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SETS 

1. Basic concepts 

We shall first introduce some basic concepts fromthe theory of sets and found the 
following considerations on these. 

1.1. The notion of a set 

A set is a number of particular things which are called the elements or points of the 
set. Every set is uniquely determined by its elements. Two sets consisting of the same 
elements are called equal. 

All about us we can see examples of sets such as: 

[1] the set consisting of the symbol a; 

[2] the set consisting of all the words in this book; 

[3] the set of all natural numbers. 

In this book we shall often deal with sets of sets, that is to say, sets whose ele­
ments are again sets; for convenience we shall call them systems of sets. 

In a system of sets there are elements of the system, namely sets, on the one 
hand, and elements of these sets, on the other hand. In such cases we generally use 
the terms elements of the systems and points of these elements. 

A system of sets is, for example, 

[4] the set whose elements are sets of natural numbers; one of these sets consists 
of all prime numbers 2, 3, 5, 7, 11, . . . , another of all the products of two prime 
numbers, another of all the products of three prime numbers, ect. 

1*2. Notation of sets 

Sets will generally be denoted by Latin capitals, e.g. A, and the elements of sets by 
small Latin letters, e.g. a. But in case of systems of sets, both the systems and 
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their elements would, by this rule, be denoted by Latin capitals; we shall therefore 
use the notation A} a; B} b} etc. for systems and their elements. 

If a and b denote the same object, we say that a, b are equal and write a = b or 
b = a. The opposite case, i.e., the inequality of a} b} is expressed by the formula 
a 4= 6 or 5 4= a. If the sets A} B consist of the same elements, then A = B and, 
in the opposite case, A 4= B. If a is an element of A, we write a 6 A. 

If a set J. consists of elements denoted a, b} c, ..., then we write A = {a, b, c} ...}. 
Thus {a} and {1, 2, 3, ...} are symbols of the above sets [1] and [3], respectively. 
Nevertheless, we shall not always stick to the chosen terminology literally but, if 
convenient, change it a little, if there is no danger of misunderstanding, of course. 
Instead of "the set A is the collection of the elements a, b} c} . . ." we can say 
"the set A consists of the elements a, b, c, . . ." or "the set A contains the elements 
a}b,c} . . . and no others"; instead of ua is an element of (in) the set A" we may say 
"a belongs to the set A", and similarly. 

1.3. Further notions 

As a set we also introduce the so-called empty set, characterized by the property 
that it has no elements. Since every set is uniquely determined by its elements, 
there exists only one empty set. We shall denote it by the symbol 0. Later we 
shall see that the introduction of the empty set is useful as regards the formulation 
of our considerations in special cases. 

Every set whose elements are certain symbols, e.g. letters, the meaning of which 
is not precisely determined, is called abstract; the above set[l] , for instance, is 
abstract. 

Every set consisting of a finite number of elements is called finite; in the oppo­
site case it is infinite; e.g., the sets [1], [2] are finite, whereas [3], [4] are infinite. 

By the order of a finite nonempty set we mean the number of its elements. The 
set [1], for example, has the order 1. I t will also be useful to assign, to every infi­
nite set, the order 0. The empty set has no order. 

1.4. Subsets and supersets 

Suppose A} B are sets. If each element of A is simultaneously an element of B, then 
we say that A is a subset of B or that B is a superset of A. We can also say that A 
is a part of B or that B contains A. Then we write A cz B or BZD A, respectively. 
The empty set is considered to be a part of any set; in particular, 0 c 0 , 

If A cz B} then B may (but need not) contain elements that do not belong to 
A. If B includes at least one element that does not belong to A} then A is said to 
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be a proper subset of B and B a proper superset of A. In the opposite case, A (B) is a 
non-proper subset (superset) of B (A) and we see that it equals B (A): A = B 
(B = .4).-) 

The set of all prime numbers, for example, is a proper subset of the set [3], for 
every prime number is an element of the set [3] and the latter also contains num­
bers that are not prime, e.g. 4. If A is a non-proper subset of B, then each element 
of A is an element of B and, at the same time, each element of B is also an element 
of A; that is to say, there simultaneously holds A cz B and B cz A. I t is clear that 
both these relations together express the equality A = B. 

