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10 Algebraic structure of the set of phases of 
oscillatory differential equations (q) in the 
interval («-eo9 oo) 

In this section we investigate the algebraic structure of the set of first phases of oscilla­
tory differential equations (q), with the definition interval j = (—00, 00). The term 
phase function will here always mean a phase function (§ 5.7) of class C3. 

We know from §§ 5.5, 5.7, 5.4, that every first phase of a differential equation (q) 
represents a phase function which in the oscillatory case is unbounded on both sides. 
We also know (§§ 5.7, 5.4) that conversely every phase function oe which is unbounded 
on both sides in its definition intervalj represents a first phase of the oscillatory differ­
ential equation (q) constructed according to the formula (5.16). This section will 
therefore be concerned with the algebraic structure of the set of all phase functions 
defined in the intervalj = (— 00, 00) and unbounded on both sides. We shall call this 
set the phase set of the oscillatory differential equations (q) in the interval (j =) 
(-• 00, 00) or, more briefly, the phase set. 

Instead of phase functions we shall speak more briefly of phases, and we shall call 
the carrier q of an oscillatory differential equation (q) an oscillatory carrier. The 
oscillatory carriers are therefore formed by making use of the formula (5.16) or (5,18), 
using a phase function oc which is unbounded on both sides. 

We remark that the power of the set M formed from all oscillatory carriers is 
equal to the power of the continuum. For, since M is composed of continuous func­
tions, card M < H and since it contains all carriers formed from arbitrary constants 
—k2 (7^ 0), we have also card M > Hi we thus have card M = $. 

10.1 The phase group © 

Let G be the phase set of the oscillatory differential equations (q) in the interval 
j = ( - c o , 00). 

The phase set G obviously includes the identity phase <f>0(t) = t. Moreover, the 
function a[y(t)]3 which is the composition of two arbitrary phases a, y e G is also an 
element of G9 and so is the function a"1 inverse to oc. We now introduce into the set 
G a binary operation, which we call multiplication, by means of composition of 
functions; for arbitrary phases a j e G w e define the product ay as being the com­
posite function a[y(t)]. The set G with this multiplication thus forms a group © with 
the unit element <f>0(t). We shall call © the phase group. 
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The inverse element a""1 corresponding to any element a e © represents an 
increasing or decreasing phase according as a is an increasing or decreasing function. 
Moreover, the product ay of two elements a, y e © is an increasing function if both 
phases a, y increase or decrease and is a decreasing function if one increases and 
the other decreases. 

The set 9t formed from all increasing phases is a normal sub group of ©: a™131a = 
91; a G ©. The factor group ®/9t consists of two elements, namely 9t and the class A 
of all decreasing phases. 

10*2 The equivalence relation Q 

Our next step is to introduce into the phase group © an equivalence relation, as 
follows: two phases a, y e © are equivalent if they are linked by means of a relation­
ship of the form 

c n tan a(0 + c12 
tan y(t) = — » (10.1) 

c21 tan a(t) + c22 

where the c n , c12, c21, c22 are constants with a non-zero determinant, i.e. |cjy| -^ 0, 
and the relation (1) must hold for all values t ej except for the singular points of the 
functions tan a(t), tan y(t). It is easy to see that the relation determined by (1) in the 
phase group © is reflexive, symmetric and transitive, and consequently is an equiva­
lence relation. We shall denote this relation by Q. 

The phase group © is therefore split up into a system of equivalence classes mod Q, 
which we denote by Q. Q is therefore a partition of the phase group ©; every element 
ae Q consists of those phases which are equivalent to each other, while no phases 
lying in different elements a, be Q are equivalent. 

Now, two arbitrary phase functions a, y e © represent first phases of appropriate 
carriers q,p determined by formulae such as (5.18). If a, y are equivalent, they belong 
to the same element a e Q, so there holds a relationship of the form (1) and from this 
and the theorem of § 1.8 it follows that 

f ^ fcn tan a + c12 ) 
p(t) = -{tan y, t] = - -11 12-, t\ = -{tan a, t) = q(t\ 

[c21 tan a + c22 J 
so that p(t) = q(t). Conversely (§5.17) the relation (1) holds for any two first phases 
a, y of a carrier q(t), t ej; follows that the phase functions a, y are equivalent and so 
belong to the same element ae Q. Thus every element ae Q comprises all first phases 
of one and the same carrier q(t). Let us associate with every element ae Q the corre­
sponding carrier q(t). We then have a simple mapping s/ of the partition Q onto the 
set of all oscillatory carriers. The power of the partition Q is that of the continuum, 
card Q = tf. 

