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Chapter 1

Introduction

So also the games in themselves merit to be studied and
if some penetrating mathematician meditated upon them he
would find many important results, for man has never shown
more ingenuity than in his plays.1

In the quotation above, games are seen as the starting point of the-
ories or even new branches of science. In discrete optimization, many
a problem has its roots in games or puzzles. These roots, almost as
often, intermingle with the economic aspects of a particular problem.
Therefore it is legitimate to speak about two contexts in connection with
the discrete optimization problems discussed in this thesis: economizing
and graph theory. The latter is a result of the choice of the problems,
or their solutions: all of them — shortest path problems, network flow
problems, minimum spanning tree problem, and the travelling salesman
problem – nowadays belong to graph–theoretical problems. Although
these problems appeared independently of graph theory, graphs later
provided a suitable representation for their description. This chapter
shows the mutual influences of the two in a broader historical context.

1G. W. Leibniz, taken from Ore, O: Pascal and the Invention of Probability Theory,
American Mathematical Monthly 67 (1960), 409–416. Quoted in [BCL70].
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58 Helena Durnová

1.1 Optimality and Mathematics

The origin of the present methods provides an interesting il-
lustration of the value of basic research on puzzles and games.
Although such research is often frowned upon as being frivolous,
it seems plausible that these algorithms might eventually lead
to savings of very large sums of money.2

– E. F. Moore

Finding the optimum solution has been one of the crucial problems
for a whole range of pure and especially applied mathematical disci-
plines. The optimum here stands, of course, either for the minimum
or the maximum subject to certain constraints. Seeking the best —
optimum — solution is an integral part of mathematics. According to
Morris Kline [Kli72], the following misunderstanding is often quoted:
the Egyptians knew that a square has the largest area of all the rectangle
whith the same perimeter. As Kline says, this is inaccurate, for we the
only thing we know is that they used this fact. They, however, might
have arrived to this conclusion by simply trying out the possibilities and
watching the changes: they were aware of the facts — i.e. the relations
between the length of the sides of a rectanle and its area — but they
need not have formulated or proved these statements. Thus, problems
solved by mathematicians, and not only those that have applications
in economy, are often connected with finding minimum or maximum
of something. Maximum area with minimum perimeter, maximum vol-
ume with minimum surface, or winning strategies for games are only
a few examples. To put it simply, mathematicians are often interested
in the “extremes”. In the following sections, the roots of the optimal-
ity concept in mathematics, and in particular the environment in which
graph–theoretical algorithms originated, is described.

A more conscious notions of mathematical optimality can be found
in the works of scientists from the half of the 18th century on.3 As
Brentjes says [Bre94], optimality was studied in the 18th and 19th cen-
turies by Euler, Roger Boscovich, and Pierre Simon Laplace
and Laplace in geodesy and cartography, by Euler in astronomy,
and by Fourier, Claude Navier, Antoine Augustin Cournot,

2E. F. Moore, ‘The shortest path through a maze.’ Proceedings of an International
Symposium on the Theory of Switching, 1957, p. 292.

3For more detail, see Sonja Brentjes, Linear Optimization, p. 829. In: Companion
Encyclopedia of the History and Philosophy of the Mathematical Science, edited by
Ivor Grattan-Guiness, Routledge 1994.
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and Mikhail Ostrogradsky in analytical mechanics. Cauchy and
Fourier studied the generalized problem of n equations or inequali-
ties with m variables already in the first half of the 19th century. In
the second half of the 19th century, optimality problems appear also in
mathematics itself.

The connection between economic theories and mathematics can only
be traced since the 1830s [Bre94]. Among the pioneers of these methods,
Walras and Pareto with their marginal-utility theory4 can be found.
A major onset of the use of mathematical methods in economy, however,
took place only in the 20th century.

In the 1930s, the scientists in the Soviet Union started working on
optimization methods, with the aim to maximize production in social-
ist economy. L. V. Kantorovich was the one who, at the age of 27,
started working closely with economists and is probably the most fa-
mous Russian in this branch. He developed a special algorithm for the
solution of the so-called transportation problem. However, his work was
not known much outside the block of socialist countries and also, the
Russian economists were “afraid of mathematics”, which prevented more
widespread use of mathematical methods in economy.

During and immediately after the World War II, scientists in the
U.S.A. started working on optimization related to economy. Their work
was carried out independently of the work done in the Soviet Union.
It was only in the 1960s, when the Soviet works were translated into
English, that Americans learnt about the results achieved by Soviet
scientist. Consequently, the priority debate started.5

Operational Research

According to the Soviet Mathematical Encyklopaedia [SME], Opera-
tional (Operations) research is

the construction, elaboration and application of mathemati-
cal models for making optimal decisions. The theoretical side
of operations research is concerned with the analysis and so-
lution of mathematical problems of choosing from a given set
X of feasible decisions an element satisfying some criterion
of optimality, called an optimal decision of the problem.

4Each additional unit costs more/less/the same as the previous one. The cost of
the additional unit is called “marginal cost”, the utility provided by this additional
unit “marginal utility’.

5For more details on the priority debate, see [Bre94].
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The history of operational research goes back only to the time just
before the Second World War. The connection with war is not purely
coincidental here: as Dantzig says, operational research starts where
one general cannot overlook the whole battlefield [Dan63]. Later, this
“application of the scientific method to finding the most economical and
timely means for getting the maximum military effect from the available
or potentially available resources in materiél or personnel” 6 spread also
to economical applications.

When solving problems in operations research, the set of feasible
decisions and the criteria of optimality have to be determined. It is
also necessary to know what information exactly the person taking de-
cision can have at disposal. The problem to be solved can thus be either
static (The information necessary for decision-taking is given in advance
and does not change), or dynamic (the information stages change one
another). Further, the decision problem may be indefinite (when infor-
mation state contains the set of physical states of the subject — such
problems are considered by the theory of games), stochastic (when the
probability of each state is a priori known), deterministic (when there is
only one possible state, and parametric, which comprises the solving of
individual cases of indefinite problems. It should be noted that solving
stochastic problem means finding a decision that is “optimal on average”
over the entire set of problems.

The methods used in operations research include mathematical (op-
timal) programming for parametric and deterministic problems, stochas-
tic programming for stochastic problems, and game theory for indefinite
problems. Mathematical programming can further be divided acoord-
ing to the objective function on the set of feasible solutions into linear,
convex, and quadratic. The set of feasible solutions may be continuous
or finite. If the set of feasible solutions is finite, we speak about discrete
programming with special parts: integer programming and Boolean pro-
gramming.

To close the section on operational research, let us quote the Soviet
Encyclopaedia of Matematics [SME, entry ‘Operations research, empha-
sis mine] again:

One of the contemporary (since 1970’s) trends in operations
research is the transition from the consideration of individ-
ual problems to the study of systems, spaces, calculi of such

6Canadian definition from 1948, quoted by Robin E. Rider in “Operational re-
search” [GG94, p. 837].
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problems, and to the study of relations between various prob-
lems or the reduction of some problems to others that have
a simpler structure. The mathematical apparatus intended
for and developed with the aim of solving problems of op-
erations research is conveniently called the mathematics of
operations research.

Programming

The term “programming” has two basic meanings — the first one is
closely connected to computers, the second one is connected with econ-
omy and the decision–taking process. A common name of the latter cate-
gory is mathematical programming, which comprises linear, non–linear,
quadratic, convex, integer, stochastic, and dynamic programming. In
the previous section, linear programming was mentioned, where the con-
ditions and the purpose function are expressed by linear inequalities. In
non-linear programmming, the conditions and the purpose function are
determined by a set of equations, generally non-linear. Similarly, the
other kinds of programming can be described in a similar manner.

From the point of view of certainty contained in the problems, pro-
gramming problems can be divided into the deterministic ones and those
in which some uncertainty is included — i.e. stochastic. The determin-
istic group is further divided into linear (general structure and special
structure) and non-linear (convex and non–convex) ones. The stochastic
group can then be subdivided into problems without opponents (with
known or unknown distribution of probabilities) and with opponents
(two–person or n–person games). Variables used in stochastic problems
can be both discrete and continuous.

Discrete programming problems, which are dealt with in this thesis,
form a part of non-linear programming. [Dan63, pp. 24-25]

Theory of games

An area of mathematics dealing with stochastic problems arising in econ-
omy is the theory of games, commonly believed to have been founded by
Oskar Morgenstern and John von Neumann, who published their
Theory of Games and Economic Behavior in 1944. It is, however, not so
easy to say who and when arrived at major results, such as the minimax
theorem in the theory of games [Kje98], as the results now recognised as
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belonging to game theory arose in different areas of mathematics.7

The RAND Corporation

The research in applied mathematics in the United States is associated
with the RAND Corporation. The RAND Corporation first formed part
of the Douglas Aircraft company (from March 1946 until May 1948).
From May 1948 until 1962, it was funded mostly by the U.S. Air Force
Department. It is sometimes described as a (or even as “the”) “think–
tank” [Hou97, p. 240]:

RAND became the prototype for a method of organizing and
financing research, development, and technical evaluation
that would be done at the behest of government agencies,
but carried out by privately run nonprofit research centers.
[. . . ] The RAND model flourished in flourished in the 1950s
[. . . ] 8

As the RAND Corporation originated during wartime, many of its
activities are connected with war. Mathematicians, for example, were
working in the project that started as “science of warfare”. The depart-
ment of economics, on the other hand, was concerned with the applica-
tion of game theory to the United States — Soviet Union relationship. In
1949, the RAND Corporation consisted of seven departments: Missiles,
Electronics, Aircraft, Mathematics, Social Science, Nuclear Physics,and
Economics.

One of the most famous result of the work of this department is the
simplex algorithm for solving optimization problems, outlined first by
George B. Dantzig. Dantzig’s paper remained classified until 1951.
The research that eventually led to the estblishment of linear program-
ming began during the World War II and the military influence here is
apparent. Mathematicians working in the U.S. Air Force Department
— apart from G. B. Dantzig also H. W. Kuhn and A. W. Tucker
— then started with building a mathematical model. However, the dis-
covery of the duality theorem in linear programming rendered this area
interesting also from the purely mathematical point of view [Kje99].

Another class of methods, dynamic programming, was developed by
another mathematician working for the RAND Corporation, Richard

7Similarly, discrete-optimization problems were solved by mathematicians irre-
spective of whether graph–theoretical (or other) methods existed.

8James Allen Smith: The idea brokers: Think tanks and the rise of the new policy
elite. New York, 1991, p. xiv. Quoted by David Hounshell in [Hou97, p. 240]
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Bellman. The methods advocated by Bellman are designed for solv-
ing problems under the conditions of uncertainty.

Third major area of mathematics developed within the RAND Cor-
poration was game theory. The mathematicians who worked in this
branch in the RAND Corporation were, among others, Lloyd Shap-
ley, Merrill Flood, or Kenneth Arrow.9

9Julia Robinson, Delbert R. Fulkerson, or Lester R. Ford also belong among the
researchers of the RAND COrporations.
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1.2 Graph Theory

The origins of graph theory are humble, even frivolous. Whereas
many branches of mathematics were motivated by fundamen-
tal problems of calculation, motion, and measurement, the
problems which led to the development of graph theory were
often little more than puzzles, designed to test the ingenu-
ity rather than to stimulate the imagination. But despite the
apparent triviality of such puzzles, they captured the inter-
est of mathematicians, with the result that graph theory has
become a subject rich in theoretical results of a surprising
variety and depth. [BLW76, p. 1, emphasis mine]

Graph theory is a discipline that is by some described as a “collec-
tion of applications”. Although this characterisation might sound a bit
crude, several features support this statement. To begin with, graph
theory is used almost anywhere where the use of nodes and lines seems
appropriate. In other words, the roots of graph theory are multiple. As
a result of this, graph–theoretical terminology is not unified. The con-
fluence of these small rivers into a great river of graph theory is done
exactly through the use of point—line (or, alternatively, vertex/node —
arc/branch/edge) terminology.

As far as the origins of graph theory are concerned, we may trace
different beginnings in dependency on different notions as to what an
origin is. It is of course possible to see a graph in any configuration
of points and lines. However, most people speak of Leonhard Euler
(and the years 1736 or 1735 or 1742) as the founder of graph theory,
although his usage of the notions “line” (edge) and “point” (vertex) is
not central to his paper. Probably the first graph–theorist in the modern
sense of the word was the Hungarian Dénes Kőnig, the author of the
first graph–theoretical textbook.10

Some important dates in the history of graph theory

In this section, history of problems that are in some way related to one
of the four problems dealt with in this thesis is outlined. Therefore, the
list by no means complete.11

10Anoine Saint-Lagüe, a Frenchman who published his works resembling graph
theory already in 1920s, is sometimes also quoted.
11Detailed history of graph theory can be found in the monograph Graph theory
1736–1936 (1976) by Norman L. Biggs, Keith E. Lloyd, and Robin J. Wilson [BLW76]
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Figure 1.1: The Seven Bridges of Königsberg

1735/1736/1742 — Leonhard Euler: The seven bridges of Königs-
berg

Graph theory is commonly believed to have originated with Euler’s
solution of the Königsberg bridges problem, which Euler was presented
with in 1735. He communicated his solution to the St. Petersburg
Academy of Sciences in 1736. The third date that is sometimes used in
connection with this problem is 1742, which is the date when Euler’s
solution was actually printed.

Euler looks at the problem for which there appears to be no solution
and formulates a general criterion for solving similar problems. He,
however, did not represent the situation with a graph in the modern
sense of the word. He even does not speak about points and lines, but
denotes the four islands by capital letters A, B, C, and D and the seven
bridge by a, b, c, d, e, f, and g (see Fig. 1.1). He is then looking for
a sequence of the letters A, B, C, and D such that each letter appears
precisely as many times as there are bridges leading to the island denoted
by the respective letters. Before generalizing his ideas, Euler says
[BLW76, p. 5, English translation of Euler’s paper]:

So in a series of eight letters, representing the crossing of
seven bridges, the letter A must occur three times, and the
letters B, C and D twice each—but this cannot happen in
a sequence of eight letters. It follows that such a journey
cannot be undertaken accross the seven bridges of Königs-
berg.

This problem, in its general form, was solved also by Carl Hier-
holzer and published in 1873. It was probably inspired by the book
Vorstudien zur Topologie by J. B. Listing.
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1845–1847 — G. R. Kirchhoff: Kirchhoff’s laws

In 1845, Gustav Robert Kirchhoff published two rules for the flow
of electricity in a network. These rules nowadays bear his name. The
first of them – the one that is used in network flow problems — says
that the electrical flow into and out of a certain node of the network
must be equal for any node. In 1847, he published the result which, in
graph theory, can be interpreted as finding the number of fundamental
circuits in a graph. 12

1856–1859 — W. R. Hamilton: “A Voyage Round the World”

William Rowan Hamilton described his idea of icosian calculus in
a “Memorandum” respecting a New System of Roots of Unity” (Philo-
sophical Magazine, December 1856). He presented his ideas also at the
meeting of the British Association in Dublin in 1857. He sold the Icosian
Game for only $25 to the company Jaques and Son. It was patented
and marketed in 1859. The accompanying leaflet, written mainly by
Hamilton himself, contains five problems and suggestions for playing
the game.

As Biggs, Lloyd, and Wilson point out in [BLW76], similar prob-
lems were considered — even in a more general form — by T. P. Kirk-
man in 1856, but Hamilton is the one who gave his name to the prob-
lem.

1857–1889 — A. Cayley: The Number of Trees

In his articles on the “analytical forms called trees” (published between
1857 and 1889),13 Cayley presented his result concerning the number
of trees on n knots. He is first concerned with so–called “rooted trees”
and some other special classes of trees. In 1881, He published his result
concerning the number of non–isomorphic trees on n nodes.

In 1889 he determined the number of labelled trees of a complete
graph. When counting labelled trees, we consider the edges included in
the tree, although the resulting graphs are isomorphic. The following

12The two papers published by Kirchhoff are:
Kirchhoff, G.: Über den Durchgang eines elektrischen Stromes durch eine Ebene
unbesondere durch eine Kreisformige. Annalen Phys. Chem. 64 (1845), 492–514).
Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Unter-
suchung der linearen Vertheilung galvanischer Ströme geführt wird. Poggendorff Ann.
Phys., 72 (1847), 497–508.
13See [BLW76, pp. 37–54] for details.
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formula is appropriate for determining the number of possible solutions
of the minimum spanning tree of a complete graph:

tn = nn−2

According to [BLW76, p. 52], Cayley’s proof of the formula was not
complete. A complete proof was given by Prüfer in 1918.

1895 — G. Tarry: Labyrinths and mazes

In 1895, G. Tarry published his solution to the problem of labyrinth
or maze, one of the well-known mathematical puzzles. His algorithm
is nowadays used for searching graphs and is called depth–first search.
He formulates the rule for traversing a maze in a single journey, passing
twice along each passage [BLW76, p. 18, English translation of Tarry’s
paper]:

Do not return along the passage which has led you to the
junction for the first time unless you cannot do otherwise.

The rest of the paper consists of describing the method of marking
the passages in such a manner that the traverser arriving to a junction
knows which passages have been traversed and which led to the junction
for the first time.

1936 — D. Kőnig: Theorie der endlichen und unendlichen
Graphen

This book by Dénes Kőnig (published by Teubner, Leipzig in 1936)
caused a major breakthrough in the history of graph theory as a branch
of mathematics. Here is what Pál Erdős said about this book in 1986
[Kőn86, English translation of the text on the cover of the 1986 edition
of Kőnig’s monograph]:

The original of the work reprinted here by Dénes Kőnig was
issued in 1936. [. . . ] The stormy and fruitful development of
graph theory that started shortly after this book was issued
— and interrupted by the World War II — is to a great
extent due to this work and its author, who unfortunately
also fell a victim to fascism himself.14

14The original quotation in German can be found in the Appendix (page 172).
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The list of chapters shows clearly that Kőnig managed to describe
all the basic parts of graph theory, especially when compared with later
monographs on graph theory by Berge [Ber58], Ore [Ore62], and
Harary [Har69].

Nowadays, graph theory can be divided into more branches. Some
of them are connected more to topology, some more to computers. An-
other branch of graph theory, random graph theory, uses probability
notions for graphs. Graph theory in its many forms has applications in
electricity, linguistics, sociology, biology, and other areas of human life.
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1.3 Objectives of the Thesis

Articles and books dealing with the subject of discrete optimization are
not very numerous. Yet there are a few worth mentioning. Probably
the best known historical account of a discrete optimization problem
can be found in the paper [GH85], “On the history of the minimum
spanning tree problem”. Another paper related to the same subject was
published by Korte and Nešetřil in the monograph on Vojtěch Jarník
[Nov99, KN99]. Historical notes — although not always reliable — can
be found also in the original mathematical papers. Several review papers
on discrete optimization problems also exist: shortest path problems are
reviewed in [PW60] or [Dre69], travelling salesman problem in [BN68].

Form the historical works on disciplines closely related to the subject,
the history of graph theory is also interesting. Monograph [BLW76]
gives a full account of the history of graph theory up to the year 1936
(with some remarks on further development). Work of Czech and Slovak
mathematicians is carefully reviewed in a book by Pavel Šišma [Šiš97].
The aspects of multiple discovery in non–linear programming is dealt
with in Tinne Hoff Kjeldsen’s Ph.D. thesis [Kje99].

The objective of this thesis is to show the early development of graph
theoretical algorithms for the shortest path, minimum spanning tree,
network flows and the travelling salesman problem. It particularly fo-
cuses on the following areas of the development of the problems:

Formulations and context: The aim in this area is the description
of the development of formulations and/or solutions of some discrete
optimization problems, more specifically, shortest paths, network flows,
the minimum spanning tree, and the travelling salesman problem.

The context and the above–mentioned change in formulations of the
problems and/or solution are sometimes two sides of the same coin. The
objective of this thesis is the analysis of the influence of the context on
the formulations of the problems as well as of the areas in which discrete
optimization problems were encountered.

“Historical precision” in mathematical papers: As was already
mentioned, mathematical papers and textbooks often contain “historical
notes”. These notes are repeated over and over, regardless of whether
they are true or not. In this thesis, the aim is to disrupt or challenge
these common beliefs.
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Language: The main objective of this thesis is the analysis of the
language used in the algorithms and its development over time. The
analysis of the onset of complexity theory is taken as an example of the
development of new dialect within mathematics, a dialect which devel-
oped also as a result of the need to talk about algorithms in a stan-
dardised way.



Chapter 2

Mathematical Background

In this chapter, basic graph-theoretical definitions will be presented in
order to facilitate further reading. Some remarks about algorithms and
complexity measures will also be made.

2.1 Basic Definitions in Graph Theory

As far as graph theory is concerned, we will limit ourselves to finite
graphs, both in this section and in the thesis as a whole. As graph–
theoretical terminology is not unified, names of alternative concepts are
given in brackets where appropriate.

2.1.1 Directed and undirected graphs

Definition 2.1 A finite undirected graph G(V,E) consists of a finite
non–empty set V of elements (called vertices) and a subset E of the set
of unordered pairs vivj , where vi, vj ∈ V (called edges) of the elements
of V .
A finite directed graph G(V,E) consists of a finite non–empty set V

of vertices and a subset E of the set of ordered pairs of the elements of
V .1

The above definitions allow also loops, i.e. the (directed or undi-
rected) edges of the type vivi — in other words, edges whose endpoints
are identical. Graphs not containing any loops are called simple.

In the following, only the word graph will be used instead of the
phrase simple finite graph, as infinite graphs or graph with loops will not

1Apart from finite graphs, locally finite graphs and infinite graphs can also be
defined.
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be dealt with. Geometrically, vertices are often represented by points in
a plane and edges by lines connecting (some of) the vertices.

Elements of the set V are called vertices, nodes, junction points, or
simply points; elements of E are called edges, branches, arcs, or simply
links. Sometimes, the term “edge” is used for an undirected pair of
vertices, while the term “arc” for a directed pair of vertices, but this is
not a universal distinction. In the following chapters, the vertex–edge
terminology will be used for both directed and undirected graphs; that
is, apart from the quotations.

Definition 2.2 If vivj ∈ E is an edge of G(V,E), then the vertices
vi, vj are called the endpoints of the edge.

Definition 2.3 The degree of vertex v, denoted as dG(v), is the number
of edges with v as an endpoint.2

The following theorem is evident:

Theorem 2.4 The sum of the degrees of all the vertices Σn
i=1dG(vi), vi ∈

V , of a finite undirected graph G(V,E) with n vertices is even.3

As a direct consequence of this theorem, this corollary holds:

Corollary 2.5 The number of the vertices of odd degree in a finite
graph is even.

Before defining connectedness of a graph, we need to define the no-
tions of path and simple path in a graph.

Definition 2.6 A sequence (alternatively “chain”) v0, v0v1, v1, . . . , vn−1vn, vn
of vertices vi ∈ V, i = 0, 1, . . . , n and edges vivi+1 ∈ E, i = 0, 1, . . . , (n−
1) of a graph is called a path. A chain in which the vertices v0, v1, . . . , vn
are mutually different is called a simple path.4

2Each loop is counted twice. In a directed graph, we can further distinguish
between the in-degree and the out-degree of a vertex; the former denotes the number
of edges going into the vertex and the latter the number of edges going out of the
vertex.

3Analogously, it can be proved that in a directed graph, the sum of the in–degrees
and the sum of out–degrees of the individual vertices are equal.

4In a directed graph, the edges in the path must of course follow the orientation
of the edges in the given graph.
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The terminology for the concepts of path and simple path is quite di-
verse, with different authors using different names for the same concept.5

The notion of connected graph shall now be introduced:

Definition 2.7 An undirected graph G(V,E) is called connected if a
path exists between any two of its vertices, vi 6= vj.6

In graph theory, special terms are used for various kinds of graphs.
Some of these special classes of graphs are described in the definitions
below.

Definition 2.8 An undirected graph G(V,E) is called regular if all its
vertices are of the same degree. A regular graph whose vertices are of
the degree n is called a regular graph of the nth order.

Definition 2.9 A chain v0, v0v1, v1, . . . , vn−1vn, vn in G(V,E) in which
no vertex vi, i = 1, . . . , (n − 1) appears twice and the two endpoints of
which are identical, i.e. v0 = vn, is called a cycle.

Definition 2.10 A graph G(V,E) that does not contain any cycles is
called a forest.
A connected forest is called a tree.

Definition 2.11 A complete graph is such an (undirected) graph in
which every two vertices vi 6= vj are connected by an edge.