It is easy to see that each subset of B is either proper or equal to B. Note that 
the equality A = B is equivalent to the relations A cz B, B cz A in the sense that, 
if A = B, then A czB, B cz A and vice versa. Generally we can tell whether two 
sets are equal just by verifying that either of them is a subset of the other. 

1.5. The sum (union) of sets 

By the sum or union of the set A and the set B we understand the set of all elements 
that belong to A or to B. 

Since this definition determines all the elements that belong to the sum of A and 
B and every set is uniquely determined by its elements, there exists only one sum 
of A and B, denoted A u B. From the above definition there follows: A u B = B uA. 
Therefore we generally speak about the sum of A and B regardless of whether we 
mean the sum of A and B or B and A. We observe that the sum of A and B is the 
set of all the elements that belong to, at least, one of them. Either of the set A, B 
is a subset of A u B, for each element of, e.g., A belongs, at least, to one of the sets 
A, B, namely to A; so we can write: A cz A u B, B cz AuB. The sum of the set 
of all positive even numbers and the set of all positive odd numbers, for example, is 
the set [3] because there holds 

(2,4,6, . . . } u { l , 3 , 5 , ...} = {1 ,2 ,3 , . . .} . 

The sum of the set consisting of a single word and and the set [2] is again the 
set [2]. 

The notion of the sum of two sets can easily be extended to the sum of systems 
of sets: by the sum or union of anys ystem of sets, A, we mean the set of all the 
points belonging to, at least, one of the sets that are elements of A. 

*) In this form we express: In the opposite case A is a non-proper subset of B an dwe see that 
it equals the set B% A = B; simultaneously, B is a non-proper superset of A and we see 
that it equals the set A: B = A. 

A similar abbreviated form of expression will often be used throughout the book. 

2 Bortrvka, Foundations 
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There holds, again, that the system A has exactly one sum and that every set 
which is an element of J. is a subset of the sum of A. The sum of A is generally 
denoted by sA ; if the elements of A are denoted by alf a2i ..., then the sum of A 
is denoted by ax u a2 u ..., briefly (J a or similarly, which is clear from the context. 

1.6. The intersection of sets. Incident and disjoint sets 

The intersection of the set A and the set B is the set of all the elements that belong to 
A as well as to B. 

In a similar way as in the case of the sum, we can verify that there exists only one 
intersection of A and B; let us denote it by A n B. Moreover, we observe that A n B 
= B n A. So we generally speak about the intersection of A and B without paying 
any attention to whether we mean the intersection of A and B or that of B and ̂ 4. 
I t is obvious that the intersection of A and B is the set of all the elements that 
belong to both A and B. The intersection A nBm a part of either A and J3, for 
each element of A n B belongs, e.g., to A. Note that, even if A and B have no com­
mon elements, the definition of the intersection of A and B applies because, in that 
case, A n B is the empty set. And we realize that the notion of the empty set is of 
advantage; without it we could only speak about intersection in case of certain sets. 
Nevertheless, it is convenient to have special terms for sets that have common 
elements and for those that have not. 

If A and B have common elements, they are called incident and A (B) is said 
to be incident with B (A). In the opposite case A and B are called disjoint. In the 
first case there holds: A nB 4= 0> in the second: AnB = 0. 

Examples: The set consisting of the single word and and the set [2] are incident; 
their intersection is the former set. The set of all even natural numbers and the 
set of all odd natural numbers are disjoint; their intersection is obviously 0. 

