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8 Elementary phases 

In this section we shall consider phases with certain special properties, known as 
elementary phases, which we shall often meet in the course of our researches. In order 
to set out this study as simply as possible, we shall introduce the concept of an ele­
mentary phase in a somewhat narrow sense, which however will suffice for our pur­
poses. In this connection we assume that the length of the definition intervalj = (a, b) 
associated with the differential equation (q) is always greater than TT. Naturally, we 
only have to introduce this assumption whenj is finite, as it is automatically true for 
an unbounded interval j . Moreover, whenever a second phase is involved we always 
assume that the corresponding carrier q is negative in the whole interval j 

We consider a differential equation (q). 

8.1 Introduction 

A first or second phase y{t) of (q) will be called elementary, if for any two values t, 
t + TT lying in the interval j there holds the relation 

y{t + TT) = y{t) + STT {s = sgn y(). (8.1) 

We sometimes speak of elementary phases of the carrier q. 
For instance, both the first and second phases of the carrier q{t) = — 1, namely 

a{t) = t and /J(t) = \TT + t, are elementary. 
Let y{t) be an elementary first or second phase of (q). Clearly, the phase y may be 

represented in the form 

y{t) = e/ + G{t) {e = sgn / ) , 

where G{t), t ej, is a function with the following properties: 

1. G is periodic with period TT, 
2. G e C3 or G e d according as y is a first or second phase, 
3. sgn [e + Gf{t)] = e for all t ej. 

Further we obtain from equation (1) and the monotonicity of y the following result: 
the values y{t), y{t + TT) are either both integral multiples of TT or neither of them is 
such a multiple. In the first case, between the numbers i, t + TT there is no point at 
which the function y takes the value of an integral multiple of TT, while in the second 
case there is precisely one such point. 

Further properties are: 
Every phase of the complete phase system [y]9 hence every phase of the form 

y{t) + X, X arbitrary, is also elementary. 
The derivative yf is a periodic function with period TT. 
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8.2 Properties of equations with elementary phases 

Now we obtain the following theorem: 

Theorem. All first phases of the differential equation (q) are elementary, if any one 
first phase of (q) possesses this property. The same statement holds also for second 
phases. 

Proof Let us assume, for instance, that the first phase a0 of (q) is elementary. Let a 
be an arbitrary first phase of (q). Then for every t ej, with the exception of the singular 
points of the functions tan a0(t), tan a(t), there holds a formula corresponding to 
(5.39), where a and a0 are to be read in place of a and a respectively, and the ctj are 
appropriate constants. If we evaluate each side of this formula at two points t, 
t + TT ej, we find that tan a(t + TT) = tan a(t) and consequently a(t + TT) = a(t) + 
/i7T, n =7-- 0 being an integer. We have to show that \n\ = 1. 

To establish this, we choose two arbitrary values x, x + TT ej and consider the fol­
lowing (first) phases of (q): 

a0(0 = a0(t) - a0(x), a(t) = a(t) — a(x). 

We first note that the phases a0, a have the common zero x; it follows that the two 
integrals 

y(t) = sin a0(t)/V|aoO)|, y(0 = sin a(t)j\f\a(t)\ 

of the differential equation (q) both vanish at the point x and consequently have all 
their zeros in common. 

Moreover, the phase a0 is obviously elementary; we therefore have 

a0(x) = 0, a0(x + TT) = TT • sgn a0; y(t) ^ 0 for t e (x, x + TT). 

For the phase a, there hold the relations 

a(x) = 0, a(x + TT) = \n\ir - sgn a'. 

If \n\ =?-- 1, then the function a takes the value TT sgn a' at some point t0 e (x, x + TT). 
In this case, t0 is a zero of y and consequently also a zero of y. This, however, is 
impossible since it follows from the above that the integral y does not vanish in the 
interval (x, x + TT). We therefore have |«| = 1 and the proof is complete. 

According to this result a differential equation (q) either has all its first (second) 
phases elementary or none of them are elementary. A differential equation (q) whose 
first (second) phases are elementary we shall call a differential equation with elementary 
first (second) phases, and apply the same terminology also to the corresponding 
carriers. It is convenient also to speak of differential equations and carriers as ele­
mentary with respect to their first (second) phases. 

Now let (q) be a differential equation with elementary first (second) phases. The 
question arises: what properties have the second (first) phases of (q)? 
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In order to answer this, consider a first and a second phase a and ft of the same 
basis of (q). Between the phases a5 ft there holds therefore a relationship similar to 
(5.34), and it follows that for any two values t, t + TT ej 

P(t + 7r) — p(t) - E7T = a(t + 7r) - a( t) - E7T 

+ Arccot i ( l/a ' ( f+7г)) ' Arccot 

(є = sgn a' = sgn /?'). 