Sometimes we need to work with smaller parts of the graph. The
two most often used notion are that of a subgraph and a factor :

Definition 2.12 Graph G1(V1, E1) is called a subgraph of the graph
G(V,E), if V1 ⊆ V and E1 ⊆ E.
If V1 = V , then G1(V,E1) is called a factor of G(V,E).

5As was already stated, diversity of the terminology is typical for graph theory as
a whole.

6For directed graphs, two kinds of connectedness are defined: A directed graph
is called (weakly) connected if a path in either of the two directions exists between
every two vertices of the graph. The graph is called strongly connected if paths in
both directions exist between every two vertices of a graph.

Connectedness is one of the central notions in graph theory. For example, some
theorems are stated for a connected graph: namely, it only makes sense to look for
the shortest paths, minimum spanning trees, or maximum flow in connected graphs.
Graphs that are not connected can be divided into so–called components, parts of
graph that are connected.
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Factoring of graphs forms a whole branch of graph theory. For
the purposes of this thesis, three factors are of particularly important:
a matching, a Hamiltonian cycle, and a spanning tree.7

Definition 2.13 Regular factor of a graph G(V,E) of the first order is
called a matching in G.
Regular connected factor of a graph G(V,E) of the second order is

called a Hamiltonian cycle in G.

Before moving onto the weighted graphs, another well–known notion
will be introduced: that of Eulerian path.

Definition 2.14 A path v0, v0v1, v1, . . . , vn−1vn, vn of vertices vi ∈ V, i =
0, . . . , n and edges vivi+1 ∈ E, i = 0, . . . , n−1 of the graph G(V,E), con-
taining all the edges of the graph exactly once is called Eulerian path.

Eulerian path can be either closed or open. In a closed Eulerian path,
the first and the last vertex of the sequence are identical (i.e. v0 = vn),
while in an open Eulerian path, they are not.

The notion of Hamiltonian cycle is in a way similar to that of Eu-
lerian path; only in a Hamiltonian cycle, we require each vertex (not
edge) to be passed once and only once. Not all the edges of the graph
must be included in the Hamiltonian cycle.

Both the preceding definitions gave names to special classes of graphs:
a graph containing an Eulerian path is called an Eulerian graph and a
graph containing Hamiltonian cycle is called a Hamiltonian graph. De-
spite the aforementioned “similarities”, however, the tasks of determin-
ing whether the graph is Hamiltonian and finding Hamiltonian cycle are
much more difficult than the tasks of determining whether the graph is
Eulerian and finding Eulerian path.8

2.1.2 Weighted graphs

In discrete optimization problems, the graphs dealt with are mostly
weighted. In practice, we proceed in the opposite direction; i.e. we
know what needs to be described, and a graph serves as a suitable rep-
resentation. Working with this kind of model can yield more problems:
e.g. normally, one would not immediately think of negative weights, but
when we generalize the concept of weight as in the following definition,
we have to take negative weights into account as well.

7The notion of “spanning tree” will be defined in Chapter 5.
8More details on Eulerian and Hamiltonian graphs can be found in Chapter 6.
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Definition 2.15 A graph G(V,E) is called weighted if there exists a
mapping from the set of edges E into the set of real numbers w : E 7→ R.
w(ei) is then called weight of the edge ei ∈ E.

The weight of edges can be interpreted in various ways, e.g. as
distance or time in the shortest–path, minimum spanning tree, and
travelling–salesman problems, or as capacity in network flow problems,
or as cost in any of the above–mentioned problems. It is also accept-
able to assign negative weights to the edges: for example, in network
flow problems, negative flow through an edge means positive flow in the
opposite direction.

A difficulty arises in the shortest–path problems, where the “length”
of the path defined as the number of edges on the path can be confused
with the total length of the path defined as the sum of the lengths
(weights) of the individual edges. It should always be clear from the
context which of the two lengths is being discussed.

2.1.3 Description of graphs

For the purposes of algorithms, it is necessary to store the data about
the graphs in some reasonable data structures. There are various possi-
bilities of describing graphs. In the following, the description of graphs
through adjacency lists and matrices will be presented.9

Adjacency and distance matrices

The adjacency matrix of a graph is a square matrix with the number of
rows (and also the number of columns) equal to the number of vertices
of the given graph. The elements of adjacency matrix A = {aij} of the
graph G(V,E) are defined in the following way:

aij =

{
1 xixj ∈ E
0 xixj /∈ E.

In this matrix, the existence of loops (edges vivi) in the graph is
recorded on the main diagonal. On the other hand, parallel edges (that
are allowed in some kinds of graphs, but not used in this thesis)10 cannot

9Incidence matrices can also be used. However, as those do not appear in the
algorithms described, this kind of matrix is not presented here.
10By “parallel edges” we mean edges with identical endpoints (or, in directed

graphs, with identical starting point and end point). If there are parallel edges,
integer numbers can be used to denote the number of edges incident with the two
vertices.
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be recorded in this version of adjacency matrix. This version is there-
fore ideal for unweighted graphs without parallel edges. For undirected
graphs, the adjacency matrix is, moreover, symmetric. For directed
graphs, positive and negative numbers are sometimes used to determine
whether the edge is going out of the vertex or into it.

If the graph is weighted, a modification of the adjacency matrix is
used — the Distance Matrix D = {dij}, whose elements are

dij =

{
dij xixj ∈ E,w(xixj) = dij
∞ xixj /∈ E.

,

where w(xixj) denotes the weight of the edges xixj. There can be
another interpretation of the term “distance matrix”: sometimes, the
shortest distance between two vertices is used instead of the length of
the relevant edge in the distance matrix.11 For graphs whose edges sat-
isfy the triangular inequality, the two concepts of distance matrix are
identical. Distance matrices are used for example in some minimum
spanning tree algorithms and other discrete optimization problems.

Adjacency lists

This type of structure for describing a graph consists basically of a list of
vertices, with additional information. Usually, vertices and their neigh-
bours (i.e. vertices adjacent to them) are listed. Before describing ad-
jacency lists for directed graphs, we need to define the notion of a pre-
decessor and a successor of a given vertex.

Definition 2.16 Let G(V,E) be a finite directed graph, vivj an edge in
G. Then vertex vi is called the predecessor of vertex vj and vertex vj is
called the successor of vertex vi.

When we use adjacency lists, we can see immediately to which other
vertices we can proceed from the given vertex. In undirected graphs, we
can proceed to all the vertices adjacent to the relevant vertex, whereas
in directed graphs, we can proceed from each vertex to its successors.
This distinction implies at least two different kinds of adjacency lists:
one for undirected and another for directed graphs. Such lists are used
in shortest–path algorithms, for example.

11This is the case e.g. for the travelling salesman problem, where determining
shortest paths might diminish the size of the problem significantly when the graph
does not conform with triangular inequality.
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In the following, we will usually talk about connected graphs, that is
graphs where one can “go” from one vertex to any other using the edges
of the graph, and about loopless graphs, i.e. graphs not containing edges
that begin and end in the same vertex (so–called loops).

2.2 Algorithms, Heuristics, Complexity

As the quotation below demonstrates, the notion of algorithm was not
always an explicit one [Moo59, p. 285]:

The methods given in this paper require no foresight or inge-
nuity, and hence deserve to be called algorithms. They would
be especially suited for use in machine, either a special-
purpose or a general-purpose digital computer.

In the 1950s, however, the notion of an algorithm as a mechanical
procedure started to be the most used one. The aim of this section is to
unify the terminology in this area for the purposes of this thesis.

2.2.1 Algorithms and heuristics

According to the Soviet Mathematical Encyclopedia [SME, Volume 1,
p. 131], the term algorithm stands for

detailed instructions defining a computational process [. . . ],
which begins with an arbitrary input [. . . ], and with instruc-
tions aimed at obtaining a result (or output) which is fully
determined by the input.

The phrase “the output is fully determined by the input” means
that if two people (or even machines) perform the same algorithm, they
arrive at exactly the same result. It is sometimes wrongly assumed
that an algorithm must be finite: this is certainly not true, as some
algorithms may take too long and some may even not terminate at all.
Such algorithms are obviously not suitable for solving real–life problems.
That is why other procedures have to be used, such as heuristics.
Heuristics is also a method for solving problems. The method con-

sists of trying several procedures (or the same procedure for several
times) and, after each given course of operations, questioning whether
or not we got any nearer to the optimum solution. Heuristics may also
end after a given number of steps, divulging several possible results (the
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best one need not necessarily be included) and leaving the possibility of
choosing one of them up to the user.12

The crucial difference between algorithm and heuristics — not uni-
versally accepted, though — is the stopping criterion. Unlike algorithm,
heuristics can stop after giving a couple of feasible answers to the prob-
lem, without arriving at a unique solution, or when the improvement
from the last result is not significant. In the case of an algorithm — but
not heuristics — we also prove correctness of the procedure, i.e. that
the algorithm really gives the desired solution. In the following chapters,
the term “heuristics” will denote the method of solving problems that
gives a “good”, but not necessarily the best, solution in a “reasonable”
time. The term “algorithm”, on the other hand, will denote the pro-
cedure that determines the optimum solution, without considering the
time criterion.

2.2.2 Complexity

When judging efficiency of algorithms or heuristics, we are interested in
the time it consumes and, in the case of heuristics, in the “degree of
optimality” of the solution. Various measures can be used for the de-
scription of the time consumption. However, as nowadays these methods
are intended mostly for digital computers, some universal method has
to be employed.

At present, asymptotic complexity of the algorithm (heuristics) is a
commonly given measure of its efficiency. It is based on the number of
basic operations (steps) that need to be performed — i.e. the number
of multiplications and/or additions. It is generally assumed that algo-
rithms which require a polynomial number of steps are quite good —
the complexity of such algorithms is something like O(nk), where n de-
termines the size of the input and k is a finite number.13 The trouble
with some problems, such as the travelling-salesman problem, is that no
polynomial algorithm for them is known yet (and most probably does
not exist). That is why we have to retreat to inexact heuristics, which
nevertheless work in “reasonable” time.

12The notion of heuristics seems to be even less definite than that of algorithm.
13A lot has been written on the subject of usefulness of this division of algorithms

into the classes of polynomial and non–polynomial algorithms, especially as k can be
very large and the algorithm, therefore, rather slow. The subject is treated e.g. in
[GJ79]. More on the history of the notions of algorithm and complexity can be found
in Chapter 1.
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Solving problems by algorithms

In discrete mathematics, one way of solving the problem is always ready
at hand: the enumeration of all the possibilities. However, this is usually
ineffective when dealing with problems of large size. Computers could
help, but even they are not almighty. In other words, the use of com-
puters is, in itself, not the solution. In order to help computers arrive
to the solutions in “reasonable” time, algorithms are employed.

In colloquial language, one could describe an algorithm as “transpar-
ent”, when one knows why the steps are taken in this or that particular
order. That is not always the case, for sometimes the algorithm gives
the correct result by using a complicated procedure. This “obscure” al-
gorithm might, however, be faster than the “transparent” one. To make
it even more down–to–earth, sometimes the decisions that seem to be
good in the short term are not good in the long term.

However, there is a special class of algorithms, the so-called greedy
algorithms which are notable for their special feature: although they use
“greedy strategy”, i.e. the algorithm always chooses the locally optimal
solution, they solve the problem successfully. “Greedy” algorithms make
use of the special property of the problem: good short– and long–term
decisions are the same. These algorithms behave like a person in a
maze: they can see the corridors, but have no access to the plan of the
maze. This procedure is used in searching a graph (breadth–first search,
depth–first search) or for the minimum spanning tree.

Comparing the number of possibilities in a discrete–optimization
problem and the time needed for solving these problems with the help
of algorithm can serve as an example of how helpful an algorithm can
be. Table 2.1 shows the numbers of possible solutions of some discrete
optimization problems and the complexity of the best known algorithms
that can be used to solve the particular problem. The numbers of ver-
tices |V | and edges |E| of the graph G(V,E) are denoted by n and m,
respectively.

Algorithms can be divided into two basic classes: polynomial and
non–polynomial. As was said before, the time consumed by polyno-
mial algorithms grows polynomially with the size of the input, while the
time consumed by non-polynomial algorithms grows exponentially. The
polynomial algorithms allow us to obtain better results by their imple-
mentation, using various data structures (heaps, Fibonacci heaps, etc.).
Finally, algorithms may also differ in the speed of “updating”, i.e. how
fast they find the new solution if new vertices or edges are added.



80 Helena Durnová

Table 2.1: Efficiency of algorithmic solutions

Discrete Number of Complexity
Optimization Possible of the Best
Problem Solutions Algorithm

O(n2)
ShP (n− 2)! (non–negative lengths)

O(nm)
(negative lengths allowed)

MST nn−2 O(nlogn)

TSP (n−1)!
2 NP

Legend:
ShP . . . Shortest Paths

(complete graph, fixed source and end)
MST . . . Minimum Spanning Tree

(in a complete graph)
TSP . . . Travelling Salesman Problem

(complete undirected graph)
NP . . . Polynomial solution not known



Chapter 3

The Shortest Path
Problems:
Crystalization of Ideas and
Algorithms

Finding a shortest path in a graph — either directed or undirected — is
a necessary prerequisite for some other discrete optimization problems,
such as network flows or the travelling–salesman problem.1

In the early articles, shortest paths algorithms are usually described
only on specific examples of routes from one vertex to another. The
algorithmic notation comes only later. In Section 3.3, examples of the
early description of algorithms are given — those of Dantzig, Moore
(including the improvement due to D’Esopo), and Minty (all 1957).
These are followed by a sample of two methods (Section 3.4.2) solving
the same problem while using techniques which are far apart: that of
Bellman, 1958, and another one by Ford, 1956. In a paper by Di-
jkstra, 1959, described in Section 3.4.3, the shortest path problem is
already recognized as a graph–theoretical problem.

The level of rigour in the description of shortest path algorithms
varies not only in time; notable differences can also be found between the
individual authors. The algorithms of Moore and Dijkstra, published
within only two years, can serve as an example. Differences can be seen
in the context in which the authors published their solution: for example,
the articles by Moore [Moo59] and Minty [Min57] are written in a

1“Shortest path” problem is not the only term used for this problem: some authors
call it also the “shortest route” or “shortest chain” problem.
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much more colloquial language than the articles by Dijkstra [Dij59a]
or Dantzig [Dan57].

The way algorithms are reported upon and re–told by other math-
ematicians is also examined in this chapter. During this process, the
algorithms are often adapted. The transition from the “old” to the
“new” descriptions of algorithms is shown on the examples of Moore’s
and Dijkstra’s algorithms.

Having found more or less suitable solutions to shortest path prob-
lems, mathematicians focused on the aspect of computation in a more
sophisticated way. This includes the use of the decomposition principle
as well as of data structures, implementing the algorithms as well as
upgrading the solution after some vertices and edges have been added.

3.1 Specific Background

Before describing specific approaches to the problem by different math-
ematicians, basic concepts used in the algorithms are explained. First
of all, we need to distinguish between two kinds of length of a path: the
length of a path in an unweighted graph and the length of a path in
a weighted graph.2 As the problem is referred to as the “shortest path”
problem, it seems inappropriate to use something else than “length” for
the sum of the weights of the edges constituting the path. It should
always be clear from the context whether the length is related to the
number of edges of the path, or whether it is related to the sum of the
lengths (i.e. weights) of the constituent edges.

Definition 3.1 The length of the path p = v0, e1, v1, . . . , en, vn is the
sum of the weights of its constituent edges. A shortest path from vertex
u to vertex v is defined as any path p with the minimum length of all
paths between u and v.

In some algorithms, shortest route trees, defined below, are used:

Definition 3.2 A shortest–route tree is a tree which specifies a unique
path from the origin vertex to each of the other vertices in the graph.

The definition above is given by Pollack and Wiebenson in [PW60].3

The vertices are the same as in the given graph, but not all of the edges
of the original graph are included in the shortest–route tree. The term

2The notions of “path” and “simple path” are defined in Chapter 2.
3In the original, the authors use the term “node” instead of “vertex”.
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“shortest–route tree” was probably first used by Dantzig in 1957, for
in Minty’s A comment on the shortest route problem [Min57], we read:
“Dantzig’s ‘shortest–route tree’ can be found [in the following way].” It
is apparent that shortest–route trees differ according to their starting
vertices (roots).

Shortest path problems can be divided into the following four basic
subproblems:

1. Single–source shortest path problem: Find the shortest path(s)
from one source to all other vertices.

2. Single–destination shortest path problem: Find the shortest path(s)
to a single destination from all other vertices.

3. Single–pair shortest path problem: Find the shortest path(s) be-
tween a given pair of vertices (source–destination).

4. All–pairs shortest path problem: Find the shortest path(s) from
vertex u to vertex v for all pairs of vertices u, v.

It is interesting to note that no algorithm for the single–pair shortest
path problem running asymptotically faster than algorithms for single–
source shortest paths is known. For example, the algorithm of Dijk-
stra (1959) for the single–pair shortest path finds, as a by–product, the
shortest paths from the source to all the other vertices.

Let us end this introductory section by the words of D. B. Johnson
[Joh77, p. 1]:

Finding shortest paths in networks is a fundamental problem
in combinatorial optimization. The best routings of vehicles
or messages, for instance, are shortest paths with respect
to costs associated with the arcs of the transportation or
communications network involved. Finding shortest paths is
a subproblem in many optimization problems such as finding
optimal flows in networks.

3.2 Origins and Development of Shortest Path
Problems

From the historical point of view, finding shortest paths in graphs is
connected to finding a way through a labyrinth — which is by no means
a new problem.4 However, since the standard procedures for going

4It was solved e.g. by Tarry in 1895 [Tar95].
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through a maze were formally described rather recently, it is rather dif-
ficult to say when exactly shortest path problems originated. According
to E. F. Moore, shortest path problems were first solved by himself
and C. E. Shannon[Moo59]:

The problem was first solved in connection with Claude
Shannon’s maze-solving machine. When this machine was
used with a maze which had more than one solution, a visitor
asked why it had not been built to always find the shortest
path. Shannon and I each attempted to find economical
methods of doing this by machine. He found several meth-
ods suitable for analogue computation, and I obtained these
algorithms. Months later the applicability of these ideas to
practical problems in communication and transportation sys-
tems was suggested.

Moore might be right in his claim that looking for standardized
procedures in shortest path problems is a twentieth–century problem.
He seems to be one of those who care about the history of the problem
and the consequences of its solution, yet his seemingly perfect account
of the history of the problem leaves out some of the early solutions:
for example, Bellman, Cooke, and Lockett in [BCL70] refer to a
1954 solution of the problem by Shimbel [Shi55], and Pollack and
Wiebenson in their review article [PW60] claim that the first shortest
path algorithm using the shortest–route tree (i.e. belonging to the same
category as Moore’s algorithm) is due to Dantzig. The claims made
in [PW60] are not as contradictory to the following statement in [BCL70,
p. 99] as might at first appear:

A labelling algorithm essentially equivalent to the one we
have presented [. . . ] was given by E. F. Moore, and is per-
haps the earliest algorithm of this type [Moo59].

Bellman et al. are talking about labelling process, but not directly
about the methods based on the use of shortest–route tree. However,
even this shows that in mathematical papers, the credit given tfor solving
a problem often seems to be assigned at random.

In Berge’s monograph [Ber58] we find allusions to much earlier
papers by Tarry and Trémaux, both concerned with finding some
special kind of path in a graph.

Most mathematicians do not pretend to care much about the history
of the problems they are solving. For example, E. W. Dijkstra gives
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very few clues about the history of the problems in his 1959 article on the
minimum spanning tree and the shortest path problems.5 However, they
mostly believe either that they are the first one to solve the problem, or
that their solution is better than any of the previous ones. On the other
hand, it is worth noticing that the first solutions of the problem were
found independently by several mathematicians in the 1950s. These
were the matrix solution by Shimbel, the shortest–route tree solution
by G. B. Dantzig, and the labelling algorithm by E. F. Moore.

3.3 Early Shortest Path Algorithms

3.3.1 Shimbel, 1954

Shimbel uses operations with a matrix describing a graph in his solu-
tion. His contribution was presented at the Symposium on Information
Networks in April 1954 and published in the Proceedings in 1955.6 On
his solution of the shortest route problem, we can read in [BCL70, p. 99]:

One of the earliest papers to give a clear statement of the
shortest route problem was [Shi55]. Shimbel gave a solution
based on operations with what we have called the matrix of
a graph.

The same paper is also quoted in [PW60] and the authors claim that
Shimbel’s and Bellman’s solutions are essentially equivalent [PW60,
pp. 227–228]. In the quotation below, the distance matrix of the graph
need not be symmetric.

Let the distance from node j to k be represented by an ele-
ment of the matrix D1, where j, k = 1, 2, . . . , N , and d1jj = 0

for all values of j. An element of the matrix D2 is defined as

d2jk = minl(d
1
jl + d1lk), (l = 1, 2, . . . , N) (3.1)

so that d2jk is the length of the minimum route between j
and k by means of a one - or two-link path. In general,

5Dijkstra is not to be criticised for this approach. It happens quite often that
mathematicians re–invent solutions and this fact seems to be an inherent part of
mathematics and the communication between mathematicians. The answer to the
question why mathematicians do not look so much for earlier solutions could perhaps
be found in philosophy of mathematics.

6The Symposium on Information Networks took place from 12th to 14th of April
1954 at the Polytechnic Institute in Brooklyn.
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the matrix Di = ||dijk|| consists of elements representing the
shortest–route path between each j and k from among all
possible paths consisting of from one through i links, where

dijk = mina,b,...,i−1(d
1
ja + d1ab + · · · + d1i−1,k), (3.2)

(a, b, . . . , i− 1 = 1, 2, . . . , N).

The process terminates either when Dm−1 = Dm or when
m + 1 = N − 1 since no minimal path can have more than
N − 1 links.

The Bellman–Ford algorithm, to which Shimbel’s solution is equiv-
alent, can be used even for graphs with negative edge–weights. It is
surprising that one of the earliest shortest path algorithms published
is not restricted to positive weights. However, (and this seems to be
typical of early graph algorithms), the case of negative edge–weights is
not discussed; moreover, it is not even mentioned that negative weights
could present a problem.

3.3.2 G. B. Dantzig, 1957

As far as mathematical and technical papers on the subject of shortest
paths are concerned, the results presented in the article Discrete-variable
extremum problems [Dan57] by G. B. Dantzig present the first solution
of the shortest path problem using the shortest–route tree. Dantzig’s ar-
ticle was published in April 1957 in the Operations Research, Moore
described his algorithm at a symposium held on 2nd to 5th April 1957,
which means that both algorithms were probably discovered indepen-
dently. On the other hand, in a footnote of his paper, Dantzig says “in
summer, 1955, meeting of ORSA at Los Angeles where this paper was
first presented, . . . ”, which suggests Dantzig’s priority. It is, however,
not clear whether the whole or only a part of the paper in Operations
Research was presented at the ORSA meeting, as Dantzig gives two or
three references which might have been published later than in “sum-
mer, 1955”. It is probable that changes made between “summer 1955”
and the publication in 1957 were only slight. Pollack and Wieben-
son attribute the priority of solution to Dantzig; however, they are not
satisfied with the computational results of the procedures given [PW60]:

The algorithm given here is based on the simplex method.
An arbitrary tree is chosen, edges are added and then deleted.
By this process we get the shortest–route tree. This algo-
rithm is rather inefficient, but was the first one.
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Dantzig himself says in the abstract [Dan57, p. 266]:

This paper reviews some recent successes in the use of linear
programming methods for the solution of discrete–variable
problems. One example of the use of the multistage approach
of dynamic programming for this purpose is also described.

In his article, George B. Dantzig describes two other discrete–op-
timization problems: the marriage problem and the knapsack problem.
On his methods, he says [Dan57, pp. 266–267, emphasis mine]:

The purpose of this paper is to outline an approach that, we
believe, has a high probability of verifying whether or not, in
any particular numerical case, an optimum combination has
been selected. The human mind seems to have a remarkable
facility for scanning many combinations and arriving at what
appears to be either the best one or a very good one. [. . . ]
The technique presented here is not foolproof and cannot be
guaranteed to work in all cases.

For the shortest route problem, Dantzig chooses a description of
a concrete example: the shortest route for a package from Los Angeles
to Boston. He uses a set of linear equations for the solution. The starting
point for any solution is a “shortest–route tree”, which is then improved
by testing triangle inequality for the individual vertices.