The notion of the intersection of two sets can be extended to the intersection of 
a system of sets: The intersection of any system of sets, A, is the set of all the points 
belonging to each of the sets that are elements of A, 

There again holds that A has exactly one intersection which is a subset of each 
element of A. The intersection of A is denoted by pA ; if the elements of A are 
denoted by %, a2, ..., we write ax n a2 n ..., briefly f) &> or similarly. 

1.7. Sequences 

By a sequence on a (non-empty) set A, briefly: a sequence, we mean the set A whose 
elements are numbered. Exactly one element is marked as the first, exactly one as 
the second, etc., each element of A being marked at least once. The element marked 
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by the (natural) number y is called the y4h member of the sequence or the member 
with index y or the member of the rank y. The rank of a member is generally expres­
sed by the adequate index; e.g., au a2, .... Two different members of a sequence, 
for instance, au a%, may be the same element of A numbered once by 1 and an­
other time by 2. 

If the last member of a sequence is aa, then the sequence is called finite or, more 
precisely, oc-membered and oc is its length. In that case there corresponds, to each 
number y = 1, 2 , . . . , oc exactly one member aY of the rank y but the sequence does 
not comprise any members of a rank higher than oc. Accordingly, such a sequence 
is denoted (»,,)£-= i or (a1,...,aa)orinasimilarway. If a sequence has no last member, 
we say that it is infinite or that its length is infinite. In an infinite sequence there 
corresponds, to each positive integer y, precisely one member of the rank y; nota­
tion (aY)^>

==1, (au a2,...), and similarly. If a sequence contains a finite number of differ­
ent elements, then it is either finite or infinite; in the opposite case it is infinite. 

Let the sequence (a) = (au au ...) be either finite or infinite. Every sequence 
(a1,a2

f, ...) generated from (a) by omitting some members ay is called a partial 
sequence or a part of (a). The sequence (a) is considered to be a part of itself. A 
partial sequence (ax, ..., aY) consisting of the first y members of (a) is called the 
y4h main partial sequence or the y4h main part of (a); y denotes a positive integer 
which, of course, in an oc-membered sequence is not higher than oc. If (a) consists 
of oc members, then its main part (au ..., aY) has, for y = 1, ..., oc — 1, exactly 
one successor, namely (au ...,aY,aY+1); then the oc-th. main part of (a), naturally, 
coincides with (a). If (a) is infinite, then each of its main parts has exactly one 
successor. 

The sequences (a) = (au a2, ...), (b) = (bu b2, ...) are considered equal if and 
only if they have the same length and their members with the same indices are 
equal elements: (a) = (b) means a1 = bu a2 = b2, .... 

Now let us consider the above notions in case of sets of sequences. 
Suppose cA is a nonempty set consisting of finite, e.g., <%-membered sequences. 

The main parts of the elements of cA, of length y, where 1 ^ y <j. oc, form a non­
empty set called the y4h set of the main parts belonging to <A; notation: cAY. To the 
set A therefore belong the sets cAu ..., cAa; da, naturally, coincides with A, i.e., 
c4a = cA. Furthermore, in case of y < oc, there corresponds to each element 
a{y) 6 c4j, a nonempty set of the successors of the element a{yK This set consists of the 
main parts of all the elements of cA, of length y -f- 1, beginning with air); notation, 
e.g., N(a^). There evidently holds: N(a^) cz dY+1. 

A remarkable example of a set consisting of #-membered sequences is an arbitrary 
nonempty set of points in an a-dimensional coordinate space. In that case, any 
point a Is identical with a certain a-membered sequence (au ..., aa), the coordina­
tes au ...,aa being real or complex numbers. They-thmain part (au ...,aY), where 
1 ^ y < oc, is the "projection" of the point a into the y-dimensional space given 
by the equations aY+1 = • • • = aa = 0. 

2* 
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1*8* The Cartesian product of sets. Cartesian powers 

The Cartesian product of the set A and the set B is the set of all ordered pairs (a, b) 
such that a and b are elements of A and B, respectively. If either of the sets A, B 
is empty, then the Cartesian product of A and B is defined as the empty set. 

