaux differentiable on open
subsets D = X and Dg < Y (Dg > F(Dy)), respectively. Then, if the mapping

yeDs < Y- G'(y)eB(Y, B(Y, Z))

is continuous (G e C'(Dg)), then the composed operator T = GF: X —> Z is
Gateaux differentiable on D . If, moreover, Fe C'(D ), then also Te C'(D).

(iv) If the operator F: X — Y is Gdteaux differentiable at any point x of the domain
D in X and ||F(x)|px.yy <M < o0 for any x €D, then F is lipschitzian on D
(with the Lipschitz constant M).

7.3. Abstract functions. The operators acting from R into a Banach space Y are
called abstract functions.

The derivative f' of the abstract function f: R — Y at the point t, € R is defined by

f(t) — f(to)

t—to

lim
t—to

~ f(to)

Y

Let the abstract function f: R — Y be defined and continuous on the interval
[a,b] (=0 <a < b < ). Then there exists y €Y such that given & > 0, there
is a 6 > 0 such that for any subdivision ¢ = {a =t, <t; <...<t, =b} of the
interval [a,b] with (t; — t;_,) <6 (j=1,2,..,m,) and for an arbitrary choice
of tje(tj_y, 1) (j = 1,2,...,m,) it holds

mq

L) —t-0) —y

j=1

<eée.
Y

We denote
b
y= J f(t) de

and y is said to be the abstract Riemann integral of f(t) over the interval [a, b].
The abstract Riemann integral possesses analogous properties as the usual
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1.7
Riemann integral of functions [a,b] - R. In particular, if ||f(1)Hy <M< ¢ on

[a, b], then \
[t0a

Furthermore, if f’ exists and is continuous on (, f) = [a, b], ther

< [ a < me - .

Y a

7.4. Lemma (Mean Value Theorem). Let X, Y, Z be Banach spaces, and x,e€ X,
z,€Z. Let the operator F: X x Z — Y be defined and Gdteaux differentiable on
B(x0, 005 X) x B(2o, 003 Z) (20 > 0, o > 0). Then for any x;, X, € B(xg,00; X)
and z,,2,€B(zo,00; Z)

Fx;,2,) — F(x;,2,) = Ll[";(xl + 9(x; — x,), 2, + Yz, z)))] (x; — x;)d9

1
+ J [F (¢, + 8(x; — x,), 2, + Nz, — 2,))] (2, — 2,)d9.
(4]
(The mapping
9e[0,1] - [Flx; + 9(x; — x,), z; + Hz, — )] [(x2, 22) — (x4, 2,)]
= [Flx; + 8(xy — x;), 2, + 3z, — 2)))] (x, — xy)
+ [F(xy + 9(xy — x;), 2z, + 8z, — 2,))] (z, — ;)€ ¥
is an abstract function.)
7.5. Theorem (Implicit Function Theorem). Let X, Y and Z be Banach spaces,

xo€X, z0€Z, 9o >0, 6o > 0. Let the operator F: X x Z > Y be defined and
continuous on B(Xo, 00; X) X B(zo, 0¢; Z), while

(i) Flxo, zo) = 0;
(i) FeC°(B(xg, 005 X) X B(zg, 00; Z)) (cf. 7.2);
(iii)  Fi(xo,2o) possesses a bounded inverse operator.

Then there exist ¢ > 0 and ¢ > 0 such that for any z € B(zo,0; Z) there exists
a unique solution x = @(z) € B(x,, ¢; X) to the equation

(7,1) Fix,z)=0.
Moreover, the mapping z € B(zo, 0; Z) — ¢(z) € B(xo, 0; X) is continuous.

(Proof follows easily by applying Corollary 7.7 of the Contraction Mapping
Principle 7.6 to the equation

x = x — [F(xo,20)] " Fx,2).)
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7.6. Theorem (Contraction Mapping Principle). Let X be a Banach space and let
D = X be closed. Let the operator T: X — X be contractive on D and T(D) < D.
Then there exists a unique x € D such that x = T(x).

(The sought solution is the limit of successive approximations
x,=Tx,,) (n=12.),

n

where x, may be an arbitrary element of D.)

7.7. Corollary. Let X and Z be Banach spaces. Let xy€ X, o€ Z, 9o > 0, a4 > 0,
0 < A< | and let T be a continuous mapping of B(xo, 005 X) x B(zo, 0¢; Z) into X
such that

(i) [T0x1, 2) = Tlxs, 2)][x < A2y — x2x
for all x,,x, e B(xq,00; X) and z€ B(zy,0,; Z);

(ii) [ T(x0, 2) — X0 x < @o(1 — 4)
for all zeB(zy,04; Z).
Then, given z € B(z,, 64; Z), there exists a unique element x = ¢(z) € B(x,, 0o; X)
such that x = T(x, z).
The mapping z€ B(zo,0o; Z) — @(z) € B(xo, 005 X) is continuous.

Another version of the Implicit Function Theorem which is of interest for our
purposes is the following theorem which also follows from the Contraction Mapping
Principle.

7.8. Theorem. Let X and Y be Banach spaces. Let xo€ X, 0o > 0 and »y > 0.
Let the operators F: X > Y and G: X x [0,%,] — Y satisfy the assumptions

(i) F(xo) = 0;
(i) FeC'(B(xo, 00; X));
(iii) F(xo) possesses a bounded inverse operator;
(iv) G is locally lipschitzian on B(xo,0,; X) near ¢ = 0.