3.3.3 Moore’s algorithm, 1957

In 1957, Edward F. Moore, a “Member of the Technical Staff, Bell
Telephone Laboratories, Incorporated” presented four different solutions
of the shortest path problem at the International Conference on the
Theory of Switching. His motivation for solving this problem was the
so-called “routing of telephone traffic,” especially applicable if traffic is
congested and finding an alternative route is necessary.7 Moore also
suggested another area where the problems involving finding shortest
paths arise — transportation: routing one or more airplanes / trains
so as to arrive at the destination as early as possible. His methods are
in a certain way general — with his own words [Moo59, p. 292], “all

7Routing of telephone traffic is dealt with also by other authors using various
methods: for example R. I. Wilkinson [Wil56] uses statistical methods. The aim is to
provide the best connections possible in a given network, at a given time and situation
(e.g., when some lines are blocked and the usual path cannot be used).
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four algorithms given in this paper are applicable to mazes having paths
which can be traversed in only one direction, such as one–way streets.”

In the introduction to the paper, Moore says [Moo59, emphasis
mine]:

Suppose that it is desired to find the shortest path through
a maze. For a very simple maze this can be done just by
observing it and trying a few paths that look reasonable. But
this trial-and-error procedure does not apply to a complicated
case.

He touches here upon the fundamental characteristics of algorithmic
solutions: it may be faster to solve problems by intuition, but it may
not work for large and/or complicated cases. Furthermore, “the methods
[given in this paper] would be especially suited for use in machine, either
a special-purpose or a general-purpose digital computer”. [Moo59]

However, Moore describes a ‘pen-and-pencil’ solution. What is
more, the first three out of the four algorithms in the paper [Moo59],
denoted as ‘Algorithm A’, ‘B’, ‘C’, and ‘D’, are designed for graphs
with unweighted edges or for edges with their weights equal to one; only
the last algorithm is designed for weighted graphs. In the first three
examples, finding the shortest path can thus be understood as finding a
path through as few vertices as possible.

Figure 3.1: Moore’s “Maze”

Moore demonstrates his algorithms on an example: a graph with
18 vertices labeled by letters of the alphabet (See Figure 3.1). Letter A
denotes the source, letter B the destination, and “[. . . ] it is desired to
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place a call from city A to city B.” A very complicated picture of the
situation is also given, maybe to advocate the methods presented in the
paper.

The basic algorithm, Algorithm A, the first one described and prob-
ably the most comprehensible one, is described in the following way
[Moo59, p. 286]:

On the first step, we shall write the number 0 on city A.
[. . . ] On the second step, we shall write the number 1 on
the cities E and F ; on the third step, write the number 2 on
cities D, G, and K. On each step the next larger number
will be written on all cities which have not yet been written
on, but which are adjacent to cities which have.

Reading the instructions above, one must refer to the picture quite
often. However, although Moore demonstrates his method on a con-
crete example, it would be wrong to suspect him of not knowing exactly
what he is doing, for he continues [Moo59, p. 286]:

It can easily be proved that the number being written will
always be the length of the shortest path from city A to the
city on which the number is written.8

When the ‘destination’ (vertex B) is labeled, we know how long the
path between A and B is; what remains is the task of determining the
vertices through which this shortest path goes. This is done by draw-
ing arrows from the ‘destination’ until the ‘source’ is reached. Moore
presents a general rule for the drawing of arrows [Moo59, p. 287]:

At each step, we now draw an arrow (in a telephone mech-
anization of this we might at this point actually be setting
up the connection over which talking will take place) from
the city last reached to any city numbered one lower, that
is, any city one step nearer to the beginning point. On the
tenth step [. . . ]

This, however, is only done after he starts describing the procedure
on the specific example, without giving any reason prior to carrying out
the following two steps [Moo59, p.286]:

8Here, the term “length of the shortest path” refers to the number of edges lying
on the path.
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“On the eighth step draw an arrow from B to L; on the ninth
step draw an arrow from L to M .”

Moore further notes the following on the length of the designed
procedure [Moo59, p. 287]:

“In general, if the length of the shortest path is n, algorithm
A will require 2n+ 2 steps.”

And Moore does this in spite of the fact that the algorithm is
described on a specific example! Again, it is apparent that Moore was
perfectly aware of what he was doing, only he did not have the necessary
language for the description of the algorithm. Nowadays, Algorithm
A, in its “computerized” form, is usually referred to as the breadth–
first search9 and is commonly described by so-called “pseudo–code”, a
commonly used code resembling a programming language [CLR91]:

BFS (G, s)
1 for each vertex u ∈ V [G]− {s}
2 do color [u]← white
3 d [u]←∞
4 π [u]← nil
5 color [s]← gray
6 d [s]← 0
7 π [s]← nil
8 Q← {s}
9 while Q 6= ∅
10 do u← head [Q]
11 for each v ∈ Adj [u]
12 do if color [v] = white
13 then color [v]← gray
14 d [v]← d [u] + 1
15 π [v]← u
16 Enqueue (Q, v)
17 Dequeue (Q)
18 color [u]← black

Algorithm B differs from the Algorithm A only slightly: instead of
all integers, only the numbers 0, 1, and 2 are used, the motivation here

9A procedure in a certain sense opposite to the breadth–first search (BFS) is the
depth–first search (DFS) procedure. The latter was published already in 1895 in
a paper by G. Tarry [Tar95]. Depth–first search is used e.g. for finding a way through
a labyrinth.
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being especially the reduction of the storage requirements of a computer.
Description of at least three different states of the vertex is necessary, as
we must be able to recognise uniquely which vertex is the predecessor
and which is the successor. To start with, the vertex mark is ‘blank’;
the source vertex A is labeled with 0, the adjacent vertices with 1, the
vertices adjacent to these with 2, the next level of vertices with 0, and so
on, until the destination is reached. Moore explains that other modulos
can also be used, but that 3 is the smallest of all the suitable ones, since
[Moo59, p. 287]

“each city must have an integral label which is equal to,
one less than, or one more than the label of any adjacent
city. Integers mod(3) are sufficient to distinguish among
these three cases, but the integers mod(2) are not”.

As a result of this improvement, Algorithm B uses less memory than
Algorithm A: only two bits for each city. The rest of the procedure, and
hence also the number of steps required, are the same.
Algorithm C uses the breadth–first search repetitively. Instead of

performing the breadth–first search until we reach the end vertex (vertex
B) and marking the vertices with an increasing sequence of numbers, we
perform the algorithm several times while using only zeroes and ones to
mark the nodes. When we reach a vertex adjacent to the end vertex,
we draw an arrow from the end vertex to the previous one. For the first
time, the breadth-first search is performed n times, for the second time
(n− 1) times, and so on until we reach the starting vertex.
Algorithm C requires only one bit of memory for each city. First, all

nodes are assigned the value ‘0’. In the next step, node A is assigned
the value 1. On each subsequent step we write 1’s in all those cities
adjacent to cities in which 1’s were written the previous time. After n
steps city L is reached, and an arrow is written from B to L [the same
arrow is written in the eighth step of Algorithm A]. Next, all the 1’s
are changed to 0’s and the whole procedure of writing 1’s is repeated,
until the vertex L (the penultimate vertex of the path from A to B, in
this specific example) is reached. The procedure continues in the same
manner until the arrows reach vertex A. Algorithm C, however, requires
more time than the previous two: 1

2(n+ 1)(n + 2).10

Only the Algorithm D in [Moo59] describes a solution for weighted
graphs. This is again done on an example. This algorithm is a modi-

10It should be noted that n stands for the length of the shortest path here, not for
the number of vertices.
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fication of Algorithm A for weighted graphs. In unweighted graphs, we
always add one to the mark of the previous vertex; in weighted graphs,
we add the weight of the edge incident with both vertices.

To conclude with, Moore says [Moo59, pp. 290–291]:

These four algorithms do not exhaust all of the variations on
this method of solving mazes. As a further example, which
will only be described roughly (and hence does not deserve
the name algorithm), suppose that you are in a certain city
at a certain time and wish to arrive at your destination by
train as soon as possible. Then by consulting your timetable
you can write down the earliest time at which you can arrive
at each city which it is possible for you to reach without
changing trains. Then, on the next step, you can write down
the earliest time at which you can reach each city which can
be reached by changing trains only once. It will be necessary
to take assumptions about how long it takes to change trains
in each city. You can continue this process, always keeping
track of the earliest time that you have found for reaching
each city, until you reach a point where none of these times
can be improved. Then you pick up the route you could
follow.

Moore’s solutions are described in a very straightforward way, while
maintaining a crucial aspect of an algorithmic solution, namely that of
not leaving out any possibility. His solution carries the basic idea that
has been improved by other mathematicians and now bears the author’s
name.

Improvement by D’Esopo

“Another efficient algorithm given by Moore is particularly applicable
to road networks. The use of an index number, resulting in a more effi-
cient algorithm, is suggested by D’Esopo.” say Pollack and Wieben-
son in [PW60, p. 225]. This improvement is described in the following
section of their paper [PW60, pp. 225–226]:11

As before, a network is given and all links are labeled with
their lengths. An unsymmetric distance matrix is allowed

11Pollack and Wiebenson must have learnt about this improvement some time
before 1960, when their article was published, as they refer to “Private communication
with D’Esopo” in their references.
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and the same convention of one-way streets is used.12 The
starting and terminating cities are labeled A and B. In the
algorithm, two numbers are associated with each node. One
is a variable ‘label’ number, the other is a fixed and unique
‘index’ number. At any given stage in the application of
the algorithm, the label number represents the shortest de-
termined distance to a node. The index numbers are the
positive integers that are assigned in ascending order to each
new node as it is considered. Finally, a control register is
maintained in which can be found the index number of a
node, the CR-node.

The improved algorithm is described below and resembles very much
the algorithm due to Dijkstra published in [Dij59a] and described in
Section 3.4.3. The procedure is based on the use of the so-called CR-
node. The number in the control register (abbreviated as“CR”) deter-
mines which node is being examined at each step.

1. Assign to city A the index 1 and the label ‘zero’. Enter the
number 1 in the control register. Go to 2.

2. Locate all nodes connected to the CR-node. To each of these
nodes that do not already have index numbers, assign the
next available integer as its index. Go to 3.

3. For each of these nodes, form the sum of the CR-node la-
bel and the street length to the connected node. For each
connected node there will be three possibilities. (a) If the
connected node does not have a label, assign this sum as its
label and place a check-mark next to the street. Proceed to
the next connected node or, if there are no more connected
nodes to be examined, go to 4. (b) If the connected node
has a previously assigned label that is lower in value than the
formed sum do nothing to this node. Proceed to the next
connected node or, if there are no more connected nodes to
be examined, go to 4. (c) If the connected node has a previ-
ously assigned label that is larger than the new sum, assign
the new sum as the label. Also place a check-mark beside the
new street and erase the check-mark that is next to the street

12Streets are represented by a couple of one-way streets if they can be traversed in
both directions. The distance in one direction may be different from the distance in
the other direction. (Footnote mine.)
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associated with the replaced label. Now examine the index
of this relabeled node. If the index is higher than the index
of the CR-node, proceed to the next connected node, or if
none remains, go to 4. If the index is lower than the index
of the CR-node, note the value of this lower index number.
Proceed to the next connected node or, if none remains, go
to 4.

4. If there are any lower index numbers noted in step 3(c),
select the lowest one and place it in the control register. If
not, add 1 to the number in the control register. In either
case go to 2.

The index number is also used to determine when the algorithm
should stop [PW60, p. 226]:

The process terminates when the index number in the con-
trol register is one higher than the number of nodes in the
network. The procedure for finding the shortest path to any
node is the same as that given in the preceding algorithm.

The above quotation also states an important result, namely that
for determining the shortest paths from one node to all nodes, we use
exactly the same procedure as for determining the shortest path between
two specific nodes.

Moreover, it is worth noticing that

1. the description of an algorithm in [PW60] is much more visually
structured than the one given in [Moo59]

2. Pollack and Wiebenson give D’Esopo’s improvement of Moore’s
algorithm for weighted graphs

Moore’s algorithm for weighted graphs

Moore’s algorithm D for weighted graphs is probably the most known
nowadays. It is quoted in contemporary textbooks on graph–theoretical
algorithms, but it is actually adapted for contemporary users. An exam-
ple can be found in a book by the Slovak mathematician Ján Plesník
[Ple83, p. 116]:

STEP 0: Vertex s is marked (0, 0), other vertices are with-
out marks, k := 0, V0 := {s}.
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Table 3.1: Moore: assessment of his own algorithms

Number of steps Storage requirements

Algorithm A (2n + 2) arbitrary integer
Algorithm B (2n + 2) two bits
Algorithm C 1

2 (n+ 1)(n + 2) one bit

STEP 1: For every i ∈ Vk we perform:
Vk+1 := ∅. We mark every unmarked successor j of
vertex i: (pj , dj) := (i; k + 1), Vk+1 := Vk+1 ∪ {j}

STEP 2: If Vk+1 = ∅, then STOP. Else k := k + 1 and
return to STEP 1.

The idea of the algorithm given above is really due to Moore; it has,
however, become necessary to describe algorithms in a more precise way.
Plesník therefore adapted Moore’s algorithm and provides such a de-
scription of the process, that it is ready for immediate transformation
into a computer programme.13

An interesting part of Moore’s paper is the discussion on the com-
plexity and storage requirements. Although he presents his method on
a concrete example with given weights, he gives the following estimates
about the storage requirements and number of steps needed to arrive at
the final solution.
Note: The number of steps is given for a path of length n; stor-

age requirements determine how much memory per city is needed: the
phrase ‘arbitrary integer’ means that the computer must be capable of
remembering any integer, up to the length of the shortest path, for every
city.

The figures shown in Table 3.1 may be compared with the data
Plesník gives about the complexity of Algorithm A: for a graph deter-
mined by successors of the vertices, the time necessary for finding a path
between the starting vertex s and the end vertex t is O(m), for finding
the shortest path between s and t it is O(m+n), and finally for finding
the shortest paths from s to all other vertices is O(mn+n2), where n is
the number of vertices and m is the number of edges. When comparing
the figures given by Moore and Plesník, however, one has to bear in

13An analogy can be seen even with the methods used in Egyptian papyri: the
Egyptians probably had no idea of equations, but was their thinking really that much
different from ours?
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mind that n is once the length of the shortest path and once the number
of vertices.

3.4 Different Approaches

Nowadays, one tends to associate the shortest path problems with graph
theory. In the 1950s, however, it was a problem that needed to be solved
and was solved by a variety of means, which becomes apparent in this
section.

3.4.1 Some picturesque solutions

The following two methods use neither matrices, nor graph terminology,
nor functional equations. Yet, they provide a nice insight into the pro-
cess of the formation of algorithms. The first method seems to be more
of a joke; the second one, however, can be transformed into a “serious”
method.

Minty’s “string model,” 1957

In the same year when Dantzig’s article was published (1957), a short
and illustrative reply came from Minty. It seems unnecessary to com-
ment on this article [Min57]:

The shortest route problem (discussed by Dantzig, Opera-
tions Research, vol. 5, p. 270, April, 1957) can be solved very
simply in the case where the distance matrix is symmetrical,
as follows: Build a string model of the travel network, where
knots represent cities and string lengths represent distances
(or costs). Seize the knot ‘Los Angeles’ in your left hand and
the knot ‘Boston’ in your right hand and pull them apart.
If the model becomes entangled, have an assistant untie and
re-tie knots until the entanglement is resolved. Eventually
one or more paths will stretch tight — they then are the
alternative shortest routes.

Dantzig’s “shortest–route tree” can be found in this model
by weighting the knots and picking up the model by the knot
‘Los Angeles’.

It is well to label the knots since after one or two uses of the
model their identities are easily confused.
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This is perhaps the article on shortest paths written in the most
colloquial language. Yet it includes all the necessary information and the
author suggests a procedure for determining the ‘shortest–route tree’, a
kind of ‘by–product’ of finding shortest paths.

Rapaport and Abramson, 1959

A quite different method is used by Rapaport and Abramson. They
do not use a string model like Minty, they make use of electrical energy,
timers, and lights. Here is the description of their method as given by
Pollack and Wiebenson in [PW60]:

Rapaport and Abramson describe an analog device with
variable electric timers used to stimulate link distance. The
initial and final nodes are chosen and a master clock is started.
When the initial node is energized, all timers outgoing from
it are started. This process continues until either the final
node is reached or when all nodes are reached. All timers
that energize a node are distinguished with a light. If a timer
reaches a node that is already energized the timer does not
go on. The links composing the shortest–route tree thus con-
sist of all the lighted links. The particular analog described
in reference [RA59] will only work for the case where the
distance matrix is symmetric. However, this type of analog
can easily be converted to accommodate the nonsymmetric
case if two ‘one-way’ timers are used between each pair of
nodes. Note that the digital version of this ‘timer’ process is
essentially the same as the algorithm given by Minty.14 Ra-
paport and Abramson propose to use electronic timers in a
later model, with the possibility of using this device for real
time control.

From the above said, it is evident that in the 1950s, mathematicians
used virtually all kinds of methods for finding shortest paths in a graph.
The following section informs about some other, more ‘mathematical’
approaches: the Bellman–Ford algorithm, working with a minor restric-
tion on the weight function, and the Dijkstra algorithm, working only
for graphs with positive weights of edges.

14The algorithm Pollack and Wiebenson refer to is Minty’s algorithm obtained in
“private communication”. It is described in Section 3.4.3 of this thesis.
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3.4.2 The Bellman–Ford algorithm

The so–called Bellman–Ford algorithm was named after two mathemati-
cians, Richard Bellman and Lester R. Ford, who formulated the
algorithms in quite different contexts. The basic idea of their algo-
rithm(s) is that of examining first the paths of length one, then the
paths of length two, etc., that is paths consisting of one edge, then two
edges, etc. (By “length” of the path, the number of edges is meant
here.) Although the algorithm is commonly attributed to Bellman
and Ford, it was probably first formulated by A. Shimbel in 1954 (see
Section 3.3.1 for details).15 Ford’s 16 algorithm was discovered as a
part of the network flow theory, in 1956, Bellman’s algorithm employs
the dynamic programming technique and was first published in 1958
[Bel58].

Ford, 1956 and Ford & Fulkerson, 1962

Ford’s algorithm was first published in the RAND Corporation Paper
P–923 and is reproduced also in the book on network flows [FF62]. The
shortest chain algorithm formulated by Ford and Fulkerson in [FF62,
p. 131] runs as follows:

(1) Start by assigning all nodes labels of the form [−, π(x)],
where π(s) = 0, π(x) =∞ for x 6= s.

(2) Search for an arc (x, y) such that π(x) + a(x, y) < π(y).
(Here ∞+ a =∞.) If such an arc is found, change the label
on node y to [x, π(x)+a(x, y)], and repeat. (That is, the new
π(y) is π(x) + a(x, y)). If no such arc is found, terminate.

The interesting feature of this method is that Ford and Fulker-
son make use of network flow algorithm here. The above–mentioned
algorithm is an adaptation of the minimal–cost network flow problem
[FF62, p. 130, emphasis mine]:

A special minimal cost flow problem having independent in-
terest is that of finding a minimal cost (or shortest) chain
from one node to another in a network in which each arc

15This confirms the rule (with many exceptions) that mathematical theorems and
the like do not bear the name of their inventor. Shimbel’s solution is reported by
Bellman et al. in [BCL70], by Pollack and Wiebenson [PW60], and by Dreyfus
[Dre69].
16For one of the versions of his shortest path or chain algorithms, see below.
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(x, y) has associated cost (or length) a(x, y) ≥ 0. While this
is a purely combinatorial problem, it may also be considered
as a minimal cost flow problem by placing unit supply at
the first node (the source) and unit demand at the second
node (the sink), taking arc capacities infinite, and asking for
a feasible flow that minimizes cost. Since the algorithm of
§3 constructs an integral flow, it solves the shortest chain
problem. In other words, the first unit of flow constructed
by the algorithm travels by a least cost chain.

Thus Ford and Fulkerson suggest also another aspect of discrete
optimization problems: it is often the model we work with, and the
model can be interpreted in various ways. Here, the interpretation of
the weight of the edge is either cost (minimal–cost flow problem), or
length (shortest path problem).

Bellman, 1958

In [Bel58], Bellman describes the shortest route algorithm in something
we might in graph terminology call a complete directed graph with n
vertices. He introduces a search technique on the basis of the functional
equation technique of dynamic programming. The distances between
the individual pairs of vertices are given in a matrix T = (tij). Further,
fi denotes the time required to travel from i to N , i = 1, 2, . . . , N − 1
using an optimal policy; fN = 0.

Employing the principle of optimality, we see that f satisfy
the nonlinear system of equations

fi = Minj 6=i[tij + fj], i = 1, 2, . . . , N − 1,

fN = 0.

Bellman continues by giving the proof that there is at most one
solution of the above-mentioned system and the approximation policy
in space:

Perhaps the simplest policy we can employ17 is to proceed
directly from i to N . Define

f
(0)
i = tiN , i = 1, 2, . . . , N − 1.

17Bellman’s footnote: “I owe this choice of an initial policy to F. Haight.” [Bel58,
p. 89]
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It follows that f
(1)
i as defined by

f
(1)
i = Minj 6=i[tij + f

(0)
j ], i = 1, 2, . . . , N − 1,

f
(1)
N = 0,

satisfies the inequality

f
(1)
i ≤ f

(0)
i .

This inequality is immediate when we realize that f
(1)
i rep-

resents the minimum time for a path with at most one stop.

. . .

It is clear from the physical interpretation of this iterative
scheme that at most (N-1) iterations are required for the
sequence to converge to the solution.

Bellman gives also a different sequence of approximations, but he
notes that “it is to be expected that the first method will converge more
rapidly” [Bel58].

3.4.3 Dijkstra, 1959

A year after Bellman, E. W. Dijkstra [Dij59a] publishes an algo-
rithm in graph-theoretical language. This algorithm is faster than the
Bellman–Ford algorithm, but works only for graphs with nonnegative
edge weights. However, Dijkstra does not warn his readers of this
fact.

The following extract can help to illustrate Dijkstra’s style. After
describing the subject he is going to deal with in his paper, he poses two
problems [Dij59a, pp. 269–270]:

We consider n points (nodes), some or all pairs of which are
connected by a branch; the length of each branch is given.
We restrict ourselves to the case where at least one path
exists between any two nodes. We consider two problems.

Problem 1. Construct the tree of minimum total length
between the n nodes. (A tree is a graph with one and only
one path between every two nodes.)

[. . . ]

Problem 2. Find the path of minimum total length between
two given nodes P and Q.
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After describing the shortest path algorithm, he puts his algorithm
as preferable to those of Berge and Ford, his reasons being “we need
not store the data for all branches simultaneously but only for those for
the branches in sets I and II, and this number is always less than n.
Furthermore, the amount of work to be done seems to be considerably
less.” [Dij59a, emphasis mine] In other words, we can find some attempts
at judging computational complexity here, although the judgement is
not formalised yet.

Berge’s monograph

Dijkstra refers to Berge’s monograph [Ber58] where the tasks and so-
lutions (algorithms) connected with the shortest paths [Ber58, Chapter
7: “Shortest path problems”, pp. 75–81] are also described. Berge first
formulates two tasks and gives examples:

Problem 1. Find such a path in the graph that leads from a to
b.

Problem 2. Find the path between a and b that has the shortest
length.

Example 1. One–person games (labyrinth as a special example
of a one–person game, the “game of 15”).

Example 2. The problem of wolf, goat, and cabbage.

The first of these problems is related to the connectedness of the
graph. In fact, both of the above-mentioned examples can be understood
as special cases of Problem 1. However, once we find out that a path
between the two vertices exists, it is logical to ask for the shortest of
those paths. The algorithms Berge presents in the monograph focus
mainly on finding a way through a labyrinth. He describes the following
algorithms:

1. Algorithm for the first task in the planar case – labyrinth: When
at a crossing, choose always the far left (alternatively, the far right)
corridor.

2. General algorithm for the first problem: To start with, we examine
a graph representing an arborescence with the root a and we find
the way going from a to some vertex b; there is the following easy
way: we start in a, we follow any branch as long as it is possible,
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then we return to the nearest crossing and follow another branch,
etc., until we reach vertex b. The desired path from a to b will be
made up of those edges that have been passed exactly once in the
process of seeking.

If graph G is not an arborescence, we first determine an arbores-
cence.

3. Second algorithm for the first problem: Tarry, 1895, [Tar95] sug-
gests a method for walking through a labyrinth using the following
principles: never use any edge twice in the same direction; when
at a crossing x, do not choose the edge that brought you to this
crossing for the first time – unless there is no other possibility.