In connection with this concept of equivalence of phases we note that: if one of 
two equivalent phases a, y is elementary, then since a, y are first phases of the same 
carrier q, the other phase is also elementary (§ 8.2), i.e. all phases equivalent to an 
elementary phase are themselves elementary. 
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103 The fundamental subgroup (£ 

Next we investigate the algebraic structure of the partition Q. 
With this objective, we consider that element (£ e Q which contains the unit element 

<f>0 of (5. This element obviously consists of all phases £(f) which are equivalent to the 
unit element <f)0j that is to say all phases of the form 

+ r/.x clttant + c12 

tan £(t) = — - — (10.2) 
C21 t a n t -+• c22 

In view of (2), it is clear that the composite function ^ 2 formed from two phases 
£i» £2 e ® also belongs to the class (E, and so does the function £~x inverse to £x. The 
elements of (£ thus form a subgroup of (5: 6 c (g; we call this subgroup (£ the funda­
mental subgroup of®. 

We now show that the partition Q coincides with the right residue class partition 
®/r(E of the phase group (S with respect to (E. 

Let a e Q be an arbitrary element and <x e a a phase lying in it. We have to show 
that a = (£a. 

Now, for every element C(0 e 6 there holds a formula such as (2). If, in that, we 
replace t by a(t) then it is clear that £oe is equivalent to a. Consequently £oe e a and 
we have Cot <= a. 

Moreover, for every element yea there holds a formula such as (1). If, in this, 
we replace t by a_1(t), then it is clear that ya"1 is equivalent to t. Hence yoL~x e (E, 
moreover, 7 G (£a, and we have a c ga. This establishes the fact that a = ©a. 

By a result from the theory of groups, the power of all right residue classes in a 
group with respect to a subgroup is always the same. Consequently, the power of all 
elements of the partition Q is always the same, and consequently equal to the power 
of (S. This latter is obviously equal to X, so card (£ = X. 

Thus, the power of the set a of all first phases of a carrier q(t) is the power of the 
continuum: card a = >$. 

We remark that the unit element 4>0(t) -= t e (£ obviously represents an elementary 
phase. Since all phases equivalent to an elementary phase are themselves equivalent, 
it follows that: 

The fundamental subgroup (£ is comprised only of elementary phases. 

We observe that the mapping stf maps the fundamental subgroup (£ onto the 
oscillatory carrier q(t) == — 1. 

10.4 The subgroup $ of elementary phases 

Let $) be the set comprising all elementary phases. We wish to show that § is a 
subgroup of(S; § c ©. 

Proof We have already noted that the unit element <f>0 is an elementary phase. 
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Let a, y e © be arbitrary elementary phases. We note first that the composite 
phase ay is also elementary, since 

ay(t + TT) = a(y(t + TT)) = a(y(t) + B2TT) = a(y(t)) + E^TT = ay(t) + sgn (ayjir 

(ex = sgn a', e2 = sgn / ) . 

Further, the function inverse to a, namely a ( = a""1) is also an elementary phase. 
For, when iej we have 

a(a(f) + TT) = a(a(t + ETT)) = i + ETT (E = sgn a' = sgn a'), 

and from this it follows for t = a(f), i = a(t), that 

a(t + TT) = a(l) + ETT. 

This completes the proof. 
We have shown above that the fundamental subgroup (£ consists only of elementary 

phases. It follows that S is a subgroup of § , consequently 

( E d g . (10.3) 

Now let ®/r $ be the right residue class partition of the group © with respect to §. 
The elements of this partition are therefore the right residue classes §a, a e © with 
respect to the subgroup § . 

From (3) it follows that the partition ®/r $ represents a covering of ®/r(5; conse­
quently ([81]) 

®/ r$^©/ r<£. (10.4) 

Formula (4) asserts that every element § a e ®/r |> is the union of some elements 
of the partition ®/r(E. In particular, the subgroup § is also the union of some elements 
of the partition ®/r(£. From a known result in group theory, the power of the set of 
all elements of ®/r(£ whose union gives rise to the element §a, is independent of the 
choice of this element. In other words, for every choice of the element § a e ®/r § 
the power of the set of elements of the partition ®/r(£ which give the element $ a by 
their union, is always the same. 

We now consider the subgroup $ and a further element 5)a of the partition 
®/r § of ®. Let A0 and A be the sets of all elements of the partition ®/r(£ whose 
unions respectively produce the elements § and $ a : uA0 = § , uA = §a . From 
the above, the power of the two sets AT0, A ate the same: card A0 = card A. By means 
of the mapping sf the sets AT0, A are mapped onto certain sets s$A0, s$A of oscilla­
tory carriers. From the definition of stf9 the sets s/A0 and s$A consist of just those 
carriers whose first phases lie in $ and $ a respectively. In particular, the set s/A0 

comprises those carriers of which the first phases are elementary; that is to say, the 
elementary carriers. From § 7.6 the power of s/A0 is equal to that of the continuum: 
card s$A0 = X- Now, the mapping s/ is simple; it follows that card s$A0 = card A09 

card s/A = card A. We have therefore 

card s/A = card A = card A0 = card s/A0 = X, 

which gives the following result: 

The power of the set of all oscillatory carriersr, whose first phases lie in one and the 
same element § a e ®/r § , is the same for all elements o/®r/ § and is equal to the power 
of the continuum. 
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