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OLD ALGEBRAICAL TREATISES

Witold Wiȩs law

1 Introduction

The algebra as a tool of mathematics appeared already in the trea-
tises of the Antiquity. Since only geometry was developing, necessarily
all mathematical discoveries were formulated in geometrical language.
We owe many algebraical dicoveries to Euclid. It was honoured by
the historians of mathematics, O. Neugebauer and B. L. van der
Waerden. They introduced the notion of geometric algebra. However,
only Diophantus built a domain now called the algebra.

Islamic scientists, mainly Al-Khwārizm̄ı, Abu Kamil, and Omar
Khayyam, to mention just three of them, developed the ideas of Greeks
from Alexandria in the following centuries, building a domain which can
be called verbal algebra. It was already the algebra in the full extent,
practised by words, without any symbols. Medieval Europe continued
in this line, successively and slowly introducing first symbols. In this
way, algebra started the period of developing its symbolism, and con-
sequently, the period of the symbolic, or literal, algebra. It happened
in the XVII century, but was often restrained for many reasons. At
the end of the century, the algebra became practically modern algebra.
Now we call it the classical algebra. In the XVII and XVIII centuries,
algebra was a science of solving equations. Euler’s attempts at finding
a proof of the fundamental theorem of algebra as well as his efforts to
prove that every equation of fifth degree is solvable in radicals show how
strong and uncritical the belief in success of the new literal method was.
However, that belief was justified. Rene Descartes proved that the
idea of coordinates, known in fact already to Euclid, realised by the
Islamic astronomer al-Marakishi in the XIV century, just lately to the
universal symbolism was able to show its efficiency. However, the end
of the XVIII century brought the first proof of impossibility in mathe-
matics. The proof was obtained in 1799 by the professor of medicine and
mathematics Paolo Ruffini. He proved that there exists no algorithm
for solving algebraical equations of degree five and higher, using only
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arithmetical operations and extracting roots. Many mathematicians did
not believe it, in spite of his five different proofs of the theorem. Fi-
nally, this result must have been accecpted. Niels Henrik Abel gave
another proof in 1826.

I describe below, necessarily very shortly, the development of be-
ginning of algebra, based on selected algebraical treatises. I think that
most of them played an important role in the periods discussed. For this
reason I have omitted less important algebraical publications. This pre-
sentation will explain that, for a long time, until the end of the XVIII
century, algebra was only a language for geometry, very useful in the
applications, but only a language. It reminds one of the situation with
set theory at the beginning of the XX century: set theory was then a
good language in mathematics, but only few were convinced that it was,
in fact, a new branch of mathematics.

2 Treatises of the Antiquity
(Euclid, Diophantus)

It is well known that in Euclid’s Elements [1], elements of algebra ap-
peared for the first time. Euclid tells about proportions of magnitudes
and he performs operations on them. Euclid presents the well-known
contemporary algorithms or formulae, e.g. the formula for the square of
the sum (binomial formula) in geometric forms. Euclid formulates and
proves the properties of operations on ratios, i.e. fractions, only later, in
the work △ATA, saved only in the small part [2]. Evidently, the proofs
are geometric, but the contents of theorems is purely algebraic. The
range of algebra contained in Elements was enough for many centuries.

Diophantus’ Arithmetic [3] brought the next step in the develop-
ment of algebra. The treatise was probably written in the middle of
the III century, perhaps later. The elements of algebra contained there
are based on arithmetic, not on geometry, as was common among his
mathematical predecessors. Diophantus introduced negative numbers,
and applied literal symbols. Solutions of exercises in [3] prove that he
well knew the fundamental properties of polynomials and he was able to
make fundamental operations on them. He was solving algebraical equa-
tions by transforming them: one can add any magnitude to both sides of
the equation, and one can also multiply the equation by it. There is no
algebraical formalism there, but the description of the algorithms shows
that it is indeed just algebra, although only verbal. Unfortunately, the
new epoch was coming.
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Tadeusz Zieliñski wrote in his History of the antique culture (1920):

Ceasar Iustinian, with his religious eagerness, expelled the
last teachers of the pagan Academy from Athens in the year
529, and eo ipso he closed the Academy, after more than
nine centuries of its famous life.

Boethius (475–526), the last great judge of the Greek literature,
and also a mathematician, lived in Rome then. His influence on ma-
thematics was not very significant. He wrote only some comments on
Euclid’s work. He probably wrote a text on arithmetic following some
ideas of Diophantus, but the text has not survived.