4. The algorithm for the second problem is probably due to Berge
himself (as no references are given) and runs as follows: with the
help of iteration method, we subsequently assign an index, equal
to the length of the shortest path from a to x, to each vertex x.
The description of the algorithm follows:

1. Vertex a is assigned the index 0.

2. If all vertices that have received the index m form a
known set A(m), then by assigning the index m+1, we
receive vertices of the set

A(m+ 1) = {x|x ∈ ΓA(m), x /∈ A(k)}

for all k ≤ m.18

3. When vertex b has been assigned a number, we stop; if
b ∈ A(m) then we look through such vertices b1, b2, . . .
that

b1 ∈ A(m− 1), b1 ∈ Γ−1b,

b2 ∈ A(m− 2), b2 ∈ Γ−1b1,

. . .

bm ∈ A(0), bm ∈ Γ−1bm−1.

The path µ = [a = bm, bm−1, . . . , b1, b] is a solution to
the problem.

18The set ΓA(m) is the set of all the vertices connected by exactly one edge to
the vertices in A(m). The second condition — x /∈ A(k) — excludes the vertices for
which the length of the shortest path from the source is already known from the set
A(m+ 1).
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Like Moore in [Moo59], Berge gives more algorithms for unweighted
graphs (and especially for labyrinths) than for weighted graphs. Unlike
Moore, however, Berge says little on the history of the problem.19

After describing these basic problems and their solutions, Berge sug-
gests the following generalizations — and it is only now that he mentions
weighted graphs [Ber58, comment in brackets mine]:

Problem 3. Every edge of a given graph G is assigned a
number l(u) ≥ 0, the length of the edge. The path
µ going from a to b with the shortest length is to
be found.

[Classical graph–theoretical formulation of the single–
pair shortest path problem.]

Problem 4. To each path µ, a number f(µ) is assigned.
Find a path µ for which the number f(µ) is the
smallest.

Problem 5. To each partial subgraph G1 of a given graph
G, number h(G1) is assigned; find such a subgraph
G1 for which the number h(G1) is the smallest.

Note: Each of the above-stated problems is a generalization
of the previous one.

For the third problem, Berge quotes Ford’s method, which is de-
scribed in greater detail in Section 3.4.2.20 The algorithms for weighted
graphs are dealt with in greater detail in the forthcoming sections.

Dijkstra’s algorithm

In his formulation of the shortest path problem, Dijkstra says [Dij59a]:

Problem 2. Find the path of minimum total length between
two given nodes P and Q.

The algorithm he describes is very similar to the algorithm D of
Moore [Moo59]. In the following, Dijkstra’s algorithm is described.

19On the other hand, it should be noted that he quotes a paper more than fifty
years old — Tarry’s paper [Tar95], which is something Moore does not do. This might
be caused by the fact that Tarry’s work is mentioned in D. Kőnig’s monograph.
20Claude Berge quotes the RAND Corporation Paper P-923 by L. R. Ford, Jr. This

paper most probably formed the basis of a classic book written by L. R. Ford and
D. R. Fulkerson [FF62].
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In brackets and in italics, allusions to Moore’s algorithm are given —
in Dijkstra’s terminology:

In the course of solution the nodes are subdivided into three
sets:

A. the nodes for which the path of minimum length from
P is known; nodes will be added to this set in order of
increasing minimum path length from node P ;

B. the nodes from which the next node to be added to set A
will be selected; this set comprises all those nodes that
are connected to at least one node of set A but do not
yet belong to A themselves;

C. the remaining nodes.

The branches are also subdivided into three sets:

I. the branches occurring in the minimal paths from node P
to the nodes in set A;

II. the branches from which the next branch to be placed in
set I will be selected; one and only one branch of this
set will lead to each node in set B;

III. the remaining branches (rejected or not yet considered).

To start with, all nodes are in set C and all branches are
in set III. We now transfer node P to set A and from then
onwards repeatedly perform the following steps.

[We write 1 on node P and 0 on all the other nodes.]

Step 1. Consider all branches r connecting the node just
transferred to set A with nodes R in sets B or C. If node R
belongs to set B, we investigate whether the use of branch r
gives rise to a shorter path from P to R than the known path
that uses the corresponding branch in set II. If this is not so,
branch r is rejected; if, however, use of branch r results in a
shorter connexion between P and R than hitherto obtained,
it replaces the corresponding branch in set II and the latter
is rejected. If node R belongs to set C, it is added to set B
and branch r is added to set II.

Step 2. Every node in set B can be connected to node P in
only one way if we restrict ourselves to branches from set I
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and one from set II. In this sense each node in set B has a
distance from node P : the node with minimum distance from
P is transferred from set B to set A, and the corresponding
branch is transferred from set II to set I. We then return
to step 1 and repeat the process until node Q is transferred
to set A. Then the solution has been found.

[On each node X, a number denoting the length of the short-
est path from node P to X that has been founded until the
moment is written. At each step, numbers written next to
nodes being considered are compared with new path lengths:
if the original number is greater, it is erased and substituted
by the new path length. When the lengths of shortest paths
do not change any more, the algorithm terminates.]

Dijkstra further remarks about his algorithm that it can be used
also for directed graphs, that a better implementation of it is possible,
and finally, that it is “to be preferred to the solution by L. R. Ford as
described by C. Berge in [Ber58].” In Berge’s monograph, we read
[Ber58, pp. 79-81]:

1. Every vertex xi gets an index λi; initially we take λ0 = 0
and λi = +∞ for i 6= 0.

2. We are looking for such edge (xi, xj) for which λj −
λi > l(xi, xj); then we replace index λj by index λ

′
j =

λi + l(xi, xj) < λj; we note that λ
′
j > 0 for j 6= 0. We

continue in this mode if there is still an edge which might
enable us to diminish some λi.

3. After the indices have been established, we find such
vertex xpi that λn − λpi = l(xpi , xn); in fact, index λn di-
minishes monotonously during the process, and xp1 is the
last vertex which has contributed to the diminishing of λn.
The vertex xp2 , for which λp1 − λp2 = l(xp2 , xp1), is found
exactly in the same manner, etc.

The sequence λn, λp1 , λp2 , . . . is sharply decreasing, and there-
fore at some point, xpk+1

= x0. I claim that λn is the
length of the shortest path from x0 to xn and that µ0 =
[x0, xpk , xpk−1

, . . . , xp1 , xn] is this shortest path.

Analysis of this algorithm and of the algorithm due to Ford and
Fulkerson, described in Section 3.4.2, reveals that they are equivalent,
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even though the former formally consist of three and the latter of only
two steps.21

Minty, before 1960

Another algorithm by Minty22 is reported by Pollack and Wieben-
son in [PW60]. This algorithm is again very similar to that of Dijk-
stra published in 1959. It is also worth noticing that this algorithm is
designed also for unsymmetric distance matrices, i.e. Minty’s “string
model” would not work for this case.

Assumptions: A network and distances between the nodes
are given. Unsymmetric distance matrix is given. A . . . starting
city, B . . . terminating city.

1. Label city A with the distance ‘zero’. Go to 2.

2. Look at all one way-streets with their ‘tails’ labeled and
their ‘heads’ unlabeled. For each such street, form the sum
of the label and the length. Select street making this sum a
minimum and place a check-mark beside it. Label the ‘head’
city of this street with the sum. Return to the beginning of
2.

Termination conditions: (a) city B is labeled, (b) all cities
have been labeled, (c) minimum of the sums is ‘infinity’.

Advantage: The labels do not change, once assigned. Thus,
distances to all labeled nodes are known irrespective of whether
the remaining nodes are labeled or not.

3.5 Conclusion

The early algorithms shown here do not use the complexity measure to
describe the efficiency of their algorithm. However, they are concerned
with the effectiveness of calculations. Later, special implementations of
algorithms and algorithms for special classes of graphs were devised (see
e.g. [Joh77]). Worth mentioning is also the paper by Ira Pohl [Poh70],
in which the author shows the connection between heuristic search and
artificial intelligence.

21It is of course irrelevant how many steps are declared in the description, as it
does not say much about the number of cycles the algorithm has to go through.
22Quoted as “Private Communication from G. J. Minty, University of Washington,

Seattle, Washington” in [PW60].
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Table 3.2: Complexity of Shortest Path Algorithms

Author, year Complexity Note

Moore, 1957 O(m+ n) unweighted graph;
one s− t path

Moore, 1957 O(mn+ n2) unweighted graph;
all s− v paths

Dijkstra, 1959 O(n2) weighted graph;
all s− v paths

As far as complexity is concerned, we can find the following data
(Table 3.2) on the complexity of Moore’s and Dijkstra’s shortest
path algorithms in Plesník’s monograph [Ple83, pp. 117-119]:

A particularly interesting article with respect to complexity is D. B.
Johnson’s article [Joh77] on shortest path algorithms in sparse net-
works. It reflects the move from looking for general solutions to looking
for solutions that are better for some cases and worse for other ones:
one algorithm is to be used for a “dense” graph and a different one for
a “sparse” graph; and still a different one for “upgrading” the solution.

The multiple language of algorithms described in this chapter as well
as the variety models suggested confirm the thesis that although there
is one solution (the optimum one) to the problem, there might be many
ways of arriving to it. The fact that the algorithms due to Moore,
Dijkstra, or Ford and Bellman are still used confirms the validity
of their solutions. Nevertheless, the algorithms are being refined, re-
written, and, last but not least, implemented by more sophisticated
methods.



Chapter 4

Network Flows:
Multiple Roots

Network flow problems form another class of basic problems in discrete
optimization. They are related to economy, like the shortest–path prob-
lems, and also to physics. From the mathematical point of view, the
connections between shortest–path and network flow problems, as well
as between matching theory and network flow problems are interesting:
namely, shortest–path problems are dual to certain network flow prob-
lems and vice versa. Nowadays, flows in networks constitute a separate
branch in discrete optimization. This chapter deals almost exclusively
with single–commodity network flows, with some minor remarks on other
variants of network flow problems. The history up to the publication of
the monograph [FF62] is described.

Like the shortest–path problems, network flow problems were also
formulated in different contexts. The history of the problem is often
traced back to the physicist Gustav Kirchhoff and to the so-called
Kirchhoff’s laws for electrical current, formulated by him. The first peo-
ple to formulate the problem in mathematical context were L. V. Kan-
torovich and F. L. Hitchcock. The latter also gave name to the
Hitchcock problem, which is a term equivalent to the transportation
problem or the network flow problem.1 Scattered results were united
by L. R. Ford and D. R. Fulkerson in 1962.

After the publication of the monograph [FF62], most authors writ-
ing on network flows quote this book. The most famous result stated in
the monograph, bearing even the authors’ name, is probably the Ford-

1The last term was advocated by Ford and Fulkerson in their monograph; see
quotation on page 117.

108
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Fulkerson Theorem, called also theMax-Flow Min-Cut Theorem. Finite-
ness of the labelling method is also examined in the book,2 as well as
the duality of network flow and shortest path problems.3 As in the case
of shortest–path problems, the authors of later papers on network flows
refine and adapt the previous solutions. However, flows in networks
seem to be dominated by the tandem Ford–Fulkerson, as these two
coined the term and because the subject is so well dealt with in their
monograph.4

4.1 Specific Background

In this section, the words network and graph are interchangeable. The
term “network” is favoured by some authors because of its more direct
visual interpretation. The most important results and specific definitions
related to network flow problems are stated in this section, especially
the connection between minimum cut and maximum flow in a network
(graph). It can be shown that network flow algorithms are not finite
if capacities of the edges are allowed to be real numbers. However, it
holds that if all edge capacities are integers, then the maximum flow is
also integer. This statement can be extended also to rational numbers,
which thus provides optimistic computation results.

Apart from liquid transportation, the same methods can be used for
transportation of any product, not excluding even the traffic in a town,
where the capacities determine how many cars can go through a certain
street in a certain time (one hour). From this, it is only a step further
to the problems connected with the costs of transportation.

Definition 4.1 Given a graph G(V,E), suppose that each edge vivj ∈ E
(vi, vj ∈ V ) is associated with a non-negative real number c(vivj), called
the capacity of the edge vivj . The function c : E 7→ R+

0 is called the
capacity function.

Thus, for the purposes of network flow algorithms, the weight func-
tion bears the denotation “capacity”. The capacity of an arc determines
the quantity of a product that can flow through the edge (in a given pe-
riod of time). According to the capacities given, some nonnegative flow
can be constructed.

2For these theorems, see Section 4.1.
3Obviously, discussions on complexity start only later: the first hints on the need

to compare algorithms appear in the mid-1960s.
4A similar situation arises with Dénes Kőnig’s 1936 monograph: we can find many

traces of Kőnig’s exposition of graph theory in the works of later authors.
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However, even though the original graph (in which we are to find
maximum flow) is undirected, the graph describing the flow must always
be directed. As was already mentioned in Chapter 2, we distinguish
between the in–degree and the out–degree of a vertex in a directed graph:

Definition 4.2 In a directed graph G(V,E), d−G(v) denotes the number
of directed edges with their endpoint in v (the in–degree) and d+G(v)
denotes the number of directed edges with their starting point in v (the
out–degree).

The in–degree and the out–degree of the vertex tell us how many
predecessors and successors the vertex vi has. The set of predecessors
of vi (i.e. the set of vertices vj for which the (directed) edge vjvi ∈ E)
is denoted by Γ−

G(vi) and the set of the successors of vi (i.e. the set
of vertices vj for which the (directed) edge vivj ∈ E) by Γ+

G(vi). The
cardinality of the set Γ−

G(vi) is d−G(v), and the cardinality of the set
Γ+
G(vi) is d+G(v).

The following definition tells us what conditions must be satisfied by
any flow in a network:

Definition 4.3 Let s and t be two distinct vertices of V . A (static)
flow of value v from s to t in G is a function f : E 7→ R+

0 that for each
vi ∈ V satisfies the linear equations and inequalities

∑

vj∈Γ+
G(vi)

f(vi, vj)−
∑

vj∈Γ−
G(vi)

f(vivj) =





v vi = s
0 vi 6= s, t
−v vi = t

f(vivj) ≤ c(vivj), (vivj) ∈ E.

The vertex s is called the source, and the vertex t the sink.

The middle condition
∑

vj∈Γ+
G(vi)

f(vivj) −
∑

vj∈Γ−
G(vi)

f(vivj) = 0

when vi 6= s, t, namely that the flow into the vertex must be equal to
the flow out of the vertex, is the so–called Kirchhoff’s law. It is obvious
that the same equation need not be valid for the capacity function.

Basic network flow algorithms operate with single-source single-sink
networks, i.e. networks where the product flows from only one source to
only one sink. Such algorithms can easily be adapted for problems with
more sources and more sinks in the cases where the set of sources and
the set of sinks have no intersection, namely by adding a source and a
sink and edges with appropriate edge capacities. For these algorithms,
the notion of a cut separating source and sink is central:



Chapter 4. Network Flows 111

Definition 4.4 Let X = V −X,X ⊆ V and let (X,X) denote the set
of all edges going from X to X. A cut in G(V,E) separating s and t is
a set of edges (X,X), where s ∈ X and t ∈ X. The capacity of the cut
(X,X) is denoted by c(X,X), where

c(X,X) =
∑

xx∈(X,X)

c(xx).

In the above–stated definition of a cut, the “edges between X and X”
are the edges going from X to X; in directed graphs, the direction of
the edges must be taken into account.

The Lemma 4.5 further specifies the relation between the cut and
flow in the network and Theorem 4.6 states the equality between maxi-
mum flow and minimum cut and is one of the central theorems of network
flow theory:

Lemma 4.5 Let f be a flow from s to t in a graph G(V,E) and let f
have value v. If (X,X) is a cut separating s and t, then

v = f(X,X)− f(X,X) ≤ c(X,X).

Theorem 4.6 [Max-flow min-cut theorem.] For any network the max-
imal flow value from s to t is equal to the minimal cut capacity of all
cuts separating s and t.

The phrase “flows in networks” evokes some product, or, more pre-
cisely, liquid flowing through piping. And indeed, it is sometimes sug-
gested (e.g. in [BFN58]) that the product should be divisible into as
small quantities as possible. However, if the capacities are allowed to
be any real numbers, network flow algorithms need not be finite. On
the other hand, already Ford and Fulkerson state [FF62, p. 19] the
Integrity theorem:5

Theorem 4.7 (Integrity theorem) If the capacity function c is in-
tegral valued, there exists a maximal flow f that is also integral valued.

5The theorem follows from the construction of maximal flow — the labeling
method: When all the capacities are integers, the algorithm proceeds by enlarging
the flow by one (or another integer). As the upper bound on the maximum flow is
the sum of the capacities of the edges going out of the source (coming into the sink),
it is evident that in a finite graph with finite integer capacities, the algorithm takes
no more steps than the “size” of the maximum flow.
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The values of capacity function can also be rational, as all ratio-
nal numbers — fractions — can be multiplied by the smallest common
denominator, by which they “become” integers.

The following quotation describes why the use of graph theory is
justified for electrical networks — i.e. for another “commodity”, elec-
tricity:

A means of describing the connections of electrical networks
is provided by graph theory. Its application yields a method
for solving network analysis problems, by means of a sys-
tematic derivation of an appropriate number of linearly in-
dependent equations. Digital computers are readily utilized
for writing the necessary relationships and solving them. It
is for this reason that the application of graph theory to the
calculation of electrical networks has gained widespread use
in recent decades.

After the earliest work on graph theory (that of L. Euler
published in 1736) it was G. Kirchhoff, as far as we know,
who was the first to deal with this subject issued in 1847,ex-
amining primarily the laws of electrical networks. The first
comprehensive book to discuss graph theory was that by
D. Kőnig and it was published in 1936. A detailed study of
the aplication of graph theory to electrical networks is pre-
sented in the book of S. Seshu published in 1961. [Vág85,
p. 5—Preface.]

4.2 The Springs and Streams

The origins of network flow theory are in various branches not only of
mathematics, but also other sciences. Kirchhoff’s paper is usually
quoted as the first one on this topic. The connection of Kirchhoff’s
laws with graph theory was recognized already by Dénes Kőnig in his
monograph [Kőn86, pp. 139–141]:6

The previous investigations partly owe their origins in the
question in electricity theory, which was posed and solved in
1845 by K i r c h h o f f. In a finite connected directed graph
G, the edges k1, k2, . . . , kα1 should be understood as wires
through which electricity circulates. For every (directed)

6The original quotation can be found in the Appendix on page 173.
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edge ki, its electrical resistance is denoted by ωi(> 0) and
the electromotoric power Ei that resides in ki (measured in
the direction from ki) are given. [. . . ]

Ford and Fulkerson, on the other hand, start from the linear pro-
gramming formulations of transportation problems. They say on the
history of network flows [FF62, Preface]:

Just where the study of network flow problems may be said to
have originated is a debatable question. Certain static min-
imal cost transportation models were independently studied
by Hitchcock, Kantorovich, and Koopmans in the 1940’s. A
few years later, when linear programming began to make it-
self known as an organized discipline, Dantzig showed how
his general algorithm for solving linear programs, the simplex
method, could be simplified and made more effective for the
special case of transportation models. It would not be in-
accurate to say that the subject matter of this book began
with the work of these men on the very practical problem of
transporting the commodity from certain points of supply to
other point of demand in a way to minimize shipping cost.
[. . . ] However, dismissing the formulational and applied as-
pects of the subject completely, and with the advantages of
hindsight, one can go back a few years earlier to research of
König, Egerváry, and Menger on linear graphs, or Hall on
systems of distinct representatives for sets, and also relate
this work in pure mathematics to the practically oriented
subject of flows in networks.

They also trace history of network flow problems back to Kirch-
hoff, but their main concern seems to be the mutual influence of math-
ematical results and practical transportation problems. The results of
Menger and Egerváry bring the problem more to the mathemati-
cal side: their theorems and methods form the basis of the Hungarian
Method for maximum matching.7

4.2.1 Hitchcock and Kantorovich

One of the classic articles dealing with network flows is Hitchcock’s
paper The distribution of a product from several sources to numerous

7The term “Hungarian Method” was coined by Harold W. Kuhn.
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localities[Hit41] published in 1941. In his paper, Hitchcock defines
the transportation problem in the following way [Hit41, p. 224]

1. Statement of the problem. When several factories
supply a product to a number of cities we desire the least
costly manner of distribution. Due to freight rates and other
matters the cost of a ton of a product to a particular city
will vary according to which factory supplies it, and will also
vary from city to city.

Hitchcock first shows the way of finding a feasible solution, then
he takes the costs of transportation between the individual cities into
account, and finally he gradually improves the solution. Apart from
the statement of the problem, the method of solving the transportation
problem is demonstrated on a concrete example.8 Hitchcock further
divides the paper into three sections. In the second section (Geometrical
interpretation), he gives a geometrical representation of the problem,9

which resembles the simplex used in linear programming. In the third
section (Finding a vertex), he formulates the thesis that a feasible so-
lution can be found in one of the vertices of the simplex. The term
“vertex” is used here in a sense quite different from the term “vertex”
used in graph theory. Finally, in the fourth section (Finding a better ver-
tex) he gradually improves the solution by “travelling” to other vertices
of the simplex.

The problem dealt with in the paper [Hit41] evidently belongs to
the network flow problems. The problem was even named “Hitchcock
problem”, after the author. However, the solution presented is not a
graph-theoretical one, but rather one using linear programming meth-
ods.

The paper by Kantorovich and the joint paper by Kantorovich
and Gavurin are often quoted as the first attempts at formulating linear
programming. The methods they use also belong rather to the domain of
linear programming than to the domain of graph theoretical algorithms.

Even G. B. Dantzig admits that linear programming methods were
formulated in the Soviet Union prior to their development in the U.S.A.
However, he claims that it is legitimate to consider linear programming
to be a U.S. patent, for which the sole fact that the methods of Kan-
torovich were unknown in the U.S.A. is a sufficient reason.10 Kan-

8The style reminds one of E. F. Moore, who also described his algorithms on a
specific example (1957).

9There is no picture in Hitchcock’s paper, only a description of the situation.
10It is not the aim of this chapter to resolve the linear programming priority debate.
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torovich’s method of solving the problem was not a graph–theoretical
one, and is thus not of interest here.11

4.2.2 Graph theory versus simplex method

The paper Die Graphentheorie in Anwendung auf das Transportprob-
lem presented by the Czech mathematicians J. Bílý, M. Fiedler and
F. Nožička in 1958 consists of three parts: a theoretical one (Sec-
tions 1 to 3), an example (Section 4), and a historical note (Section 5).
In Sections 1 to 3, the authors define graph–theoretical concepts, while
in Section 4, they solve the Hitchcock transportation problem. Again,
the method is presented on an example. As Harold Kuhn says in
his review, “it is the simplex method in disguise.” They proceed in a
way similar to Hitchcock and the paper makes the impression that
they deliberately chose to “translate” the simplex method into graph–
theoretical language.

In the second and third parts of the article, they introduce even such
basic notions of graph theory as (finite) graph, edge, cycle, even graph,
and the like.12

On the history of the transportation problem, they say [BFN58,
pp. 119–120]:13

The problem of distributing a product manufactured at sev-
eral production sites to certain consumption sites of given
consumtion volume (equal to the production volume) in such
a way that transport costs are minimum was first formulated
and solved by mathematical means by Hitchcock 14 [. . . ]
The lack of ships that already during World War I led to
a certain regulation of the ship transport (??) and that be-
came much more manifest during World War II led, during
World War II, to the mathematical formulation and solving
of this problem. In this respect it is necessary to note that
sea transport poses certain special conditions, that are dif-
ferent from those of railway transport. [. . . ] The simplex
method for the solution of the transportation problem was
given by Dantzig [4]. 15

11Kantorovich and Gavurin use metric spaces and the theory of potential.
12The authors are using German equivalents, obviously: (endlicher) Graph, Kante,
Kreis, paar Graph.
13The original quotation is given in the Appendix on page 171.
14Reference mine.
15Reference [4] cites Dantzig, G. B.: Applications of the Simplex Method to a
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The authors also shed some light on the research connected to net-
work flows in Czechoslovakia and on the importance of network flow
problems for economics [BFN58, p. 119]: 16

In the Czechoslovak Republic, the transportation problem,
as defined above, was encountered in connection with the
efforts to economize railway transport. The problem was
solved in 1952 by Nožička independently of the papers stated
above; the method was explained in detail in [12].