\ OMOУ (8.2) 

If the phase a is elementary, then a' is a periodic function with period TT and so, 
consequently, is Arccot [|(l/oc')']. Formula (2) then shows that the phase ft is also 
elementary. 

If, conversely, the phase /? is elementary, then the left side of (2) is identically zero 
and it is clear that the phase a is elementary if and only if the function (1/a')' has 
period n. 

To sum up: 

In a differential equation (q) with elementary first phases, the second phases are also 
elementary. 

In a differential equation (q) with elementary second phases the first phases a are also 
elementary if and only if the functions (I jot')' formed from them have period n. 

8.3 Properties of integrals, and their derivatives, of differential equations (q) with 
elementary phases 

Integrals of differential equations (q) with elementary first or second phases, and their 
derivatives, are distinguished by particular properties which we now examine. Our 
investigation will be mainly concerned with differential equations (q) possessing 
elementary first phases; with regard to equations with elementary second phases we 
shall content ourselves with an indication of the results. 

We show that 

If the differential equation (q) is elementary with respect to its first phases, then the 
values taken by every integral y of(q) at two arbitrary points t, t + TT ej are equal and 
opposite in sign, that is 

}'(t + n) = -y(t). (8.3) 

To show this, we assume that the first phases of (q) are elementary. Consider an 
integral y and a first phase a of (q). Then for an appropriate choice of the constants 
ku k2 there holds a formula like the first of the formulae (5.27). Since the phase a is 
elementary, a' has period TT, SO, at two arbitrary points t, t + n ej the relation (3) 
holds. 

Moreover 

Theorem. The differential equation (q) is elementary with respect to its first phases if 
and only if any two numbers t, t + TT ej are neighbouring l-conjugate numbers. 

Proof (a) Let the differential equation (q) be elementary with respect to its first 
phases. 
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Let t, t + TT ej be arbitrary numbers; let us choose a first phase a and an integraly 
of (q) which vanishes at t. Then we have a formula such as (5,27), in which a(t) + k2 = 
mr, n integral. Since the phase a is elementary, we have a(t + TT) + k2 = (n + £)TT, 
s = sgn a', and between the numbers t, t + TT there is no point at which the value of 
the function a + k2 is an integral multiple of TT. Consequently, t + TT is the first zero 
of y following t. 

(b) Let two arbitrary numbers t, t + TT ej be neighbouring 1- conjugate numbers. 
We consider a first phase a of (q). Let t9 t + TT ej be arbitrary numbers, and let y 

be an integral of (q) which vanishes at t. Then we have a formula such as (5.27) in 
which a(t) + k2 = mr, where n is integral. According to our assumption, t + TT is a 
zero of j , and indeed the first zero of y following t; it follows that a(t + TT) + k2 = 
(n + e)Tr, s = sgn a'. We have therefore a(t + TT) = a(t) + €TT, which establishes our 
result. 

The theorem which has just been proved can obviously be formulated as follows: 
The differential equation (q) is elementary with respect to its first phases if and only 

if the zeros of all its integrals are situated at a distance TT apart; that is, if two neigh­
bouring zeros always have the same separation TT. 

The following property of a differential equation (q) with elementary first phases, 
in the case b •— a> 2TT, is worth mentioning: the integrals of such an equation are 
periodic functions with the fundamental period 2-rr. 

For, by the relation (3), the integrals of (q) have period 2TT, and for the fundamental 
period p > 0 of an integral y of (q) we have 0 < p < 27r. If p < 2TT, then for appro­
priate values t,t+p ej we have the inequality y(t) y(t + p) < 0, which conflicts with 
the definition of p. 

Analogous properties are possessed by differential equations (q) with negative 
carriers and elementary second phases: 

If the differential equation (q) is elementary with respect to its second phases, then for 
the values of the derivative y' of every integral y of(q) at two arbitrary points t, t + TT 
there holds the relationship 

• « + - > _ /(«> (8.4) 
V|,« + „)| V\q(r)\ 

The differential equation (q) is elementary with respect to its second phases if and 
only if every two numbers t, t + TT ej are neighbouring 2-conjugate numbers. 

The differential equation (q) is elementary with respect to its second phases if and 
only if the zeros of the derivatives of all its integrals are separated by a distance TT. 

For a differential equation (q) with elementary second phases, in the case when 
b — a > 2tr, the function / ( 0 / V % ( 0 l constructed from an arbitrary integral y of the 
differential equation (q) is periodic with fundamental period 2TT. 

We know that for a differential equation (q) with elementary first phases, the second 
phases are also elementary (§ 8.2). From that, and the above results, we deduce that: 

For a differential equation (q) with a negative carrier q and elementary first phases\ the 
successive zeros of any integral of (q) are separated by a distance TT; SO also are the 
successive turning points of such an integral. 
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8.4 Determination of all carriers with elementary first phases 

Our knowledge of elementary phases now makes it possible to determine explicitly 
all carriers with elementary first phases. For brevity, in §§ 8.4-8.7, we shall speak of 
phases and elementary carriers instead of first phases and carriers with elementary 
first phases. 

