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ciative; b) the decomposition of @, the elements of which are the sets of all the numbers 
in © expressed, in the decimal system, by symbols containing the same number of digits, 
is generating. 
The groupoid @, whose field is an arbitrary set and the multiplication given by ab = a 
(ab = b) for a, b e $, is associative and all its decompositions are generating. 

15. Factoroids 

The notion of a factoroid we shall now be concerned with plays an important part 
throughout the following theory. 

15.1. Basic concepts 

Let again A denote an arbitrary generating decomposition in &. With A we can 
uniquely associate a groupoid denoted 21 and defined as follows: The field of 9t 
is the decomposition A and the multiplication is defined in the following way: the 
product of any element a 6 A and any element b (E A is the element e € A for which 
ab cz c. Then we generally write 

a o b = c, 

and we have ab cz a o b 6 91. We employ the symbol o to denote the products in 
91 in the same way as we use the symbol. to denote the products in @. 

91 is called a factoroid in &; if A is on &, then it is a factoroid on © or a facto­
roid of @. Every generating decomposition in @ uniquely determines a certain 
factoroid in &, namely the one whose field it is; we say that to every generating de­
composition in @ there corresponds or belongs a certain factoroid in ®. 

Note that on © there exist at least two factoroids, namely the so-called great­
est factoroid, ®mBlX, belonging to the greatest generating decomposition 0^* and the 
least factoroid, &min, belonging to the least generating decomposition G ^ of the 
groupoid @, These extreme factoroids on @ are either different from each other or 
coincide according as @J contains more than one or precisely one element. 
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15.2. Example of a factoroid 

Consider, for example, the groupoid 3- Let n be an arbitrary positive integer and 
ai} where i runs over the numbers 0, ..., n — 1, stand for the set of all the elements 
of 3 that, in the division by n} leave the remainder i. The sets a0, ..., an_x are: 

a0 = { . . . , — 2M, — ns 0, n, 2n, 
at = {..., —2n+l, —n+1, 1, n + 1, 2ra+l, 
a2 = { . . . , —2w + 2, —^ + 2, 2, B + 2, 2w + 2, 

%-i = {..., —2n + (?i—l), — ^ + (w — 1), ^— 1, W + (M— 1), 2n+(n— 1), ...} 

We see that the system {d0, ..., d ^ ) is a decomposition of 3 ; let us denote it Zn 

and show that it is generating. To that purpose we shall verify that the product a ^ 
of an element dt- 6 Zn and an element d?- € --5n is a part of an element dk £ Zn. By 
its definition, the set a{. a$ consists of the products a . ft where a and ft run over all 
the elements of d{ and <%, respectively. Now let a be an element of dt so that the 
remainder in the division of a by n is i, and let 6 denote an element of dj so that 
the remainder in the division of 6 by n is j . By the definition of the multiplication 
in 3s we have a.b = a + b£dk where k is the remainder in the division of i + j 
by n because both a + ft and i + j leave, in the division by n, the same remainder. 
So we have d^ a %, hence Zn is generating. The corresponding factoroid 3» therefore 
consists of n elements: d0, ..., dn-t and its multiplication is defined by the rule 
that the product dt. dj is the element dk where k is the remainder in the division of 
i + j by n. Obviously 3i is the greatest factoroid on 3» 

15.3. Factoroids in groupoids 

Before proceeding with our study, let us remember that we apply, to groupoids, 
all the concepts, symbols and results defined for their fields and multiplication. 
The same holds for factoroids. The most important concepts, symbols and results 
arrived at in this way are: 

1. Coverings and refinements. Let 3t, 93 stand for factoroids in @. 
% (93) is called a covering (refinement) of 93 (31) if, for the fields A, B of 31,93, there 

holds A ^ B. We write % ^ 93 or 93 f£ St. The meaning of a normal and a pure 
covering (refinement) a/93 (31) is obvious (2.4). The relation 3t >̂ 93 yields s3l => &93 
and, in case of a pure covering (refinement): s3t = s93. If 3t ^ 93 and, at the same 
time, % =j= 93, then % (93) is a proper covering (proper refinement) of 93 (3t); then we 
sometimes write 3t > 93 or 93 < 3t. 