The growing interest of mathematicians and people from the
practice in Czechoslovakia and abroad — see e.g. [1] and
[14] — in the transportation problem as well as in other lin-
ear programming problems led the authors of this article to
write a shortened and revised version of the paper [12], tak-
ing graph theory as the basis. The possibility to solve the
transportation problem with the help of this theory was men-
tioned in [4] and [13] and used by Flood in [6]; on this, see
also Bellman in [2]. We find this method very illustrative
and particularly suitable when there are no modern comput-
ing machines available; on their utilization see Eisenmann
[5]. On the existence questions see [3].

They state the following limitations of the transportation (network
flow) problems [BFN58, pp. 119–120]: 17

The transportation problem is solved under the following
c o n d i t i o n s:

1. The product can be divided into arbitrarily small amounts.

2. There is no limit on the smallest amount to be trans-
ported; this condition does definitely not apply, e.g. for
coal the smallest amount is a railway wagon.

3. The means of transportation used for transport remain
empty on the return journey.

4. The transport continues with a constant intensity.

5. The transport routes have an unlimited capacity. [. . . ]

Transportation Problem, Activity Analysis of Production and Allocation, 359–373.
(The year of publication not stated.)
16The original quotation is given in the Appendix on page 171.
17The original quotation is given in the Appendix on page 172.
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4.3 1962: The Confluence

A major breakthrough in the network flow theory can be seen in the
publication of the classic monograph Flows in Networks by L. R. Ford
and D. R. Fulkerson from the RAND Corporation. Their rather thin
book was published in 1962.18 In this book, the authors managed to
encompass network flow theory up to their time.19 In the preface of
their book, the authors say [FF62, p. vii.]:

This book presents one approach to that part of linear pro-
gramming theory that has come to be encompassed by the
phrase “transportation problems” or “network flow prob-
lems”.

Kantorovich and Gavurin, as well as Dantzig used linear pro-
gramming methods for solving transportation (network flow) problems.
In the book by Ford and Fulkerson, the methods are not explicitly
stated to be graph theoretical; yet it is evident that their meaning of
nodes and arcs corresponds with the notions in graph theory. In the
preface of [FF62], the authors say:

While this is primarily a book on applied mathematics, we
have also included topics that are purely mathematically mo-
tivated, together with those that are strictly utilitarian in
concept. For this, no apology is intended. We have simply
written about mathematics which has interested us, pure or
applied.

To carry the historical sketch another (and our last) step
back in time might lead one to the Maxwell-Kirchhoff theory
of current distribution in an electrical network.

In this book, we find the treatment of static maximal flow, minimal
cost flow problems, as well as multi-terminal network flows. The second
chapter of the book — Feasibility Theorems and Combinatorial Appli-
cations — brings the readers’ attention to more general results and puts
network flow theory into a wider mathematical context. Namely, “var-
ious combinatorial problems [. . . ] can be posed and solved in terms of
network flows. The remainder of this chapter illustrates this method of
attack on a number of such problems”. [FF62, p. 36]

18For the text of the review in Mathematical Reviews, see the end of this chapter.
19Major part of this was most probably published by L. R. Ford, Jr. in the RAND

Corporation Paper P-923 in 1956.
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The usage of network flows in economy

The “commercially most successful by–product” of network flow theory,
the critical path method, is ommitted in the monograph [FF62]. How-
ever, its authors published other papers in which they advocated the use
of network flows. The article by D. R. Fulkerson “A network flow
computation for project cost curves” is one of them. Linear program-
ming problem is transformed into a network flow problem here: namely,
the differences between the normal and crash completion time for a job
are transformed into capacity of the arcs.

4.4 After “Flows in Networks”

The subject of multiterminal network flows is alloted a comparatively
short space in the monograph [FF62]. Ford and Fulkerson actually
put this problem aside, as they say that the basic procedures can easily
be adapted from the single–source single–sink network flow problems.
These adaptations are often the themes of more recent papers on network
flows.

4.4.1 Multiterminal network flows

In his paper Sensitivity analysis of multiterminal flow networks [Elm64],
Salah E. Elmaghraby deals with multiterminal network flows: net-
works in which any node can serve as a source and any other as a ter-
minal. In such networks, using the results of network flow theory for
single–source single–sink network flows, it would be necessary to solve
1
2N(n − 1) maximum flow problems. However, Elmaghraby quotes a
source for a better procedure [Elm64]:

Fortunately, Gomory and Hu have demonstrated that such
is not the case and devised an ingenious technique by which
the desired maximal flow can be determined in at most N−1
steps. Each step involves the solution of a ‘maximal flow
problem’, oftentimes in a much reduced network.

Elmaghraby states also the equivalence between a certain class of
network flow problems, namely network flow problems in planar graphs,
with the shortest paths problems. [Elm64, p. 688]



Chapter 4. Network Flows 119

4.5 Conclusion

Network flow problems are a complex class of discrete optimization prob-
lems. These “transportation problems” can be solved very well by both
linear programming methods and graph–theoretical algorithms, which
distinguishes them from the shortest–path problems mentioned in the
previous chapters. It is also worth mentioning that the first concise treat-
ment of the network flow problems was published almost forty years ago,
including the transformation of multi–terminal network flow problems
into single–source single–sink ones.

4.6 Appendix: Flows in Networks, 1962

In this section, the reviews of the book L. R. Ford, Jr. and D. R.
Fulkerson: Flows in Networks (1962) are reprinted, as they appeared in
the Mathematical Reviews and the Zentralblatt für Mathematik und ihre
Grenzgebiete.

Mathematical Reviews 28 #2917

This book is an attractive, well-written account of a fairly new topic in
pure and applied combinatorial analysis. The prospective reader should
not misconstrue the title so as to expect current to flow in electrical net-
works anywhere in this book. The networks are simply linear graphs,
and the applications are ultimately descendants of Euler’s “bridges of
Konigsberg” problem, where modern highway engineering has restricted
most of the bridges to one-way traffic, and imposed load limitations on
the vehicles which traverse them. So if, in modern Kaliningrad (even the
name of the city has changed), it were required to transport a specified
load to specified destinations over these one-way, load-limited bridges
at minimum cost (whether in time or gasoline), this would be a prob-
lem in network flow theory. In general, the applications are to problems
in “operations research” (routing, scheduling, inventory control, pro-
gram management, etc.), problems which seemed purely recreational a
few decades ago, but which have suddenly become technologically indis-
pensible, partly because modern computers can make practical use of
algorithms which would formerly have been considered unmanageable
and partly because they give to every eager bureaucrat the opportunity
to become a “management scientist”. Thus the subject has the dual
virtues of mathematical interest and commercial marketability.
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An accurate reflection of the topics covered is best conveyed by the
Table of Contents:

Chapter I, Static maximal flow:

(1) Networks,

(2) Flows in networks,

(3) Notation,

(4) Cuts,

(5) Maximal flow,

(6) Disconnecting sets and cuts,

(7) Multiple sources and sinks,

(8) The labeling method for solving maximal flow problems,

(9) Lower bounds on arc flows,

(10) Flows in undirected and mixed networks,

(11) Node capacities and other extensions,

(12) Linear programming and duality principles,

(13) Maximal flow value as a function of two arc capacities;

Chapter II, Feasibility theorems and combinatorial applica-
tions:

(1) A supply-demand theorem,

(2) A symmetric supply-demand theorem,

(3) Circulation theorem,

(4) The Konig-Egervary and Menger graph theorems,

(5) Construction of a maximal independent set of admissible cells,

(6) A bottleneck assignment problem,

(7) Unicursal graphs,
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(8) Dilworth’s chain decomposition theorem for partially ordered sets,

(9) Minimal number of individuals to meet a fixed schedule of tasks,

(10) Set representatives,

(11) The subgraph problem for directed graphs,

(12) Matrices composed of 0’s and 1’s;

Chapter III, Minimal cost flow problems:

(1) The Hitchcock problem,

(2) The optimal assignment problem,

(3) The general minimal cost flow problem,

(4) Equivalence of Hitchcock and minimal cost flow problems,

(5) A shortest chain algorithm,

(6) The minimal cost supply-demand problem: non-negative directed
cycle costs,

(7) The warehousing problem,

(8) The caterer problem,

(9) Maximal dynamic flow,

(10) Project cost curves,

(11) Constructing minimal cost circulations;

Chapter IV, Multi-terminal maximal flows:

(1) Forests, trees, and spanning subtrees,

(2) Realization conditions,

(3) Equivalent networks,

(4) Network synthesis.
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It should be noted that Chapter II contains many topics of consid-
erable combinatorial significance, quite independent of possible applica-
tions.

In a book of only moderate length, it is not possible to discuss every-
thing. The following omissions are noted only to inform the prospective
reader of their absence, and are in no way intended as criticisms of
the authors’ choice of material. The simplex method for solving net-
work flow problems is not developed. There is no discussion of the fa-
mous “travelling salesman” problem. As previously noted, applications
to electrical networks are absent, along with continuous flow problems
generally. (It is a book, after all, on combinatorial analysis.) Finally,
the most commercially successful byproduct of network flow theory, the
“PERT chart”, has been mercifully omitted. [Reviewer: Golomb, S. W.]

Zentralblatt 106.34802

The present work, based primarily on the author’s research, is the first
systematic and complete treatment of the class of problems dealing with
flows in capacity constrained networks. For this reason, it is difficult to
present the numerous and interesting results. Chapter I studies the
static maximal flow problem. If we denote by N = {x, y, . . .} a fi-
nite set of nodes, by s, t two distinguished elements, by A a subset of
arcs (x, y), by c(x, y) the non-negative real number associated to (x, y)
and called capacity and by G = (N ;A) the resulting connected net-
work, then the problem is to maximize v subject to the flow constraints∑

y∈A(x) f(x, y)−
∑

y∈B(x) f(y, x) = v, 0,−v (according as x = s, x 6= s, t

or x = t) and f(x, y) ≤ c(x, y), where f : A 7→ ℜ+ (non-negative reals),
A(x) = {y ∈ N |(x, y) ∈ A} and B(x) = {y ∈ N |(y, x) ∈ A}. Given a
network G, a cut C separating s and t is a set of arcs (X,X), where s ∈ X
and t ∈ X; the capacity of the cut is c(X,X) =

∑
(x,y)∈(X,X) C(x, y).

One obtains the fundamental result, namely the max-flow min-cut theo-
rem: for any network the maximal flow value from s to t is equal to the
minimal cut capacity of all cuts separating s and t. A simple and effi-
cient method (labelling process) is given in order to obtain a maximal
flow. Also, an important result is proved (integrity theorem), assert-
ing that if the capacity function is integral valued then the resulting
flow is also integral valued. These three topics form the base of the
whole book. In Chapter II, several necessary and sufficient conditions
(feasibility theorems) for the existence of a network flow satisfying var-
ious linear inequalities are obtained. Using the integrity theorem, the
authors give a treatment in terms of the network flows of some combi-
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natorial problems such as Kőnig-Egerváry and Menger graph theorems,
Dilworth’s chain decomposition theorem for partially ordered stes, set
representatives, matrices composed of 0’s and 1’s. The minimal cost
flow networks, considered in Chapter III, are of the type of transport
problems. A combinatorial technique, based on the Hungarian method,
is applied to numerous problems: the Hitchcock problem, the optimal
assignment problem, the shortest chain problem, the warehousing prob-
lem, the caterer problem. One presents also a general algorithm for
solving the minimal cost flow problem in networks with constraints and
an equivalence is proved between this problem and the Hitchcock prob-
lem. The last chapter of the book is devoted to multiterminal maximal
flows. The problems are similar with those of the first chapter; now one
considers no more a single pair of nodes but the whole set. The book
has no banal parts; the attention is captivated from the first to the last
page. [Reviewer: D. Vaida]
Keywords: applications of probability theory, mathematical program-
ming.



Chapter 5

Minimum Spanning Tree:
Neglected Papers

The minimum spanning tree problem, like the shortest–path problems, is
one of the “easy” discrete–optimization problems, in terms of complexity
of the existing algorithms for solving the problem. The minimum span-
ning tree problem was formulated in many different ways and contexts
as early as the first half of the twentieth century. Later, this problem
became one of the basic graph–theoretical problems. Already in the
1950s, formulations of this problem in a “purely theoretical” mathemat-
ical language appeared. With the emergence of complexity theory in the
1970s, attempts at reducing the computing time of the minimum span-
ning tree algorithms, particularly by employing special implementation
of algorithms and special data structures, become more important.

5.1 Specific Background

Before going into a more detailed analysis of the minimum spanning
tree algorithms, a brief survey of the notions and results on minimum
spanning trees is presented.

Definition 5.1 A subtree of a finite graph G(V,E) is a subgraph that
does not contain cycles. A spanning tree of a finite graph G(V,E) is a
connected factor that does not contain cycles.

Definition 5.2 Minimum spanning tree of a finite weighted graph G(V,E)
is a spanning tree of the graph G(V,E), for which the sum of the weights
of the edges is minimal of all the spanning trees of the graph G(V,E).

124
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In contemporary graph–theoretical textbooks, the task of finding
a minimum spanning tree can be formulated in the following way: “Given
an undirected weighted graph, find its minimum spanning tree.” The
graph for the minimum spanning tree problem is weighted and loopless.1

Some mathematicians also require that the weights of the edges are mu-
tually different. When this condition is satisfied, the minimum spanning
tree is uniquely determined. On the other hand, if the contrary holds,
the minimum spanning tree still exists — only it may not be uniquely
determined.

Theorem 5.3 If the weights of the edges of a graph are mutually dif-
ferent, the minimum spanning tree of this graph is uniquely determined.

Proof: The theorem will be proven by contradiction.
Assume that there exist two mutually different minimum spanning trees
T1, T2 of a finite graph G(V,E). Then there is at least one edge in each
minimum spanning tree that is not contained in the other tree: e1 ∈ T1

and e2 ∈ T2. Let us assume (without loss of generality) that the weight
of e2 is less the weight of e1. (According to the assumption, the weights
cannot be equal.) When e1 is removed from T1, the resulting graph T

′
1

consists of two subtrees. The two following cases can occur:
1. e2 connects the two subtrees. Then we connect the two subtrees

by e2. This way, we construct a minimum spanning tree that is smaller
than the minimum spanning tree T1, which is a contradiction.

2. e2 does not connect the two subsets. Then e2 must form a cycle
with some edges of T1. We return the removed edge e1 to T

′
1, add e2 to

T
′
1 and delete the edge with the greatest weight from the cycle formed

by the edges of T1 and e2. It is obvious that the weight of the resulting
tree is again smaller that the weight of the minimum spanning tree T1,
which is a contradiction again. 2

When edge weights are not mutually different, there can be more
then one minimum spanning tree. However, it can easily be seen that
this condition (for mutually different edge weights) can be secured in
practice by adapting the edge weights slightly. This claim is justified
e.g. by Anton Kotzig in his paper [Kot61b], in which he also states
and proves the necessary and sufficient condition for the existence of a
unique minimum spanning tree of a graph. The requirement of mutu-
ally different edge weights has hardly any consequences in the sense of

1For precise definitions of these notions, the reader is referred to Chapter 2.
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limitations for the practical usage of the minimum spanning tree algo-
rithms.2

The classical minimum spanning tree problem, as described above,
is defined for undirected weighted graphs (usually, but not necessarily,
without multiple edges). The corresponding term for directed graphs is
“arborescence”. This problem is dealt with, for example, by the Chinese
mathematicians Chu and Liu in their paper [CL65].3

Generalisations of the problem can also be connnected with the net-
work’s reliability: namely, discarding any edge from an existing (min-
imum spanning) tree renders the graph disconnected.4 The task of
designing the cheapest network which would at the same time “sur-
vive” removal of any one of the edges was posed by Karel Čulík
[Čul60a, Čul60b] and Anton Kotzig [Kot61a].

5.2 The Development of the Minimum Span-
ning Tree Problem

Up to now, the minimum spanning tree problem has been solved by
many mathematicians — the best known algorithm is probably that of
Kruskal (1956) and the oldest one that of Borůvka (1926). Some
procedures for cluster analyses are sometimes also considered to belong
to minimum spanning tree algorithms (see [GH85]). 5

There are many practical applications of the minimum spanning tree
problem, or rather, practical usage was often the motivation for solving
this problem. Such was the case with at least some mathematicians, for
example Borůvka, Prim, and Loberman and Weinberger. Elec-
tricity, telephone, or computer networks may be used for illustrating
the problem. For electricity networks, the task may be formulated as
follows:

There are n towns which need to be connected in an elec-
2Similarly, the fact that integral–valued flow exists in graphs with integral–valued

capacity function does not limit the use of Ford-Fulkerson algorithm in practice. (See
Chapter 4 for details.)

3For definition, see Section 5.4.
4Any tree – weighted, unweighted, or minimum – with one edge left out is, of

course, not a connected graph.
5Graham and Hell trace the prehistory of the minimum spanning tree problem as

far as the cluster analyses used by the Polish anthropologist Jan Czekanowski as early
as 1905. This seems a bit far–fetched, but as the work done by  Lukaszewicz et al. is
also connected to anthropology, the connection of cluster analyses and the minimum
spanning tree problem could be considered.
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tricity network. The distances between every two towns are
given. The task is to find the network which would connect
all the towns using the least wire possible (and thus mini-
mizing the cost of building the network).

The above is, in fact, the formulation Otakar Borůvka, a Czech
mathematician, was presented with in 1925 by an employee of the West
Moravian Power Plant Company, Jindřich Saxel.6 However, Borůvka
did not use the graph–theoretical language of vertices or nodes con-
nected by edges, arcs, or branches in his solution. Instead, his language
is a language of algebra: matrices, rows, and columns.7

Soon after Borůvka published his solution, another Czech mathe-
matician, Vojtěch Jarník, reacted by publishing his own solution to
the problem. His solution was formulated clearly and succinctly. It is
not very formalized (which is not to say that it is mathematically impre-
cise), but, unlike Borůvka, Jarník is not concerned with the practical
application of the problem too much. Similarly, we find little infor-
mation on the use of spanning trees in practice in another reaction to
Borůvka’s paper [Kru56], written in 1956 by the American mathemati-
cian J. B. Kruskal. Other mathematicians do not react to Borůvka’s
paper, although at least one of them quotes him (R. C. Prim, 1957:
[Pri57]). Some mathematicians (e.g. Loberman and Weinberger,
1957: [LW57]; R. C. Prim, 1957: [Pri57]) are concerned with other ap-
plications of the minimum spanning tree problem, or look at the problem
from the mathematical point of view only (e.g. E. W. Dijkstra, 1959:
[Dij59b]).

The last mathematician mentioned, Dijkstra, actually presents
Jarník’s method for finding the minimum spanning tree, only in a dif-
ferent mathematical language.8 When Vojtěch Jarník published his
response in 1930 [Jar30], he used the same words as Borůvka to name

6Borůvka himself says he wants to maintain the memory of Jindřich Saxel, includ-
ing his name, as Saxel, being a Jew, fell victim to fascism during the Second World
War:
“At that time, that is, some time between the the end of 1925 and the beginning of
1926, I met an employee of West Moravian Power Plants, a man of the name Jindřich
Saxel. He was a graduate of a secondary technical school, but a very talented and
hard–working person. I want to mention his name, particularly to pay homage to his
remembrance — as a person of Jewish descent, he was executed by the Nazis during
the martial law in Brno in the Kaunitz college.” [TŠP96, p. 52]

7Borůvka’s solution will be analysed in greater detail in Section 5.3.1.
8At this point, the distinction is being made between Jarník’s and Dijkstra’s ter-

minology (“numbers” versus “nodes”). It is irrelevant that one of the papers was
written in Czech and the other in English. See Sections 5.3.2 and 5.4.4 for details.
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the problem: it is also a certain minimum problem for him. In contrast
to that, Dijkstra speaks about a standard graph–theoretical problem:
construction of the tree of minimum total length.

Before the most famous paper on the minimum spanning tree was
published [Kru56], at least two other papers were published in French:
a note by Gustave Choquet (1938) and a joint paper by Florek,
 Lukaszewicz, Perkal, Steinhaus, and Zubrzycki (1949), which
both present solutions similar to those of Borůvka and Jarník.

J. B. Kruskal, in his reaction [Kru56] to the abstract of Borůvka’s
1926 paper, introduces the term “shortest spanning subtree”. He cites
Borůvka’s paper [Bor26a] as an inspiration for his work, but his assess-
ment of Borůvka’s solution as “unnecessarily elaborate” [Kru56, p. 48]
probably caused the luke–warm interest in this paper in the mathemat-
ical community in the years to follow. This is how Prim interpreted
Kruskal’s words [Pri57, p. 1401]:

Kruskal refers to an obscure Czech paper [Bor26a] as giving
a construction and uniqueness proof inferior to his.9

Loberman and Weinberger, the authors of a minimum spanning
tree algorithm equivalent to Kruskal’s, seem to have encountered the
minimum spanning tree problem quite independently of other mathe-
matical papers. They pose the following problem [LW57, p. 428]:

Given a number of terminals, fixed in space, which must be
electrically connected together, what procedures will provide
the minimum wire length? A proper pattern of connections
is one in which there exists one and only one path, either di-
rect or through other terminals, from each terminal to every
other terminal and in which there are no loops created by
redundant connections.

As can be demonstrated by the quotation above, Loberman and
Weinberger use a completely different term for minimum spanning
tree: for them, it is a “proper pattern”. They, however, show some
awareness of the fact that this problem belongs to a particular area of
mathematics. In the following paragraph, they say [LW57, p. 428]:

Problems of this type have been considered in topological ar-
eas of mathematics, more particularly in the theory of graphs
[Kőn86].10

9Emphases and reference mine.
10Reference mine.
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In the same year, R. C. Prim published his solution of the shortest
connection networks. Again, his paper is practically motivated. His
two principles for building the “shortest connection network” suggest
a procedure similar to Borůvka’s algorithm, but his demonstration
suggests the use of the procedure put forth by Jarník. The fact that
Prim does not state clearly the order of the steps puts his paper on a
similar level with that of E. F. Moore on the shortest path problem.11

A quite different approach can be found in the paper of E. W. Dijk-
stra, published only two years later [Dij59b]. Dijkstra simply speaks
about “two problems in connexion with graphs”. The algorithm pre-
sented in his paper is actually the same as the one presented by Prim
two years before, or even earlier (1930) by Jarník. Dijkstra, how-
ever, quotes neither. He only quotes the papers [Kru56] and [LW57] and
demonstrates that his solution is better than these two.

In the 1960s and 1970s, the debate about the quality of algorithms
shifts towards the speed of the algorithms. This is for example manifest
in the article by Yao [Yao75], a major part of which is devoted to the
analysis of the algorithm presented. Of course, assessment of algorithms
according to their effectiveness and storage requirements can be found
also in earlier papers, but these remarks are often not comparable (es-
pecially because of the terminology, which was far from being united
then).

The classical minimum spanning tree problem can also be gener-
alised. In his papers [Kot61b, Kot61a], Anton Kotzig proposes two
modifications of the problem: one is concerned with the uniqueness of
the solution, the other with the network’s stability. The former, as
Kotzig himself claims, is not of great importance. The latter, however,
changes the minimum spanning tree problem into a problem of build-
ing a reliable network. The same problem was posed also by the Czech
mathematician Karel Čulík in 1960 [Čul60b].

The following sections consist of the description of the algorithms
presented by Borůvka (1926), Jarník (1930), Kruskal (1956), Lober-
man and Weinberger (1957), Prim (1957), and Dijkstra (1959),
respectively. The algorithms are presented also in adapted versions in
order to make the comparison of the methods used by the individual
mathematicians possible. Section 5.5 then points out some directions of
the further development of the minimum spanning tree problem.

11See Chapter 3 for details of Moore’s paper.
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5.3 The “Neglected Papers”

The three papers presented in this section all deserve the attribute “ne-
glected.” They all present good algorithms for solving the minimum
spanning tree problem, but they remain unnoticed by contemporary
mathematicians, who usually cite the algorithms of Kruskal and Prim.
Two of them are written by Czech mathematicians Borůvka [Bor26a]
and Jarník [Jar30] (in Czech), the third one is written by a group of
Polish mathematicians led by  Lukaszewicz (in French).

5.3.1 Borůvka, 1926

From the two articles Borůvka published on this topic, one is the
mathematically precise formulation [Bor26a], the other one is an article
in Elektrotechnický obzor, a journal for electrotechnics [Bor26b]. The
former is written in a mathematically precise way using terms like “ma-
trix”, “row”, and “column”, the latter in plain language, but the idea
behind both of them is the same. It is also possible that the use of
the “language of algebra” in the paper [Bor26a] was deliberate, namely,
that the article [Bor26b], written in plain language, would not have been
accepted as a “mathematical paper”.