Greek mathematics was forgotten for many centuries. Only the is-
lamic science discovered and saved many ancient, mainly Greek treatises.
Europe did this as late as in the XIV century. Many editions of Euclid,
Archimedes, Apollonius, Ptolemy, and Diophantus appeared in
Europe starting from the XV century.

3 Islamic algebra
(Al-Khwārizmı̄, Omar Khayyam, al-Kashi)

Al-Khwārizm̄ı rediscovered some algebraical knowledge of Diophan-
tus. It seems that he did not know the treatises of Diophantus. Six
centuries were over, Hellenistic civilization disappeared, and Greek was
not so popular as in the centuries before. However, one cannot deny
that al-Khwārizm̄ı knew the achievements of Diophantus. The fun-
damental mathematical treatises of al-Khwārizm̄ı are Arithmetic and
Al-jabr w’al muqâbala li-Muhammad ibn Musa al-Kwarizmi [4] (see also
[29]). His Arithmetic, although fundamental for the history of mathe-
matics, is a standard text. It describes decimal system and fundamentals
of arithmetic of integers. Similar texts existed in Indian mathematics
two or three centuries earlier. His Algebra is much more important. It
contains an algebraical part and a practical part (The Book of Inheri-
tances).

In the algebraical part, al-Khwārizm̄ı considers six types of equa-
tions, very important in his presentation:

1. Squares equal to roots: ax2 = bx

2. Squares equal to number: ax2 = c

3. Roots equal to number: ax = c
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4. Squares and roots equal to number: ax2 + bx = c

5. Squares and number equal to roots: ax2 + c = bx

6. Roots and number equal to squares: bx+ c = ax2

In the equations, a, b, c denote positve numbers. Al-Khwārizm̄ı
formulates the problems and algorithms verbally. Zero and negative
solutions are not allowed by him. His algorithms are purely algebraic.
He avoids geometrical methods. Every type of equation is illustrated
by suitable examples. Algorithms for solving quadratic equations (4-
6) reduce the equation to full squares by suitably complementing the
equation. However, in some examples, he gives geometric interpretation.

For example, the equation x2 is solved graphically by two methods.
In both cases, he completes the left-hand side of the equation to a square.
He adds to both sides of the equation the number (102 )

2 and obtains

x2 + 2× 10

2
x+ (

10

2
)2 = (x+

10

2
)2 = 39 + 25 = 64,

which implies that x+ 5 = 8, i.e. x = 3.

The Persian poet, islamic mathematician, astronomer etc., Omar
Khayyam considered the equations of degree three. He gave their ge-
ometric interpretation ([6],[7]). Omar Khayyam, following the ideas
of al-Khwārizm̄ı, divided the equations of degree three into 25 types.
Thus the classification contains all types of equations of degree up to
three. For example, in the case of the equation x3 + bx = a, he proves
geometrically that its solution x is the abscissa of the point of intersec-
tion of the circle x(ab − x) = y2 (i.e. the circle (x − a

2b)
2 + y2 = ( a

2b )
2)

with the parabola
√
by = x2. In other words, finding (positive) roots of

a polynomial of degree three is reduced to the solution of two eqautions,
each of which represents a conic section. Three and a half centuries
later, al Kashi tried to find a similar classification for the equations of
degree four. He wrote in [10] that there are 65 types of such equations,
but in fact there are 70 of them. He probably also proved that the so-
lutions can be obtained by finding the intersection of suitably choosen
conic sections. However, we know neither his paper, nor his proofs.

The idea that the solution of an algebraic equation can be reduced to
determination of the intersection points of suitably choosen algebraical
curves, alived in Europe in the XVII and XVIII centuries.
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4 Indian algebra (Mahaviracarya)

We can find the beginnings of algebra among the peoples of India in the
treatise of Aryabhata Aryabhatiya (499) and in the works of Brah-
magupta from the first half of the VII century. Algebra in the “adult”
form is covered by Mahaviracarya in [5]. The treatise was written
at the same time as Al-jabr w’al muqbala. There is small probability
that one of the authors knew the work of the other. Although [5] deals
with arithmetic and geometry, it contains also some elements of verbal
algebra. In Chapter II the following operations are introduced succes-
sively: addition, division, squaring, extracting square roots, raising to
third power, extractig cubic roots, addition, and subtraction. The au-
thor describes suitable algorithms and the order in which the operations
are to be used. He describes also how to solve quadratic equations. El-
ements of algebra appear also in the formulae for the square of a sum
of arbitrary many elements and for the sum of consecutive elements
of arithmetic and geometric progressions. The formulae are presented
verbally.