2. Closures and intersections. Let 93 cr @5 stand for a subgroupoid and 8t, (S for 
factoroids in @. 
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If B n sC 4= 0, then (14.3.2) B c C and B n C are generating decompositions 
in &. The corresponding factoroids in & are called the closure of the subgroupoid 
33 in the factoroid © and the intersection of the subgroupoid 33 (factoroid ©) and 
the factoroid © (subgroupoid SB); notation for closure: 33 c © or © n 33, for intersec­
tion: 33 n © or © n 33. __ _ 

The meaning of the concepts defined for sA n sC =(= 0 and denoted 21 c © or 
© D 3t and 3t n © is obvious as well; the former is called the closure oi %in&, 
the latter is the intersection of St and ©. Evidently: 31 n © ==- © n 31. 

Note that 33 c © is a subgroupoid in © and 33 n © a factoroid in SB. 
If, in particular,© lies on (&, then the above assumption B n sC 4= 0 is satisfied 

and 33 n © is a factoroid on 33. Every factoroid © on ® and a subgroupoid SB of @ 
thus uniquely determine a subgroupoid 33 c © in © and a factoroid 33 n © on SB. 

Similarly, a factoroid 31 in @ and a factoroid © on <U determine a factoroid 
31 c © and a factoroid 31 n ©; the former is a subgroupoid of © and the latter a 
factoroid on s%. 

Finally, let us remark that if 3t and © cover 6J, then their intersection coincides 
with the greatest common refinement (21, ©) of 3t, © and so 31 n © = (81, ©) (15.4.5). 

Example. In order to illustrate the above notions by an example, let us again 
consider the factoroid 3» on the groupoid $ (n ~^£ 1). Let 2tm denote the subgroupo­
id of 3? with the field consisting of all multiples of a given positive integer m and 
suppose (to simplify our example) that the greatest common divisor of m and n 
is 1. 

Which elements do the factoroids %m c Qn, 3n n 3lm consist of? 
Consider which of the elements d0, ..., an„t 6 3» a r e incident with the subgrou­

poid 3tm. Any element d( £ Qn is incident with 3lm if and only if it comprises a mul­
tiple xm of m (x integer). Since each element of % is of the form yn + * where y 
also denotes an integer, we see that at is incident with 3tm if and only if the equa­
tion xm = yn + i and therefore even xm — yn = i has an integral solution. 
Since the greatest common divisor of m and n is 1, there exist integers a, b satis­
fying am — bn = 1. Consequently, xm — yn = i has, for every number i = 0, 
..., n —• 1, an integral solution, namely x == ai, y = bi, hence every element % € 3» 
is incident with 3tm. Thus the factoroid %m c 3» 1s identical with 3» and the ele­
ments of 3« n 3lm are sets consisting of all the multiples of m contained in the indi­
vidual elements «0, ..., dt^t of the factoroid 3n« 

3. Semi-coupled or loosely coupled and coupled factoroids. Let U, © be factoroids 
in ©.Thefactoroids 31, © are said to be semi-coupled or loosely coupled (coupled) 
if their fields A, C have the same property (4.1). 

For example, the closure X c D of an arbitrary subgroupoid 3£ c: & in the 
factoroid f) in © and the intersection | n I ( 1 n s F 4= 0) are coupled factoroids. 

In what follows we shall assume that 21 = © c 31, © == 31 c ©. 
In that case there lies, in @J, the subgroupoid s% n s© and, on the latter, the 

factoroids % n s©, © n s%. From the theorem in 14.3.3 we conclude that every 
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common covering 33 of 91 n s© emd © n s3l enforces coupled coverings 31 ̂  91, 
€ ^ © of 31, © intersecting each other in the factoroid 33: 3t n © = 33. 

4. Adjoint factoroids. Let 31, © befactoroids and 33, 5) subgroupoids of @. Denote 
31 = sStt, © = s© and let B, D stand for the fields of the subgroupoids 33, ®-

Suppose there holds: $86 31, ®€©;33n<J)=f=0, the first formulae expressing 
the relations B €_1,J> € ©. 