Borůvka’s mathematical formulation of the problem

In the mathematical paper, Borůvka starts by posing the following
problem [Bor26a, p. 37]:

Let a matrix of M numbers rαβ(α, β = 1, 2, . . . , n;n ≥ 2), up
to the condition rαα = 0, rαβ = rβα positive and mutually
different, be given.

We are to choose from it a group of mutually different non-
zero numbers such that

1˚ it were possible, if p1, p2 are any two different natural
numbers ≤ n, to choose from it a partial group of the form

rp1c2, rc2c3 , rc3c4 , . . . , rcq−2cq−1 , rcq−1p2

2˚ the sum of its members is lower than the sum of the
members of any other group of mutually different non-zero
numbers complying with the condition 1˚ .
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Borůvka then presents his algorithm, described below. In the arti-
cle, operations are performed on rows and columns of a matrix. Another
interesting feature is the presentation of the algorithm: as no code for
describing such procedures existed then, the algorithm is rather difficult
to follow. As a final remark, Borůvka connects “points in a plane (or
generally in a r-dimensional space” [Bor26a, p. 16] and refers the reader
to the more down–to–earth description of his procedure in his article
[Bor26b].

Algorithm: Borůvka, 1926

A symmetric matrix A(n × n) of mutually different positive numbers
and with zeros on the main diagonal is given. The aim is to find a group
of n numbers satisfying the following two conditions (as quoted above):

1˚ the condition of connectedness, and
2˚ the condition of minimality.
The algorithm presented in the paper [Bor26a] is difficult to follow

for the contemporary reader, and therefore it is presented in an adapted
form here.12 The version presented below is of course not yet the nowa-
days desired computer programme; however, changing Borůvka’s ex-
pression in a pseudo-code would completely distort the picture of how
the algorithm was formulated.

Step 1. Choose a row rα in the matrix.13

Step 2. Choose the smallest positive number in this row, rαβ. [This
number, marked T1, becomes the first member of the minimum
spanning tree.] We now look at the row rβ, determined by the
column index of the number rαβ that has just been chosen.

Step 3. (The algorithm now divides into two branches according to
the answer to the following question:) Is there a number in the
new row rβ that is smaller than the number rαβ included in the
minimum spanning tree Tk in the previous step?

Yes: The smallest of such numbers becomes a new member of the
minimum spanning tree, and is marked T(k + 1). Perform
Steps 2 and 3 with the newly added number.

12In the original, Borůvka does not distinguish between the individual steps, for
example.
13Alternatively, we may start by choosing a column.
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No: Choose a different row (arbitrary choice) and perform Steps
2 and 3. If there are no isolated rows, Stop.

The procedure given above is performed until there are no isolated
rows, i. e. there are no rows in which there is no number chosen. The
maximum number of repetitions is (n− 1), according to Borůvka. As
the result of these (n− 1) repetitions, we get smaller sets which need to
be connected. Borůvka computes a smaller matrix: the distances are
now computed as the shortest distances between the subsets of numbers.
Finally, after we get a set that contains all the subsets, we construct the
minimum spanning tree. Since the distances are mutually different for
Borůvka, there is no problem with constructing the tree using the
numbers (lengths or weights of the edges) chosen in the course of the
algorithm, for each edge is uniquely determined by its length.14

From the historical point of view, it is important to mention that
Borůvka gave a lecture on this problem and his solution of it while he
was in Paris in 1926. The topic was chosen by Prof. Coolidge,the
chair of the seminar, out of three topics offered by Borůvka. Accord-
ing to R. L. Graham and P. Hell [GH85, p. 47], the following note
recommended by Elie Cartan,with whom Borůvka was in close con-
tact during his 1926 stay in Paris, was published in Comptes Rendus by
Gustave Choquet ([Cho38], translation taken from [GH85, p. 47]) in
1938:

Construction of the Minimum Network: One joins by a seg-
ment each city with the city nearest to it. If the set of all
these segments forms a continuum line [is connected], it is
the desired network. If not, one joins each of the continua
[connected components] with the continuum nearest to it by
means of a segment joining the closest two cities of the con-
tinua. If the set formed in this fashion is a continuum, it is
the desired network. If not, one continues in the same way.
The desired network will be found after at most 2n elemen-
tary operations, where an elementary operation is the search
for the continuum nearest to a given continuum.

The above description is actually very similar to Borůvka’s article
in Elektrotechnický obzor [Bor26b, pp. 153–154]:15

14It was proved in Section 5.1 that when all the edge weights are different, the
minimum spanning tree is uniquely determined.
15For full version of the article, see the Appendix.
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I will solve the task [of joining given points into a connected
network with shortest length] for the forty points given in
[Fig. 1].

I connect each of these points with the closest one. [. . . ] I
get several polygonal lines. [. . . ]

I connect each of these [polygonal lines] in the shortest way
with the nearest [polygonal line]. [. . . ]

Finally, I get one polygonal line that solves the given prob-
lem. 16

Figure 5.1: Borůvka: The Solution

It was not until 1956 that Borůvka’s paper became more widely
known outside Czechoslovakia. In Czechoslovakia, there were some
reactions to Borůvka’s solution. The first response came from an-
other Czech mathematician, Vojtěch Jarník.Borůvka’s paper is also
quoted by Anton Kotzig in his papers [Kot61b, Kot61a], in the text-
book [ČDF67], and (obviously) in many later Czech and Slovak text-
books.

5.3.2 Jarník, 1930

Vojtěch Jarník’s article on this topic [Jar30] is an extract from a letter
to O. Borůvka. Therefore it is written in the first person singular,
16See Figure 5.1
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which is quite unusual for a mathematical paper. Jarník introduces
the problem by saying [Jar30, p. 1]:

The interesting problem you solved in your paper [Bor26a]17

can be solved in a different and — in my opinion — better
way.

The formulation of the problem by Jarník is particularly interesting
[Jar30, p. 1]:

Let n(n ≥ 2) elements, denoted by the numbers 1, 2, . . . , n,
be given. From these elements, I construct 1

2n(n − 1) cou-
ples [i, k], where i 6= k; i, k = 1, 2, . . . , n; the couple [i, k]
is identical with the couple [k, i]. Every couple [i, k] is as-
signed a positive number ri,k(rk,i = ri,k). These numbers
ri,k1 ≤ i < k ≤ n), in the number of 1

2n(n − 1), should be
mutually different.

Jarník further speaks about a chain, complete part, and minimum
complete part. He finally describes his solution on an example of n small
balls with sticks of different weight, namely the small balls i and k are
connected by a stick with weight ri,k. The sticks do not touch each other
— for this purpose, they can also be bent. The task is: remove some of
the sticks in such a way that all the small balls remain connected and
the weight of the remaining sticks is minimum of all such sets of sticks.

Algorithm: Jarník, 1930

Jarník connects the given elements starting from any one of the ele-
ments and ending when all the elements have been connected into an
uninterrupted whole — the minimum spanning tree, in later terminol-
ogy. The first and second steps are identical with Borůvka’s, the third
step is different: Jarník’s algorithm never proceeds to a completely new
vertex, outside the existing “partial set”; he is always trying to extend
the already existing part.

Step 1. Choose a point. (This is just a different formulation of
Borůvka’s choice of a collumn.)

Step 2. Choose the shortest edge going out of that point. (Again,
equivalent to Borůvka’s choice of the smallest number in the chosen
row.) Steps 1 and 2 give a fragment.

17Reference mine.
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Step 3. Find the point closest to the fragment. Perform Step 3 until
all the points are joined.

Jarník’s article is much shorter than Borůvka’s, yet he manages
to describe the algorithm concisely. He actually presents the algorithm
in a definition of the minimum complete part (mcp) and says at the
end of the article that “the construction of the mcp is clear from its
definition.”

Since Borůvka’s article was read at least in Paris and thirty years
later by J. B. Kruskal, Jarník’s article is perhaps the one that
deserves the name “neglected” most. As Jaroslav Nešetřil and
Bernard Korte say [KN99, p. 42]:

[. . . ] O. Borůvka is quoted by both the standard early ref-
erences: J. Kruskal [Kru56] and R. Prim [Pri57]. Vojtěch
Jarník’s article only began to be quoted later, see e.g. K. Čulík,
V. Doležal, and M. Fiedler [ČDF67], despite the fact that his
treatment was very precise (like all his mathematical work)
and modern.18

On the other hand, Jarník’s paper was written in Czech and did
not have a German summary like Borůvka’s article, which could be a
good enough reason for it to be forgotten.19 There is also another point
about quoting the article [Bor26a]: the fact that other mathematicians
quote it is, in itself, not enough. The citation by Kruskal is accompa-
nied by the remark in the text that “the construction given by Borůvka
is unnecessarily elaborate”, and Prim even indirectly suggests that he
has not read Borůvka’s paper at all, because he did not consider it
worth reading. The same assessment — that Borůvka’s solution is
unnecessarily elaborate — is presented also in [ČDF67, p. 32]:

We will immediately see that this procedure is, in comparison
with the others, very complicated, and therefore unsuitable
for practical usage, especially for computers. Therefore we
will not even prove its correctness.

How wrong Čulík, Doležal, and Fiedler were only became ap-
parent recently when the minimum spanning tree algorithms were tested

18References mine.
19O. Borůvka was very much aware of the necessity to publish the results of scientific

work, which can be demonstrated also by his strive for a Brno mathematical journal,
now known as Archivum Mathematicum.[TŠP96, pp. 134–137]
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on computers, and Borůvka’s algorithm came out as the best one. (See
[Šiš97, p. 50].)

5.3.3  Lukaszewicz et al., 1949

The paper reporting on the work of a group of Polish mathematicians
led by J.  Lukaszewicz gives the following hints on the motivation of
the problem [F LP+51, p. 282]:

This work is a summary of certain applications of mathe-
matics in natural sciences.

The algorithm presented by  Lukaszewicz is based on the same
idea as Borůvka’s, or more recent Prim’s, algorithm. No reference to
other mathematical papers is given, which suggests independent work
of  Lukaszewicz and his colleagues. In a footnote, they say [F LP+51,
p. 282]:

These methods of connection and division were proposed to
antropologists for arranging excavated cranes. They were
also applied, with effect, to problems in biology, agricul-
ture, technology, and also linguistics. See Taksonomia Wro-
clawska, work of the General Group for Applications of the
State Mathematics Institute (Przeglad Antropologiczny, to
appear). Cf. there the collective communication Une méth-
ode taxonomique et ses applications aux sciences naturelles,
this volume, p. 319.

 Lukaszewicz and his colleagues were thus well aware of the practi-
cal applications of their method. The method of constructing the min-
imum spanning tree is described generally, using the terms “polygo-
nal line” (“ligne polygonal”), “segment” (“segment”), or “tree” (“den-
drite”).

Algorithm:  Lukaszewicz et al., 1949

The algorithm begins by connecting each point to the nearest one, which
is reminiscent of Choquet’s note discussed in Section 5.3.1 [F LP+51,
p. 283]:

We connect into a segment two nearest points: the segments
thus obtained are called lines of the first order. 20

20The original quotation from the paper by  Lukaszewicz et al. are given in the
Appendix on page 173.



Chapter 5. MinimumSpanning Tree 137

In the following steps, the distance between the segments of points
is defined and the nearest segments are connected. This procedure only
differs from that of Borůvka in that a point is only connected to the
nearest and no other lines are drawn.21 After the construction is given,
 Lukaszewicz et al. present a theorem [F LP+51, p. 284] saying that
the constructed connection of the points satisfies the conditions set for
a “dendrite” (i.e. the minimum spanning tree, in contemporary graph–
theoretical terminology). The theorem is then proven, which might be
seen as the origin for the proof of correctness of an algorithm. The
algorithm of  Lukaszewicz et al. is essentially equivalent to Prim’s
1957 solution [Pri57].

5.4 Towards the Graph–Theoretical Formula-
tion

In the mid–1950s, more graph–theoretical formulations of the minimum
spanning tree problem appear. The authors are, however, not always
conscious of the graph–theoretical aspect of the problem and the termi-
nology is not yet established. The articles by Kruskal, Prim, Dijk-
stra, and Loberman and Weinberger all belong to this period.

5.4.1 Kruskal, 1956

Kruskal’s algorithm is the most frequently cited one of all the algo-
rithms mentioned here. Kruskal gives only one reference: to Borůvka’s
paper [Bor26a]. Forty years later, he says in his recollections about the
minimum spanning tree problem [Kru97, p. 13]:

Someone [. . . ] handed me two pages of very flimsy paper
stapled together. He told me it was ‘floating around the
math department’. [. . . ] the pages were typewritten, carbon
copy, and in German. [. . . ] I never found out who did the
typing or why.

The ‘flimsy paper’ was the German abstract of Borůvka’s article
[Bor26a]. Kruskal found the problem challenging, but he said in his
paper that he was always looking for easily comprehensible solutions.

21Borůvka connects another point to the segment if the weight of the line going to
that point (for Borůvka, a number in the appropriate column of the matrix) is less
than the line that has just been added. It is probably this formulation that makes
Borůvka’s algorithm less comprehensible.
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His algorithm, indeed, is very easy to understand, but its execution
might take longer, especially when the graph contains a greater number
of edges.

Algorithms: Kruskal, 1956

Kruskal presents three different constructions of the shortest spanning
subtrees: A, B, and A′. In fact, construction B is only a special case of
A and A′ is in “some sense dual to A” [Kru56, p. 49]. Here is Kruskal’s
formulation [Kru56, p. 49]:

Construction A. Perform the following step as many times
as possible: Among the edges of G not yet chosen, choose
the shortest edge which does not form any loops with those
already chosen. Clearly the set of edges eventually chosen
must form a spanning tree of G, and in fact it forms a shortest
spanning tree.

The above can be divided into three steps:

Step 1. Sort edges according to their lengths (‘distances’) from the
smallest to the largest.

Step 2. Take edges from the shortest to the longest and decide whether
the particular edge is part of the minimum spanning tree or not.

The criterion: Does the edge form a cycle with the previously chosen
edges?

Yes: Discard the edge.

No: Add the edge to the minimum spanning tree.

Construction A’ consists of removing the longest edges of the
graph, i.e. different sorting of edges is required and the minimum span-
ning tree is formed by the not chosen edges. Construction B is basically
the same as construction A, only it is performed on a subset of vertices
and it reduces to Construction A when the subset of vertices is the whole
set of vertices of the given graph [Kru56, p. 49].

In his article, Kruskal also talks about Borůvka’s algorithm as
being in some sense inferior to his own solution: “The construction given
in [Bor26a]22 is unnecessarilly elaborate.” [Kru56, p. 48] It was probably

22Reference mine
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just this sentence that caused that other mathematicians did not bother
to try and find Borůvka’s article, the fact that Borůvka’s article was
written in Czech being another nuisance. Thus, Borůvka “disappears”
to be rediscovered for the mathematical world by Graham and Hell
in 1985 [GH85].

5.4.2 Loberman and Weinberger, 1957

The two authors are aware of the equivalence of their solution to the
solution of Kruskal, which had been published earlier. In a footnote,
they say [LW57, p. 429]:

This reference [Kru56]23 was discovered by the present au-
thors after their procedures had been formulated. It is seen
that the “procedures” presented here and Kruskal’s “con-
structions” are identical. However, it is felt that the more
detailed implementation and general proofs of the procedures
justify this paper.

Algorithm: Loberman and Weinberger, 1957

The algorithms (“procedures”) A and B are presented in flow diagrams
[LW57, p. 432]: Procedure A as well as Procedure B begin by
sorting the edges sequentially in order of increasing length. Loberman
and Weinberger start by including the shortest edge into the minimum
spanning tree. The edges are then considered in order of increasing
length and are (not) included into the minimum spanning tree under
the following conditions [LW57, p. 430]:

Condition 1. Neither of the two nodes is present in a sub-
tree. Therefore the branch is made. The two nodes are
recorded as constituting another new subtree.

Condition 2. Only one of the nodes is present in a subtree.
Therefore a branch is made. The new node is added to
the subtree containing the other node of this branch.

Condition 3. Each of the two nodes is present in a differ-
ent subtree. Therefore the branch is made. The two
different subtrees, each containing one of the nodes, are
combined into a single subtree.

23Reference mine.
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Condition 4. Both nodes are present in the same subtree.
Therefore the branch is not made.

Loberman and Weinberger were solving a practical problem in
their paper, or at least practical problems were the source of their prob-
lem [LW57, p. 428]:

In the construction of a digital computer in which high-
frequency circuitry is used, it is desirable and often neces-
sary when making connections between terminals to mini-
mize the total wire length in order to reduce the capacitance
and delay–line effects of long wire leads.

Despite the practical motivation behind this paper, the formulation of
the solution is quite detailed and the explanations clear. It includes
examples as well as general statements. The same, except for clarity, is
true for another practically oriented paper [Pri57].

5.4.3 Prim, 1957

Robert C. Prim found the minimum spanning tree problem also chal-
lenging. In his article [Pri57], he gives a solution which is, at least
according to him, better than Kruskal’s. In fact, his approach to the
minimum spanning tree problem reminds one of Borůvka’s solution.

Algorithm: Prim, 1957

Prim states two principles for finding the minimum spanning tree of a
graph [Pri57, p. 1391]:

P1: Any isolated terminal can be connected to the nearest neighbour.

P2: Any isolated fragment can be connected to the nearest neighbour.

Following these two principles might result in formulating either Borůvka’s,
or Jarník’s algorithm, depending on the choice of the third step (see
Sections 5.3.1 and 5.3.2).

Like Borůvka, Prim also presents a distance matrix for his solu-
tion. As Prim says, (n− 1) applications of either of the principles give
the desired result. The only complication is that we have to compute
the distance to the nearest neighbour anew every time.

Looking at the history of the problem, it is interesting to note that
although Prim gives the reference to Borůvka, he apparently had not



Chapter 5. MinimumSpanning Tree 141

read the article. He says: [Pri57] “Kruskal refers to an obscure Czech
paper as giving a construction inferior to his.” However, Borůvka’s
technical paper [Bor26b] presents the same idea as Prim’s article [Pri57].

5.4.4 Dijkstra, 1959

If Prim’s algorithm can be described as being very similar to that
of Borůvka or Jarník, then Dijkstra’s solution is equivalent to
Jarník’s.

Algorithm: Dijkstra, 1959

Dijkstra uses three sets of edges and two sets of vertices. The sets of
edges are denoted I, II, and III, the sets of vertices as A and B (‘MST’
stands for “minimum spanning tree”):

I. MST edges,
II. edges from which the next MST edge will be chosen, and
III. not yet considered or rejected edges.
A. vertices connected by edges from I, and
B. remaining vertices.

To begin with, set I is empty, and set A contains one arbitrarily
chosen edge. The algorithm ends when the set B is empty, i.e. when no
unconnected vertices remain.

Initialization: Choose any vertex u as a starting point — the only
member of set A. The set II is the set of all edges going out of u.

Step 1. Choose the shortest edge from set II; this is the first edge of set
I (in which the edges of the minimum spanning tree are gathered).

Step 2. Consider edges going from the vertices of the chosen edge and
adjust set II: Always choose the shortest edge going from vertices
in set A to vertices in set B.

Repeat Steps 1 and 2 until set B is empty.

Like Jarník, Dijkstra starts from one point and ‘spreads’ the net-
work across the set of vertices (numbers denoting elements, for Jarník).
Also, there is some similarity between Prim’s and Dijkstra’s algo-
rithm. However, Dijkstra cites neither Jarník’s, nor Prim’s solution.

After describing the algorithm for the minimum spanning tree prob-
lem, he remarks that “the solution given here is to be preferred to the
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solution given by Joseph B. Kruskal [Kru56] and H. Loberman and
A. Weinberger [LW57]” and gives reasons why.

5.5 Generalisations and Extensions

Once we know several good solutions to the minimum spanning tree
problem, it seems as if the problem is “dead”. There are, however,
several directions in which we can pose new problems: the minimum
spanning tree problem can be extended also to directed graphs (and the
result is then called and “arborescence”); the solution of the minimum
spanning tree may not be unique when the edge weights are not mutu-
ally different; the connectedness of the minimum spanning tree can be
destroyed by removing any one of the edges; and finally, there are bet-
ter implementations of the existing algorithms which might significantly
reduce computing time for graphs of greater size.

5.5.1 Uniqueness of solution

In 1961, the Slovak mathematician Anton Kotzig published two arti-
cles on the minimum spanning tree problem. In the first one, he gener-
alizes the minimum spanning tree problem also for graphs whose edge
lengths are not mutually different.

The uniqueness of the minimum spanning tree problem solu-
tion

Kotzig notes on the practical usage of his results [Kot61b, p. 2]:

Note 1. The presented generalization is of no practical im-
portance, since the opposite was done by O. Borůvka as a
simplification of the original problem.

Kotzig gives his construction in a theorem [Kot61b, p. 3]:

Let G be a connected graph with p vertices and q edges.
Let δ be some mapping assigning weight to the edges of G.
Let m = q − p + 1. We form a sequence of subgraphs of
G: G0, G1, . . . , Gm and a sequence of edges ∈ G in the fol-
lowing way: The edge hi is any arbitrarily chosen edge from
H(Gi−1).

This is basically Kruskal’s construction A′, of which Kotzig is
fully aware:
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The construction of graph Gm presented in Theorem 1 is an
appropriately adapted Kruskal’s construction A′.

Kotzig then formulates the necessary and sufficient condition for the
uniqueness of the minimum spanning tree [Kot61b, p. 4]:24

Theorem 5.4 (Kotzig, 1961) Let G be a connected weighted graph
and G0 any chosen subgraph of G with the properties (α) — it contains
all the edges of G, (β) — is connected, (γ) — is minimal for the given
weight function on G. Let H0 = {h1, h2, . . . , hn} be a set of all such
edges ∈ G that do not belong to G0. We construct the set of cycles
K = {K1,K2, . . . ,Kn} in the following way: The cycle Ki ∈ K is such
a cycle in graph G that contains the edge hi ∈ H0 and all its other
edges belong to the set G0.It holds that in the graph G there exists only
one subgraph with the properties (α), (β), (γ) if and only if for every
i ∈ {1, 2, . . . , n} the following condition holds: The weight of the edge hi
is greater than any other edge in Ki.

5.5.2 Reliability: spanning trees of higher order

In the article [Kot61a] on spanning trees of higher order, Kotzig gener-
alises the minimum spanning tree problem. The notion of the degree of
connectivity of vertices, defined below, plays a crucial role in his paper:

Definition 5.5 We say that the connectedness between two vertices u, v
of a graph G is of degree k if and only if there exists in graph G such
set of k of edges that if all the edges of this set are left out, we obtain
a graph in which the vertices u, v are not connected; if we remove any
k− 1 edges of this graph, we always obtain a graph in which the vertices
u, v are connected.

Spanning tree of k–th order is then defined as a subgraph which
remains connected after removal of any k− 1 edges and is disconnected
after the removal of k edges. It is evident that the spanning tree as
defined earlier in this chapter is a spanning tree of first order.

In the last part of this article, Kotzig tries to construct a mini-
mum spanning tree of k–th order. However, as he demonstrates on an

24The condition that the edge weights of the graph are mutually different is suffi-
cient, but not necessary. For example, we can construct a graph in the following way:
take a minimum spanning tree of a graph and add edges with weight greater than the
maximum edge weight of the minimum spanning tree.
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example, an analogy of Kruskal’s algorithm does not work even for
spanning trees of second order.25

5.5.3 Arborescences: directed spanning trees

In the abstract of their article on shortest arborescences [CL65, p. 1396],
Chu and Liu introduce their generalisation of the minimum spanning
tree problem:

In many practical problems, we should consider not only the
“line–segment” but also the “directional line–segment”. For
example, we may prepare a scheme of routes to a canal under
certain conditions.

An arborescence is defined only in a directed graph. If we omit the
direction of the edges, the resulting graph is a spanning tree. A precise
definition is presented below.26

Definition 5.6 An arborescence of a directed graph G(V,E) is a sub-
graph H(V,A) (A ⊆ E) of G which contains no cycle such that

(a) there is a particular vertex called the root, which is not a terminal
vertex of any arc in A.

(b) For any vertex xj , there is one and only one arc in A, whose ter-
minal vertex is xj.

For the existence of a minimum spanning tree in a graph, it is enough
to require connectedness of a graph. The search for an arborescence in
a graph, however may not always be successful.