5 Medieval Europe
(Leonardo Pisano, Jordanus Nemorarius)

They both died almost at the same age and lived in the XII/XIII century.
Their main works, Leonardo Pisano’s Liber abaci [8] and Jordanus
Nemorarius’ De numeris datis [9] were written at the beginning of
the XIII century. Both treatises present elements of arithmetic, decimal
system and element of elementary algebra: quadratic equations, linear
equations and their systems. However, [8] has practical sense. It con-
tains many exercises taken from real live. The best known exercise asks
for the number of rabbits:

At first we have one pair of rabbits. How many pairs of
them there will be after twelve months if every pair of them
procreates another one in a month?

The term res (a thing) denotes an unknown quantity in [8], and census
(a fortune) denotes the square of the unknown. Leonardo used let-
ters, but only abbreviated notation for numbers. He did not build any
algebraical formalism. On examples, Leonardo described algorithms
for solving systems of linear equations, quadratic and biquadratic equa-
tions. In the last case he not only gave an irrational solution but he also
presented its rational approximation. Leonardo found it very precisely.
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Nemorarius, contrary to Pisano, had no practical exercises. His
presentation of algebra is similar as in [8], but not so long. He used let-
ters, similarly as Leonardo. Nemorarius called the unknown quan-
tity as numerus (number), and the given number (any coefficient of an
equation) he called numerus datus (given number). In his manuscript,
Nemorarius described the algoritms for solving square equations on
examples. He solved also some linear equations and mixed systems of
two equations with two variables, one of which is quadratic.

6 Europe of XVI century
(Stifel, Cardano, Tartaglia, Candella,
Salignac, Viete)

Three hundred years later, Michael Stifel wrote his Arithmetica In-
tegra [11]. Its title suggests that it is a textbook on arithmetic. However,
the book contains also some elements of algebra. A lot of space in his
book is occupied by the exposition of rational and irrational numbers.
On page 104, we read: Ordo fractorum inter 2 & 3. Stifel orders the
rational numbers between 2 and 3 in the following way:

2
1

2
2
1

3
2
1

4
2
3

4
2
1

5
2
2

5
2
3

5
2
4

5
2
1

6
2
5

6
2
1

7
2
2

7
2
3

7
.

And so consecutively to infinity.
In other words, Stifel proves for the first time that there are count-

ably many rational numbers in the interval (2, 3). It seems that he also
could have been able to prove a more general statement that the set of
rationals in any interval (a, b) with a and b rational is countable. Sim-
ilarly, he shows that there exist infinitely many irrational numbers in
(2, 3). Indeed, he states without proof that the irrational numbers
√
5,
√
6,
√
7,
√
8,

3
√
9,

3
√
10,

3
√
11,

3
√
12,

3
√
13,

3
√
14,

3
√
15,

3
√
16,

3
√
17, [. . . ],

3
√
24,

3
√
25,

3
√
26,

4
√
17,

4
√
18, [. . . ],

4
√
26

all lie in (2, 3).
In Chapters IX-XI (Liber II, 122–132), he gives examples of arith-

metical operations on numbers of the form a+ b
√
c with a, b, c rational.

In fact, he proves that, in our contemporary algebraic terminology, such
numbers form a field for a given c. Instead of the binomial formulae
for (x + y)n (n = 2, 3), he applies two-dimensional picture in the case
n = 2 (Pythagoras) and three-dimensional picture (a cube with a side
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Page 130 from Arithmeticae Liber
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x+ y divided by suitable planes) discovered for the first time probably
either by Heron of Alexandria or even earlier (Arithmeticae Liber,
page 130). The idea of calculating (a + b)3 by cutting the cube with
sides (a+ b) by planes parallel to its bases and summing the volumes of
rectangular parallelepipeds obtained in this way goes back to Heron of
Alexandria (I century). Heron applied this idea to calculating cu-
bic roots. The idea was used by the Italian mathematicians Girolamo
Cardano and Niccolo Tartaglia ([12]–[14]). If e.g. a = x+ b, then
(x+b)3 = x3+3x2b+b3 = x3+3bx(x+b)+b3, i.e. x3+3abx+(b3−a3) = 0.
Comparing this with the equation of degree three in the general form
x3+px+Q (p, q > 0), it is not difficult to find the formulae for its roots.
This was exactly the idea of Cardano and Tartaglia (loc. cit.). Since
they applied only positive numbers, they had to consider also other types
of equations, e. g. x3 + px = q. They both used very complicated no-
tations. Their notations came from abbreviations of suiable words, but
were essentially different. Cardano wrote in Latin, Tartaglia in Ital-
ian and thus, their notations were also different. Tartaglia [14] wrote
binomial coefficients in a triangle form. They are now unjustly called
Newton coefficients and the triangle Pascal triangle.