This definition determines exactly one Cartesian product of the sets A and B, 
denoted by A X B. A (B) is the first (second) factor of the Cartesian product A X B 
and a (b) is the first (second) coordinate of its element (a, b). From the above defi­
nition we see that, generally, A x B =j= B x A. 

The Cartesian second power or the Cartesian square of the set A is the Cartesian 
product Ax A. The latter is, therefore, the set of all ordered pairs (a, b) such that 
a, b are elements of A. If the set A is empty, then the same applies to the Carte­
sian square Ax A. For example, the Cartesian square of the set [3] is the set of 
all ordered pairs formed by two equal or different positive integers; consequently, 
this Cartesian square is a set of points in the plane, both coordinates of which are 
positive integers. 

The extension of the notion of the Cartesian product to more than two factors 
as well as the notion of the Cartesian second power of a set to higher Cartesian 
powers is easy and will be left to the reader. These, more general, notions will be 
omitted here, since we shall not make any use of them in the following consider­
ations. 

Note that the Cartesian products belong to sets consisting of finite sequences 
of elements. 

1.9. a-grade structures 

In the following study we shall come across even more complicated figures based 
on the concept of a set, in particular, the so-called a-grade structures. 

Let a ( ^ 1) be a positive integer and (A) = (Al9 ...,Aa) a sequence of non­
empty sets. 

An a-grade set structure with regard to the sequence (A), briefly, an a-grade 
structure is a nonempty set A of the following form: Each element I € A is an 
#-membered sequence (a) = (at, ...,da)such that each of its members aY is a non­
empty part of the set Ay; y = 1, 2, ..., a. 

We shall, in particular, meet with the case when At,..., Aa consist of nonempty 
sets, so that every set Af is a system A y of nonempty sets; 1 ̂  y fg a. Such a-grade 
structures A are therefore of the following form: Every element I € A is an a-
membered sequence, (a) = (at, ..., aA), each member ay of the latter being a non­
empty sub-system of Ay; y = 1, 2, ..., a. 
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1.10. Exercises 

1. Au0 =A;AvA=A;An0 = 0;AnA=A. 

2. i u ( i n 5 ) = i ; i n ( i u 5 ) = i . 

3. If A cz B, then A uB = B9AnB = A; conversely, if either of these equalities is correct, 
then A czB. 

4. (A u B) u G = A u (B u C); (A n B) n G =- A n (B n C). 

5. (A u B) n 0 == (A n C) u (B n C); (A n B) u 0 =- (A u C) n (B u (7). 

6. A set of a finite number n ( ^ 0) of elements has 2W subsets. 

7. The Cartesian product of a set of m ( ^ 0) elements and a set of n ( ^ 0) elements consists 
of m . n elements. 

8. A part of the Cartesian product A xB is not necessarily the Cartesian product of a subset 
of A and a subset of B. 

2. Decompositions (partitions) in sets 

2.1. Decompositions in a set 

Let G stand, throughout the book, for an arbitrary nonempty set. 
A decomposition (partition) in G is a nonempty system of nonempty and mutually 

disjoint subsets of G. 
This notion is one of the most important in this book and is, in fact, essential to the 

theory of groupoids and groups we intend to develop in the following chapters. 
Every decomposition in G has therefore at least one element, each of its ele­

ments is a nonempty subset of G and, of course, the intersection of any two of its 
elements is empty. 

A simple example of a decomposition in, let us say, the set of all positive inte­
gers is the system consisting of one single element, namely of the set of all even posi­
tive integers. More generally: the system consisting of a single element which is a 
nonempty subset of G is a decomposition in G. The system of sets [4] in part 1.1 is 
an example of a decomposition in the set of all positive integers 2> 2. 

2.2. Decompositions on a set 

Let A be an arbitary decomposition in G. Any point of 6? may lie at most in one 
element of A, since every two elements of A are disjoint; it may, of course, happen 
that it does not lie in any element of A, 
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