The algorithm given by Chu and Liu consists of four steps. They
not only give the general rules for constructing an arborescence, they
also show how the algorithm works on a specific example.
Note: The notation in the following quotation is identical with the

original: the set of vertices is denoted by X and the set of edges by U ,
(directed) edges between the vertices vi, Vj are denoted by (vi, vj); the
term “loop” here stands for “(oriented) cycle”. The set U−(xi) denoted
the edges going into xi:

U−(xi) = {(xj , xi)|(xj , xi) ∈ U, j = 1, 2, . . . , n}.
The solution given in [CL65, pp. 1397–1398] follows.
25This is rather common in discrete optimization problems: a slight change in the

task causes much greater difficulty with the solution.
26This definition is identical with the one presented by Chu & Liu in their paper,

only the notation is partly different.
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Algorithm: Chu and Liu, 1965

Step 1. For any vertex xi whose U−(xi) 6= ∅, take the arc uij such that

l(ui) = minu∈U−(xi)l(u)

(if such arcs are more than one, take one arbitrarily). The set of
these arcs is designated by W0. [. . . ]

Step 2. If |W0| < n−1, then the process stops, and there is no arbores-
cence of G; if |W0| ≥ n− 1, then we choose n− 1 arcs in |W0| and
the set of these n− 1 arcs is designated by V0 such that

maxa∈V0 l(a) ≤ maxb∈W0−V0 l(b).

The choice may not be unique. [. . . ]

Step 3. If there is no loop in V0, then the process stops and H0 =
{X,V0} is the shortest arborescence of the graph; otherwise, there
exist some loops in V . [. . . ] We retract [the loops into single
vertices] and the graph obtained from the graph G by such a re-
traction is designated by G1(X1, U1). The length of the arcs of G1

is redefined.

Repeat steps 1, 2, 3 until the process stops. If the process stops at Step
2, the arborescence does not exist; otherwise the process stops at
Step 3 and the arborescence of the relevant retracted graph Gp

exists.

Step 4. The arborescence Gp obtained in Step 3 is now extended, until
the shortest arborescence of G is obtained.

5.5.4 Implementations

The article [Yao75] by Yao presents an adapted version of an algorithm
attributed to Sollin, which is basically the same as Borůvka’s algo-
rithm. Apart from the expected form of presentation of their algorithm
in the programming language Pascal, we can notice several new aspects
in the discussion of the algorithm:

1. Complexity measure is used throughout the article, without being
defined. It should be noted that this happens only ten years after
the first ideas about the necessity to distinguish between “good”
and “bad” algorithms appeared in [Edm65].
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2. The term “sparse graph” is used for graphs containing relatively
few edges and a distinction is made between the algorithm with
more than |V | log |V | edges and with less than |V | log |V | edges.

3. References are made to special procedures and data structures:
e.g. “median–finding algorithm” or “circular queue”.

A similar tendency can be seen also in other papers on the minimum
spanning tree since the beginning of the 1970s.

5.6 Conclusion

As the first mathematical formulations and solutions of the minimum
spanning tree problem were presented by Czech mathematicians Otakar
Borůvka and Vojtěch Jarník, it is probably the most famous combi-
natorial optimization problem for Czech mathematicians. The tradition
was followed also by Karel Čulík, a Czech graph theorist, and An-
ton Kotzig, a Slovak graph theorist. It is often pointed out that the
two early solutions – by Borůvka and Jarník — are often neglected,
although they are both very good. One of the reasons might be the fact
that both were written in Czech, but as another paper – by a group of
Polish mathematicians lead by  Lukaszewicz, but written in French –
also seems a bit neglected, this reason seems unsatisfactory.

The algorithms described in Sections 5.3 and 5.4 all deal with the
same problem, the minimum spanning tree, and all give the same fi-
nal result. However, the computing time for the algorithm is not the
same, and neither is the time for “updating solution”. Similarly, the
general idea of the algorithm varies. It is worth noticing, though, that
similar solutions were found by Borůvka,  Lukaszewicz and Prim,
by Kruskal and Loberman and Weinberger, and by Jarník and
Dijkstra (and also Prim, in a sense). What is even more surprising,
there are four terminologies used: matrix terminology by Borůvka,
set–theoretical by Jarník, geometrical by  Lukaszewicz, and graph–
theoretical by Kruskal, Prim, Loberman and Weinberger, Dijk-
stra (and of course the more recent authors: Kotzig, Čulík, Chu and
Liu, and others).



Chapter 6

Travelling Salesman
Problem:
Accuracy versus Speed

The travelling–salesman problem differs from the problems dealt with
in the previous chapters in one important aspect, in the aspect of com-
plexity. No polynomial algorithm is known for solving the travelling
salesman problem. The existing algorithms are thus not very useful for
problems on graphs with a large number of nodes. In this chapter, an
overview of the history of the problem, starting in the 1930s and finish-
ing in the 1960s, will be presented. From the historical point of view,
the most interesting features of this problem are the development of al-
gorithms (or rather heuristics) and the manner in which the efficiency
of the algorithms (heuristics) is measured. Computers obviously play a
role in this development.

Since World War II, computers have gained in importance – and
have also undergone a rapid development. This can also be demostrated
on the example of the travelling–salesman problem: the measures for
efficiency of the solution changed significantly. Another major shift in
the approach to the travelling–salesman problem is the preference of
approximate solutions to the exact ones. It no longer seems profitable
to look for the best solution: in other words, fast ways of finding “good”
solutions are preferred to (slow) finding of the “best” solution. The
changes in the approach to the travelling–salesman problem reflect the
change the use of computers and programming languages has brought
to mathematics: the change from the Theorem–Proof method to the
Algorithm–Analysis method.

147
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Before poining out the differences between the problems described
in the previous chapters and the travelling–salesman problems, we will
focus on two similar problems in unweighted graphs. The relationship
between the formulation of the problem and the difficulty of the solu-
tion in combinatorial optimization problems can be demonstrated on
Eulerian and Hamiltonian graphs.

6.1 Eulerian and Hamiltonian Graphs

In 1735, Leonhard Euler gave his solution to the problem of seven
bridges of Königsberg [Eul36, translation taken from [BLW76], p. 3]:1

The problem that should be well known was the following: in
Königsberg in Prussia is an island A, named “der Kneiphof”,
and the river that flow around it, divides into two branches
[. . . ]. There are seven bridges over the river, a, b, c, d, e, f
and g. The question now is, whether somebody can plan his
walk is such a way that he crosses every bridge once and not
more than once.

Euler’s answer was, obviously, negative. However, as a by–product,
he stated the necessary and sufficient conditions for a finite graph to be
Eulerian;2 however, he uses a different terminology. Euler first presents
his description of a journey, stating that it is in a certain sense irrelevant
whether we use the bridge a or the bridge b. He then states that each
letter denoting an island must appear in the description either n

2 times
for an even number of bridges incident with the island, or n+1

2 times for
an odd number of bridges incident with the island. In such a way, we
can count how many times each of the letters denoting an island appears
in the sequence and by comparing the sum of them with the number of
bridges we get the answer to the problem. Euler starts from a given
problem, arrives at the general conclusion, and finally proves that the
desired walk over the Königsberg bridges is impossible.

Euler also mentions one of the crucial features of combinatorial
analysis problems. He says [Eul36, translation taken from [BLW76]]:

As far as the problem of the seven bridges of Königsberg
is concerned, it can be solved by making an exhaustive list
of all possible routes, and then finding whether or not any

1For the picture of Königsberg bridges, see Chapter 1.
2For definition of Eulerian graph, see Chapter 2.
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route satisfies the conditions of the problem. Because of the
number of possibilities, this method of solution would be
too difficult and laborious, and in other problems with more
bridges it would be impossible.

This describes the very aspect of the difficulty of solving the trav-
elling salesman problem: we are certain that there is a solution, but
finding the best one might take too much time. Euler managed to
answer the question as to which graph is Eulerian; however, nobody has
managed to find a similar condition for a graph to be Hamiltonian so
far.3

In 1857, Sir William Rowan Hamilton sold his Icosian game to
a wholesale dealer in games and puzzles for $25. In 1859, the game was
sold with a leaflet with instructions, whose principal author was W. R.
Hamilton himself. The game consisted of a wooden board with holes,
with a letter assigned to each of them, and numbered pegs. The board
was a certain diagram of icosaedr (Figure 6.1):

Figure 6.1: Icosaedr

The first problem suggested by Hamilton was the following [BLW76]:

Five initial points are given: cover the board and finish cycli-
cally. (As hinted on the preceding page, a succession is said
to be cyclical when the last piece is adjacent to the first).

Translated into graph–theoretical language, this means finding such
a cycle in the graph which contains all the vertices of the graph. For
the Icosian Game, one such solution is shown on Figure 6.2.

3Apparently the reason is not that there is no “Euler” to solve it.
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Figure 6.2: The Icosian Game: Solution

The solution to Hamilton’s first problem is called Hamiltonian cycle
and a graph in which such a cycle exists is called Hamiltonian. As is
obvious from Figure 6.2, Hamilton’s game has a solution; however, the
necessary and sufficient condition for the graph to be Hamiltonian is not
known. There are only sufficient conditions, namely the conditions of
Dirac, Ore,and Pósa:

Theorem 6.1 (Dirac,1952) Let G(V,E) be a finite graph, |V | ≥ 3,
and for the degrees of vertices deg(vi), it holds that deg(vi) ≥ n

2 . Then
G contains a Hamiltonian cycle.

Theorem 6.2 (Ore,1961) Let G(V,E) be a finite graph, |V | ≥ 3. Let
for any two not neighbouring vertices vi, vj deg(vi) + deg(vj) ≥ |V |.
Then G contains a Hamiltonian cycle.

Theorem 6.3 (Pósa, 1962) Let G be a finite graph, |V | ≥ 3 such that

(1) for each k such that 1 ≤ k ≤ n−1
2 , the number of vertices of degree

≤ k is < k.

(2) (if n is odd) the number of vertices of degree ≤ n−1
2 is ≥ n−1

2 .

Then G contains a Hamiltonian cycle.

The minimum spanning tree problem and the travelling–salesman
problem can be compared to the two above–described problems in terms
of difficulty of finding a solution. It should be emphasised that the two
problems — the minimum spanning tree and the travelling–salesman
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problem — always have a solution.4 Nevertheless, whereas the algo-
rithms for the finding minimum spanning tree in a given graph can be
quite simple and still efficient, this is not the case for the travelling–
salesman problem, for which a polynomial algorithm does not exist.

It should also be noted that the total number of solutions in a com-
plete (weighted) graph with n vertices is nn−2 for the minimum spanning
tree5 and (n−1)!

2 for the symmetric travelling–salesman problem. The
amount of time consumed by trying out all the solutions grows faster
with growing number of vertices for the minimum spanning tree prob-
lem than for the travelling–salesman problem; yet efficient algorithms for
finding the minimum spanning tree are known.6 The exact algorithms
for the travelling–salesman problem would take too long for a larger
number of vertices (cities), and so inexact heuristics are designed to
solve the problem.7

When judging the efficiency of the algorithm or heuristics, we are
interested in the time it consumes and, in the case of heuristics, in the
“degree of optimality” of the solution.

The asymptotic complexity of an algorithm (heuristics) is nowadays
commonly given as a measure for its efficiency. It is generally assumed
that algorithms which require polynomial number of steps are good —
the complexity of such algorithms is O(nk), where k is a finite number.
The difficulty with the travelling salesman problem is that no polynomial
algorithm has been found (and most probably does not exist). That is
why we have to retreat to inexact heuristics, which nevertheless work in
“good” time.

6.2 Formulations of the Problem

The formulations of the travelling–salesman problem differ for different
authors. The most general one could be stated as follows:

A salesman wants to visit certain towns in his area and he
wants to do so as fast (or as cheaply) as possible. The task

4The reasons are obvious: there are only finitely many possible solutions to
these problems. (For the travelling–salesman problem, the formulation not requir-
ing a Hamiltonian cycle must be used.)

5This result is due to A. Cayley, 1889.
6See Chapter 5 for details.
7Heuristics is a method for solving problems. The method consists of trying

several procedures and, after each step, questionning whether we got any nearer to
the solution. The heuristics may also end after a given number of steps, divulging
several possible (not necessarily best) answers.
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is: in what order should he visit the towns in order to spend
the least time (money)?

In graph–theoretical language, this could be interpreted in two ways:

1. Find such ordering of the vertices of a graph G(V,E) with n ver-
tices that every vertex 1, . . . , n is visited at least once.

2. Find such ordering of the vertices of a graph G(V,E) with n ver-
tices that every vertex 1, . . . , n is visited exactly once.

It can easily be seen that in the first case, the tour does not have to
form a Hamiltonian cycle, whereas if the second formulation is used, the
resulting tour must form a Hamiltonian cycle. The travelling–salesman
problem thus has basically two interpretations: one of them allows only
solutions in the form of Hamiltonian cycles, the other accepts also other
solutions. However, it seems that the former interpretation quickly
gained popularity, whereas the latter was only used in the beginning,
as the formulations of the problem by different mathematicians, listed
below, show:

1. Dantzig, Fulkerson and Johnson, 1954 [DFJ54]: “Find the
shortest route (tour) for a salesman starting from a given city,
visiting each of specified group of cities, and then returning to the
original point of departure.” This formulaiton does not require a
Hamiltonian cycle as a solution.

2. Flood, 1956 [Flo56]: “The traveling salesman problem is that
of finding a permutation P = (1i2i3 · · · in of the integers from 1
through n that minimizes the quantity a1i2 + ai2i3 + · · · + ain1),
where the aαβ are a given set of real numbers. More accurately,
since there are only (n− 1)! possibilities to consider, the problem
is to find an efficient method for choosing a minimizing permuta-
tion.” This formulation does require a Hamiltonian cycle.

3. Little, Murty, Sweeney and Karel, 1963 [LMSK63]: “The
travelling–salesman problem is easy to state: A salesman, starting
in one city, wishes to visit each of n−1 cities once and only once and
return to the start.” Again, the solution must form a Hamiltonian
cycle in the graph.

4. Karg and Thompson, 1964 [KT64]: “Let A = ||aij || be an n× n
matrix of real numbers. The travelling–salesman problem asks
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for an acyclic permutation (i1, i2, . . . , in) of the integers 1, 2, . . . , n
such that the sum ai1i2 + ai2i3 + · · · + aini1 , is a minimum.” This
again results in Hamiltonian cycles as the only feasible solutions.

5. Gilmore and Gomory, 1964 [GG64]: These two authors do not
define the travelling–salesman problem. They only say: “Our
problem [sequencing one state-variable machine] is closely con-
nected to the well–known and difficult Traveling Salesman prob-
lem. [Ref. to [Ackoff 1961], [HK62], [LMSK63].] To see this, let
the Ji play the role of nodes or cities, and let the cij of [equation 1]
be the cost of going from node i to node j. We are looking for the
cheapest path that passes once through each node. The traveling
salesman looks for the cheapest path that passes once through each
node and ends up at the starting point. He looks for the cheapest
tour.”

Thus, it is not emphasised that we are looking for a Hamiltonian
cycle. In the paper [LMSK63], the authors are looking for Hamil-
tonian cycles.

6. Shen Lin, 1965 [Lin65]: “A salesman is required to visit each of
the n given cities once and only once [. . . ]”. The solution yields a
Hamiltonian cycle.

7. Obruča, 1968: “Let us define a network N , (of n points and m
lines) to be a graph with costs/distances to be associated with
each line. [. . . ] A chain is a sequence of adjacent lines. A circuit is
a chain such that the first line is adjacent to the last. We define a
feasible solution to the travelling salesman problem as any circuit
which covers the network. An optimal solution will be a feasible
one with least cost.” It is debatable whether the author requires a
Hamiltonian cycle as a result. From the definitions, it is not clear;
from the rest of Obruča’s article, however, one can infer so.

8. Bellmore & Nemhauser, 1968 [BN68] (Survey Article): “In
the traveling salesman problem we are given a nonnegative integer
n and an n-dimensional square matrix C = {cij}. Any sequence
of p + 1 integers taken from (1, 2, . . . , n), in which each of the
n integers appears at least once and the first and last integers
are identical is called a tour. (. . . ) By a feasible solution to the
traveling salesman problem, we mean a tour. [. . . ]” The required
solution is a Hamiltonian cycle.
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9. Papadimitrou and Steiglitz, 1982 [PS85]: the solution of the
travelling salesman problem requires that each town is traversed
exactly once; in other words, a Hamiltonian cycle is the only ac-
ceptable solution.

10. Plesník [Ple83] views the travelling salesman as a generalization
of the problem of finding a Hamiltonian cycle for weighted graphs,
i.e. a solution that is not a Hamiltonian cycle is out of the question.

The travelling–salesman problem can be specified in the following
way:

1. Symmetric travelling–salesman problem: the distances between
any two cities are independent of the direction of the travel.

2. Non-symmetric travelling–salesman problem: the distance between
two cities vi, vj may be different if we travel from vi to vj and from
vj to vi.

3. Euclidean travelling–salesman problem: the distances between cities
are given as distances in the plane. These distances satisfy the tri-
angle inequality.

It is apparent that the number of possible solutions (n−1)!
2 holds only

for the Euclidean or symmetric travelling–salesman problem. For the
asymetric travelling–salesman problem, the number of solutions is even
greater, namely (n− 1)!.

6.2.1 Solutions

As was already metioned, the travelling-salesman problem is a difficult
one. (Generally NP-complete). As a result of that, mathematicians
usually tried to find solutions of some variations on the problem, special
cases, etc. The connection with the assignment problem is mentioned
quite often.

There are special cases of the problem: symmetric, non-symmetric,
euclidean, travelling–salesman problem with the triangle inequality, and
so on. The solutions vary accordingly: the approaches are very different.

The results up to 1968 were collected and commented upon by Bell-
more and Nemhauser. In 1982 the book by Papadimitrou and Stei-
glitz [PS85] was published, containing also other approximate methods.



Chapter 6. Travelling Salesman Problem 155

6.2.2 Polynomial algorithm – approximation

For a long time, the attempts at designing good heuristics for the travel-
ling salesman problem kept arriving at a seemingly unsurpassable bound-
ary. The upper bound of most of the solutions was 200% of the optimum.
In the 1970s, this was greatly decreased by Nicos Christofides, who
designed an algorithm with the upper bound at 150% of the optimum.

The best approximation algorithm up to 1982 is, according to Papadi-
mitrou and Steiglitz, the algorithm by Christofides [PS85].

Christofides: 1976

1. Find the minimum spanning tree T for the distance matrix [dij ].

2. In the minimum spanning tree T , find the vertices of odd degree
and find the shortest complete matching M in the complete graph
containing only those vertices. Let G be a multigraph with vertices
1, 2, . . . , n in which all edges of T and M are included.

3. Find an Eulerian path in G and the respective circuit.

This algorithm is polynomial: the first step is finished in O(n2),
the second step (minimum [covering] matching) takes O(n4) or O(n3)
(when another matching algorithm is used), the third and last step runs
in linear time. The important fact is that the algorithm gives a solution
that is at most 50% larger than the optimum.

“Locally-based method”

This method is based on the oldest and probably most natural opti-
mization method, the trial-and-error method. Papadimitrou and Stei-
glitz formally describe this basic trial-and-error method [PS85, p. 467]:

IMPROVEMENT (t) = any s ∈ N(t), for which c(s) < c(t), if such
s exists; or ‘no’ in the opposite case

The base for the following algorithm is any feasible solution. The
algorithm stops when we reach a local optimum.

procedure LOCAL METHOD
begin

t := some initial point of F
while IMPROVEMENT(t) 6= “NO” do

t := IMPROVEMENT(t);
return t

end
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Definition 6.4 k-exchange (k ≥ 2) for any tour f :
Nk(f) = {g|g ∈ F and g can be obtained from f by choosing k edges

of f and substituting them with other k edges.}

In 1958 there appeared a solution of the travelling–salesman problem
based on this method and some other methods similar to the branch–
and–bound methods by Croes [Cro58].

6.3 Origins of the Travelling Salesman Problem

The motivation for the travelling–salesman problem is, as suggested
above, primarily economical. The first formulation of the problem is
— allegedly — due to the American mathematician Hassler Whit-
ney,who is said to have formulated it in a seminar in 1934. Two of his
students, Alan W. Tucker and Merrill M. Flood, agree on this;
Whitney himself, however, does not remember it [DFJ54, see below].
In addition, it is not clear what Whitney’s formulation was.

In 1937, Merrill Flood was trying to find the cheapest route for a
school bus. Alan W. Tucker brought his attention to the connection
between the travelling–salesman problem (in Flood’s case, the school–
bus routing) and Hamiltonian cycles. The task Merrill Flood was
trying to solve was the following:

Design the cheapest route for a school bus, which has to
collect children from a certain area, making given stops, so
that all children get picked up in the morning (and get home
in the afternoon) and the costs are minimum.

This formulation implies that each place should be visited at least
once, not exactly once.

Dantzig, Fulkerson and Johnson say — in their “historical
note” [DFJ54, p. 393]:

The origin of this problem is somewhat obscure. It appears
to have been discussed informally among mathematicians at
mathematics meetings for many years. Surprisingly little in
the way of results has appeared in the mathematical liter-
ature. It may be that the minimal–distance tour problem
was stimulated by the so-called Hamiltonian game which is
concerned with finding the number of different tours possi-
ble over a specified network. The latter problem is cited by
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some as the origin of graph theory and has some connections
with the famous Four–Color Conjecture. Merrill Flood
(Columbia University) should be credited with stimulating
interest in the traveling salesman problem in many quarters.
As early as 1937, he tried to obtain near optimal solutions
in reference to routing of school buses. Both Flood and
Tucker (Princeton University) recall that they heard about
the problem first in a seminar talk by Hassler Whitney
at Princeton in 1934 (although Whitney, recently queried,
does not seem to recall the problem). The relations be-
tween the traveling–salesman problem and the transporta-
tion problem of linear programming appear to have been
first explored by M. Flood, J. Robinson, T.C. Koopmans,
M.Beckmann, and later by I. Heller and H. Kuhn.

According to Morton and Land, [ML55] the term “travelling sales-
man problem” was coined by Julia Robinson in 1949:

In the United States this problem is known as the Travelling–
salesman problem; the salesman wishes to visit one city in
each of the 48 States and Washington D.C., in such a se-
quence as to minimize total road distance travelled. Think-
ing of the problem independently and on a smaller geograph-
ical scale, we used to call it the laundry van problem, where
the conditions were a daily service by a one–van laundry.
Since the American term was used by Robinson (1949) we
propose to adopt it here.

The paper Morton and Land refer to is the RAND Corporation
Paper RM–303 [Rob49]. They also speak about similar problem in statis-
tics: the “Minimum Mean Distance” problem.

They also — consciously — do not use graph terminology, but “point”
for “node” and “link” for “edge”. They were aware of the existence of
graph theory, but their contribution was communicated at an interna-
tional conference on linear programming, which might have been the
reason for choosing a different terminology.

The travelling–salesman problem became especially popular after
World War II. It should be noted that the minimum spanning tree
problem also became popular after the war, although the first solutions
appeared in the period before World War II. [Dur98, Dur99]
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6.4 The First Results

At first, mathematicians tried to find exact solutions to the travelling–
salesman problem. A classic paper is the one written by Dantzig,
Fulkerson, and Johnson in 1954 [DFJ54]. In their paper, they give
an exact solution to a certain “42–city problem”. They were actually
looking for the shortest route through 49 cities in the U.S.A. (one in
each of the 48 states of the U.S.A. (mainland) and Washington D.C.),
but they reduced the size of the problem by finding such a shortest path
between two cities that other 7 cities were on the shortest path between
the two. That is why we refer to the “42-city problem (of Dantzig,
Fulkerson, and Johnson)” today.

In 1956, Flood published his paper on the travelling–salesman prob-
lem. He presents the method of the nearest neighbour, which resembles
the greedy algorithms used for the minimum spanning tree problem.8

The “nearest-neighbour” approach

Step 1. Choose any two vertices.

Step 2. From this arbitrary tour, go to the nearest not yet visited ver-
tex.

Repeat Step 2 until all vertices have been visited.

Unfortunately, the greedy strategy does not always work for the
travelling–salesman problem. However, it can be used to determine the
starting tour for the algorithms mentioned later.