The factoroids 31, © are said to be adjoint with regard to 33, % if the decompositions 
A, C ha Ye the same property with regard to J3, D (4.2). This may be expressed by 
the formula: 

s(% c I n S) = s(33 c S n 31). 

Suppose 31, © are adjoint with regard to 33, ®. Then 

I i = © c l , I 2 = ® c l , 

©! = l c © , © 2 =93c© 

are factoroids in @$. Denote 3li = s9ti, 3t2 = «3l2; ©x =-= s©i, ©2 = s©2. From the 
result in 4.2 there follows, with respect to 14.4.2 and 14.3.3, the following theorem: 

The factoroids 3t1? ©i have coupled coverings 31, © such that 3t2 6 St, ©2 € ©; the co-
0 o 

verings 9C, © are given by the construction described in 4.2 a, The subgroupoids 
9l2, ©2 are incident. 

5. Chains of factoroids. Let 3t -3 33 denote subgroupoids of @. 
A chain of factoroids from 3t to 33, briefly, a chain from 31 to 33, is a finite sequence 

eonsisting of oc ( ^ 1) factoroids $£u ..., St?a in @ with the following properties: 
a) the factoroid Sr̂  lies on 91; b) for 1 ^ y ^ <% — 1 the factoroid My+1 lies on an ele­
ment of By; c) 33 € JJa- Such a chain is denoted 

$ i - > • • • - > ffia , 

briefly: [ I ] . 
The notions relative to chains of decompositions, defined in 2.5 and 4.2, can be 

directly applied to chains of factoroids. In particular, the concept of adjoint chains 
of factoroids is defined as follows: 

Let 9t ZD 33, © 2D % stand for subgroupoids of (B and let 

( [ ! ] = ) 5 i - * • • • - * ! . , 

([§]=) &1 + --+&, 

be chains of factoroids from 31 to 33 and from © to ®. 
The chains [iS], [S] are called adjoint if a) their ends coincide, i.e., 81 = ©, 33 = 35; 

b) every two members ®y, Sd are adjoint with regard to sBy+if sf&M for y = 1, 
. . . , a; 6 = 1, ..., fi while sf s + i = 33, s£m = %. 
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15.4. Factoroids on groupoids 

Let us now deal with factoroids on groupoids. The results can often be applied 
even to factoroids in groupoids, since every factoroid SI in © lies on the subgrou-
poid s9t. 

1. Coverings and refinements. We shall start from the notions of a covering and a 
refinement of a factoroid in <U, described in 15.3.1 and proceed to the case of fac­
toroids on @. 

Let 91, 33 denote factoroids on @. 
Weknowthat 91 (33) is called a covering (refinement) of 33 (91) and that we write 

91 ̂  33 or 33 5£ 9t if, for the fields A and B of W and 33, respectively, there holds 

For example, ©max (33) is the greatest (least) covering of 33 in the sense that every 
covering of 33 is a refinement of @max and, of course, a covering of 33; analogously, 
91 (®min) isthe greatest (least) refinement of 91. 

If 91 2̂ _33, then A is a covering of B so that A is enforced by a certain decom­
position B lying on B and, naturally, also on 33 (2.4). Note that every element 
5 6 B is a system of subsets in & which are elements of 33 and that A is obtained 
by summing all the elements of 33 lying in the individual elements 5. 

Conversely, every decomposition B on the factoroid 33 enforces a certain cover­
ing of B which, however, is not necessarily generating. We observe that the cov­
ering enforced by B need not be the field of a factoroid. 

Let us now prove the following theorem: 

Let 33 stand for a factoroid on @, B for a decomposition of 33 and A for the covering 
of the field B of 33 enforced by B. The decomposition A is generating if and only if 
B is generating. 