From § 8,1, every elementary phase a of a differential equation (q) may be expressed 
in the form 

a(t) = et + A(t) (s = sgn a') (8.5) 

involving a function A(t), t ej, with the following properties: 

1. A has period n9 

2. A e C3, 
3. sgn [e + A'(t)] = s for all t ej. 

From § 5.5, we know that the carrier q is determined uniquely by the phase a, being 
given precisely by the formula (5.16), so that 

If, conversely, we choose s = + 1 or s = —1 and an arbitrary function A(t), t ej, 
with the above properties 1-3, then the function a defined by (5) represents a phase 
function (§ 5.7) with the property that oc(t + rr) = oc(t) + STT. Consequently, this 
function is an elementary phase of the carrier q determined by (6). 

In this way we have determined all elementary carriers in the interval j : 
All elementary carriers q in the interval j are given by the formula (6); e denotes +1 

or — 1, and A represents an arbitrary function in the interval j with the above properties 
1-3. 

8,5 Equations with elementary phases, defined over (— oo, oo) 

With subsequent applications in mind, we now consider differential equations (q), 
with elementary phases, on the intervalj,j = (—oo, oo). From (5) we see that each 
phase of such a differential equation (q) is unbounded above and below. It follows 
(§ 5.4) that all differential equations (q) with elementary phases in the interval j = 
(—oo, oo) are oscillatory. The corresponding carriersq are naturally given by formula 
(6). 

An example, which we shall need, of a system of elementary carriers q in the interval 
j = (~oo, oo) is given by the following formula, due to F. Neuman [53] (c is an 
arbitrary constant): 

sin 4(t — c) + - sin4 (t — c) 

q(t\c) = - j - 1. (8.7) 

I I — - sin 2(t — c) - sin2 (t — c) I 
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This system is obtained from formula (6) by the following choice of the function 
,4(0: 

A(t) = 

(arctan I - cos 2(t — c) — cot (t — c 1 — t + VTT for t e (c + VTT, c + (v + l)7r), 

- \ - c for t = w ; (v = 0, ± 1 , ± 2 , . . . ) . 

Here the symbol arctan denotes that branch of the function which lies in the interval 
(—\TT9 \TT). Later we shall obtain this system of carriers by another method (§ 15.8). 

It is easy to show that any two elementary carriers q(t\c^)9 q(t\c2) of the system (7) 
obtained from different values cl9 c2e [0, \TT) represent different functions. It follows 
that: 

The system of elementary carriers (7) has the power of the continuum, X-

8.6 Power of the set of elementary carriers 

We now seek to determine the power of the set of all elementary carriers in the interval 
j =z (~oo, GO). Let E denote this set. Since the elements of E can be obtained from an 
arbitrary ^-periodic function A of class C3 by means of the formula (6), it is reasonable 
to suppose that the power of E is X. This can be proved formally as follows: 

The system of elementary carriers given by the formula (7) represents a subset of E. 
Since this possesses the power X, we have card E > X. Moreover, the elements of 
E arc continuous functions in the interval j , so that card E < X; consequently: 

The power of the set of all elementary carriers in the interval] = (— GO, CO) is precisely 
the power of the continuum, >?. 

8.7 Generalization of the concept of elementary phases 

We now close this section with the following remarks. Consider a differential equation 
(q) in the interval j = (a, b). Let c > 0, k > 0 be arbitrary numbers and b — a > c. 

A first or second phase f(t) of (q) will be called quasi-elementary if for every two 
values t, t + c lying in the interval j there holds the relation 

f(t + c) = f(t) + ek (e = sgn f). 

It is easy to verify that the function 

defined by means of a quasi-elementary phase f of (q) in the interval (a, b), dj= 
(cJTr)a, b = (e/^r)b satisfies the relationship 

y(t + TT) = y(t) + STT (e = sgn f). 
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If y ( = a) is a first quasi-elementary phase of (q), then the function y ( = a) e C3, 
and taking account of the formula (1.17), we have 

{a, /} = — õč, - / 

It follows that 

(,,«)=)-{«,/)-«'2(0 = *•;')-°2(Я 
+ c2 

1 

-PK0-S<-) + *£- . -K')-
Hence, if a(/) is a first quasi-elementary phase of the carrier q(t) in the interval (a, b) 
then the function 

«( / ) = - oc ( -

represents in the interval (a, b), a = (cjir)a, b = (c/V)b a first elementary phase of the 
carrier 

*o--K«)+',G-.-K')-
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