Algebraical symbolism started to appear. For example, Francisco
Candalla [15] used the old terminology of Archimedes, but his no-
tations are new. Candalla denoted the equality A : B = C : D
by the symbol ABCD. ACBD is Permutata ratio, BADC is con-
versa ratio, and composita ratio means ABBCDD, that is the ratio
(A+B) : B = (C +D) : D.

Bernard Salignac [16] distinguished already precisely arithmetic
from algebra: ARITHMETICA est ars numerorum (aritmetic is the art
of numbers); but: ALGEBRA est numerorum figuratorum Arithmetica
(algebra is the arithmetic of figurative numbers). He used symbols of
addition and subtraction (+ and − ) and abbreviations q (square from
quadratus), c (cube from cubus), bq (the fourth power – biquadratus) and
so on. The symbol 10bq + 4l − 4, for example, denotes the polynomial
10x2+4x−4. In the second part of the book Salignac writes: Secunda
pars Algebrae AEquationem Algebraicam docet (the second part of the
algebra teaches about equations). He did not have the equality and the
multiplication symbols yet.

Only Viete ([17]–[18]) consequently started to use literal notations,
calling Diophantus his predecessor. In the paper [17], Viete writes:
Magnitudinum Scalarium prima est Latus, seu Radix. 2. Quadratum.
3. Cubus. 4. Quadrato-quadratum [ . . . ] (The first scalar magnitude is
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Title page of Tartaglia’s
La sesta parte del general trattato
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A page from Cardano’s book
Artis Magnae, sive de regvlis algebraicis
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Tartaglia’s presentation of Pascal triangle

a side i.e. radius, the second one is square, the third a cube & c). Next
he writes that the Latin letters A,B,C,D, . . . will denote the known
quantities and letters . . . ,W,X, Y,Z will denote indeterminates. In the
book [18], Viete writes: A2.B3.C4.D6., which means that A : B =
= C : D for the given values. In another place (loc. cit. p. 55) he
remarks that Aq−Dp est propos estre egal a Gq−BA, [ . . . ] et restera
Aq+BA egal a Gq+Dp. It means that the equality A2−D = G2−BA
implies the equality A2 +BA = G2 +D. The proof occupies 12 lines in
the text!

7 Europe of XVII century
(Peletier, Stevin, des Cartes, Wallis)

Peletier’s book [19] is very similar to Stifel’s treatise [11]. Some
parts of [19] are identical with respective parts of [11]. One even can
say that [19] is a free translation of [11]. Stevin [20] used geometrical
terminology of Viete as well as his literal notations. He used the com-
mon notation for polynomials of one variable and for rational numbers
written in the decimal notation. Many authors followed his notation. He
also studied the arithmetic of quadratic irrationalities. In many books
from the first half of the XVII century we can find many examples and
many properties of such numbers.

However, Descartes’ treatise Géométrie, written in 1637, became a
revolution in mathematics. It had many reeditions with numerous com-
ments, e.g. [21]. Schooten was its main commentator. He prepared
many editions of Géométrie. The treatise has only 106 pages. The other
836 pages (the edition from 1683) are comments and modifications of
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Géométrie by other authors. We can mention here that Descartes
introduces equations in concrete geometrical situations, applying coor-
dinates, but not necessarily orthogonal. Moreover, the coordinates do
not have to be the functions of the point. Only Schooten in the second
half of the XVII century used coordinates in the form which we often at-
tribute to Descartes. Algebraical notations of Descartes are almost
the same as today. Only the equality symbol was essentially different.
Although Descartes’ book deals with geometry, it contains also about
30 pages of algebra, i.e. the algebra of polynomials of one variable. On a
few examples, he remarked that a is a root of a polynomial f , if and only
if x − a divides f in the ring of polynomials. The theorem is unjustly
called Bezout theorem, although Bezout rediscovered the theorem only
a hunderd years later, also without any proof. Descartes remarked
that if f is a monic polynomial with integer coefficients then its ratio-
nal roots are divisors of f(0). This theorem is also attributed to other
persons.