Proof, a) Suppose B is generating. Consider arbitrary elements dl9 a2 6 A. We 
are to show that there exists an element az € A such that dxa2 cz az. Now, with 
regard to the definition of A, there holds ax = Ui51? a2 = \J2b2, the symbol Ui (Ua) 
relating to all the elements of the factoroid 33 contained in a certain element tt (52) 
of B. Since B is generating, there exists an element 53 6 B such that %x o 52 

cz 53. Let az be the sum of all the elements of 33 contained in 53 so that az <E. A. For 
every element bx (b2) to which the symbol Ui (U2) applies we evidently have 
bt o bo € %i o 52 cz 53. Hence the relations: 

«i«2 == UiU25A cz UiU25i o 62 cz az 

which prove the first part of the theorem. 
b) Suppose A is generating. Consider arbitrary elements 51? 52 € B and let dl9 a2, 

bl9 b2 have the above meaning. Sinee].4 is generating, there exists an element % 6 A 
such that dtd2 cz dz. By the definition of A there exist elements 53 € 83 such that 

8 Bortivka, Foundations 
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az = \jbz and the set of these elements is an element 53 6 B. For any elements 
b! € 5l3 52 € 52 there holds 6-.62 cz a3 and we see that there exists an element 63 6 B3 

such that b!&2 cz 63, Hence bi o b2 = b3 6 53 so that Bj o 52 cz B3 and the proof is 
complete. 

Thus both decompositions A and B are simultaneously generating, i.e., if one is 
generating, then the other is generating as well. If they are generating, then there 
corresponds to A a certain factoroid 91 on @ and there holds 21 ̂  93; similarly, 

there corresponds to B a certain factoroid 93 on 93. % is called the covering of 93 

enforced by 93. Every factoroid on an arbitrary factoroid 99 of @$ therefore enforces 
a certain covering of 93 and, conversely, every covering of 93 is enforced by a fac­
toroid on 93. 

Example. To illustrate the above notions by an example, let us again consider 
the factoroid Qn on the groupoid Q (15.2). Suppose the number n is greater than 
1 and is not a prime number. Then there exists a divisor (1 < ) d ( < n) of the num­
ber n and we have n = qd where q is ^positive integer 1 < q < n. We shall now 
be concerned with the decomposition Zd of Qn whose elements are: 

a0 — {a0, ad, a2d, ..., d^1)d}, 
i j = {a1, ad+1, a2d+1, ...,d^q^di.i}, 

ad~l — {%-l? %+d-U %d+d-l? •••? <%-l)d+d~lh 

and so any element 1$ (i == 0, . . . , d — 1) of Zd consists of those elements of Qn 

whose indices are congruent to i modulo d. Let us prove^ that Zd is generating. 
Consider arbitrary elements Ui9 S;« of the decomposition Zd. We shall show that 
there holds I f . S;- cz Uk where h is the remainder of i + j divided by d. 
Let a& and &p be arbitrary elements of Uj and %, respectively, so that di­
vided by d, oc leaves the remainder i and /? the remainder j ; consequently, 
oc + p,i + j differ only by an integer multiple of d. In accordance with the defi­
nition of the multiplication in 3»5 there holds aa o d$ = aY where y is the remainder 
of oc + /3 divided by n. Since d is a divisor of n, the numbers oc + [},y and hence 
even i + j , y differ by an integer multiple of d; consequently, y divided by d leaves 
the remainder k. So we have da o d$ = dy 6 I& which yields 1^. Uj cz uk. The cov­
ering of 3„, enforced by the factoroid Qd belonging to the generating decompo­
sition Zd, consists of d elements 

{..., — n + i, — n + d + i, ..., — n +(q — l)d + i, i, d + i, ..., 

(q—l)d + i,n + i,n + d + i,...,n+(q—l)d + i, . . . } , 

where i denotes one of the numbers 0, ..., d — 1. 

2. Local properties of coverings and refinements. Let 31 ^ 93 stand for arbitrary 
factoroids on @. 
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Consider arbitrary elements a1} a2 £ 2t and bt, b2 £ 33 such that at ZD b1} a2 ZD b2 

and, furthermore, the following decompositions in %: at n 33, a2 n 33. With re­
gard to the relation 21 ̂  33, the mentioned decompositions are complexes in 33. 

We shall show that there holds: 

axoa2 Df t jO b2? (1) 

(at n 33) o (a2 n 33) cz ax o a2 n 33. (2) 

Proof, a) From btb2 cz b1 o b2 n axa2 cz b1 o b2 n at o a2 there follows that the 
elements bx o b2 £ 33, ax o a2 £ 21 are incident. Hence, with regard to 21 ̂  93 (3.2), 
we have the formula (1). 

b) The product x o y with arbitrary factors x £ ax n 33, y £ a2 n 33 is the ele­
ment z £ 33 for which xy cz z; z is an element of the decomposition at o a2 n 33 
(14.4.1). 