In his 1956 paper [Flo56], Merrill Flood also draws attention to
another problem related to the travelling–salesman problem: the assign-
ment problem. The task is to optimize the distribution of work among
people (each person is assigned one job and it is known how “efficient”
each person is in each of the jobs) so that the whole bulk of work is
done as fast as possible. It is apparent that the solution to this problem
need not be a Hamiltonian cycle. However, if the solution to the assign-
ment problem happens to be a Hamiltonian cycle, it is also a solution to
the travelling–salesman problem. The solution of the assignment prob-
lem is also useful as a starting point for solving the travelling–salesman

8The so-called greedy algorithms are notable for their special feature: although
they use “greedy strategy”, i.e. the algorithm always chooses the locally optimal so-
lution, they solve the problem successfully. They are also described in the Chapter 2.
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problem.9

A variation on this problem is the marriage problem, where the ob-
jective is to maximize the amount of happiness in a certain group of
people:

We are given n young men and n young women who want to
get married. How should they be coupled so that the amount
of happiness in the whole group is maximum? (For each
couple, we are given a number determining the “happiness”
that occurs when these two people get married.)

This problem can also be linked to matching theory, where it is solved
for unweighted graphs. In that case, the question is whether it is possible
to couple all the people, when it is known that some couples hate each
other.

6.5 Heuristics: Travelling Salesman Problem

As no “good” algorithms for the travelling–salesman problem were found,10

it became necessary to look for other methods for solving this problem.
The methods providing at least some “reasonably good” solution are
called heuristics11. The heuristics can be broken up into three phases:

1. Starting point

2. The method for generating the solution

9Fulkerson talks about something similar when he talks about the production cost
curves. For the production cost curves, the normal completion time and the crash
completion time are given and the task is to optimize the sequence of the individual
tasks. [Ful61]
10The meaning of the adjective “good” is used in the sense advocated by [Edm65,

p. 450]:

An explanation is due on the use of the words “efficient algorithm.”
First, what I present is a conceptual description of an algorithm and
not a particular formalized algorithm or “code.”

For practical purposes computational details are vital. However, my
purpose here is to show as attractively as I can that there is an efficient
algorithm. According to the dictionary, “efficient” means “adequate in
operation or performance.” This is roughly the meaning I want — in
the sense that it is conceivable for a maximum matching to have no
efficient algorithm. Perhaps a better word is “good.”

11See Chapter 2 for definition of the concept
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3. The condition for ending the procedure

The last phase – the condition for terminating the procedure – tells
us whether the heuristics gives an exact, or an approximate solution.
The two conditions can be described as absolute and relative. As for the
former, the process terminates when the optimal tour is found; as for
the latter, the process terminates when a tour is found that cannot be
shortened by interchanging two vertices in the sequence.

It should be emphasised that each travelling salesman problem can be
transformed into the travelling salesman problem on a complete graph: if
we substitute the lengths of edges between two vertices by the shortest–
paths distances, the problem is transformed into a problem on a complete
graph with fewer vertices.

The heuristics for the travelling salesman problem can be divided into
three categories: (a) tour–to–tour improvement; (b) building the tour;
and (c) subtour elimination. They are described in a greater detail in
the following sections.

6.5.1 Tour–to–tour improvement

As the starting point of this method, we take any tour. When gen-
erating the solution, we are trying to find a neighbouring tour which
is better than the current one. The neighbouring tour is generated by
interchanging two vertices in the current tour.

These methods are only approximate and are judged according to
the ratio between the quality of the solution and the time consumed.

6.5.2 Tour building

The starting point in this method is any vertex. From this vertex, a
sequence of vertices is constructed. The procedure ends when a cycle is
found. This method is also approximate. A special modification of this
method (and also one easily comprehensible) is the nearest-neighbour
method.

6.5.3 Subtour elimination

These methods use the connection between the assignment problem and
the travelling salesman problem. If the solution of the assignment prob-
lem is a cycle, it is also a solution to the travelling salesman problem.
If not, it is necessary to eliminate the partial tours.
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Some of these methods are exact: integer linear programming and
the branch–and–bound methods.

6.6 Approximate Solutions

The goal of more recent programmers was to find a “reasonably good”
solution in a “reasonably short” time. For a long time, it was thought
that the upper bound of twice the optimum will not be surpassed. In
1975, however, Nicos Christofides came with a O(n3) algorithm that
gives a solution which is at most 150% of the optimum.

6.7 Evaluation of the Solutions

In the 1950s, the methods were judged according to the actual time
spent. In the 1960s, a new way of judging appeared: the complexity
measure. The results of the evaluation, as presented in the earlier papers,
are given in Table 6.1. It is necessary to note that the IBM 7090 is about
five times faster than the IBM 1620.

A very different approach was used by Obruča in 1968 [Obr68]:
in his approximate method, he makes use of the observation that arcs
forming the minimum spanning tree are often used in the best solutions
to the travelling salesman problem. He calls his technique spanning tree
manipulation. He tested his results on a large number of small problems
and on some large published problems. Evaluation of his results is given
in Table 6.2.

6.8 Conclusion

The travelling–salesman problem is a very popular one. It gained pop-
ularity again in the 1960s, when a soap company organized a contest.
The task was to find the shortest way connecting 33 cities, the prize
ten thousand U.S. dollars. Some people came with a correct solution,
whereas others claimed that the problem has no solution. This was
a mis-interpretation of the fact that there is no polynomial algorithm
for solving the travelling salesman problem; wihch, obviously, does not
mean that there is no solution.Considering the computation results, it
is important to realize that in “reality” it does not help one much to
know that something could be solved in a million years. “In reality”,
this is almost the same as “never”. However, there surely is a signifi-
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Table 6.1: Results of the methods for solving the travelling salesman
problem

Author(s),Year Computer No. of cities Time

Eastman, 1958 ?? 10 ??
Roseman, Tweery, ?? 13 8 man–days
Stone, 1958
Gonzales, 1962 IBM 1620 5 10 sec.
Gonzales, 1962 IBM 1620 10 8 mins
Held and Karp, 1962 IBM 7090 13 17 sec.

IBM 7090 20 10 hours
?? 13 3.5 hours

Little, Murty, IBM 7090 up to 10 “by hand”
Karel, Sweeney, IBM 7090 20 several seconds
1963 IBM 7090 40 8 mins

IBM 7090 25* 4.7 mins
Martin, 1963 IBM 7094 42 5 mins.
Shapiro, 1966 IBM 1620 70 103.5 mins

IBM 1620 40 8.16 mins

Legend:

* 25–city problem of Held & Karp [HK62].

?? Machine not specified.

Table 6.2: Results of Obruča’s spanning-tree manipulation method

Number of cities / Evaluation of
Specification of the problem the solution

randomly assigned 56% of solutions optimal
5- to 11-cities’ all solutions max. 15% greater
problems than optimum
Dantzig, 1959 all solutions between
Held, Karp, 1962 0.8 and 5.8 greater
Croess, 1958 than the published optimum
Dantzig et al., 1954 solutions max. 4.4 greater
(42 cities) than optimum
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cant difference between “no solution” and “no solution to be obtained
in polynomial time”.

The travelling salesman problem demonstrates mathematics, and
graph theory in particular, in its “secular” form. It is not (only) the
ethereal, but (also) the real world we are trying to tackle here. On this
example, we can also observe the change in talking about the time con-
sumed by computation: many reports from the 1950s and 1960s state
which particular computer was used and the time (in seconds or min-
utes) the computation required. However, in his 1968 paper, Obruča
uses the complexity measure to evaluate his algorithm, without even ex-
plaining the notion. On the other hand, Bellmore and Nemhauser,
in their paper from the same year, still use the “computer type — time”
description. This brings up a question:
Is mathematics going to change style from the Theorem–Proof to

the Algorithm–Analysis, or will there be “two kinds of mathemat-
ics”?



Chapter 7

Conclusion

The problem we wish to treat is a combinatorial one involv-
ing the determination of an optimal route from one point to
another. These problems are usually difficult when we allow
a continuum, and when we admit only a discrete set of paths,
as we shall do below, they are notoriously so. [Bel58, p. 87]

Formulations and Context

The problems discussed in this thesis are very often too difficult, or
rather, solving them would mean testing too many possibilities, to be
handled just by pure common sense. They often appear in practical
applications — and as “the variety of real–world problems is enormous”
[HHK74, p. 96], there is no possibility to tell in advance that this or
that problem would be trivial or extremely difficult. Moreover, the same
problem may be encountered independently in several branches, which
provides good conditions for multiple discoveries.

Historical Precision

One of the aims of the present thesis was challenging the common beliefs
as far as the history of discrete optimization problems is concerned.
On the examples of algorithms due to Moore, Borůvka, Jarník, or
Dijkstra, it was shown how the mathematical re–formulation of the
problems and their solutions blurred the historical picture.

Another feature which, of course, does not help the historical preci-
sion of mathematical papers and textbooks, is the immediate assessment
of previous solutions as “worse”, or just the present one as “better”. In
this respect, mathematicians seem to be rather lazy — and we proba-
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bly should not be surprised by this, as it is more the problem than its
history that is interesting to mathematicians. This approach, however,
might sometimes lead to “re–inventing the wheel”, as was the case with
Prim’s or Dijkstra’s algorithm for the minimum spanning tree.

Language

The language of the mathematical papers discussed in this thesis reflects
both the condition of multiple discovery and the necessity to modernize
the language we are using to communicate.

The situation of multiple discovery can be disclosed even by such an
everyday thing as notation. The need to discuss things and the need
to name these things led, in each of the contexts, to the emergence of
new words — words describing the same things, yet different. Some-
times, this might even extend to procedures. An example of this is the
Bellman–Ford algorithm for shortest paths, which was formulated in at
least two different contexts.

Not only the notions, but also the procedures and the way of talking
about them needs to be standardized. The procedures from the earlier
periods, e.g. showing the way of solving on specific examples, can be
recognized as algorithms. However, only during the post-war years the
concept of algorithm developed and the word itself became much more
widely used. This tendency can well be seen on the development of dis-
crete optimization problems after World War II, when mathematicians
slowly started abandoning the description on examples and began using
standardized descriptions — nowadays mostly in the form of a pseudo–
programming language, the pseudo–code.



Chapter 8

Appendices

8.1 Biographical Data

The biographical data given in this section are rather brief and serve
only for the most rough orientation. The exceptions are only the bi-
ographies of O. Borůvka, V. Jarník, and A. Kotzig, Czech and
Slovak mathematicians who contributed most to discrete optimization
problems discussed in this thesis.

Kenneth Joseph Arrow, * 1921, American economist; Nobel prize
in economy (1972).

Richard E. Bellman, 1920–1984, American mathematician.

Roger Joseph Boscovich (Boškovic̀, Rudjer Josip), 1711–1787,
Croatian scientist (mathematical physics).

Otakar Borůvka, 1899 – 1995, Czech mathematician.

Otakar Borůvka was born in Uherský Ostroh, a small Moravian
town. His father was a teacher. Borůvka himself was an excellent
student. When he was at secondary school, he was the best student
in his class. His interests were multiple. Apart from mathematics,
he was also interested in the classical languages, Latin and Greek.
Thus, the choice of a university subject was not an easy one for
him.

In 1918, he chose to study at the university which was closest to his
hometown. It was the University of Technology in Brno. However,
after he had spent one year at this university studying to become
a civil engineer, he went to study mathematics, which was since
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then his major field of interest. His future career was influenced
also by Matyáš Lerch, Borůvka’s professor of mathematics at
the University of Technology in Brno. In 1919, Masaryk University
was founded in Brno, and professor Lerch then asked Borůvka
whether he would like to study “pure” mathematics.

Borůvka accepted. He started studying mathematics, but at the
same time, he continued in his studies at the University of Tech-
nology. After graduation, he continued with his doctoral studies.
As it is not the aim here to describe his life in detail (the inter-
ested reader is referred to the monograph [TŠP96]), only the parts
of mathematics he was interested in are mentioned here. These
were above all differential equations, differential geometry, and al-
gebra. His graph–theoretical work consists of just two articles on
the same topic, the minimum spanning tree ([Bor26a, Bor26b]).

Èlie Joseph Cartan, 1869–1951, French mathematician.

Augustin Louis Cauchy, 1789–1857, French mathematician.

Arthur Cayley, 1821–1895, English lawyer and mathematician.

Gustav Adolf Astor Choquet, *1915, French mathematician.

Julian Lowell Coolidge, 1873–1954, American mathematician.

Antoine Augustin Cournot, 1801–1877, French mathematician,
economist and philosopher. Founder (with L. M. E. Walras) of
the mathematical school of political economy.

Karel Čulík, * 1926, Czech mathematician

George Bernhard Dantzig, *1914, American mathematician and
scientist. Author of the book Linear programming and extensions
(1963)

Gabriel Andrew Dirac, 1925–1984, adoptive son of Paul Dirac
(1902–1984, Nobel prize for Physics, 1933), Professor of Mathe-
matics at the University of Aarhus, Denmark.

Pál (Paul) Erdős, 1913–1996, an outstanding Hungarian mathe-
matician, known not only for his countless mathematical papers
(many of them were written with other mathematicians from all
over the world), but also for his extraordinary life-style.
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Leonhard Euler, 1707–1783, Swiss mathematician, physicist and
astronomer. He worked in St Petersburg and Berlin.

Jean Baptist Joseph Fourier, 1768–1830, French mathematician.

Delbert Ray Fulkerson,1924–1976 , American mathematician.

Sir William Rowan Hamilton, 1805–1865, Irish mathematician and
physicist.

Frank Harary, * 1921, American mathematician

Carl Fridolin Bernhard Hierholzer, 1840–1871, German math-
ematician.

Vojtěch Jarník, 1897–1971, Czech mathematician.

Vojtěch Jarník was born in a family of Jan Urban Jarník, Professor
of Romanic philology at Charles University. He studied mathemat-
ics and physics at the Faculty of Arts of Charles Univeristy in the
years 1915–1919. He was awarded his doctor’s degree in 1921 for
his thesis “On the roots of Bessel functions”. He was influenced
by the Czech mathematician Karel Petr.

In the years 1919–1921, Jarník taught at the University of Tech-
nology in Brno. Since 1921, he worked at Charles University in
Prague. Between World War I and II, Jarník visited Göttingen,
which was then the centre of European mathematical life, with per-
sonalities such as David Hilbert, Emmy Noether, Edmund Landau,
or Otto Neugebauer.

Professor Jarník actively participated in Czech mathematical life.
He was also an excellent teacher. As far as his scientific career
is concerned, his work stretches over the field of graph theory,
analytical number theory, geometry of numbers, and theory of real
functions to diophantine approximations.

Leonid Vitaljevich Kantorovich, 1912–1986, Soviet mathemati-
cian and economist, Nobel prize in economy (1975) for his contri-
bution to the theory of the optimal allocation of sources.

Gustav Robert Kirchhoff, 1824–1887, German physicist (theory
of circuits, using topology and elasticity).

Thomas Penyngton Kirkman, 1806–1895, rector at a parish of the
Church of England. He published many mathematical papers.
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Dénes Kőnig, 1884–1944, Hungarian mathematician, son of the Hun-
garian mathematician Gyula Kőnig.

Anton Kotzig, 1919–1991, Slovak mathematician.

Anton Kotzig was born in Kočovce in Slovakia. He started study-
ing at Charles University in Prague, but after the Czech universi-
ties had been closed, he continued in Bratislava. He received his
doctorate for his work in mathematical statistics. He worked for
an insurance company (1940–1948) and in agricultural research
(1948–1951). In 1951, he became professor at the University of
Economics.

Kotzig is considered to be the founder of the Slovak graph–theoretical
school. His work in graph theory is extensive and includes results
on convex polyedra, Hamiltonian graphs, Latin squares, and fac-
torisation of graphs.

Until 1969, Kotzig was an active member of Czech and Slovak
mathematical life. However, in 1970 he decided to stay in Canada
and never returned to his native country. In Canada, he also had
many followers.

Harold W. Kuhn, * 1925, American mathematician.

Pierre Simon de Laplace, 1749–1827, French mathematician, physi-
cist, astronomer, and politician.

Johann Benedict Listing, 1808–1882, German mathematician.

Oskar Morgenstern, 1902–1977, American economist of German
descent. Founder (with J. von Neumann) of game theory.

Claude-Louis-Marie Navier, 1785–1836, French technician.

John von Neumannn, 1903–1957, American mathematician of Hun-
garian descent. Founder (with O. Morgenstern) of game theory.

Øystein Ore, 1899–1968, American mathematician of Norwegian de-
scent.

Mikhail Ostrogradskij, 1801–1862, Russian mathematician and
mechanic.

Vilfredo Pareto, 1848–1923, Italian sociologist and economist, founder
of the Laussane school of economy, one of the founders of the math-
ematical school in economy.
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Ernst Paul Heinz Prüfer, 1896–1934, German mathematician.

Julia Bowman Robinson, 1919–1985, American mathematician.

Claude Elwood Shannon, 1916–2001, American mathematician.

Alan W. Tucker, 1905–1995, American mathematician.

Marie Esprit León Walras, 1834–1919, French economist, founder
of the mathematical school of national economy.

Hassler Whitney, 1902–1989, American mathematician.
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8.2 Original Quotations

Bílý, Nožička, Fiedler

on the history of network flow problems [BFN58, pp. 119–120]:

Die Aufgabe, ein in mehreren Produktionsstellen erzeugtes
Produkt unter bestimmte Verbrauchsstellen mit gegebenem
Verbrauchsumfang (gleich dem Produktionsumfang) so zu
verteilen, dass die Transportkosten minimal werden, wurde
zuerst von Hitchcock [Hit41] mathematisch formuliert und
mit mathematischen Mitteln gelöst. [. . . ] Der Schiffmangel,
der schon während des ersten Weltkrieges zu gewissen Reg-
ulierungen des Umlaufes von Schiffen zwang und während
des zweiten Weltkrieges in viel grösserem Ausmasse in Er-
scheinung trat, führte im zweiten Weltkriege zur mathemati-
schen Formulierung und Lösung der Aufgabe, wobei zu be-
merken ist, dass der Transport zur See gewisse besondere
Bedingungen stellt, die von denen des Eisenbahntransports
unterschiedlich sind. [. . . ] Die Simplexmethode der Lösung
des Transportproblems wurde von Dantzig [4] angegeben.1

Bílý, Nožička, Fiedler

on Czech mathematicians dealing with network flows [BFN58, p. 119]:

In der Tschechoslowakischen Republik ist man zum Trans-
portproblem im obigen Sinne im Zusammenhang mit dem
Bestreben nach einer ökonomischen Gestaltung des Einbah-
ntransportes gekommen. Das Problem wurde im Jahre 1952
von Nožička unabhängig von den oben angeführten Arbeiten
gelöst; die Methode wurde ausführlich in [12] erläutert.

Ein wachsendes Interesse der Mathematiker und Praktiker in
der Tschechoslowakei und im Ausland — siehe z. B. [1] und
[14] — an dem Transportproblem und an anderen Proble-
men der Linearplanung bewegte die Autoren dieses Artikels
zu einer verkürzten Umarbeitung der Arbeit [12], wobei die
Theorie der Graphen als Grundlage gestellt wurde. Die Möglichkeit,
das Transportproblem unter Mithilfe dieser Theorie zu lösen,

1[4] refers to the article Dantzig, G. B.: Applications of the Simplex Method to a
Trasportaion Problem, Activity Analysis of Production adn Allocation, 359–373.(The
year of publication not stated.)
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wurde in [4] und [13] erwähnt und in [6] von Flood aus-
genützt; siehe darüber auch Bellman in [2]. Wir finden
diese Methode sehr anschaulich und besonders dann anwend-
bar, wenn keine modernen Rechenautomaten zur Verfügung
sind; über deren Ausnützung siehe Eisenmann [5]. Die Exis-
tenzfragen siehe in [3].

Bílý, Nožička, Fiedler

on the formulation of the problem [BFN58, pp. 119–120]:

Das Transportproblem wird unter folgenden V o r a u s-
s e t z u n g e n gelöst:

1. Das Produkt ist in beliebig kleine Mengen teilbar.

2. Es besteht keine Einschränkung über die kleinste zu
transportierende Menge; diese Voraussetzung trifft gewiss
nicht zu, z. B. für Kohle ist die kleinste Menge ein Eisen-
bahnwagen.

3. Die zur Beförderung benützten Transportmittel bleiben
auf der Rückreise unbenutzt.

4. Der Transport wickelt sich mit einer gleichbleibenden
Intensität ab.

5. Die Transportwege haben eine unbeschrankte Kapaz-
ität.

Pál Erdős

on Dénes Kőnig’s monograph (Cover of the 1986 edition of Kőnig’s
monograph [Kőn86]):

Das Original dieses hier als Nachdruck vorliegenden Werkes
von Dénes Kőnig erschien im Jahre 1936 . . . Die stürmis-
che und fruchtbringende Entwicklung der Graphentheorie,
die bald nach Erschienen des Buches einsetzte – durch den
2. Weltkrieg unterbrochen und verzögert –, ist in nicht geringem
Maße eben diesem Werk und seinem Autor zu verdanken, der
leider selbst ein Opfer des Faschismus wurde.
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D. Kőnig

on Kirchhoff’s laws and graph theory:

Die vorangehenden Untersuchungen verdanken teilweise ihren
Ursprung einer Fragestellung der Elektrizitätslehre, welche
1845 von K i r c h h o f f gestellt und gelöst wurde. In
einem endlichen zusammenhängenden gerichteten Graphen
G sollen die Kanten k1, k2, . . . ,
kα1 als Drähte aufgefaßt werden, in denen ein elektrischer
Strom zirkuliert. Für jede (gerichtete) Kante ki sei ihr elek-
trischer Widerstand ωi(> 0) und die elektromotorische Kraft
Ei die in ki ihren Sitz hat (in der Richtung von ki gemessen),
gegeben. [. . . ]

Dénes Kőnig, Theorie der endlichen und unendlichen Graphen, Teubner—
Leipzig 1936; pp. 139–141.

J.  Lukaszewicz et al.

on their work related to anthropology [F LP+51, pp. 282–283]:

Ce travail est un sommaire géometrique de certaines appli-
cations de mathématiques aux sciences naturelles. [. . . ]

Ces méthodes de liason et de division ont été proposées aux
anthropologues pour ranger les crânes des fouilles. Elles
s’appliquent aussi, avec effet, à des problèmes de biologie,
d’agriculture, de technologie, même de linguistique. Voir
Taksonomia Wroclawska, travail du Groupe Géneral des Ap-
plications de l’Institut Mathématique de l’Etat (Przeglad
Antropologiczny, à parâıtre). Cf. aussi la communication
collective Une méthode taxonomique et ses applications aux
sciences naturelles, ee fascicule, p. 319. [. . . ]

Unissons, par un segment, chacun d’eux au point le plus
proche; les segments ainsi obtenus seront appelés liens du
premier ordre.

Note: The thesis, as presented before the committe in 2001, also
contained the section Annotated Bibliographies, consisting of annotated
lists of articles — primary sources — on the shortest–path problems,
network flow problems, the minimum spanning tree problem, and the
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travelling–salesman problem. Reviews from referative journals Zentral-
blatt für Mathematik und ihre Grenzgebiete and Mathematical Reviews
were used when available. If the article was not reviewed in either of the
two journals, the abstract or some other information about the article
was given. For the reasons of the space, this bibliography was left out
for this edition.
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Erdős, P., 67
Euler, L., 58, 64, 65, 112, 119,

148, 149

Fiedler, M., 115, 135, 175
Flood, M. M., 63, 116, 152, 156–

158, 172, 177
Florek, K., 128, 177
Ford, L. R., Jr., 63, 81, 86, 97–

101, 103, 105, 107–109,
111, 113, 117–119

Fourier, J. B. J., 58, 59
Fulkerson, D. R., 63, 98, 99, 105,

108, 109, 111, 113, 117–
119, 152, 156, 158, 161,
176, 177

Gavurin, M. K., 114, 117
Gilmore, P. C., 153, 177
Gomory, R. E., 118, 153, 177

182



Name Index 183

Gonzales, 161
Graham, R. L., 69, 126, 132, 139

Hall, P., 113
Hamilton, W. R., 66, 149, 150
Harary, F., 68
Helbig Hansen, K., 178
Held, M., 161, 178
Hell, P., 69, 126, 132, 139
Heller, I., 157
Hierholzer, C. F. B., 65
Hitchcock, F. L., 108, 113–115,

171, 178
Hu, T. C., 118

Jarník, V., 178
Jarník, V., 127–130, 133–135, 140,

141, 146, 164
Johnson, D. B., 83, 107
Johnson, S., 152, 156, 158, 161
Johnson, S. M., 176
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