Then there exist ¢ > 0 and x > 0 such that for any ¢€[0,x] there is a unique
solution x = (&) € B(xy, 0; X) of the equation

(7.2) F(x) + ¢ G(x,e) = 0.

Moreover, the mapping €€ [0, x] — ¢(e) € B(xo, ¢; X) is continuous.

7.9. Quasnlmear equation — noncritical case. Of special interest are quasilinear
(weakly nonlinear) equations of the form

(7.3) Lx — eN(x,¢) =0,
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where L is a linear bounded operator acting from a Banach space X into a Banach
space Y with the definition domain D(L) = X (Le B(X,Y)) and N is in general
a nonlinear operator acting from X x R, into Y.

The case when L possesses a bounded inverse operator is called noncritical case.
In such a case the equation (7,3) is reduced to the equivalent equation

(7.4) x =¢L™! N(x,¢).

For ¢ = 0 (7.4) has the unique solution x, = 0. To solve it for ¢ > 0 we may apply
Theorem 7.8, where F=L and G = —N.

7.10. Quasilinear equation — critical case. A linear bounded operator Le B(X, Y)
possesses a bounded inverse if and only if N(L) = {0} and R(L) = Y (cf. Bounded
Inverse Theorem 3.4).

In a general case when either dim N(L) > 0 or R(L) & Y the projection method
may sometimes be used to consider the equation (7,3).

Let Le B(X, Y) be such that

(7.5) R(L) is closed, «L)= dim N(L) < o0,
B(L) = codim R(L) < o0

(L is said to be noetherian). Then there exist linear bounded projections P of X
onto N(L) (PeB(X), R(P)= N(L), P> =P) and Q of Y onto R(L) (QeB(Y),
R(Q) = R(L), Q*= Q) such that R(I —P) is closed in X, dim R(I — Q) = (L) and

(7.6) X=NL)®R(I-P), Y=R(L)®R(I - Q)

(cf. Goldberg [1] 1L.1.14 and 11.1.16). Thus Lx = & N(x, ¢) if and only if both

(7.7) Q(Lx — eN(x,¢)) = Lx — eQ N(x,) = 0
and
(78) (1 - Q)(Lx — ¢ N(x,5)) = —¢(l — Q)N(x.¢) = 0.

Any x € X may be written in the form x = Px + (I — P) x. For x € X let us denote
u = (I — P)x and v = Px. Then the system (7,7), (7,8) becomes

Liu—eQN(uv,e)=0, (I—Q)Ny(uv,e)=0,
where
L,: ueR(l — P)> LueR(L) = R(Q)
and
N(u,v,&) = N(u + v, ¢)

for ueR(I — P), ve N(L) and &€[0,%,]. Clearly, L, € BR(I — P), R(L)) is a one-
to-one mapping of R(I — P) onto R(L). (L,u =0 implies ueR(P) and since
R(P)nR(I — P) = {0}, u = 0).
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7.11. Theorem. Let Le B(X,Y) fulfil (7,5) and let PeB(X) and Qe B(Y) be the
corresponding projections of X onto N(L) and of Y onto R(L)., respectively. Let
heR(L) and Lx, = h.

Let 0o >0, %5 >0 and D = B(xy,00; X) x [0,%,], Let NeC"(D), N(x,,0)
€ R(L) and (I — Q) N'\(xo,0) possesses a bounded inverse.

Then there are x > 0 and ¢ > 0 such that for any €€ [0, x] there exists a unique
solution x = ¢(g) € B(xo, 0; X) of the equation

(7.9) Lx = h + ¢N(x,¢).
The mapping ¢: ¢€ [0, %] > ¢(c) € B(xo, 0; X) is continuous.
Proof. Let us denote U = R(I — P), V = R(P) = N(L). Then U and V are Banach
spaces with the norms induced by |.|x. Given x€X, let us put u = (I — P)x
and v = Px. In particular, uy, = (I — P) xo, v, = Px,. Since he R(L), (I — Q)h=0
and (7,9) becomes

Lu—h—eQN@u+v,e)=0, (I—Q)N(u+v,¢) =0,

where L, = L|, € B(U, R(L)) possesses a bounded inverse. Let D, = U x V' x [0, %]
denote the set of all (u,v,e)e U x Vx [0,%,] such that |ju — up|y < 30, and
v — vo|x < 300 Given (u,v,e)eD,, (u + v, ¢)e D and we may define

Liu—h—cQN(u+v,e)

T(u,v,¢) = R(L R(I — .

(u,v.2) < (- Q)N(u+v,e) €R(L) x R(I = Q)

Clearly, T is a continuous mapping of D, = U x V x [0,%,] into Y x Y. Moreover,
for any (u,v,e)eD, and (§,7)eU x V

: _ (L& —eQ[N,(u+v, &) (£ + )
[T(u.v)(u’ v, 8)](6’ ") - ((, _ Q) [N’x(u +v, 8)] (é + ”)>’

a

the mapping (u,v,e)e Dy = T, ,(u,v,e)e B{U x ¥, Y x Y) being continuous.
Since N(u, +v,, 0)e R(L) and Lyu, = h, T(uy, v,,0) = 0. Moreover,

y : Llf
[Tiun(uos ¥o, 0)] (&, 1) = <(I — Q) Ni(x,,0) (¢ + 'l))

for any (&,n)e U x V. It is easy to see that for any peR(L) and qeR(l — Q)

[Tt vo, 0)] (&) = C)

ifand only if & = L7 'p and 5 = [(I — Q) Nx(x,,0)] ' q — & Applying the Implicit
Function Theorem 7.5 we complete the proof.
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