We observe, in particular, that if any element a £ 21 is a groupoidal subset of % 
and so a o a = a} then the formula (2) yields (for ax -== a2 = a): (a n 33) o (a n 33) 
cz a n 33. J n that case the decomposition a n 33 is a groupoidal complex in the 
factoroid 33. 

If any element a £ 21 is a groupoidal subset of &, then the decomposition a n 33 
generates, on the corresponding subgroupoid a cz &} the factoroid a n 33. 

In particular, every element a £ 21 comprising an idempotent points £ a (i.e., 
such that aa = a £ a) is a groupoidal subset of & (15.6.4). 

I t is easy to see that, if a £ & is idempotent, then the element a £ 21 containing 
it is a groupoidal subset of & and that the decomposition a n 33 generates, on the 
corresponding subgroupoid a cz (B, the factoroid a n 33. 

3. Common covering and common refinement of two factoroids. Let 21, 33 denote 
arbitrary factoroids on @. 

A common covering, briefly, a covering of 21, 33 is any factoroid on & that is a 
covering of either of the factoroids 21, 33. 

Analogously, by a common refinement, briefly, a refinement of the factoroids 21, 93 
we mean any factoroid on © that is a refinement of either of the factoroids 21, 93. 

For example, the greatest factoroid @max is a common covering and the least 
factoroid @mln a common refinement of the factoroids 21,93. 

It is obvious that every covering of any common covering o/ 21,33 is again a covering 
of 21, 33; analogously, every refinement of any common refinement of 21, 33 is again 
their refinement. 

4. The least common covering of two factoroids. From 14.4.2 we know that the 
least common covering of the fields of 21, 33 is a generating decomposition of ©. 
The factoroid corresponding to the least common covering of the fields of 21, 33 is 
called the least common covering, briefly, the least covering of 21,33 and is denoted by 
[I, S] or [S, I] . 

8* 
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From the definition of the factoroid [3t, 83] it follows that its field is a refinement 
of any common covering of the fields of 91, 83 and therefore also of any generating 
common covering of the fields of %, 83. Hence the factoroid [31, 33] is the least com­
mon covering of 31, 33, least in the sense that any common covering of both facto-
roids is a covering of [81, 83]. 

5. The greatest common refinement of two factoroids. From 14.4.3 we know that 
the greatest common refinement of the fields of 31,83 is a generating decomposition 
of d$. The factoroid corresponding to the greatest common refinement of the fields 
of 31, 33 is called the greatest common refinement, briefly, the greatest refinement of 
I , SB and is denoted by ( I , S) or ( 1 , 1 _ _ 

From the definition of the factoroid (31, 83_Ht follows that its field is a covering 
of any common refinement of the fields of 31,83 and therefore also of any generating 
common refinement of the fields of 31, 33. Hence (31, 83) is the greatest common re­
finement of 3t, 83, greatest in the sense that any common refinement of both fac-
toroids is a refinement of (91, 83). 

On this occasion, let us note the formula: (31, S3) = 31 n 33 (15.3.2). 

6. Modular factoroids. Let X, %, 88 be factoroids on @5 such that $ ^ 31. 
The factoroid 33 is said to be modular with regard toH,% (in this order) if there 

holds: 

[l,(f,i)] = (l,[l,i]). 

If, for example, X = 31 or % = ©max, then 83 is modular with regard to X, 31. 
Let 3£, D and 3l_83 denote arbitrary factoroids on & such that H _: 31, f) _: 33 

and suppose that 33 is modular with regard to X, 3t and 31 is modular with regard 
to f, S. 

Then we have: 

(«=) [i, (i, m = (i, [!,»]>, 

(»==) $>,(%%)] = (%[%%}), 

% and 33 denoting factoroids defined by the first and the second formula, respec­
tively. 