The author of modern algebra is John Wallis. It can be proved
by examining his treatises [22] and [23]. His treatise on algebra [23] is
very interesting. This monumental work contains all algebraical knowl-
edge up to his epoch. Wallis introduces operations on polynomials. He
defines inequalities and proves their fundamental properties. Moreover,
he defines ratios between magnitudes, following the Greek tradition. He
uses the symbol of the eqaulity, but in the case of proportions he writes,
as for centuries, the equality of ratios in the form :: . His Algebra con-
tains also the infinitary arithmetic (arithmetica infinitorum). Infinitary
arithmetic presents different kinds of expressions of numbers, such as
infinite products, series and continued fractions. Wallis recalls by oc-
casion some classical notions of the limit in the geometrical language,
called as Methodus Exhaustionum, and Cavalieri’s Methodus Indivis-
ibilium. Wallis also finds an approximate rectification of an arc of a
circle. He uses power series expansions of functions in his construction.
Algebra enetered the XVIII century with rather wide knowledge.

8 Europe of XVIII century (Gvisnee,
de l’Hospital, Newton, Sounderson, Euler)

Mathematicians of the XVIII century fixed and extended the results of
their predecessors. Gvisnee [24] extended the ideas of Descartes,
giving the theory of conic sections in a very elegant form. He proved
that trisection of angle leads to the construction of a root of equation
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of degree three, so he claims that it cannot be reduced to equations of
degree two, consequently the problem is a space problem. Thus for the
first time P.-L. Wantzel theorem was formulated (1837), yet without
proof, but already well motivated. Gvisnee also proved that trisection
can be done with the help of a parabola.

The treatise [25] was published after de l’Hospital’s death and
is written in a very elegant style, similarly to [24]. Although [25] is
geometrical treatise, the last part of the book deals with algebra.

De l’Hospital proves geometrically that algebraical equations of
degree 5, 6, 7, 8, and 9 can be solved by conic sections and some curves
called parabolas by him. Every solution of such equation is either abcissa
or ordinate of the intersection point of the above mentioned curves: conic
sections and (generalized) parabolas (curves with equations of the form
y = xm for some positive integer m). In this way European mathematics
came back to the idea of Omar Khayyam (compare [6]), but in a much
more general context.

Newton’s treatise [26] from the year 1707 is known rather well (see
[30], [32]). Since its contents is described in available sources I recall
only that [26] is the textobook of arithmetic, algebra and analytical
geometry, using rather archaic (even in his epoch) notation.

Nicholas Saunderson, blended mathematician from Cambridge,
forty-one years younger than Newton, wrote the monumental treatise
[27], published one year after his death. The textbook of classical alge-
bra [27] (748 pages) is written in a lengthy way, but can be read without
difficulties today. Very detailed text contains algebra of polynomials of
one variable, algorithms for releasing an irrationality in denominator,
solving equations of degree two, three, and four, decomposition of ratio-
nal functions into primary fractions etc. The proofs and applications of
algebra invoke geometry. In particular, the book contains a portion of
analytic geometry.

Euler’s treatise [28] was written in a different style. The first vol-
ume presents fundamentals of arithmetic and algebra. The arithmetic is
taken as the ground for the presentation. For the first time, no geomet-
rical arguments were used in the proofs of theorems from arithmetic and
algebra. The second volume, contrary to the convention in the first one,
is far from being elementary. It contains the theorems of classical alge-
bra (solving equations of degree 3 and 4) as well as interesting theorems
from number theory. Euler uses complex numbers of special types in
proofs of this part (some rings of algebraic numbers, e.g. the complex
numbers of the form n+ im with n,m integer). Short fragments of [28]
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in Polish can be found in [32].

9 Final remarks

A short description of the oldests algebraical treatises presented here
is only a contribution to the history of algebra. However, it presents
a possibility to look at the development of algebra slightly differently
than before. Up to the XVIII century algebra was only the language of
geometry, notwithstanding many efforts to be independent of geometry.
In the XVIII century algebra finally became independent, although the
connections betweeen the two domains remained and are still strong.
Algebra and geometry penetrated each other starting from that time. It
is still very useful for both domains.
References below are arranged in chronological order. This bibli-

ography is far from being complete. In particular, I quote only selected
editions of the described treatises even in the case when there were many
editions of the book during centuries. My main idea was to show how
some notions of algebra were developing. I did not plan to give the full
list of classical treatises from algebra. For rather complete bibliography,
see Rider [31].

The titles of the books are cited in the same way as in their original
editions, with some abbrevations denoted in the text by [ . . . ].
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