In this situation there hold the interpolation formulae 

and, furthermore, the equalities (4.3) 

[«,»] = [8, B], [I ,»] = [!,»], [fj,«] -= [% I ] , (l) 
(k,») = (i,») = (% «) = ((S, i ) , [ i , m). (2) 
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7. Complementary (commuting) factoroids. Let 21, 83 stand for arbitrary factor­
oids on (U. 2t, 83 are called complementary (commuting) if their fields are comple­
mentary, i.e., if any two elements a 6 2t, b £ 83 lying in the same element u 6 [21.83] 
are incident. 

If, for example, one of the two factoroids is a covering of the other, then both 
factoroids are complementary. 

If there holds, for a certain factoroid H on d5, the relation 9£ I> 21 and 21, 83 are 
complementary, then 83 is modular with respect to X, 21 (5.4). 

Later (25.3) we shall see that there exist groupoids on which any two factoroids 
are complementary. Generally, however, two factoroids of a given groupoid are 
not complementary. For example, on the groupoid whose field consists of four 
elements a, b, c, d and the multiplication is given by xy = y, all the decomposi­
tions are generating (14.5.3); factoroids whose fields are, e.g., the two decom­
positions {a, b}, {c, d} and {a}, {b, c, d} are not complementary (5.6.2). 

15.5. a-grade groupoidal structures 

Let us now proceed to the definition of a more complicated notion based on the 
concept of an a-grade set structure, which plays an important part in the following 
considerations. 

Let oc(^: 1) be an arbitrary natural number, ([2t] = ) (2ti, ..., 2t«) be an <%-mem-
bered sequence of groupoids and the symbol AY denote the field of 2ty, y = 1, 2, 
. . . , oc. 

By an a-grade groupoidal structure, briefly, a groupoidal structure or a structure 
with regard to the sequence [21] we mean a groupoid 21 of the following form: 

The field of the groupoid 2t is an a-grade set structure with regard to the sequence 
(At, ..., Aa); each element 

I = (%, ...,aa) € 2t 

is, consequently, ana-membered sequence every member ay, (y = 1,..., oc) of which 
is a complex in 2l r The multiplication in % is such that for any two elements 

S = (at,..., aa), 5 = (bl9..., ba) 

and their product 

§5 = E = (cx,... ,ca)€% 

there holds 

axbt crcj, ...,aaba czca. 

In what follows we shall be particularly concerned with the case when the group­
oids 2ti?..., 2ta are factoroids 2tl5 ..., 2la on @5. Such a-grade groupoidal struc-
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tures are3 consequently, formed in the following way: Every element S = (dx, .... «a) 
6 % is an a-membered sequence each member ay, (y = 1, ...? ot) of which is a de­
composition in & and, in fact, a complex in 2t r The multiplication in % is such 
that, for any two elements 

I = (%, ••-,««), 5 = (bi, ...,&«) € f 

and their product 

UB = E = (cu ...,ca) € 3 , 

there holds: 

»! o bt cz cx, ..., aa o ba cz ca. 

15.6. Exercises 

1. Show that the groupoids 3W, B» (n ^ 1) a r e isomorphic. 

2. Let tCOT stand for the subgroirpoid of 3 whose field consists of all the integer multiples of 
a certain natural number m > 1. Of which elements do the factoroids %m c $» and 
3» n ^-m (^ > 1) consist if m, n are not relatively prime? 

3. Every factoroid on an Abelian (associative) groupoid is Abelian (associative). 

4. If a groupoid & contains an element a such that aa = a, i.e., a so-called idempotent element 
(15.4.2), then the element of any factoroid in © comprising a is idempotent as well. 

16. Deformations of factoroids 

16.1. The isomorphism theorems for groupoids 

Let us now proceed to the isomorphism theorems for groupoids. These theorems 
describe situations occurring under homomorphic mappings of groupoids or fac­
toroids and connected with the concept of isomorphism. The set structure of these 
theorems is expressed by the equivalence theorems dealt with in 6.8. 

1. The first theorem. Let @5, (U* be groupoids and suppose there exists a defor­
mation d of (U onto @*. In 14.2 we have shown that the decomposition D of @ 
corresponding to d is generating. Let % stand for the factoroid corresponding to 
D. Associating with each element a £ % that element a* £ ©* of whose el-inYerse 


		webmaster@dml.cz
	2012-09-06T03:06:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




